JP2018154047A - Three-dimensional molding apparatus, method for manufacturing three-dimensional molded article and program - Google Patents

Three-dimensional molding apparatus, method for manufacturing three-dimensional molded article and program Download PDF

Info

Publication number
JP2018154047A
JP2018154047A JP2017053428A JP2017053428A JP2018154047A JP 2018154047 A JP2018154047 A JP 2018154047A JP 2017053428 A JP2017053428 A JP 2017053428A JP 2017053428 A JP2017053428 A JP 2017053428A JP 2018154047 A JP2018154047 A JP 2018154047A
Authority
JP
Japan
Prior art keywords
powder
modeling
flattening
tank
surplus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017053428A
Other languages
Japanese (ja)
Other versions
JP6880492B2 (en
Inventor
青蔵 佐倉
Seizo Sakura
青蔵 佐倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2017053428A priority Critical patent/JP6880492B2/en
Publication of JP2018154047A publication Critical patent/JP2018154047A/en
Application granted granted Critical
Publication of JP6880492B2 publication Critical patent/JP6880492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PROBLEM TO BE SOLVED: To achieve a small-sized three-dimensional molding apparatus in which an excess powder is produced that passes in a molding tank during a flattening process.SOLUTION: A three-dimensional molding apparatus is provided for manufacturing a three-dimensional molded article by repeating such an operation that includes forming a powder layer 31 in a molding tank by carrying out a flattening process in which a powder 20 reserved in a supply tank 21 is conveyed to a molding tank 22 by moving a flattening member 12 as well as the powder in the molding tank is flattened, and binding the powder of the powder layer into a desired shape to form a layer structure 30, so as to stack the layer structures. An excess powder return process is carried out by moving a powder returning member 12 to follow the movement route of the flattening member, so as to return at least a part of an excess powder conveyed by the flattening member to pass over the molding tank back to the supply tank.SELECTED DRAWING: Figure 3

Description

本発明は、三次元造形装置、三次元造形物の製造方法及びプログラムに関するものである。   The present invention relates to a three-dimensional modeling apparatus, a method for manufacturing a three-dimensional modeled object, and a program.

従来、平坦化部材を移動させることで供給槽に貯留された粉体を造形槽へ移送して供給するとともに造形槽の粉体を平坦化する平坦化処理を実行し、造形槽に形成された粉体層の粉体を所要形状に結合して層状構造物を形成するという動作を繰り返し行って、層状構造物が積層された三次元造形物を造形する三次元造形装置が知られている。   Conventionally, the powder stored in the supply tank is transferred and supplied to the modeling tank by moving the flattening member, and the leveling process for flattening the powder in the modeling tank is performed, and the powder is formed in the modeling tank. There is known a three-dimensional modeling apparatus that forms a three-dimensional structure in which a layered structure is laminated by repeatedly performing an operation of forming a layered structure by combining powder of a powder layer into a required shape.

例えば、特許文献1には、平坦化ローラ(平坦化部材)を水平移動させて、供給槽の粉体を造形槽へ移送供給するとともに、造形槽の粉体を平坦化する平坦化処理を実行する三次元造形装置が知られている。この三次元造形装置では、平坦化処理時に平坦化ローラによって造形槽を通過するまで移送された余剰粉体が、余剰粉体受け槽内に落下して回収される。   For example, in Patent Document 1, a leveling roller (a leveling member) is moved horizontally to transfer and supply powder from a supply tank to a modeling tank, and a leveling process is performed to level the powder in the modeling tank. A three-dimensional modeling apparatus is known. In this three-dimensional modeling apparatus, surplus powder transferred until it passes through the modeling tank by the leveling roller during the leveling process falls into the excess powder receiving tank and is collected.

従来の三次元造形装置では、一層の粉体層を形成するたびに余剰粉体が余剰粉体受け槽に蓄積されていくため、大型の余剰粉体受け槽が必要となり、装置が大型化する。   In the conventional 3D modeling apparatus, each time a single layer of powder is formed, surplus powder is accumulated in the surplus powder receiving tank, so a large surplus powder receiving tank is required, and the apparatus becomes larger. .

上述した課題を解決するため、本発明は、平坦化部材を移動させることで、供給槽に貯留された粉体を造形槽へ移送して供給するとともに、該造形槽の粉体を平坦化する平坦化処理を実行し、該造形槽に形成された粉体層の粉体を所要形状に結合して層状構造物を形成するという動作を繰り返し行って、該層状構造物が積層された三次元造形物を造形する三次元造形装置であって、前記平坦化部材の移動経路を戻るように粉体戻し部材を移動させることにより、該平坦化部材により前記造形槽を通過するまで移送された余剰粉体の少なくとも一部を前記供給槽に戻す余剰粉体戻し処理を実行することを特徴とする。   In order to solve the above-described problems, the present invention moves the flattening member to transfer and supply the powder stored in the supply tank to the modeling tank, and flatten the powder in the modeling tank. A three-dimensional structure in which the layered structure is laminated by repeatedly performing an operation of performing a flattening process and combining the powder of the powder layer formed in the modeling tank into a required shape to form a layered structure. It is a three-dimensional modeling apparatus that models a modeled object, and the surplus that has been transferred by the flattening member until it passes through the modeling tank by moving the powder return member so as to return the movement path of the flattening member A surplus powder returning process for returning at least a part of the powder to the supply tank is performed.

本発明によれば、平坦化処理時に造形槽を通過する余剰粉体が生じる三次元造形装置の小型化を実現できる。   According to the present invention, it is possible to reduce the size of the three-dimensional modeling apparatus in which surplus powder that passes through the modeling tank is generated during the planarization process.

第1の実施形態に係る三次元造形装置の一例の概略を示す平面説明図である。It is plane explanatory drawing which shows the outline of an example of the three-dimensional modeling apparatus which concerns on 1st Embodiment. 同三次元造形装置の概略を示す側面説明図である。It is side surface explanatory drawing which shows the outline of the same three-dimensional modeling apparatus. 同三次元造形装置における造形部の概略を示す断面説明図である。It is sectional explanatory drawing which shows the outline of the modeling part in the same three-dimensional modeling apparatus. 同三次元造形装置の要部の具体的構成を示す斜視説明図である。It is an isometric view explanatory drawing which shows the specific structure of the principal part of the same three-dimensional modeling apparatus. 同三次元造形装置における制御部を示すブロック図である。It is a block diagram which shows the control part in the same three-dimensional modeling apparatus. (a)〜(e)は、同三次元造形装置において、往復移動する平坦化ローラの往路時における粉体層の形成動作(往路の平坦化処理)を説明するための説明図である。(A)-(e) is explanatory drawing for demonstrating the formation operation | movement (planarization process of an outward path) at the time of the outward path | route of the flattening roller which reciprocates in the three-dimensional modeling apparatus. (a)〜(c)は、同三次元造形装置において、往復移動する平坦化ローラの復路時における粉体層の形成動作(復路の平坦化処理)を説明するための説明図である。(A)-(c) is explanatory drawing for demonstrating the formation operation | movement (planarization process of a return path) at the time of the return path | route of the flattening roller which reciprocates in the same three-dimensional modeling apparatus.

以下、本発明の実施の形態について添付図面を参照して説明する。
本発明における第1の実施形態に係る三次元造形装置の一例の概要について、図1ないし図4を参照して説明する。
図1は同三次元造形装置の概略平面説明図、図2は同じく概略側面説明図、図3は同じく造形部の断面説明図である。なお、図3は造形時の状態で示している。また、図4は同じく具体的構成の要部斜視説明図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
An outline of an example of the three-dimensional modeling apparatus according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
FIG. 1 is an explanatory schematic plan view of the 3D modeling apparatus, FIG. 2 is an explanatory schematic side view, and FIG. 3 is an explanatory sectional view of the modeling unit. FIG. 3 shows a state during modeling. FIG. 4 is an explanatory perspective view of the essential part of the specific configuration.

この三次元造形装置は、粉体造形装置(粉末造形装置ともいう。)であり、粉体(粉末)が結合された層状構造物30が形成される造形部1と、造形部1の層状に敷き詰められた粉体の層(粉体層)31に対して造形液10を吐出する造形ユニット5とを備えている。   This three-dimensional modeling apparatus is a powder modeling apparatus (also referred to as a powder modeling apparatus), and is formed into a layered structure 1 in which a layered structure 30 to which powder (powder) is bonded is formed, and a layered structure of the modeling part 1. A modeling unit 5 that discharges the modeling liquid 10 to the spread powder layer (powder layer) 31 is provided.

造形部1は、粉体槽11と、平坦化手段(リコータ)を構成する平坦化部材としての回転部材である平坦化ローラ12などを備えている。なお、平坦化部材は、回転部材に代えて、例えば板状部材(ブレード)とすることもできる。   The modeling unit 1 includes a powder tank 11 and a flattening roller 12 which is a rotating member as a flattening member constituting a flattening means (recoater). The flattening member may be a plate-like member (blade) instead of the rotating member.

粉体槽11は、造形槽22に供給する粉体20を貯留する供給槽21と、層状構造物30が積層されて三次元造形物が造形される造形槽22と、造形槽22に供給された粉体の余剰分を一時的に保持する粉体保持部材としての粉体保持テーブル81を備えた余剰粉体受け機構80とを有している。   The powder tank 11 is supplied to the supply tank 21 for storing the powder 20 to be supplied to the modeling tank 22, the modeling tank 22 in which the layered structure 30 is stacked to form a three-dimensional structure, and the modeling tank 22. A surplus powder receiving mechanism 80 provided with a powder holding table 81 as a powder holding member for temporarily holding surplus powder.

供給槽21の底部を構成する供給ステージ23は、鉛直方向(高さ方向)に昇降自在となっている。同様に、造形槽22の底部を構成する造形ステージ24も、鉛直方向(高さ方向)に昇降自在となっている。造形ステージ24上に層状構造物30が積層された三次元造形物が造形される。供給ステージ23は、例えば図4に示すように、モータ27によってZ方向(高さ方向)に昇降され、造形ステージ24も、同じく、モータ28によってZ方向に昇降される。   The supply stage 23 constituting the bottom of the supply tank 21 can be raised and lowered in the vertical direction (height direction). Similarly, the modeling stage 24 constituting the bottom of the modeling tank 22 can also be raised and lowered in the vertical direction (height direction). A three-dimensional structure in which the layered structure 30 is stacked on the modeling stage 24 is modeled. For example, as shown in FIG. 4, the supply stage 23 is raised and lowered in the Z direction (height direction) by the motor 27, and the modeling stage 24 is also raised and lowered in the Z direction by the motor 28.

供給ステージ23の側面は供給槽21の内側面に接するように配置されている。造形ステージ24の側面も造形槽22の内側面に接するように配置されている。これらの供給ステージ23及び造形ステージ24の上面は水平に保たれている。   The side surface of the supply stage 23 is disposed in contact with the inner side surface of the supply tank 21. The side surface of the modeling stage 24 is also arranged so as to contact the inner surface of the modeling tank 22. The upper surfaces of the supply stage 23 and the modeling stage 24 are kept horizontal.

供給槽21には、後述する粉体供給装置554が配置されている。造形の初期動作時や供給槽21の粉体量が減少した時に、粉体供給装置554を構成するタンク内の粉体を供給槽21へ供給する。粉体供給のための粉体搬送方法としては、スクリューを利用したスクリューコンベア方式や、エアーを利用した空気輸送方式などが挙げられる。   A powder supply device 554 described later is disposed in the supply tank 21. During the initial modeling operation or when the amount of powder in the supply tank 21 decreases, the powder in the tank constituting the powder supply device 554 is supplied to the supply tank 21. Examples of the powder conveying method for supplying powder include a screw conveyor method using a screw and an air transportation method using air.

平坦化ローラ12は、供給槽21の供給ステージ23上に貯留されている粉体20を造形槽22に移送して供給するとともに、造形槽22に供給された粉体20の表面を均して平坦化し、所定の厚みの粉体層を形成する。平坦化ローラ12は、その軸方向長さが造形槽22及び供給槽21の内寸幅よりも長く、造形ステージ24のステージ面(粉体20が積載される面)に沿ってY方向に、ステージ面に対して相対的に往復移動可能に配置され、往復移動機構25によって移動される。   The flattening roller 12 transports and supplies the powder 20 stored on the supply stage 23 of the supply tank 21 to the modeling tank 22 and leveles the surface of the powder 20 supplied to the modeling tank 22. Flatten to form a powder layer having a predetermined thickness. The axial length of the flattening roller 12 is longer than the inner dimension width of the modeling tank 22 and the supply tank 21, and in the Y direction along the stage surface of the modeling stage 24 (the surface on which the powder 20 is loaded), The reciprocating mechanism is arranged so as to be able to reciprocate relative to the stage surface, and is moved by the reciprocating mechanism 25.

また、平坦化ローラ12は、モータ26によって回転駆動される。平坦化ローラ12は、モータ26によって回転されながら、供給槽21及び造形槽22の上方を通過するようにして水平方向に往復移動する。これにより、供給槽21の粉体20が造形槽22へと移送供給されるとともに、平坦化ローラ12が造形槽22上を通過しながら粉体20を移送しつつ平坦化して、所望の厚みの粉体層31が形成される。   Further, the flattening roller 12 is rotationally driven by a motor 26. The flattening roller 12 reciprocates in the horizontal direction so as to pass above the supply tank 21 and the modeling tank 22 while being rotated by the motor 26. As a result, the powder 20 in the supply tank 21 is transported and supplied to the modeling tank 22, and the flattening roller 12 is flattened while transporting the powder 20 while passing over the modeling tank 22, and has a desired thickness. A powder layer 31 is formed.

造形ユニット5は、造形ステージ24上の粉体層31に粉体20を結合させる造形液10を吐出(付与)して、粉体20が結合された層状構造物としての層状構造物30を形成する液体吐出ユニット50を備えている。   The modeling unit 5 discharges (applies) the modeling liquid 10 for binding the powder 20 to the powder layer 31 on the modeling stage 24 to form a layered structure 30 as a layered structure to which the powder 20 is bound. A liquid discharge unit 50 is provided.

液体吐出ユニット50は、キャリッジ51と、キャリッジ51に搭載された2つ(1又は3つ以上でもよい。)の液体吐出ヘッド(以下、単に「ヘッド」という。)52a,52bを備えている。   The liquid discharge unit 50 includes a carriage 51 and two (or three or more) liquid discharge heads (hereinafter simply referred to as “heads”) 52 a and 52 b mounted on the carriage 51.

キャリッジ51は、ガイド部材54,55に移動可能に保持されている。ガイド部材54,55は、両側の側板70,70に昇降可能に保持されている。このキャリッジ51は、後述するX方向走査機構550を構成するX方向走査モータによってプーリ及びベルトを介して主走査方向であるX方向に往復移動される。   The carriage 51 is movably held by the guide members 54 and 55. The guide members 54 and 55 are held on both side plates 70 and 70 so as to be movable up and down. The carriage 51 is reciprocated in the X direction, which is the main scanning direction, via a pulley and a belt by an X direction scanning motor constituting an X direction scanning mechanism 550 described later.

2つのヘッド52a,52b(以下、区別しないときは「ヘッド52」という。)は、造形液10を吐出する複数のノズルを配列したノズル列がそれぞれ2列配置されている。一方のヘッド52aの2つのノズル列は、シアン造形液及びマゼンタ造形液を吐出する。他方のヘッド52bの2つのノズル列は、イエロー造形液及びブラック造形液をそれぞれ吐出する。なお、ヘッド構成はこれに限るものではない。   The two heads 52a and 52b (hereinafter referred to as “heads 52” when not distinguished from each other) are each provided with two nozzle rows in which a plurality of nozzles that discharge the modeling liquid 10 are arranged. The two nozzle rows of one head 52a discharge a cyan modeling liquid and a magenta modeling liquid. The two nozzle rows of the other head 52b discharge yellow modeling liquid and black modeling liquid, respectively. The head configuration is not limited to this.

これらのシアン造形液、マゼンタ造形液、イエロー造形液、ブラック造形液の各々を収容した複数のタンク60がタンク装着部56に装着され、供給チューブなどを介してヘッド52a,52bに供給される。   A plurality of tanks 60 containing each of these cyan modeling liquid, magenta modeling liquid, yellow modeling liquid, and black modeling liquid are mounted on the tank mounting portion 56 and supplied to the heads 52a and 52b via supply tubes and the like.

また、X方向の一方側には、液体吐出ユニット50のヘッド52の維持回復を行うメンテナンス機構61が配置されている。メンテナンス機構61は、主にキャップ62とワイパ63で構成される。メンテナンス機構61では、キャップ62をヘッド52のノズル面(ノズルが形成された面)に密着させ、ノズルから造形液を吸引する。ノズルに詰まった粉体の排出や高粘度化した造形液を排出するためである。その後、メンテナンス機構61では、ノズルのメニスカス形成のため、ノズル面をワイパ63でワイピング(払拭)する。また、メンテナンス機構61は、造形液の吐出を行わない期間に、ヘッドのノズル面をキャップ62で覆い、粉体20がノズルに混入することや造形液10が乾燥することを防止する。   A maintenance mechanism 61 that performs maintenance and recovery of the head 52 of the liquid ejection unit 50 is disposed on one side in the X direction. The maintenance mechanism 61 is mainly composed of a cap 62 and a wiper 63. In the maintenance mechanism 61, the cap 62 is brought into close contact with the nozzle surface (surface on which the nozzle is formed) of the head 52, and the modeling liquid is sucked from the nozzle. This is for discharging the powder clogged in the nozzle and discharging the modeling liquid having a high viscosity. Thereafter, the maintenance mechanism 61 wipes (wipes) the nozzle surface with the wiper 63 in order to form a meniscus for the nozzle. Further, the maintenance mechanism 61 covers the nozzle surface of the head with the cap 62 during a period in which the modeling liquid is not discharged, and prevents the powder 20 from being mixed into the nozzle and the modeling liquid 10 from being dried.

造形ユニット5は、ベース部材7上に配置されたガイド部材71に移動可能に保持されたスライダ部72を有し、造形ユニット5全体がX方向と直交するY方向(副走査方向)に往復移動可能である。この造形ユニット5は、後述するY方向走査機構552によって全体がY方向に往復移動される。   The modeling unit 5 has a slider portion 72 movably held by a guide member 71 disposed on the base member 7, and the entire modeling unit 5 reciprocates in the Y direction (sub-scanning direction) orthogonal to the X direction. Is possible. The modeling unit 5 is reciprocated in the Y direction as a whole by a Y-direction scanning mechanism 552 described later.

液体吐出ユニット50は、ガイド部材54,55とともにZ方向に昇降可能に配置され、後述するZ方向昇降機構551によってZ方向に昇降される。   The liquid discharge unit 50 is disposed so as to be movable up and down in the Z direction together with the guide members 54 and 55, and is moved up and down in the Z direction by a Z direction lifting mechanism 551 described later.

次に、本実施形態における三次元造形装置の制御部の概要について図5を参照して説明する。
図5は同制御部のブロック図である。
制御部500は、本実施形態の三次元造形装置全体の制御を司るCPU501と、CPU501に三次元造形動作の制御を実行させるためのプログラムを含むプログラム、その他の固定データを格納するROM502と、造形データ等を一時格納するRAM503とを含む主制御部500Aを備えている。
Next, an outline of the control unit of the three-dimensional modeling apparatus in the present embodiment will be described with reference to FIG.
FIG. 5 is a block diagram of the control unit.
The control unit 500 includes a CPU 501 that controls the entire three-dimensional modeling apparatus of the present embodiment, a program that includes a program for causing the CPU 501 to control the three-dimensional modeling operation, a ROM 502 that stores other fixed data, and a modeling A main control unit 500A including a RAM 503 for temporarily storing data and the like is provided.

制御部500は、装置の電源が遮断されている間もデータを保持するための不揮発性メモリ(NVRAM)504を備えている。また、制御部500は、画像データに対する各種信号処理等を行う画像処理やその他装置全体を制御するための入出力信号を処理するASIC505を備えている。   The control unit 500 includes a non-volatile memory (NVRAM) 504 for holding data even when the apparatus is powered off. Further, the control unit 500 includes an ASIC 505 that processes image processing for performing various signal processing on image data and other input / output signals for controlling the entire apparatus.

制御部500は、外部の造形データ作成装置600から造形データを受信するときに使用するデータ及び信号の送受を行うための外部I/F506を備えている。造形データ作成装置600は、最終形態の三次元造形物を各層状構造物にスライスした造形データを作成する装置であり、例えばパーソナルコンピュータ等の情報処理装置で構成される。また、制御部500は、各種センサの検知信号を取り込むためのI/O507を備えている。I/O507には、装置の環境条件としての温度及び湿度を検出する温湿度センサ560などの検知信号やその他のセンサ類の検知信号が入力される。   The control unit 500 includes an external I / F 506 for transmitting and receiving data and signals used when receiving modeling data from the external modeling data creating apparatus 600. The modeling data creation apparatus 600 is an apparatus that creates modeling data obtained by slicing a final three-dimensional modeled object into each layered structure, and is configured by an information processing apparatus such as a personal computer. In addition, the control unit 500 includes an I / O 507 for taking in detection signals of various sensors. The I / O 507 receives a detection signal from a temperature / humidity sensor 560 that detects temperature and humidity as environmental conditions of the apparatus, and detection signals from other sensors.

制御部500は、液体吐出ユニット50のヘッド52を駆動制御するヘッド駆動制御部508を備えている。また、制御部500は、液体吐出ユニット50のキャリッジ51をX方向(主走査方向)に移動させるX方向走査機構550を構成するモータを駆動するモータ駆動部510と、造形ユニット5をY方向(副走査方向)に移動させるY方向走査機構552を構成するモータを駆動するモータ駆動部512を備えている。また、制御部500は、液体吐出ユニット50のキャリッジ51をZ方向に移動(昇降)させるZ方向昇降機構551を構成するモータを駆動するモータ駆動部511を備えている。なお、矢印Z方向への昇降は造形ユニット5全体を昇降させる構成とすることもできる。   The control unit 500 includes a head drive control unit 508 that drives and controls the head 52 of the liquid ejection unit 50. In addition, the control unit 500 moves the carriage 51 of the liquid discharge unit 50 in the X direction (main scanning direction), a motor driving unit 510 that drives a motor constituting the X direction scanning mechanism 550, and the modeling unit 5 in the Y direction ( A motor driving unit 512 that drives a motor that constitutes the Y-direction scanning mechanism 552 that moves in the sub-scanning direction) is provided. In addition, the control unit 500 includes a motor drive unit 511 that drives a motor that constitutes a Z-direction lifting mechanism 551 that moves (lifts) the carriage 51 of the liquid ejection unit 50 in the Z direction. In addition, raising / lowering to the arrow Z direction can also be set as the structure which raises / lowers the modeling unit 5 whole.

制御部500は、供給ステージ23を昇降させるモータ27を駆動するモータ駆動部513と、造形ステージ24を昇降させるモータ28を駆動するモータ駆動部514を備えている。また、制御部500は、平坦化ローラ12を移動させる往復移動機構25のモータ553を駆動するモータ駆動部515と、平坦化ローラ12を回転駆動するモータ26を駆動するモータ駆動部516を備えている。   The control unit 500 includes a motor drive unit 513 that drives a motor 27 that raises and lowers the supply stage 23, and a motor drive unit 514 that drives a motor 28 that raises and lowers the modeling stage 24. The control unit 500 includes a motor drive unit 515 that drives a motor 553 of the reciprocating mechanism 25 that moves the flattening roller 12, and a motor drive unit 516 that drives a motor 26 that rotationally drives the flattening roller 12. Yes.

制御部500は、供給槽21に粉体20を供給する粉体供給装置554を駆動する供給系駆動部517と、液体吐出ユニット50のメンテナンス機構61を駆動するメンテナンス駆動部518と、後述する余剰粉体受け機構80のスライド部材83を駆動する機構駆動部519とを備えている。   The control unit 500 includes a supply system drive unit 517 that drives the powder supply device 554 that supplies the powder 20 to the supply tank 21, a maintenance drive unit 518 that drives the maintenance mechanism 61 of the liquid discharge unit 50, and a surplus described later. And a mechanism drive unit 519 for driving the slide member 83 of the powder receiving mechanism 80.

制御部500には、必要な情報の入力及び表示を行うための操作パネル522が接続されている。   An operation panel 522 for inputting and displaying necessary information is connected to the control unit 500.

次に、余剰粉体受け機構80の構成及び動作について図2及び図3を参照して説明する。
余剰粉体受け機構80は、主に、図2及び図3に示すように、粉体保持テーブル81と、粉体保持テーブル81の底面から下方へ延びる支持シャフト82と、支持シャフト82に取り付けられたスライド部材83とから構成される。
Next, the configuration and operation of the excess powder receiving mechanism 80 will be described with reference to FIGS.
As shown in FIGS. 2 and 3, the surplus powder receiving mechanism 80 is attached to the powder holding table 81, a support shaft 82 extending downward from the bottom surface of the powder holding table 81, and the support shaft 82. And a slide member 83.

一方、造形ステージ24には、その底面から下方へ延びるステージラック24aが設けられている。ステージラック24aには、鉛直方向に沿って鋸歯状あるいは波形状に歯が形成されている。各歯は、上面が略水平面となるように形成され、下面が水平面に対して傾斜した傾斜面となるように形成されている。   On the other hand, the modeling stage 24 is provided with a stage rack 24a extending downward from the bottom surface thereof. The stage rack 24a has teeth formed in a sawtooth shape or a wave shape along the vertical direction. Each tooth is formed such that the upper surface is substantially horizontal and the lower surface is inclined with respect to the horizontal plane.

スライド部材83は、その先端が造形ステージ24のステージラック24aの上歯面に下支えされるように支持される。これにより、スライド部材83が取り付けられた支持シャフト82及び粉体保持テーブル81が支持され、造形ステージ24の昇降に連動して粉体保持テーブル81も昇降することができる。   The slide member 83 is supported such that the tip thereof is supported by the upper tooth surface of the stage rack 24 a of the modeling stage 24. Thereby, the support shaft 82 and the powder holding table 81 to which the slide member 83 is attached are supported, and the powder holding table 81 can be raised and lowered in conjunction with the raising and lowering of the modeling stage 24.

また、スライド部材83は、ステージラック24aに対して接離する方向へスライド可能に、支持シャフト82に取り付けられている。スライド部材83は、バネ等の付勢手段によりステージラック24aへ接する向きに付勢されている。   The slide member 83 is attached to the support shaft 82 so as to be slidable in a direction in which the slide member 83 comes into contact with or separates from the stage rack 24a. The slide member 83 is biased in a direction in contact with the stage rack 24a by a biasing means such as a spring.

スライド部材83の先端がステージラック24aのいずれかの上歯面(略水平面)に下支えされた状態で造形ステージ24が下降するとき、余剰粉体受け機構80の自重によりスライド部材83がステージラック24aの上歯面の下降に追従して下降し、これにより粉体保持テーブル81も下降する。そして、粉体保持テーブル81の底面が造形槽22の外壁面に設けられるストッパ24bに接触するまで連動して下降すると、粉体保持テーブル81及びスライド部材83の下降が規制される。   When the modeling stage 24 descends in a state where the tip of the slide member 83 is supported by any upper tooth surface (substantially horizontal surface) of the stage rack 24a, the slide member 83 is moved to the stage rack 24a by its own weight of the excess powder receiving mechanism 80. Then, the powder holding table 81 is also lowered. Then, when the bottom surface of the powder holding table 81 is lowered in conjunction with the stopper 24 b provided on the outer wall surface of the modeling tank 22, the lowering of the powder holding table 81 and the slide member 83 is restricted.

このとき、下降するステージラック24aの下歯面(傾斜面)によりスライド部材83が前記付勢手段の付勢力に抗して押し込まれ、ステージラック24aの下歯面(傾斜面)に沿ってスライド部材83の先端が相対移動(摺動)する。これにより、スライド部材83の先端がステージラック24aの下歯面(傾斜面)を乗り越え、スライド部材83の先端が支持される上歯面が次の上歯面(略水平面)へと切り替えられる。   At this time, the slide member 83 is pushed against the urging force of the urging means by the lower tooth surface (inclined surface) of the descending stage rack 24a, and slides along the lower tooth surface (inclined surface) of the stage rack 24a. The tip of the member 83 moves (slids) relatively. Thereby, the front end of the slide member 83 gets over the lower tooth surface (inclined surface) of the stage rack 24a, and the upper tooth surface on which the front end of the slide member 83 is supported is switched to the next upper tooth surface (substantially horizontal surface).

次に、本実施形態における粉体層の形成動作について、図6を参照して説明する。
図6(a)〜(e)は、往復移動する平坦化ローラ12の往路時における粉体層の形成動作(往路の平坦化処理)を説明するための説明図である。
まず、図6(a)に示すように、造形槽22の造形ステージ24上に、1又は複数層の層状構造物30が形成されているものとする。このとき、余剰粉体受け機構80の粉体保持テーブル81の保持面(上面)の高さは、前回の粉体層31の上面(最上層の層状構造物30の上面)の高さに一致している。
Next, the operation of forming the powder layer in the present embodiment will be described with reference to FIG.
6A to 6E are explanatory views for explaining the powder layer forming operation (outward path flattening process) during the forward path of the flattening roller 12 that reciprocates.
First, as illustrated in FIG. 6A, it is assumed that one or a plurality of layered structures 30 are formed on the modeling stage 24 of the modeling tank 22. At this time, the height of the holding surface (upper surface) of the powder holding table 81 of the surplus powder receiving mechanism 80 is equal to the height of the upper surface of the previous powder layer 31 (upper surface of the uppermost layered structure 30). I'm doing it.

図6(b)に示すように、最上層の層状構造物30上に次の粉体層31を形成するときには、ヘッド52をホームポジションへ退避させるとともに、造形槽22の造形ステージ24をZ2方向に下降させる。これに連動して、余剰粉体受け機構80の粉体保持テーブル81も、Z2方向に下降する。   As shown in FIG. 6B, when forming the next powder layer 31 on the uppermost layered structure 30, the head 52 is retracted to the home position and the modeling stage 24 of the modeling tank 22 is moved in the Z2 direction. To lower. In conjunction with this, the powder holding table 81 of the surplus powder receiving mechanism 80 is also lowered in the Z2 direction.

このとき、粉体保持テーブル81は、移動量z5分だけ下降したときに、粉体保持テーブル81の底面が造形槽22のストッパ24bに接触して下降が規制される。したがって、粉体保持テーブル81は、移動量z5分だけ下降した位置で停止する。なお、この移動量z5は、例えば、次に造形槽22の造形ステージ24をZ1方向に上昇させるときの移動量z4に合わせられる。   At this time, when the powder holding table 81 is lowered by the movement amount z5, the bottom of the powder holding table 81 comes into contact with the stopper 24b of the modeling tank 22 and the lowering is restricted. Therefore, the powder holding table 81 stops at a position lowered by the movement amount z5. In addition, this movement amount z5 is matched with the movement amount z4 when raising the modeling stage 24 of the modeling tank 22 next to Z1 direction, for example.

一方、造形ステージ24は、図6(c)に示すように、粉体保持テーブル81がストッパ24bにより規制された後も、更にZ2方向へ下降する。これにより、造形ステージ24と一体的に下降するステージラック24aの下歯面(傾斜面)によって、余剰粉体受け機構80のスライド部材83が押し込まれ、スライド部材83の先端を下支えするステージラック24aの上歯面(略水平面)が順次切り替えられていく。そして、造形ステージ24が移動量z2分だけ下降した位置で停止されると、スライド部材83の先端は対応するステージラック24aの上歯面に下支えされた状態となる。   On the other hand, as shown in FIG. 6C, the modeling stage 24 is further lowered in the Z2 direction even after the powder holding table 81 is regulated by the stopper 24b. As a result, the slide member 83 of the surplus powder receiving mechanism 80 is pushed in by the lower tooth surface (inclined surface) of the stage rack 24 a that descends integrally with the modeling stage 24, and the stage rack 24 a that supports the tip of the slide member 83. The upper tooth surface (substantially horizontal surface) is sequentially switched. When the modeling stage 24 is stopped at a position lowered by the movement amount z2, the tip of the slide member 83 is supported by the upper tooth surface of the corresponding stage rack 24a.

続いて、図6(d)に示すように、供給槽21の供給ステージ23をZ1方向に移動量z1分だけ上昇させる。このとき、供給ステージ23の上昇開始は、造形ステージ24の下降完了時に供給ステージ23の上昇も同時に完了するように設定するのが好ましい。   Subsequently, as shown in FIG. 6D, the supply stage 23 of the supply tank 21 is raised by the amount of movement z1 in the Z1 direction. At this time, it is preferable to set the start of raising the supply stage 23 so that the raising of the supply stage 23 is completed at the same time when the lowering of the modeling stage 24 is completed.

供給ステージ23の移動量z1や造形ステージ24の移動量z2は、形成する粉体層31の目標厚みΔtよりも大きなプレ粉体層を形成するように設定されている。なお、目標厚みΔtは、例えば数十〜100μm程度であるのが好ましい。   The movement amount z1 of the supply stage 23 and the movement amount z2 of the modeling stage 24 are set so as to form a pre-powder layer larger than the target thickness Δt of the powder layer 31 to be formed. The target thickness Δt is preferably about several tens to 100 μm, for example.

また、図6(d)に示すように、平坦化ローラ12を、供給槽21から造形槽22へ向かうY2方向(往路の平坦化方向)に移動させる。このとき、平坦化ローラ12を、図中矢印の向きに、すなわち、平坦化ローラ12の下面側がY2方向と同方向に表面移動する向きに、回転駆動させる。このように平坦化ローラ12が図中矢印の向きに回転しながらY2方向へ移動することにより、供給槽21の上面レベルよりも上方に存在する粉体20をY2方向へスムーズに移送して造形槽22へ供給することができる。   Further, as shown in FIG. 6D, the flattening roller 12 is moved in the Y2 direction (the flattening direction of the outward path) from the supply tank 21 toward the modeling tank 22. At this time, the flattening roller 12 is rotationally driven in the direction of the arrow in the drawing, that is, in the direction in which the lower surface side of the flattening roller 12 moves in the same direction as the Y2 direction. In this way, the flattening roller 12 moves in the Y2 direction while rotating in the direction of the arrow in the drawing, so that the powder 20 existing above the upper surface level of the supply tank 21 is smoothly transferred in the Y2 direction and shaped. It can be supplied to the tank 22.

そして、図6(e)に示すように、平坦化ローラ12が回転しながら更にY2方向へ移動し、造形槽22の上方を通過する際に、造形槽22に供給された粉体20の表面を均して平坦化し、最終的に形成される粉体層31の目標厚みΔtよりも厚みのあるプレ粉体層31’を形成する。   Then, as shown in FIG. 6E, the surface of the powder 20 supplied to the modeling tank 22 when the flattening roller 12 further moves in the Y2 direction while rotating and passes above the modeling tank 22. The pre-powder layer 31 ′ having a thickness larger than the target thickness Δt of the finally formed powder layer 31 is formed.

ここで、本実施形態では、供給ステージ23の移動量z1と造形ステージ24の移動量z2との関係が、z1≧z2の関係となっている。これにより、造形槽22の全体に粉体20を敷き詰めるのに十分な量の粉体20を供給槽21から造形槽22へ供給することができる。   Here, in the present embodiment, the relationship between the movement amount z1 of the supply stage 23 and the movement amount z2 of the modeling stage 24 is a relationship of z1 ≧ z2. As a result, a sufficient amount of the powder 20 can be supplied from the supply tank 21 to the modeling tank 22 to spread the powder 20 on the entire modeling tank 22.

このとき、供給槽21から移送された粉体20のうち造形槽22に供給されない余剰粉体20’が発生し、その余剰粉体20は造形槽22を通過するまで平坦化ローラ12によって移送される。余剰粉体は、造形槽22の上面レベルよりも下方に位置している粉体保持テーブル81の保持面に落下して一時的に保持される。   At this time, surplus powder 20 ′ that is not supplied to the modeling tank 22 is generated in the powder 20 transferred from the supply tank 21, and the surplus powder 20 is transferred by the flattening roller 12 until it passes through the modeling tank 22. The The surplus powder falls onto the holding surface of the powder holding table 81 located below the upper surface level of the modeling tank 22 and is temporarily held.

このような余剰粉体20’が発生するようにすると、平坦化ローラ12が供給槽21から造形槽22へ向かうY2方向における造形槽22の下流端まで粉体20を移送する間、常に余剰分の粉体が存在する。このような余剰分の粉体が存在することで、その余剰分の粉体の重みによる粉体層の押し付け効果が造形槽22の下流端まで得られる結果、より均一な高い粉体密度の粉体層を形成するのに有利である。   If such surplus powder 20 ′ is generated, the surplus amount is always obtained while the flattening roller 12 transfers the powder 20 to the downstream end of the modeling tank 22 in the Y2 direction from the supply tank 21 toward the modeling tank 22. Of powder. As a result of the presence of such surplus powder, the pressing effect of the powder layer due to the weight of the surplus powder can be obtained up to the downstream end of the modeling tank 22, and as a result, a more uniform high powder density powder. It is advantageous to form a body layer.

図7(a)〜(c)は、往復移動する平坦化ローラ12の復路時における粉体層の形成動作(復路の平坦化処理)を説明するための説明図である。
上述したようにプレ粉体層31’を形成する往路の平坦化処理が終了したら、続いて、図7(a)に示すように、供給槽21の供給ステージ23をZ2方向に移動量z3分だけ下降させ、造形槽22の造形ステージ24をZ1方向に移動量z4分だけ上昇させる。これにより、上述した往路での平坦化処理により造形槽22の造形ステージ24上に形成されたプレ粉体層31’の上層部分の粉体20が造形槽22の上面レベルから上方に盛り上がった状態になる。このときの造形ステージ24の移動量z4は、前回形成した下方の粉体層31の上面と平坦化ローラ12の最下部との間隔が粉体層31の目標厚みΔt1となるように設定される。
FIGS. 7A to 7C are explanatory views for explaining a powder layer forming operation (return path flattening process) during the return path of the flattening roller 12 that reciprocates.
When the forward flattening process for forming the pre-powder layer 31 ′ is completed as described above, subsequently, as shown in FIG. 7A, the supply stage 23 of the supply tank 21 is moved in the Z2 direction by the amount of movement z3. The modeling stage 24 of the modeling tank 22 is raised by the amount of movement z4 in the Z1 direction. Thereby, the powder 20 in the upper layer portion of the pre-powder layer 31 ′ formed on the modeling stage 24 of the modeling tank 22 by the above-described planarization process in the outward path has risen upward from the upper surface level of the modeling tank 22. become. The moving amount z4 of the modeling stage 24 at this time is set so that the distance between the upper surface of the lower powder layer 31 formed last time and the lowermost portion of the flattening roller 12 becomes the target thickness Δt1 of the powder layer 31. .

また、造形ステージ24の上昇に連動して、余剰粉体受け機構80の粉体保持テーブル81も、Z1方向に移動量z6分だけ上昇する。この移動量z6は、例えば、先に粉体保持テーブル81を下降させたときの移動量z5分に合わせられる。これにより、余剰粉体受け機構80の粉体保持テーブル81の保持面(上面)の高さは、造形槽22の上面レベルに一致する。これにより、往路の平坦化処理の際に発生して粉体保持テーブル81の保持面上に保持された余剰粉体20’も、造形槽22の上面レベルから上方に盛り上がった状態になる。   In conjunction with the ascent of the modeling stage 24, the powder holding table 81 of the surplus powder receiving mechanism 80 is also raised by the moving amount z6 in the Z1 direction. This movement amount z6 is adjusted to, for example, the movement amount z5 when the powder holding table 81 is first lowered. Thereby, the height of the holding surface (upper surface) of the powder holding table 81 of the surplus powder receiving mechanism 80 coincides with the upper surface level of the modeling tank 22. As a result, the surplus powder 20 ′ generated on the forward flattening process and held on the holding surface of the powder holding table 81 also rises upward from the upper surface level of the modeling tank 22.

その後、図7(b)に示すように、平坦化ローラ12を、粉体保持テーブル81から造形槽22を経て供給槽21へ向かうY1方向(復路の平坦化方向)に移動させる。このとき、平坦化ローラ12を、図中矢印の向きに、すなわち、平坦化ローラ12の下面側がY1方向と同方向に表面移動する向きに、回転駆動させる。このように平坦化ローラ12が図中矢印の向きに回転しながらY1方向へ移動することにより、粉体保持テーブル81の保持面上の余剰粉体20’をY1方向へ適切に移送できる。更に、造形槽22の上面レベルよりも上方に存在する粉体20を、余剰粉体20’と一緒にY1方向へ適切に移送しつつ、造形槽22の粉体20の表面を均して平坦化できる。その結果、造形槽22には、目標厚みΔtの粉体層31が形成される。   Thereafter, as shown in FIG. 7B, the flattening roller 12 is moved in the Y1 direction (the flattening direction of the return path) from the powder holding table 81 to the supply tank 21 through the modeling tank 22. At this time, the flattening roller 12 is rotationally driven in the direction of the arrow in the drawing, that is, in the direction in which the lower surface side of the flattening roller 12 moves in the same direction as the Y1 direction. As described above, when the flattening roller 12 moves in the Y1 direction while rotating in the direction of the arrow in the drawing, the excess powder 20 'on the holding surface of the powder holding table 81 can be appropriately transferred in the Y1 direction. Further, the surface of the powder 20 in the modeling tank 22 is leveled and flattened while appropriately transferring the powder 20 existing above the upper surface level of the modeling tank 22 in the Y1 direction together with the surplus powder 20 ′. Can be As a result, a powder layer 31 having a target thickness Δt is formed in the modeling tank 22.

そして、平坦化ローラ12が回転しながら更にY1方向へ移動し、造形槽22の上方を通過したとき、粉体層31の形成に使用されなかった未使用の粉体20,20’が供給槽21に戻される。粉体層31の形成後の平坦化ローラ12は、図7(c)に示すように、供給槽21の上方を通過して、初期位置(原点位置)に戻る(復帰する)。その後、図6(a)に示す動作に戻り、ヘッド52から造形液10の液滴を吐出して、形成した粉体層31に所要形状の層状構造物30を形成する。   Then, when the flattening roller 12 rotates and further moves in the Y1 direction and passes above the modeling tank 22, unused powders 20 and 20 ′ that are not used for forming the powder layer 31 are supplied to the supply tank. 21 is returned. The flattening roller 12 after the formation of the powder layer 31 passes over the supply tank 21 and returns (returns) to the initial position (origin position) as shown in FIG. Thereafter, returning to the operation shown in FIG. 6A, the droplet of the modeling liquid 10 is discharged from the head 52, and the layered structure 30 having a required shape is formed on the formed powder layer 31.

なお、層状構造物30は、例えば、ヘッド52から吐出された造形液10が粉体20と混合されることで、粉体20に含まれる接着剤が溶解し、溶解した接着剤同士が結合して粉体20が結合されることで形成される。新たな層状構造物30とその下層の層状構造物30とは一体化して三次元造形物の一部を構成する。   In the layered structure 30, for example, the modeling liquid 10 discharged from the head 52 is mixed with the powder 20, whereby the adhesive contained in the powder 20 is dissolved, and the dissolved adhesives are bonded to each other. Thus, the powder 20 is formed by bonding. The new layered structure 30 and the layered structure 30 underneath it constitute a part of the three-dimensional structure.

以後、上述した動作を繰り返し行うことにより、層状構造物30が積層された三次元形状造形物(立体造形物)が造形される。   Thereafter, by repeating the above-described operation, a three-dimensional modeled object (three-dimensional modeled object) in which the layered structures 30 are stacked is modeled.

本実施形態においては、できるだけ高い粉体密度で均一化された粉体層31を形成するために、平坦化ローラ12を往復移動させて往路と復路で2回の平坦化処理を実行することにより一層の粉体層31を形成する。なお、平坦化処理の回数は3回以上であってもよい。このように複数回の平坦化処理を実行して一層の粉体層31を形成する場合、粉体層の密度を段階的に高めることができ、高い粉体密度で均一化された粉体層31を形成するのに有利である。   In the present embodiment, in order to form a uniform powder layer 31 with as high a powder density as possible, the flattening roller 12 is moved back and forth to perform the flattening process twice in the forward path and the backward path. A single powder layer 31 is formed. Note that the number of times of planarization may be three or more. When a single powder layer 31 is formed by executing a plurality of planarization processes in this way, the density of the powder layer can be increased stepwise, and the powder layer made uniform with a high powder density It is advantageous to form 31.

ここで、このように複数回の平坦化処理を実行して高い粉体密度で均一化された粉体層31を形成しようとする場合、先に実行される平坦化処理時(往路の平坦化処理時)に、形成しようとする粉体層全体(造形槽22の全体)にわたって均一な量の粉体20を行き渡らせることが重要となる。粉体20の量が不十分な箇所があると、その後に更なる平坦化処理を行っても当該箇所の密度が不足しやすく、粉体層31の密度ムラが生じやすいからである。そのため、本実施形態においては、往路の平坦化処理時に、形成しようとする粉体層全体(造形槽22の全体)にわたって均一な量の粉体20が行き渡るように、余剰粉体20’が発生するようにしている。   Here, in the case where it is intended to form the powder layer 31 that is made uniform at a high powder density by performing the flattening process a plurality of times in this way, the flattening process that is performed first (the flattening of the forward path) It is important to distribute a uniform amount of the powder 20 over the entire powder layer to be formed (the entire modeling tank 22) during processing. This is because if there is a portion where the amount of the powder 20 is insufficient, the density of the portion is likely to be insufficient even if a further flattening process is performed thereafter, and the density unevenness of the powder layer 31 is likely to occur. Therefore, in the present embodiment, during the flattening process of the outward path, surplus powder 20 ′ is generated so that a uniform amount of powder 20 is distributed over the entire powder layer to be formed (the entire modeling tank 22). Like to do.

なお、本実施形態では、復路の平坦化処理において前回形成した下方の粉体層31の上面と平坦化ローラ12の最下部との間隔を往路の平坦化処理時よりも狭く設定している。そのため、復路の平坦化処理では、粉体保持テーブル81上の余剰粉体20’を供給槽21に戻す余剰粉体戻し処理と、造形槽22の粉体20を平坦化する平坦化処理とを並行して行っている。   In the present embodiment, the interval between the upper surface of the lower powder layer 31 previously formed in the return path flattening process and the lowermost part of the flattening roller 12 is set to be narrower than that in the forward path flattening process. Therefore, in the return path flattening process, the surplus powder 20 ′ on the powder holding table 81 is returned to the supply tank 21, and the surplus powder returning process and the flattening process for flattening the powder 20 in the modeling tank 22 are performed. It is done in parallel.

これに限らず、前回形成した下方の粉体層31の上面と平坦化ローラ12の最下部との間隔は、往路時も復路時も同じに設定してもよい。この場合、粉体層31の形成は、往路の平坦化処理によって実質的に完了しているため、復路時の処理は、実質的には余剰粉体戻し処理のみとなる。   Not limited to this, the distance between the upper surface of the lower powder layer 31 formed last time and the lowermost portion of the flattening roller 12 may be set to be the same during the forward path and during the backward path. In this case, since the formation of the powder layer 31 is substantially completed by the flattening process in the forward path, the process during the return path is substantially only the surplus powder returning process.

なお、この場合でも、復路の処理時には、粉体保持テーブル81上の余剰粉体20’が造形槽22を通過する際に、平坦化ローラ12の移動によって、その余剰粉体20’の重みによる粉体層31の押し付け効果が得られるともに、余剰粉体20’のごく一部が粉体層31に含められて粉体層31の粉体密度が高まる。したがって、厳密には、この場合も、復路の処理時に余剰粉体戻し処理と平坦化処理とが並行して行われていると言えるが、実質的には余剰粉体戻し処理のみである。   Even in this case, during the process of the return path, when the surplus powder 20 ′ on the powder holding table 81 passes through the modeling tank 22, the surplus powder 20 ′ is weighted by the movement of the flattening roller 12. While the pressing effect of the powder layer 31 is obtained, a part of the excess powder 20 ′ is included in the powder layer 31 and the powder density of the powder layer 31 is increased. Therefore, strictly speaking, in this case as well, it can be said that the surplus powder returning process and the flattening process are performed in parallel during the return path processing, but only the surplus powder returning process is practically performed.

本実施形態では、復路時に粉体保持テーブル81上の余剰粉体20’を供給槽21に戻すために、往路時の平坦化ローラ12の移動経路を戻るように移動させる粉体戻し部材として、往路時の平坦化ローラ12を利用しているが、往路時の平坦化ローラ12とは別個の粉体戻し部材であってもよい。往路時の平坦化ローラ12の機能は、往路の平坦化処理に最適化されるべきであるため、粉体保持テーブル81上の余剰粉体20’を供給槽21に戻すのに不適切な場合がある。往路時の平坦化ローラ12とは別個の粉体戻し部材を用いることで、往路時の平坦化ローラ12の機能に制限されることなく、粉体保持テーブル81上の余剰粉体20’を供給槽21に戻すのに最適化された部材(例えば、形状、表面状態などが最適化された部材)を用いることができる。   In the present embodiment, in order to return the excess powder 20 ′ on the powder holding table 81 to the supply tank 21 during the return path, as a powder return member that moves to return the movement path of the flattening roller 12 during the forward path, Although the flattening roller 12 in the forward path is used, a powder returning member may be provided separately from the flattening roller 12 in the forward path. The function of the flattening roller 12 in the forward path should be optimized for the flattening process in the forward path, and is therefore inappropriate for returning the excess powder 20 ′ on the powder holding table 81 to the supply tank 21. There is. By using a powder return member that is separate from the flattening roller 12 in the forward path, the surplus powder 20 ′ on the powder holding table 81 is supplied without being limited by the function of the flattening roller 12 in the forward path. A member optimized for returning to the tank 21 (for example, a member optimized in shape, surface state, etc.) can be used.

また、本実施形態は、復路時に、粉体保持テーブル81上の余剰粉体20’を供給槽21に戻す余剰粉体戻し処理を実施するものであるため、粉体戻し部材としての平坦化ローラ12の最下部を往路時に平坦化された造形槽22の粉体面(プレ粉体層31’の上面)以下となる高さに維持しながら、平坦化ローラ12をY1方向へ移動させる。したがって、実質的には、粉体保持テーブル81上の余剰粉体20’を、粉体層31の形成のために新たに供給するものではない。すなわち、上述したように、復路の処理時には、粉体保持テーブル81上の余剰粉体20’が造形槽22を通過する際に、平坦化ローラ12の移動によって、粉体層31の粉体密度のが高まり分だけ、余剰粉体20’のごく一部が粉体層31に供給されることになるが、実質的には、粉体保持テーブル81上の余剰粉体20’を、粉体層31の形成のために新たに供給するものではない。   In the present embodiment, the surplus powder 20 ′ on the powder holding table 81 is returned to the supply tank 21 during the return path, so that the surplus powder returning process is performed. The flattening roller 12 is moved in the Y1 direction while maintaining the lowermost part 12 at a height equal to or lower than the powder surface (upper surface of the pre-powder layer 31 ′) of the modeling tank 22 flattened during the forward path. Therefore, substantially the surplus powder 20 ′ on the powder holding table 81 is not newly supplied for forming the powder layer 31. That is, as described above, during the process of the return path, when the excess powder 20 ′ on the powder holding table 81 passes through the modeling tank 22, the powder density of the powder layer 31 is moved by the movement of the flattening roller 12. Only a part of the excess powder 20 ′ is supplied to the powder layer 31 by the amount of the increase in the amount of powder, but substantially the excess powder 20 ′ on the powder holding table 81 is used as the powder. It is not newly supplied for the formation of the layer 31.

また、本実施形態においては、復路の平坦化処理時に、粉体保持テーブル81上の余剰粉体20’の全部を供給槽21へ戻すように構成しているが、粉体保持テーブル81上に余剰粉体20’の一部が残存してもよい。よって、例えば、粉体保持テーブル81に余剰粉体20’のこぼれや飛散を防止するための側壁を設けるようにし、その結果、粉体保持テーブル81上に余剰粉体20’の一部が残存することになってもよい。   Further, in the present embodiment, it is configured that all of the excess powder 20 ′ on the powder holding table 81 is returned to the supply tank 21 during the return flattening process. A part of the excess powder 20 ′ may remain. Therefore, for example, the powder holding table 81 is provided with a side wall for preventing the excess powder 20 ′ from spilling or scattering, and as a result, a part of the excess powder 20 ′ remains on the powder holding table 81. You may end up doing it.

いずれにしても、従来の三次元造形装置のように、一層の粉体層を形成するたびに余剰粉体が余剰粉体受け槽に蓄積されていく構成と比べ、本実施形態の粉体保持テーブル81は従来の余剰粉体受け槽よりも最大の粉体保持量が少なく、例えば従来の余剰粉体受け槽の1/4以下まで小型化することができる。   In any case, as in the conventional three-dimensional modeling apparatus, the powder holding of this embodiment is compared with the configuration in which the surplus powder is accumulated in the surplus powder receiving tank each time one layer of powder is formed. The table 81 has a smaller maximum powder holding amount than the conventional surplus powder receiving tank, and can be downsized to, for example, 1/4 or less of the conventional surplus powder receiving tank.

また、本実施形態では、平坦化部材や粉体戻し部材として平坦化ローラ12のようなローラ部材を用いているため、平坦化処理時には、平坦化部材や粉体戻し部材の移動方向前方で粉体20,20’に接触する接触面(平坦化ローラ12の周面のうちの移動方向前方下側部分)が斜め下方を向く。そのため、平坦化部材や粉体戻し部材を移動させることで、その接触面により粉体20,20’を移動方向へ移送するとともに下方へ押し込む力を生じさせる。よって、このような平坦化部材や粉体戻し部材を用いることで、粉体密度を高める効果が得られる。   In the present embodiment, since a roller member such as the flattening roller 12 is used as the flattening member or the powder returning member, the powder is moved forward in the moving direction of the flattening member or the powder returning member during the flattening process. The contact surface (the lower front portion in the moving direction on the peripheral surface of the flattening roller 12) that contacts the bodies 20 and 20 ′ faces obliquely downward. Therefore, by moving the flattening member and the powder returning member, the contact surfaces cause the powders 20 and 20 'to move in the moving direction and generate a force for pushing downward. Therefore, the effect of increasing the powder density can be obtained by using such a flattening member or powder returning member.

このような平坦化部材や粉体戻し部材を用いる場合、その接触面と粉体20との間で生じる摩擦力を小さくするほど、その接触面と粉体20,20’との間の摺動(すべり)が発生しやすくなる結果、より多くの粉体20が平坦化ローラ12の下側を入り込みやすくなる。したがって、平坦化部材や粉体戻し部材の移動方向前方で粉体20,20’に接触する接触面が斜め下方を向いている構成を採用している本実施形態において、復路の平坦化処理時に摩擦力を小さくすることにより、より粉体密度の高い粉体層31を形成する効果が得られる。   When such a flattening member or powder returning member is used, sliding between the contact surface and the powder 20, 20 ′ is reduced as the frictional force generated between the contact surface and the powder 20 is reduced. As a result of the occurrence of (slip), more powder 20 is likely to enter the lower side of the flattening roller 12. Therefore, in the present embodiment in which the contact surface that contacts the powder 20, 20 ′ is directed obliquely downward in front of the moving direction of the flattening member and the powder returning member, in the flattening process of the return path By reducing the frictional force, the effect of forming the powder layer 31 having a higher powder density can be obtained.

また、本実施形態では、平坦化部材や粉体戻し部材として、平坦化ローラ12のような回転部材を用い、これを平坦化部材や粉体戻し部材の下面側の表面移動する向きが平坦化部材や粉体戻し部材の移動方向と同じになるように回転駆動させる。このような構成によれば、平坦化ローラ12の周面と粉体20との間の摩擦力が常に動摩擦力となり、粉体層31の表面の平滑性を高めることができる。   Further, in this embodiment, a rotating member such as the flattening roller 12 is used as the flattening member or the powder returning member, and the direction of moving the surface on the lower surface side of the flattening member or the powder returning member is flattened. Rotation is driven so as to be the same as the moving direction of the member and the powder returning member. According to such a configuration, the frictional force between the peripheral surface of the flattening roller 12 and the powder 20 is always a dynamic frictional force, and the smoothness of the surface of the powder layer 31 can be improved.

ただし、このように平坦化部材や粉体戻し部材を回転させる構成を採用する場合、平坦化処理中に粉体20を巻き上げやすい。この場合、巻き上げられた粉体20,20’が平坦化部材や粉体戻し部材の通過後の粉体層表面に降り積もることで、粉体層表面の平滑性の低下や粉体層31の密度低下などを引き起こし、三次元造形物の造形精度の低下を招くおそれがある。ただし、往路時においては、粉体20の巻き上げが生じても、粉体層に降り積もった粉体20が復路時に回収されることになるので、三次元造形物の造形精度の低下を招くことはない。しかしながら、復路時に生じる粉体20,20’の巻き上げは、その後に回収されることなく、層状構造物30の形成に寄与するため、三次元造形物の造形精度の低下を招くおそれがある。   However, when adopting a configuration in which the flattening member and the powder returning member are rotated as described above, the powder 20 is easily rolled up during the flattening process. In this case, the rolled up powders 20 and 20 ′ fall on the surface of the powder layer after passing through the flattening member and the powder returning member, thereby reducing the smoothness of the powder layer surface and the density of the powder layer 31. There is a risk of causing a decrease in the modeling accuracy of the three-dimensional structure. However, in the forward path, even if the powder 20 is rolled up, the powder 20 that has fallen on the powder layer is collected during the return path, and therefore, the modeling accuracy of the three-dimensional structure is reduced. Absent. However, the winding of the powders 20 and 20 ′ that occurs during the return path is not collected thereafter and contributes to the formation of the layered structure 30, which may lead to a decrease in the modeling accuracy of the three-dimensional structure.

ここで、平坦化ローラ12の周面と粉体20との間で生じる摩擦力が大きいほど、平坦化ローラ12の回転による平坦化ローラ12の周面の移動に伴って粉体20,20’が連れ回りやすく、巻き上げられる粉体量が多くなる。逆に、平坦化ローラ12の周面と粉体20,20’との間で生じる摩擦力を小さくするほど、巻き上げられる粉体量を減らすことができる。また、巻き上げられた粉体20が飛散する量も抑制できるので、粉体20の無駄な消費量を抑え、粉体20のリサイクル性を向上させるなどの効果も得られる。   Here, as the frictional force generated between the peripheral surface of the flattening roller 12 and the powder 20 increases, the powders 20, 20 ′ accompany the movement of the peripheral surface of the flattening roller 12 due to the rotation of the flattening roller 12. The amount of powder to be rolled up is increased. Conversely, as the frictional force generated between the peripheral surface of the flattening roller 12 and the powders 20 and 20 ′ is reduced, the amount of powder that is wound up can be reduced. In addition, since the amount of the powder 20 that has been wound up can be suppressed, it is possible to obtain the effects of reducing the wasteful consumption of the powder 20 and improving the recyclability of the powder 20.

よって、復路時に、平坦化ローラ12の周面と粉体20,20’との間で生じる摩擦力を小さくすることで、粉体20,20’の巻き上げによる三次元造形物の造形精度の低下を招くおそれのある復路時における粉体20,20’の巻き上げ量を低減させることができる。よって、粉体20,20’の巻き上げによる三次元造形物の造形精度の低下を抑制する効果や、粉体20のリサイクル性向上の効果なども得られる。   Therefore, by reducing the frictional force generated between the peripheral surface of the flattening roller 12 and the powder 20, 20 ′ during the return path, the modeling accuracy of the three-dimensional structure is reduced due to the winding of the powder 20, 20 ′. This can reduce the amount of powder 20 and 20 ′ wound up during the return path. Therefore, an effect of suppressing a decrease in the modeling accuracy of the three-dimensional structure due to the winding of the powders 20 and 20 ′ and an effect of improving the recyclability of the powder 20 can be obtained.

本実施形態で適用可能な造形方法は、上述したバインダージェット方式に限らず、レーザ焼結方式(LS方式等)や電子ビーム焼結方式(EBM方式等)などであってもよい。すなわち、粉体の結合手段として、液体吐出ヘッドから吐出される液体を用いて粉体同士を結合させる手段を用いているが、これに代えて、レーザー照射手段等を用いて粉体同士を焼結等により結合させる手段などを用いることもできる。本発明は、粉体層31を形成し、粉体層中の粉体を結合させる立体造形方法であれば、応用可能である。   The modeling method applicable in this embodiment is not limited to the binder jet method described above, and may be a laser sintering method (LS method or the like), an electron beam sintering method (EBM method or the like), or the like. That is, as a powder bonding means, a means for bonding powders using a liquid discharged from a liquid discharge head is used, but instead of this, powders are sintered using a laser irradiation means or the like. It is also possible to use means for coupling by ligation or the like. The present invention is applicable to any three-dimensional modeling method in which the powder layer 31 is formed and the powder in the powder layer is bonded.

なお、本実施形態のようなバインダージェット方式の場合、粉体20に石膏を用い、インクジェットヘッドからバインダーインクを吐出し、石膏粉を凝固させることで層状構造物30を形成するのが一般的であるが、粉体20に砂を用いて、バインダー樹脂をインクジェットヘッドから吐出することで、鋳型などに利用される三次元造形物を造形することもできる。また、バインダージェット方式であれば、粉体20に、金属、セラミック、ガラス等を用いることもできる。また、バインダージェット方式においては、結合液に溶解可能な材料をコートした粉体20を用い、結合液をインクジェットヘッドから吐出することで、粉体同士をコート材料を介して結合させ、層状構造物30を形成することもできる。   In the case of the binder jet system as in the present embodiment, it is common to form the layered structure 30 by using gypsum as the powder 20, discharging the binder ink from the inkjet head, and solidifying the gypsum powder. However, by using sand as the powder 20 and discharging the binder resin from the inkjet head, a three-dimensional structure used for a mold or the like can be formed. In the case of a binder jet method, metal, ceramic, glass, or the like can be used for the powder 20. In the binder jet method, the powder 20 coated with a material that can be dissolved in the binding liquid is used, and the binding liquid is discharged from the ink jet head so that the powders are bonded to each other via the coating material. 30 can also be formed.

以上に説明したものは一例であり、次の態様毎に特有の効果を奏する。
(態様A)
平坦化ローラ12等の平坦化部材を移動させることで、供給槽21に貯留された粉体20を造形槽22へ移送して供給するとともに、該造形槽の粉体を平坦化する平坦化処理を実行し、該造形槽に形成された粉体層31の粉体を所要形状に結合して層状構造物30を形成するという動作を繰り返し行って、該層状構造物が積層された三次元造形物を造形する三次元造形装置であって、前記平坦化部材の移動経路を戻るように平坦化ローラ12等の粉体戻し部材を移動させることにより、該平坦化部材により前記造形槽を通過するまで移送された余剰粉体20’の少なくとも一部を前記供給槽に戻す余剰粉体戻し処理を実行することを特徴とする。
一般に、造形槽に形成された粉体層の粉体を所要形状に結合して層状構造物を形成して三次元造形物を造形する場合、高い粉体密度で均一化された粉体層を形成することが望まれる。このとき、供給槽から造形槽へ移送供給される粉体の量が不十分であると、造形槽の平坦化部材移動方向下流側で粉体の量が不足して、造形槽の全体にわたって均一な量の粉体を行き渡らせることができず、粉体層を高い粉体密度で均一化させることができない。そのため、造形槽を通過するまで平坦化部材により移送される粉体(余剰粉体)が残るように平坦化処理を実行することは、高い粉体密度で均一化された粉体層を形成するために重要となる。
この場合、造形槽を通過するまで移送された余剰粉体を回収するために、従来のように、余剰粉体を貯留しておく余剰粉体受け槽を設けると、大型の余剰粉体受け槽が必要となり、装置の大型化を招く。特に、平坦化処理時に余剰粉体が多く残るようにすればするほど、高い粉体密度で均一化された粉体層を形成するのに有利であり、この場合、より大きな余剰粉体受け槽が必要となる。
また、仮に、余剰粉体を余剰粉体受け槽内に一時的に回収し、その余剰粉体を粉体ポンプにより供給槽へ戻すような構成を採用すれば、余剰粉体受け槽それ自体を小型化することは可能である。しかしながら、この構成を実現するためには、余剰粉体受け槽から供給槽まで粉体ポンプを配置するための大きなスペース(余剰粉体の移送経路)が必要となり、装置全体としては大型化を招く。
本態様においては、平坦化部材により造形槽を通過するまで移送された余剰粉体の少なくとも一部を、その平坦化部材の移動経路を戻るように移動する粉体戻し部材によって供給槽に戻すことができる。これによれば、平坦化処理時における平坦化部材の移動経路を使って余剰粉体を供給槽へ戻すことができるので、余剰粉体を供給槽へ戻すために新たな移送経路を必要とせず、装置の小型化を実現できる。
What was demonstrated above is an example, and there exists an effect peculiar for every following aspect.
(Aspect A)
By moving a flattening member such as the flattening roller 12, the powder 20 stored in the supply tank 21 is transferred and supplied to the modeling tank 22, and the flattening process is performed to flatten the powder in the modeling tank. 3D modeling in which the layered structure is laminated by repeatedly performing the operation of combining the powder of the powder layer 31 formed in the modeling tank into a required shape to form the layered structure 30 A three-dimensional modeling apparatus for modeling an object, wherein a powder return member such as a flattening roller 12 is moved so as to return a movement path of the flattening member, and thereby the flattening member passes through the modeling tank. A surplus powder returning process for returning at least a part of the surplus powder 20 ′ transferred to the supply tank is performed.
In general, when a three-dimensional structure is formed by combining a powder of a powder layer formed in a modeling tank into a required shape to form a layered structure, a powder layer that is uniformized at a high powder density is formed. It is desirable to form. At this time, if the amount of powder transferred and supplied from the supply tank to the modeling tank is insufficient, the amount of powder is insufficient on the downstream side in the movement direction of the flattening member of the modeling tank, and is uniform throughout the modeling tank. A large amount of powder cannot be distributed, and the powder layer cannot be made uniform at a high powder density. Therefore, performing the flattening process so that the powder (surplus powder) transferred by the flattening member remains until it passes through the modeling tank forms a uniform powder layer at a high powder density. It becomes important for.
In this case, in order to recover the surplus powder transferred until it passes through the modeling tank, a surplus powder receiving tank for storing the surplus powder is provided as in the conventional case. Is required, which increases the size of the apparatus. In particular, the more surplus powder that remains during the flattening process, the more advantageous it is to form a uniform powder layer with a high powder density. In this case, a larger surplus powder receiving tank. Is required.
Also, if a configuration is adopted in which the surplus powder is temporarily recovered in the surplus powder receiving tank and the surplus powder is returned to the supply tank by the powder pump, the surplus powder receiving tank itself is removed. It is possible to reduce the size. However, in order to realize this configuration, a large space (transfer path for surplus powder) for arranging the powder pump from the surplus powder receiving tank to the supply tank is required, and the entire apparatus is increased in size. .
In this aspect, at least a part of the surplus powder transferred by the flattening member until it passes through the modeling tank is returned to the supply tank by the powder return member that moves so as to return the movement path of the flattening member. Can do. According to this, since the surplus powder can be returned to the supply tank using the movement path of the flattening member during the flattening process, a new transfer path is not required to return the surplus powder to the supply tank. The device can be downsized.

(態様B)
前記態様Aにおいて、前記余剰粉体戻し処理時には、前記粉体戻し部材の最下部を前記平坦化処理時に平坦化された前記造形槽の粉体面以下となる高さに維持しながら、該粉体戻し部材を移動させることを特徴とする。
これによれば、余剰粉体を、実質的に造形槽の粉体層の形成に用いることなく、供給槽21へ戻すことができる。
(Aspect B)
In the aspect A, at the time of the surplus powder returning process, the lowermost part of the powder returning member is maintained at a height equal to or lower than the powder surface of the modeling tank flattened during the flattening process. The body return member is moved.
According to this, surplus powder can be returned to the supply tank 21 substantially without using it for formation of the powder layer of a modeling tank.

(態様C)
前記態様A又はBにおいて、前記余剰粉体を一時的に保持する粉体保持テーブル81等の粉体保持部材を有し、前記余剰粉体戻し処理では、前記粉体保持部材に保持された余剰粉体の少なくとも一部を、前記粉体戻し部材により前記供給槽に戻すことを特徴とする。
これによれば、平坦化部材により造形槽を通過するまで移送された余剰粉体を一時的に保持しておくことができ、平坦化処理から余剰粉体戻し処理への移行が容易になる。
(Aspect C)
In the aspect A or B, there is a powder holding member such as a powder holding table 81 for temporarily holding the surplus powder, and in the surplus powder returning process, the surplus held by the powder holding member At least a part of the powder is returned to the supply tank by the powder return member.
According to this, the surplus powder transferred by the flattening member until it passes through the modeling tank can be temporarily held, and the transition from the flattening process to the surplus powder returning process is facilitated.

(態様D)
前記態様Cにおいて、前記平坦化処理時に、前記平坦化部材の最下部よりも低い位置に、前記余剰粉体が載せられる前記粉体保持部材の保持面を移動させ、前記余剰粉体戻し処理時に前記粉体戻し部材の最下部と略同位置に前記保持面を移動させるモータ28、モータ駆動部514等の保持面駆動手段を有することを特徴とする。
これによれば、造形槽と粉体保持部材との間の余剰粉体の受け渡しを適切に行うことができる。
(Aspect D)
In the aspect C, during the flattening process, the holding surface of the powder holding member on which the surplus powder is placed is moved to a position lower than the lowest part of the flattening member, and during the surplus powder returning process It is characterized by having holding surface driving means such as a motor 28 and a motor driving unit 514 for moving the holding surface to substantially the same position as the lowest part of the powder returning member.
According to this, the surplus powder can be appropriately transferred between the modeling tank and the powder holding member.

(態様E)
前記態様Dにおいて、前記造形槽内の粉体を載せる造形ステージ24を上下動させるモータ28、モータ駆動部514等の造形ステージ駆動手段を有し、前記保持面駆動手段は、前記造形ステージ駆動手段の駆動力を用いて前記保持面を移動させることを特徴とする。
これによれば、保持面駆動手段を造形ステージ駆動手段とは別個の駆動手段で構成するよりも、より簡易な構成を実現でき、装置の小型化に有利となる。
(Aspect E)
In the aspect D, there is a modeling stage driving unit such as a motor 28 and a motor driving unit 514 for moving the modeling stage 24 on which the powder in the modeling tank is placed up and down, and the holding surface driving unit is the modeling stage driving unit The holding surface is moved using a driving force of.
According to this, it is possible to realize a simpler configuration than that in which the holding surface driving unit is configured by a driving unit separate from the modeling stage driving unit, which is advantageous for downsizing the apparatus.

(態様F)
前記態様Eにおいて、前記平坦化処理時に、前記粉体層の目標厚みΔtよりも厚く平坦化されたプレ粉体層31’を形成し、前記余剰粉体戻し処理時に、前記粉体戻し部材を移動させることで、前記余剰粉体の少なくとも一部を前記供給槽に戻すとともに、前記造形槽の粉体を平坦化して目標厚みΔtの前記粉体層31を形成し、前記保持面駆動手段は、前記造形ステージ駆動手段が前記余剰粉体戻し処理時に前記造形ステージを前記平坦化処理時よりも高い位置へ移動させる動作に連動して、前記保持面を移動させることを特徴とする。
これによれば、保持面駆動手段として造形ステージ駆動手段を用いる構成において、適切な連動を実現できる。
(Aspect F)
In the aspect E, a pre-powder layer 31 ′ that is flattened thicker than the target thickness Δt of the powder layer is formed during the flattening process, and the powder return member is formed during the surplus powder returning process. By moving, at least a part of the surplus powder is returned to the supply tank, and the powder in the modeling tank is flattened to form the powder layer 31 having a target thickness Δt. The modeling stage driving means moves the holding surface in conjunction with an operation of moving the modeling stage to a position higher than that during the flattening process during the surplus powder returning process.
According to this, in the configuration using the modeling stage driving means as the holding surface driving means, it is possible to realize appropriate interlocking.

(態様G)
前記態様A〜Eのいずれかの態様において、前記平坦化処理時に、前記粉体層の目標厚みΔtよりも厚く平坦化されたプレ粉体層31’を形成し、前記余剰粉体戻し処理時に、前記粉体戻し部材を移動させることで、前記余剰粉体の少なくとも一部を前記供給槽に戻すとともに、前記造形槽の粉体を平坦化して目標厚みΔtの前記粉体層31を形成することを特徴とする。
これによれば、より均一な高い粉体密度の粉体層31を形成するのに有利である。
(Aspect G)
In any one of the aspects A to E, the pre-powder layer 31 ′ that is flattened to be thicker than the target thickness Δt of the powder layer is formed during the flattening process, and during the surplus powder returning process The powder return member is moved to return at least a part of the excess powder to the supply tank, and the powder in the modeling tank is flattened to form the powder layer 31 having the target thickness Δt. It is characterized by that.
This is advantageous for forming a more uniform powder layer 31 having a high powder density.

(態様H)
前記態様A〜Gのいずれかの態様において、前記平坦化部材及び前記粉体戻し部材として、同じ部材を用いることを特徴とする。
これによれば、平坦化部材と粉体戻し部材とを別個の部材で構成する場合よりも、より簡易な構成を実現でき、装置の小型化に有利となる。
(Aspect H)
In any one of the above aspects A to G, the same member is used as the flattening member and the powder returning member.
According to this, a simpler configuration can be realized than in the case where the flattening member and the powder returning member are configured as separate members, which is advantageous for downsizing of the apparatus.

(態様I)
前記態様A〜Hのいずれかの態様において、前記平坦化部材及び前記粉体戻し部材の少なくとも一方は、平坦化ローラ12等の回転部材であり、該回転部材の下面側が該回転部材の移動方向と同方向に表面移動する向きに回転駆動されることを特徴とする。
これによれば、回転部材の周面と粉体との間の摩擦力が常に動摩擦力となり、粉体層の表面の平滑性を高めることができる。
(Aspect I)
In any one of the aspects A to H, at least one of the flattening member and the powder returning member is a rotating member such as the flattening roller 12, and a lower surface side of the rotating member is a moving direction of the rotating member. And is driven to rotate in the direction of surface movement in the same direction.
According to this, the frictional force between the peripheral surface of the rotating member and the powder is always a dynamic frictional force, and the smoothness of the surface of the powder layer can be improved.

(態様J)
平坦化部材を移動させることで、供給槽に貯留された粉体を造形槽へ移送して供給するとともに、該造形槽の粉体を平坦化する平坦化処理を実行し、該造形槽に形成された粉体層の粉体を所要形状に結合して層状構造物を形成するという動作を繰り返し行って、該層状構造物が積層された三次元造形物を造形する三次元造形物の製造方法であって、前記平坦化部材の移動経路を戻るように粉体戻し部材を移動させることにより、該平坦化部材により前記造形槽を通過するまで移送された余剰粉体の少なくとも一部を前記供給槽に戻す余剰粉体戻し処理を実行することを特徴とする。
これによれば、小型の三次元造形装置により高い粉体密度で均一化された粉体層を形成して造形精度の高い三次元造形物を製造することができる。
(Aspect J)
By moving the flattening member, the powder stored in the supply tank is transferred and supplied to the modeling tank, and a flattening process for flattening the powder in the modeling tank is executed and formed in the modeling tank. A method of manufacturing a three-dimensional structure that forms a three-dimensional structure on which the layered structure is laminated by repeatedly performing an operation of forming a layered structure by combining the powder of the powder layer formed into a required shape The powder return member is moved so as to return the movement path of the flattening member, whereby at least a part of the surplus powder transferred by the flattening member until it passes through the modeling tank is supplied. A surplus powder returning process for returning to the tank is performed.
According to this, a three-dimensional structure with high modeling accuracy can be manufactured by forming a powder layer that is made uniform at a high powder density by a small three-dimensional modeling apparatus.

(態様K)
平坦化部材を移動させることで、供給槽に貯留された粉体を造形槽へ移送して供給するとともに、該造形槽の粉体を平坦化する平坦化処理を実行し、該造形槽に形成された粉体層の粉体を所要形状に結合して層状構造物を形成するという動作を繰り返し行って、該層状構造物が積層された三次元造形物を造形する三次元造形装置を制御する制御手段として、該三次元造形装置のコンピュータを機能させるためのプログラムであって、前記制御手段は、前記平坦化部材の移動経路を戻るように粉体戻し部材を移動させることにより、該平坦化部材により前記造形槽を通過するまで移送された余剰粉体の少なくとも一部を前記供給槽に戻す余剰粉体戻し処理を実行することを特徴とする。
これによれば、小型の三次元造形装置により高い粉体密度で均一化された粉体層を形成して造形精度の高い三次元造形物を製造することができる。
なお、このプログラムは、CD−ROM等の記録媒体に記録された状態で配布したり、入手したりすることができる。また、このプログラムを乗せ、所定の送信装置により送信された信号を、公衆電話回線や専用線、その他の通信網等の伝送媒体を介して配信したり、受信したりすることでも、配布、入手が可能である。この配信の際、伝送媒体中には、コンピュータプログラムの少なくとも一部が伝送されていればよい。すなわち、コンピュータプログラムを構成するすべてのデータが、一時に伝送媒体上に存在している必要はない。このプログラムを乗せた信号とは、コンピュータプログラムを含む所定の搬送波に具現化されたコンピュータデータ信号である。また、所定の送信装置からコンピュータプログラムを送信する送信方法には、プログラムを構成するデータを連続的に送信する場合も、断続的に送信する場合も含まれる。
(Aspect K)
By moving the flattening member, the powder stored in the supply tank is transferred and supplied to the modeling tank, and a flattening process for flattening the powder in the modeling tank is executed and formed in the modeling tank. The three-dimensional modeling apparatus for modeling the three-dimensional structure formed by laminating the layered structure is repeatedly performed by combining the powder of the powder layer formed into a required shape to form a layered structure. A program for causing a computer of the three-dimensional modeling apparatus to function as control means, wherein the control means moves the powder return member so as to return the movement path of the flattening member, thereby flattening. A surplus powder returning process is performed in which at least a part of the surplus powder transferred by the member until it passes through the modeling tank is returned to the supply tank.
According to this, a three-dimensional structure with high modeling accuracy can be manufactured by forming a powder layer that is made uniform at a high powder density by a small three-dimensional modeling apparatus.
This program can be distributed or obtained in a state of being recorded on a recording medium such as a CD-ROM. It is also possible to distribute and obtain signals by placing this program and distributing or receiving signals transmitted by a predetermined transmission device via transmission media such as public telephone lines, dedicated lines, and other communication networks. Is possible. At the time of distribution, it is sufficient that at least a part of the computer program is transmitted in the transmission medium. That is, it is not necessary for all data constituting the computer program to exist on the transmission medium at one time. The signal carrying the program is a computer data signal embodied on a predetermined carrier wave including the computer program. Further, the transmission method for transmitting a computer program from a predetermined transmission device includes a case where data constituting the program is transmitted continuously and a case where it is transmitted intermittently.

1 造形部
5 造形ユニット
10 造形液
11 粉体槽
12 平坦化ローラ
20 粉体
20’ 余剰粉体
21 供給槽
22 造形槽
23 供給ステージ
24a ステージラック
24b ストッパ
24 造形ステージ
30 層状構造物
31 粉体層
31’ プレ粉体層
50 液体吐出ユニット
52 ヘッド
80 余剰粉体受け機構
81 粉体保持テーブル
82 支持シャフト
83 スライド部材
500 制御部
600 造形データ作成装置
DESCRIPTION OF SYMBOLS 1 Modeling part 5 Modeling unit 10 Modeling liquid 11 Powder tank 12 Flattening roller 20 Powder 20 'Surplus powder 21 Supply tank 22 Modeling tank 23 Supply stage 24a Stage rack 24b Stopper 24 Modeling stage 30 Layered structure 31 Powder layer 31 ′ Pre-powder layer 50 Liquid discharge unit 52 Head 80 Surplus powder receiving mechanism 81 Powder holding table 82 Support shaft 83 Slide member 500 Control unit 600 Modeling data creation device

特開2017−7321号公報JP 2017-7321 A

Claims (11)

平坦化部材を移動させることで、供給槽に貯留された粉体を造形槽へ移送して供給するとともに、該造形槽の粉体を平坦化する平坦化処理を実行し、該造形槽に形成された粉体層の粉体を所要形状に結合して層状構造物を形成するという動作を繰り返し行って、該層状構造物が積層された三次元造形物を造形する三次元造形装置であって、
前記平坦化部材の移動経路を戻るように粉体戻し部材を移動させることにより、該平坦化部材により前記造形槽を通過するまで移送された余剰粉体の少なくとも一部を前記供給槽に戻す余剰粉体戻し処理を実行することを特徴とする三次元造形装置。
By moving the flattening member, the powder stored in the supply tank is transferred and supplied to the modeling tank, and a flattening process for flattening the powder in the modeling tank is executed and formed in the modeling tank. A three-dimensional modeling apparatus for modeling a three-dimensional structure in which the layered structure is laminated by repeatedly performing an operation of forming a layered structure by combining the powder of the powder layer formed into a required shape ,
By moving the powder return member so as to return the movement path of the flattening member, the surplus powder that has been transferred by the flattening member until it passes through the modeling tank is returned to the supply tank. A three-dimensional modeling apparatus characterized by executing a powder returning process.
請求項1に記載の三次元造形装置において、
前記余剰粉体戻し処理時には、前記粉体戻し部材の最下部を前記平坦化処理時に平坦化された前記造形槽の粉体面以下となる高さに維持しながら、該粉体戻し部材を移動させることを特徴とする三次元造形装置。
The three-dimensional modeling apparatus according to claim 1,
During the surplus powder returning process, the powder returning member is moved while maintaining the lowest part of the powder returning member at a height equal to or lower than the powder surface of the modeling tank flattened during the flattening process. A three-dimensional modeling apparatus characterized in that
請求項1又は2に記載の三次元造形装置において、
前記余剰粉体を一時的に保持する粉体保持部材を有し、
前記余剰粉体戻し処理では、前記粉体保持部材に保持された余剰粉体の少なくとも一部を、前記粉体戻し部材により前記供給槽に戻すことを特徴とする三次元造形装置。
In the three-dimensional modeling apparatus according to claim 1 or 2,
A powder holding member for temporarily holding the surplus powder;
In the surplus powder returning process, at least a part of the surplus powder held by the powder holding member is returned to the supply tank by the powder returning member.
請求項3に記載の三次元造形装置において、
前記平坦化処理時に、前記平坦化部材の最下部よりも低い位置に、前記余剰粉体が載せられる前記粉体保持部材の保持面を移動させ、前記余剰粉体戻し処理時に前記粉体戻し部材の最下部と略同位置に前記保持面を移動させる保持面駆動手段を有することを特徴とする三次元造形装置。
In the three-dimensional modeling apparatus according to claim 3,
At the time of the flattening process, the holding surface of the powder holding member on which the surplus powder is placed is moved to a position lower than the lowest part of the flattening member, and the powder return member at the time of the surplus powder returning process A three-dimensional modeling apparatus comprising holding surface driving means for moving the holding surface to substantially the same position as the lowermost part of the apparatus.
請求項4に記載の三次元造形装置において、
前記造形槽内の粉体を載せる造形ステージを上下動させる造形ステージ駆動手段を有し、
前記保持面駆動手段は、前記造形ステージ駆動手段の駆動力を用いて前記保持面を移動させることを特徴とする三次元造形装置。
The three-dimensional modeling apparatus according to claim 4,
Having a modeling stage driving means for vertically moving a modeling stage on which the powder in the modeling tank is placed;
The three-dimensional modeling apparatus, wherein the holding surface driving unit moves the holding surface using a driving force of the modeling stage driving unit.
請求項5に記載の三次元造形装置において、
前記平坦化処理時に、前記粉体層の目標厚みよりも厚く平坦化されたプレ粉体層を形成し、
前記余剰粉体戻し処理時に、前記粉体戻し部材を移動させることで、前記余剰粉体の少なくとも一部を前記供給槽に戻すとともに、前記造形槽の粉体を平坦化して目標厚みの前記粉体層を形成し、
前記保持面駆動手段は、前記造形ステージ駆動手段が前記余剰粉体戻し処理時に前記造形ステージを前記平坦化処理時よりも高い位置へ移動させる動作に連動して、前記保持面を移動させることを特徴とする三次元造形装置。
The three-dimensional modeling apparatus according to claim 5,
During the flattening treatment, a pre-powder layer that is flattened thicker than the target thickness of the powder layer is formed,
At the time of the surplus powder returning process, the powder returning member is moved so that at least a part of the surplus powder is returned to the supply tank and the powder in the modeling tank is flattened to obtain the target thickness of the powder. Forming a body layer,
The holding surface driving unit moves the holding surface in conjunction with an operation in which the modeling stage driving unit moves the modeling stage to a position higher than that during the flattening process during the surplus powder returning process. Characteristic 3D modeling equipment.
請求項1乃至5のいずれか1項に記載の三次元造形装置において、
前記平坦化処理時に、前記粉体層の目標厚みよりも厚く平坦化されたプレ粉体層を形成し、
前記余剰粉体戻し処理時に、前記粉体戻し部材を移動させることで、前記余剰粉体の少なくとも一部を前記供給槽に戻すとともに、前記造形槽の粉体を平坦化して目標厚みの前記粉体層を形成することを特徴とする三次元造形装置。
In the three-dimensional modeling apparatus according to any one of claims 1 to 5,
During the flattening treatment, a pre-powder layer that is flattened thicker than the target thickness of the powder layer is formed,
At the time of the surplus powder returning process, the powder returning member is moved so that at least a part of the surplus powder is returned to the supply tank and the powder in the modeling tank is flattened to obtain the target thickness of the powder. A three-dimensional modeling apparatus characterized by forming a body layer.
請求項1乃至7のいずれか1項に記載の三次元造形装置において、
前記平坦化部材及び前記粉体戻し部材として、同じ部材を用いることを特徴とする三次元造形装置。
The three-dimensional modeling apparatus according to any one of claims 1 to 7,
The three-dimensional modeling apparatus using the same member as the planarizing member and the powder returning member.
請求項1乃至8のいずれか1項に記載の三次元造形装置において、
前記平坦化部材及び前記粉体戻し部材の少なくとも一方は、回転部材であり、該回転部材の下面側が該回転部材の移動方向と同方向に表面移動する向きに回転駆動されることを特徴とする三次元造形装置。
The three-dimensional modeling apparatus according to any one of claims 1 to 8,
At least one of the flattening member and the powder returning member is a rotating member, and the lower surface side of the rotating member is rotationally driven in a direction in which the surface moves in the same direction as the moving direction of the rotating member. 3D modeling equipment.
平坦化部材を移動させることで、供給槽に貯留された粉体を造形槽へ移送して供給するとともに、該造形槽の粉体を平坦化する平坦化処理を実行し、該造形槽に形成された粉体層の粉体を所要形状に結合して層状構造物を形成するという動作を繰り返し行って、該層状構造物が積層された三次元造形物を造形する三次元造形物の製造方法であって、
前記平坦化部材の移動経路を戻るように粉体戻し部材を移動させることにより、該平坦化部材により前記造形槽を通過するまで移送された余剰粉体の少なくとも一部を前記供給槽に戻す余剰粉体戻し処理を実行することを特徴とする三次元造形物の製造方法。
By moving the flattening member, the powder stored in the supply tank is transferred and supplied to the modeling tank, and a flattening process for flattening the powder in the modeling tank is executed and formed in the modeling tank. A method of manufacturing a three-dimensional structure that forms a three-dimensional structure on which the layered structure is laminated by repeatedly performing an operation of forming a layered structure by combining the powder of the powder layer formed into a required shape Because
By moving the powder return member so as to return the movement path of the flattening member, the surplus powder that has been transferred by the flattening member until it passes through the modeling tank is returned to the supply tank. A method for producing a three-dimensional structure, comprising performing a powder returning process.
平坦化部材を移動させることで、供給槽に貯留された粉体を造形槽へ移送して供給するとともに、該造形槽の粉体を平坦化する平坦化処理を実行し、該造形槽に形成された粉体層の粉体を所要形状に結合して層状構造物を形成するという動作を繰り返し行って、該層状構造物が積層された三次元造形物を造形する三次元造形装置を制御する制御手段として、該三次元造形装置のコンピュータを機能させるためのプログラムであって、
前記制御手段は、前記平坦化部材の移動経路を戻るように粉体戻し部材を移動させることにより、該平坦化部材により前記造形槽を通過するまで移送された余剰粉体の少なくとも一部を前記供給槽に戻す余剰粉体戻し処理を実行することを特徴とするプログラム。
By moving the flattening member, the powder stored in the supply tank is transferred and supplied to the modeling tank, and a flattening process for flattening the powder in the modeling tank is executed and formed in the modeling tank. The three-dimensional modeling apparatus for modeling the three-dimensional structure formed by laminating the layered structure is repeatedly performed by combining the powder of the powder layer formed into a required shape to form a layered structure. As a control means, a program for causing the computer of the three-dimensional modeling apparatus to function,
The control means moves at least a part of the surplus powder transferred by the flattening member until it passes through the modeling tank by moving the powder returning member so as to return the moving path of the flattening member. A program for executing a surplus powder returning process for returning to a supply tank.
JP2017053428A 2017-03-17 2017-03-17 3D modeling equipment, manufacturing methods and programs for 3D models Active JP6880492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017053428A JP6880492B2 (en) 2017-03-17 2017-03-17 3D modeling equipment, manufacturing methods and programs for 3D models

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017053428A JP6880492B2 (en) 2017-03-17 2017-03-17 3D modeling equipment, manufacturing methods and programs for 3D models

Publications (2)

Publication Number Publication Date
JP2018154047A true JP2018154047A (en) 2018-10-04
JP6880492B2 JP6880492B2 (en) 2021-06-02

Family

ID=63717605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017053428A Active JP6880492B2 (en) 2017-03-17 2017-03-17 3D modeling equipment, manufacturing methods and programs for 3D models

Country Status (1)

Country Link
JP (1) JP6880492B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165267A (en) * 2018-12-10 2021-07-23 Addup公司 Additive manufacturing apparatus with compactly arranged actuators
EP4098384A1 (en) 2021-06-03 2022-12-07 Ricoh Company, Ltd. Layer forming apparatus, method of forming powder layer, and carrier medium
WO2023248524A1 (en) * 2022-06-21 2023-12-28 ローランドディー.ジー.株式会社 Three-dimensional fabrication device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194942A (en) * 2009-02-26 2010-09-09 Sony Corp Three-dimensional shaping device, controller, control method and shaped article
JP2013039694A (en) * 2011-08-12 2013-02-28 Sony Corp Method for manufacturing molded object and molded object
JP2015150804A (en) * 2014-02-17 2015-08-24 ブラザー工業株式会社 Stereoscopic molding device and drive control method thereof
JP2015202634A (en) * 2014-04-14 2015-11-16 株式会社リコー Apparatus and method for object molding and program
JP2016107543A (en) * 2014-12-08 2016-06-20 株式会社アスペクト Powder laminate molding apparatus, and powder laminate molding method
JP2016519009A (en) * 2013-03-15 2016-06-30 スリーディー システムズ インコーポレーテッド Chute for laser sintering system
JP2017001381A (en) * 2015-06-12 2017-01-05 株式会社リコー Three-dimensional creating apparatus
JP2017007321A (en) * 2015-06-22 2017-01-12 株式会社リコー Three-dimensional shaping apparatus, three-dimensional shaping method, and program
JP2019521005A (en) * 2016-08-31 2019-07-25 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 3D printing

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194942A (en) * 2009-02-26 2010-09-09 Sony Corp Three-dimensional shaping device, controller, control method and shaped article
JP2013039694A (en) * 2011-08-12 2013-02-28 Sony Corp Method for manufacturing molded object and molded object
JP2016519009A (en) * 2013-03-15 2016-06-30 スリーディー システムズ インコーポレーテッド Chute for laser sintering system
JP2015150804A (en) * 2014-02-17 2015-08-24 ブラザー工業株式会社 Stereoscopic molding device and drive control method thereof
JP2015202634A (en) * 2014-04-14 2015-11-16 株式会社リコー Apparatus and method for object molding and program
JP2016107543A (en) * 2014-12-08 2016-06-20 株式会社アスペクト Powder laminate molding apparatus, and powder laminate molding method
JP2017001381A (en) * 2015-06-12 2017-01-05 株式会社リコー Three-dimensional creating apparatus
JP2017007321A (en) * 2015-06-22 2017-01-12 株式会社リコー Three-dimensional shaping apparatus, three-dimensional shaping method, and program
JP2019521005A (en) * 2016-08-31 2019-07-25 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 3D printing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165267A (en) * 2018-12-10 2021-07-23 Addup公司 Additive manufacturing apparatus with compactly arranged actuators
EP4098384A1 (en) 2021-06-03 2022-12-07 Ricoh Company, Ltd. Layer forming apparatus, method of forming powder layer, and carrier medium
WO2023248524A1 (en) * 2022-06-21 2023-12-28 ローランドディー.ジー.株式会社 Three-dimensional fabrication device

Also Published As

Publication number Publication date
JP6880492B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
US9302431B2 (en) Rapid prototyping apparatus for producing three-dimensional ceramic object
US20160368214A1 (en) Method and apparatus for fabricating three-dimensional object
JP6860849B2 (en) 3D modeling equipment
JP6458543B2 (en) Modeling data creation device, program, modeling device
JP2017087469A (en) Apparatus for three-dimensional fabrication
JP6565486B2 (en) 3D modeling apparatus, 3D modeling method, program
JP6620505B2 (en) Powder additive manufacturing apparatus and powder layer manufacturing method
JP2018154047A (en) Three-dimensional molding apparatus, method for manufacturing three-dimensional molded article and program
JP6904035B2 (en) Equipment for modeling 3D objects, methods for modeling 3D objects, 3D objects
JP6668649B2 (en) 3D modeling equipment, programs
JP6905677B2 (en) Manufacturing method of 3D modeling equipment and 3D modeled objects
JP6481383B2 (en) 3D modeling apparatus, 3D modeling production method, program
JP2016150458A (en) Solid molding device and solid molding method
JP2016155367A (en) Three-dimensional molding method, program, and apparatus
JP6442997B2 (en) 3D modeling equipment
JP6471852B2 (en) 3D modeling apparatus, 3D modeling production method, program
JP2017202620A (en) Three-dimensional molding device
JP2018196966A (en) Three-dimensional molding device, molding program, and three-dimensional molding production method
JP6872170B2 (en) 3D modeling equipment, 3D model manufacturing method and program
JP6899094B2 (en) 3D modeling equipment, 3D model manufacturing method and modeling program
JP6828267B2 (en) Equipment for modeling 3D objects, programs, methods for modeling 3D objects, methods for creating modeling data for 3D objects
JP2017159556A (en) Device for molding three-dimensional modeled product, program, and device for generating data for molding three-dimensional modeled product
JP2019155714A (en) Three-dimensional molding apparatus and three-dimensional molding method
JP6996310B2 (en) Manufacturing method of three-dimensional model
JP2021160264A (en) Modeling apparatus and modeling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210415

R151 Written notification of patent or utility model registration

Ref document number: 6880492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151