JP2018143941A - Catalyst for hydrogen production and hydrogen production method - Google Patents

Catalyst for hydrogen production and hydrogen production method Download PDF

Info

Publication number
JP2018143941A
JP2018143941A JP2017040091A JP2017040091A JP2018143941A JP 2018143941 A JP2018143941 A JP 2018143941A JP 2017040091 A JP2017040091 A JP 2017040091A JP 2017040091 A JP2017040091 A JP 2017040091A JP 2018143941 A JP2018143941 A JP 2018143941A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
gas
12cao
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017040091A
Other languages
Japanese (ja)
Other versions
JP6851860B2 (en
Inventor
俊幸 山中
Toshiyuki Yamanaka
俊幸 山中
林 浩志
Hiroshi Hayashi
浩志 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2017040091A priority Critical patent/JP6851860B2/en
Publication of JP2018143941A publication Critical patent/JP2018143941A/en
Application granted granted Critical
Publication of JP6851860B2 publication Critical patent/JP6851860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for producing hydrogen by directly decomposing a hydrocarbon gas.SOLUTION: The present invention provides a catalyst for hydrogen production, which is a catalyst for producing hydrogen by directly decomposing a hydrocarbon gas, in which 12CaO 7AlOcompound particulate-containing support supports a transition metal thereon.SELECTED DRAWING: None

Description

本発明は、炭化水素ガスから水素を製造するための触媒及び水素の製造方法に関する。   The present invention relates to a catalyst for producing hydrogen from hydrocarbon gas and a method for producing hydrogen.

水素は従来、各種水素添加反応の還元剤、あるいはアンモニアやメタノールの製造用原料として大量に使用されている。近年、クリーンエネルギーとして着目され、燃料電池の燃料としても注目されている。燃料電池車の開発も進められており、実用化されれば水素のエネルギーとしての需要は大きく、今後も水素の使用量は増大することが想定される。   Conventionally, hydrogen is used in large quantities as a reducing agent for various hydrogenation reactions or as a raw material for producing ammonia and methanol. In recent years, it has attracted attention as clean energy and has attracted attention as a fuel for fuel cells. Fuel cell vehicles are also being developed, and if they are put to practical use, the demand for hydrogen energy will be large, and it is expected that the amount of hydrogen used will continue to increase.

水素の製造方法としては様々な方法があるが、メタン等の炭化水素と水蒸気を反応させて、水素を製造する水蒸気改質法が一般的に用いられている。この水蒸気改質法に用いられる触媒としては、Niを担持したアルミナ触媒が工業的に利用されている。   Although there are various methods for producing hydrogen, a steam reforming method is generally used in which hydrogen is produced by reacting a hydrocarbon such as methane with steam. As a catalyst used in this steam reforming method, an alumina catalyst supporting Ni is industrially used.

一方、特異な結晶構造を有する12CaO・7Al23化合物は、その結晶構造内に酸素イオンラジカルを高濃度に含むことが知られており、酸化触媒、イオン伝導体などの用途に有用であることが提案されている(特許文献1、2、3)。さらに、アンモニアを合成するための安定で高性能な触媒として利用できることが提案されている(特許文献4)。 On the other hand, a 12CaO · 7Al 2 O 3 compound having a unique crystal structure is known to contain oxygen ion radicals in a high concentration in the crystal structure, and is useful for applications such as oxidation catalysts and ion conductors. (Patent Documents 1, 2, and 3). Furthermore, it has been proposed that it can be used as a stable and high-performance catalyst for synthesizing ammonia (Patent Document 4).

特開2002−3218号公報Japanese Patent Laid-Open No. 2002-3218 特開2003−128415号公報JP 2003-128415 A 特開2004−238222号公報JP 2004-238222 A 国際公開第2012/077658号International Publication No. 2012/077658

しかしながら、前記の水蒸気改質法によれば、メタンガスから水素が得られるとともに二酸化炭素が生成するという問題がある。従って、二酸化炭素が生成しない水素の製造方法が望まれる。
また、12CaO・7Al23化合物が水素製造用触媒の担体として利用できることは報告されていない。
本発明の課題は、炭化水素ガスを直接分解して水素を製造できる触媒及び水素の製造方法を提供することにある。
However, the steam reforming method has a problem that hydrogen is obtained from methane gas and carbon dioxide is generated. Therefore, a method for producing hydrogen that does not produce carbon dioxide is desired.
Further, it has not been reported that 12CaO · 7Al 2 O 3 compound can be used as a carrier for a catalyst for hydrogen production.
An object of the present invention is to provide a catalyst capable of producing hydrogen by directly decomposing hydrocarbon gas and a method for producing hydrogen.

そこで本発明者は、種々の担体に遷移金属を担持した触媒を用いて炭化水素ガスから水素を生産する方法を検討してきたところ、12CaO・7Al23化合物微粒子含有担体に遷移金属を担持した触媒に炭化水素ガスを接触させれば、炭化水素ガスが直接分解して水素ガスが効率良く製造できることを見出し、本発明を完成した。 Therefore, the present inventor has studied a method for producing hydrogen from hydrocarbon gas using a catalyst in which a transition metal is supported on various supports. As a result, the transition metal is supported on a support containing 12CaO · 7Al 2 O 3 compound fine particles. It has been found that if hydrocarbon gas is brought into contact with the catalyst, the hydrocarbon gas is directly decomposed to produce hydrogen gas efficiently, and the present invention has been completed.

すなわち、本発明は、次の〔1〕〜〔4〕を提供するものである。   That is, the present invention provides the following [1] to [4].

〔1〕炭化水素ガスを直接分解して水素を製造するための触媒であって、12CaO・7Al23化合物微粒子含有担体に遷移金属が担持した水素製造用触媒。
〔2〕前記遷移金属がニッケルである〔1〕記載の水素製造用触媒。
〔3〕〔1〕又は〔2〕に記載の触媒に、炭化水素ガスを接触させることを特徴とする水素の製造方法。
〔4〕前記炭化水素ガスがメタンガスである〔1〕記載の水素の製造方法。
[1] A catalyst for producing hydrogen by directly decomposing hydrocarbon gas, wherein a transition metal is supported on a carrier containing 12CaO · 7Al 2 O 3 fine particles.
[2] The hydrogen production catalyst according to [1], wherein the transition metal is nickel.
[3] A method for producing hydrogen, comprising bringing a hydrocarbon gas into contact with the catalyst according to [1] or [2].
[4] The method for producing hydrogen according to [1], wherein the hydrocarbon gas is methane gas.

本発明の触媒を用いれば、炭化水素ガスを直接分解して水素ガスが効率良く製造できる。本発明による水素の製造方法は、水蒸気改質ではないので二酸化炭素が生成しない。   If the catalyst of this invention is used, hydrocarbon gas can be decomposed | disassembled directly and hydrogen gas can be manufactured efficiently. Since the method for producing hydrogen according to the present invention is not steam reforming, carbon dioxide is not generated.

ガス流通触媒反応管の模式図を示す。The schematic diagram of a gas distribution catalyst reaction tube is shown.

本発明の水素製造用触媒は、12CaO・7Al23化合物微粒子含有担体に遷移金属が担持した触媒である。 The catalyst for producing hydrogen of the present invention is a catalyst in which a transition metal is supported on a support containing fine particles of 12CaO · 7Al 2 O 3 compound.

12CaO・7Al23化合物微粒子含有担体は、カルシウム化合物及びアルミニウム化合物の混合物を、加熱することにより製造することができる。 The 12CaO · 7Al 2 O 3 compound fine particle-containing carrier can be produced by heating a mixture of a calcium compound and an aluminum compound.

原料として用いるカルシウム化合物としては、酸化カルシウム、炭酸カルシウム等が挙げられる。また、アルミニウム化合物としては、酸化アルミニウムが挙げられるが、酸化アルミニウムの結晶構造はα型、γ型のいずれでもよい。また、これらのカルシウム化合物及びアルミニウム化合物は、粉末、固体焼結物、固体単結晶など形状を問わない。原料の混合比率は、酸化物換算のモル比〔(CaO)/(Al23)〕で、1.5以上1.9以下が好ましく、1.6以上1.8以下がより好ましい。 Examples of calcium compounds used as raw materials include calcium oxide and calcium carbonate. Examples of the aluminum compound include aluminum oxide. The crystal structure of aluminum oxide may be either α-type or γ-type. Moreover, these calcium compounds and aluminum compounds do not ask | require shapes, such as a powder, a solid sintered compact, and a solid single crystal. The mixing ratio of the raw materials is a molar ratio in terms of oxide [(CaO) / (Al 2 O 3 )], preferably 1.5 or more and 1.9 or less, and more preferably 1.6 or more and 1.8 or less.

カルシウム化合物及びアルミニウム化合物の混合物の加熱は、真空中、不活性ガス雰囲気中、水素雰囲気中、酸素雰囲気中等で行なうことができる。但し、水蒸気を含む雰囲気は好ましくない。酸素濃度21%程度の乾燥空気中でも行うことができる。なお、酸素雰囲気中で加熱製造する場合は、原料の混合比率をモル比〔(CaO)/(Al23)〕で1.5以上1.7以下の範囲にすることが、高純度の12CaO・7Al23化合物を得る観点から好ましい。
加熱条件は、最高温度を原料化合物が反応してカルシウムアルミネートが生成する温度以上とすることが好ましく、1250℃以上2500℃以下とするのがより好ましく、1300℃以上1800℃以下とするのがさらに好ましい。原料化合物を溶融させて12CaO・7Al23化合物を製造する場合は、1400℃以上とすることが好ましい。加熱は、最高温度で1時間以上維持するのが12CaO・7Al23化合物を高純度で得る点で好ましく、2時間以上24時間以下維持するのがより好ましい。
The mixture of calcium compound and aluminum compound can be heated in a vacuum, in an inert gas atmosphere, in a hydrogen atmosphere, in an oxygen atmosphere, or the like. However, an atmosphere containing water vapor is not preferable. It can be performed even in dry air having an oxygen concentration of about 21%. In addition, when manufacturing by heating in an oxygen atmosphere, the mixing ratio of the raw materials is set to a range of 1.5 to 1.7 in terms of molar ratio [(CaO) / (Al 2 O 3 )]. From the viewpoint of obtaining a 12CaO · 7Al 2 O 3 compound, it is preferable.
As for the heating conditions, the maximum temperature is preferably not less than the temperature at which the raw material compound reacts to form calcium aluminate, more preferably not less than 1250 ° C and not more than 2500 ° C, and more preferably not less than 1300 ° C and not more than 1800 ° C. Further preferred. When the 12CaO · 7Al 2 O 3 compound is produced by melting the raw material compound, the temperature is preferably 1400 ° C. or higher. The heating is preferably maintained at the maximum temperature for 1 hour or more from the viewpoint of obtaining the 12CaO · 7Al 2 O 3 compound with high purity, and more preferably 2 hours or more and 24 hours or less.

前記温度に加熱することにより、原料化合物が反応して12CaO・7Al23化合物が生成するので、必要に応じて粉砕し12CaO・7Al23化合物微粒子を得る。溶融した場合は冷却して固化物とし、得られた固化物を粉砕すれば12CaO・7Al23化合物微粒子が得られる。
冷却条件は、特に制限されないが、溶融した場合は溶融後の温度が1200℃以下となるまでは降温速度50℃/時間以上600℃/時間以下が好ましい。
生成した12CaO・7Al23化合物は、結晶質およびガラス質のいずれでもよい。12CaO・7Al23化合物の純度は50%以上でその他のカルシウムアルミネート化合物を含んでもよいが、触媒担体として効果的に性能を発揮するためには、12CaO・7Al23化合物の純度が80%以上であることが好ましく、90%以上がより好ましい。
12CaO・7Al23化合物の固化物の粉砕工程は、乾式粉砕ならびに12CaO・7Al23化合物の水和を防ぐため有機溶媒を用いた湿式粉砕のいずれかの微粉砕方法を用いることができる。得られる微粒子は、BET比表面積が2m2/g以上の微粉末であることが触媒活性の点で好ましい。
By heating to the above temperature, the raw material compound reacts to produce a 12CaO · 7Al 2 O 3 compound, so that it is pulverized as necessary to obtain 12CaO · 7Al 2 O 3 compound fine particles. When melted, it is cooled to obtain a solidified product, and the obtained solidified product is pulverized to obtain 12CaO · 7Al 2 O 3 compound fine particles.
The cooling conditions are not particularly limited, but when melted, the temperature lowering rate is preferably 50 ° C./hour or more and 600 ° C./hour or less until the temperature after melting becomes 1200 ° C. or less.
The produced 12CaO · 7Al 2 O 3 compound may be either crystalline or glassy. The purity of the 12CaO · 7Al 2 O 3 compound is 50% or more and may contain other calcium aluminate compounds. However, in order to effectively perform as a catalyst carrier, the purity of the 12CaO · 7Al 2 O 3 compound is It is preferably 80% or more, more preferably 90% or more.
Grinding step of solid of 12CaO · 7Al 2 O 3 compound can be any of milling methods wet milling using an organic solvent to prevent hydration of dry grinding and 12CaO · 7Al 2 O 3 compound . The fine particles obtained are preferably fine powders having a BET specific surface area of 2 m 2 / g or more from the viewpoint of catalytic activity.

触媒種としては、遷移金属であればよいが、Ni、Pt、Pd、Ru、Rh、Co等の8族、9族及び10族から選ばれる元素の1種又は2種以上が挙げられる。例えば、二元系、三元系等の不均一触媒でもよい。水素製造活性の点から、Ni、Pt、Pd、Ru、Rhがより好ましく、Niが特に好ましい。
遷移金属の粒子径は、水素製造活性の点、担体表面への高い分散度を確保する点から、小さいことが好ましく、メジアン径として0.001μm以上1μm以下が好ましく、0.001μm以上0.1μm以下がより好ましく、0.001μm以上0.01μm以下がさらに好ましい。ここで、メジアン径は、動的光散乱法による累積頻度が50%となる粒径値である。
The catalyst species may be any transition metal, and examples thereof include one or more elements selected from Group 8, Group 9, and Group 10, such as Ni, Pt, Pd, Ru, Rh, and Co. For example, a heterogeneous catalyst such as a binary system or a ternary system may be used. From the viewpoint of hydrogen production activity, Ni, Pt, Pd, Ru, and Rh are more preferable, and Ni is particularly preferable.
The particle diameter of the transition metal is preferably small from the viewpoint of hydrogen production activity and the high degree of dispersion on the support surface. The median diameter is preferably 0.001 μm to 1 μm, preferably 0.001 μm to 0.1 μm. The following is more preferable, and 0.001 μm or more and 0.01 μm or less is more preferable. Here, the median diameter is a particle diameter value at which the cumulative frequency by the dynamic light scattering method is 50%.

12CaO・7Al23微粒子担体への遷移金属の担持は、例えば有機溶媒を用いた含浸法で行うことができる。具体的には、遷移金属のヘキサン等の有機溶媒分散液中に担体を投入後、撹拌し、溶媒を蒸発させればよい。ここで、遷移金属の担持量は、担体に対して、0.1〜40質量%が好ましく、1〜20質量%がより好ましい。 The transition metal can be supported on the 12CaO.7Al 2 O 3 fine particle support by, for example, an impregnation method using an organic solvent. Specifically, the support may be put into an organic solvent dispersion such as hexane of a transition metal and then stirred to evaporate the solvent. Here, the supported amount of the transition metal is preferably 0.1 to 40% by mass, and more preferably 1 to 20% by mass with respect to the carrier.

本発明の触媒を用いれば、炭化水素ガスを直接分解して水素を製造することができる。すなわち、本発明の触媒に炭化水素ガスを接触させれば、炭化水素が直接分解して水素ガスが得られる。反応は、メタンガスの場合を例にとれば、CH4→C+2H2となる。従って、二酸化炭素や一酸化炭素が副生しない。
炭化水素ガスとしては、飽和炭化水素ガスが好ましく、炭素数1〜4の飽和炭化水素ガスがより好ましく、メタンガスがさらに好ましい。
炭化水素ガスの反応温度は、400℃以上が好ましく、高転化率を維持するためには600℃以上がより好ましい。また反応温度の上限は1000℃で十分である。
炭化水素ガスは、副反応を防止するため二酸化炭素や水素含有量は少ないのが好ましい。
If the catalyst of this invention is used, hydrocarbon gas can be decomposed | disassembled directly and hydrogen can be manufactured. That is, when hydrocarbon gas is brought into contact with the catalyst of the present invention, hydrocarbon is directly decomposed to obtain hydrogen gas. Taking the case of methane gas as an example, the reaction is CH 4 → C + 2H 2 . Therefore, carbon dioxide and carbon monoxide are not by-produced.
As the hydrocarbon gas, a saturated hydrocarbon gas is preferable, a saturated hydrocarbon gas having 1 to 4 carbon atoms is more preferable, and methane gas is more preferable.
The reaction temperature of the hydrocarbon gas is preferably 400 ° C. or higher, and more preferably 600 ° C. or higher in order to maintain a high conversion rate. The upper limit of the reaction temperature is sufficient to be 1000 ° C.
The hydrocarbon gas preferably has a low carbon dioxide or hydrogen content in order to prevent side reactions.

より具体的には、図1に示すようなガス流通触媒反応管を用いて炭化水素ガスから水素を製造するのが好ましい。すなわち、触媒を設置した反応管中で炭化水素ガス(メタンガス等)を流通させて反応ガスを回収すればよい。反応管は加熱炉により400℃以上に加熱する。   More specifically, it is preferable to produce hydrogen from hydrocarbon gas using a gas flow catalyst reaction tube as shown in FIG. That is, the reaction gas may be recovered by circulating hydrocarbon gas (methane gas or the like) in a reaction tube provided with a catalyst. The reaction tube is heated to 400 ° C. or higher by a heating furnace.

本発明方法によれば、炭化水素ガスから直接分解により水素を効率よく製造することができる。   According to the method of the present invention, hydrogen can be efficiently produced from hydrocarbon gas by direct decomposition.

次に実施例を挙げて本発明を更に詳細に説明する。   EXAMPLES Next, an Example is given and this invention is demonstrated still in detail.

実施例1
(担体作製)
酸化カルシウムとα型酸化アルミニウムがモル比[CaO]/[Al23]=1.63となる混合粉末を酸化マグネシウム坩堝に入れ、酸素濃度21%の乾燥空気中で昇温速度400℃/時間で1440℃まで昇温し、溶融させた状態で3時間保持した後降温速度150℃/時間で室温まで徐冷し固化物を作製した。得られた固化物は、黄色がかった白色の固体であって粉末X線回折より12CaO・7Al23を主相とする回折パターンが確認された。得られた凝固物は、ジェットミルにて粉砕し、粉砕後のBET比表面積が3.5m2/gであった。
Example 1
(Carrier production)
A mixed powder in which the molar ratio of calcium oxide and α-type aluminum oxide is [CaO] / [Al 2 O 3 ] = 1.63 is placed in a magnesium oxide crucible and heated in a dry air with an oxygen concentration of 21% at a heating rate of 400 ° C. / The temperature was raised to 1440 ° C. over time, held in the molten state for 3 hours, and then gradually cooled to room temperature at a temperature drop rate of 150 ° C./hour to produce a solidified product. The obtained solidified product was a yellowish white solid, and a diffraction pattern having 12CaO · 7Al 2 O 3 as a main phase was confirmed by powder X-ray diffraction. The obtained solidified product was pulverized by a jet mill, and the BET specific surface area after pulverization was 3.5 m 2 / g.

(触媒担持)
上記で作製した触媒用担体に活性金属を担持するため、担持量が5質量%となるようNiナノ粒子(メジアン径5nm)のヘキサン分散液中に担体粉末を投入後、スターラーで24時間撹拌しヘキサン溶媒を蒸発させNi触媒を作製した。
(Catalyst support)
In order to support the active metal on the catalyst support prepared above, the support powder was put into a hexane dispersion of Ni nanoparticles (median diameter 5 nm) so that the supported amount was 5% by mass, and then stirred with a stirrer for 24 hours. The hexane solvent was evaporated to prepare a Ni catalyst.

(触媒性能評価)
図1の模式構成図に示すガス流通触媒反応管を用いて、メタンの直接分解による水素生成に対する触媒活性を調べた。
石英反応管内に触媒試料を設置し、窒素ガス流通雰囲気にて700℃まで昇温した後5000mL/hrの流速でメタンガスを流し1時間保持した。その後、反応ガスを回収してガスクロマトグラフィーにてメタンガス濃度及び水素ガス濃度を測定し、メタン転化率ならびに水素収率を算出して触媒活性を評価した。
その結果、メタン転化率が25.7%、水素収率が23.1%であった。
(Catalyst performance evaluation)
Using the gas flow catalytic reaction tube shown in the schematic configuration diagram of FIG. 1, the catalytic activity for hydrogen generation by direct decomposition of methane was examined.
A catalyst sample was placed in a quartz reaction tube, heated to 700 ° C. in a nitrogen gas flow atmosphere, and then methane gas was flowed at a flow rate of 5000 mL / hr and held for 1 hour. Thereafter, the reaction gas was recovered, the methane gas concentration and the hydrogen gas concentration were measured by gas chromatography, the methane conversion rate and the hydrogen yield were calculated, and the catalytic activity was evaluated.
As a result, the methane conversion was 25.7% and the hydrogen yield was 23.1%.

実施例2
(担体作製)
酸化カルシウムとα型酸化アルミニウムがモル比[CaO]/[Al23]=1.71となる混合粉末を炭素坩堝に入れ、50Pa以下の真空条件下で昇温速度400℃/時間で1440℃まで昇温し、溶融させた状態で3時間保持した後降温速度150℃/時間で室温まで徐冷し固化物を作製した。得られた固化物は、黒色の固体であって粉砕時には緑色の粉末であった。粉末X線回折より12CaO・7Al23を主相とする回折パターンが確認された。
得られた凝固物は、ジェットミルにて粉砕し、粉砕後のBET比表面積が2.5m2/gであった。
Example 2
(Carrier production)
A mixed powder in which the molar ratio of calcium oxide and α-type aluminum oxide is [CaO] / [Al 2 O 3 ] = 1.71 is placed in a carbon crucible and 1440 at a heating rate of 400 ° C./hour under a vacuum condition of 50 Pa or less. The temperature was raised to 0 ° C., held in the melted state for 3 hours, and then gradually cooled to room temperature at a temperature drop rate of 150 ° C./hour to produce a solidified product. The obtained solidified product was a black solid and was a green powder when pulverized. From the powder X-ray diffraction, a diffraction pattern having 12CaO · 7Al 2 O 3 as a main phase was confirmed.
The obtained solidified product was pulverized by a jet mill, and the BET specific surface area after pulverization was 2.5 m 2 / g.

(触媒担持)
上記で作製した触媒用担体に活性金属を担持するため、担持量が5wt%となるようNiナノ粒子(メジアン径5nm)のヘキサン分散液中に担体粉末を投入後、スターラーで24時間撹拌しヘキサン溶媒を蒸発させNi触媒を作製した。
(Catalyst support)
In order to support the active metal on the catalyst support prepared above, the support powder was put into a hexane dispersion of Ni nanoparticles (median diameter 5 nm) so that the supported amount would be 5 wt%, and then stirred for 24 hours with a stirrer. The solvent was evaporated to prepare a Ni catalyst.

(触媒性能評価)
図1の模式構成図に示すガス流通触媒反応管を用いて、メタンの直接分解による水素生成に対する触媒活性を調べた。
石英反応管内に触媒試料を設置し、窒素ガス流通雰囲気にて700℃まで昇温した後5000mL/hrの流速でメタンガスを流し1時間保持した。その後、反応ガスを回収してガスクロマトグラフィーにてメタン濃度及び水素ガス濃度を測定し、メタン転化率ならびに水素収率を算出して触媒活性を評価した。
その結果、メタン転化率が30.6%、水素収率が32.5%であった。
(Catalyst performance evaluation)
Using the gas flow catalytic reaction tube shown in the schematic configuration diagram of FIG. 1, the catalytic activity for hydrogen generation by direct decomposition of methane was examined.
A catalyst sample was placed in a quartz reaction tube, heated to 700 ° C. in a nitrogen gas flow atmosphere, and then methane gas was flowed at a flow rate of 5000 mL / hr and held for 1 hour. Thereafter, the reaction gas was recovered, the methane concentration and the hydrogen gas concentration were measured by gas chromatography, the methane conversion rate and the hydrogen yield were calculated, and the catalytic activity was evaluated.
As a result, the methane conversion was 30.6% and the hydrogen yield was 32.5%.

比較例
(担体作製)
一般に広く用いられるγ型酸化アルミニウムを用いた(BET比表面積300m2/g)。
(触媒担持)
上記担体に活性金属を担持するため、担持量が5wt%となるようNiナノ粒子(メジアン径5nm)のヘキサン分散液中に担体粉末を投入後、スターラーで24時間撹拌しヘキサン溶媒を蒸発させNi触媒を作製した。
Comparative example (carrier preparation)
Generally used γ-type aluminum oxide (BET specific surface area 300 m 2 / g) was used.
(Catalyst support)
In order to support the active metal on the carrier, the carrier powder was put into a hexane dispersion of Ni nanoparticles (median diameter 5 nm) so that the amount supported was 5 wt%, and then stirred for 24 hours with a stirrer to evaporate the hexane solvent to remove Ni. A catalyst was prepared.

(触媒性能評価)
図1の模式構成図に示すガス流通触媒反応管を用いて、メタンの直接分解による水素生成に対する触媒活性を調べた。
石英反応管内に触媒試料を設置し、窒素ガス流通雰囲気にて700℃まで昇温した後5000mL/hrの流速でメタンガスを流し1時間保持した。その後、反応ガスを回収してガスクロマトグラフィーにてメタンガス濃度及び水素ガス濃度を測定し、メタン転化率ならびに水素収率を算出して触媒活性を評価した。
その結果、メタン転化率が0.3%であった。
(Catalyst performance evaluation)
Using the gas flow catalytic reaction tube shown in the schematic configuration diagram of FIG. 1, the catalytic activity for hydrogen generation by direct decomposition of methane was examined.
A catalyst sample was placed in a quartz reaction tube, heated to 700 ° C. in a nitrogen gas flow atmosphere, and then methane gas was flowed at a flow rate of 5000 mL / hr and held for 1 hour. Thereafter, the reaction gas was recovered, the methane gas concentration and the hydrogen gas concentration were measured by gas chromatography, the methane conversion rate and the hydrogen yield were calculated, and the catalytic activity was evaluated.
As a result, the methane conversion was 0.3%.

Claims (4)

炭化水素ガスを直接分解して水素を製造するための触媒であって、12CaO・7Al23化合物微粒子含有担体に遷移金属が担持した水素製造用触媒。 A catalyst for producing hydrogen by directly decomposing hydrocarbon gas, wherein a transition metal is supported on a carrier containing fine particles of 12CaO.7Al 2 O 3 compound. 前記遷移金属がニッケルである請求項1記載の水素製造用触媒。   The catalyst for hydrogen production according to claim 1, wherein the transition metal is nickel. 請求項1又は2記載の触媒に、炭化水素ガスを接触させることを特徴とする水素の製造方法。   A method for producing hydrogen, comprising bringing a hydrocarbon gas into contact with the catalyst according to claim 1. 前記炭化水素ガスがメタンガスである請求項1記載の水素の製造方法。   The method for producing hydrogen according to claim 1, wherein the hydrocarbon gas is methane gas.
JP2017040091A 2017-03-03 2017-03-03 Hydrogen production catalyst and hydrogen production method Active JP6851860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017040091A JP6851860B2 (en) 2017-03-03 2017-03-03 Hydrogen production catalyst and hydrogen production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017040091A JP6851860B2 (en) 2017-03-03 2017-03-03 Hydrogen production catalyst and hydrogen production method

Publications (2)

Publication Number Publication Date
JP2018143941A true JP2018143941A (en) 2018-09-20
JP6851860B2 JP6851860B2 (en) 2021-03-31

Family

ID=63590267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017040091A Active JP6851860B2 (en) 2017-03-03 2017-03-03 Hydrogen production catalyst and hydrogen production method

Country Status (1)

Country Link
JP (1) JP6851860B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020142203A (en) * 2019-03-07 2020-09-10 太平洋マテリアル株式会社 Support-immobilized catalyst support

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043645A (en) * 2004-08-06 2006-02-16 Asao Tada Catalyst for direct decomposition of lower hydrocarbon
WO2014045780A1 (en) * 2012-09-20 2014-03-27 国立大学法人東京工業大学 Hydrogen generation catalyst and method for producing hydrogen
JP2015209344A (en) * 2014-04-24 2015-11-24 Jfeエンジニアリング株式会社 Hydrogen-carbon material production method and production apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043645A (en) * 2004-08-06 2006-02-16 Asao Tada Catalyst for direct decomposition of lower hydrocarbon
WO2014045780A1 (en) * 2012-09-20 2014-03-27 国立大学法人東京工業大学 Hydrogen generation catalyst and method for producing hydrogen
JP2015209344A (en) * 2014-04-24 2015-11-24 Jfeエンジニアリング株式会社 Hydrogen-carbon material production method and production apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020142203A (en) * 2019-03-07 2020-09-10 太平洋マテリアル株式会社 Support-immobilized catalyst support
JP7269563B2 (en) 2019-03-07 2023-05-09 太平洋マテリアル株式会社 Support immobilized catalyst carrier

Also Published As

Publication number Publication date
JP6851860B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
US10173202B2 (en) Supported metal catalyst and method of synthesizing ammonia using the same
Kydd et al. Flame‐synthesized ceria‐supported copper dimers for preferential oxidation of CO
Pinzón et al. Hydrogen production by ammonia decomposition over ruthenium supported on SiC catalyst
US20050063900A1 (en) CO-free hydrogen from decomposition of methane
Candamano et al. Preparation and characterization of active Ni-supported catalyst for syngas production
Shiozaki et al. Partial oxidation of methane over a Ni/BaTiO 3 catalyst prepared by solid phase crystallization
JP3755662B2 (en) Method for producing carbon nanotube
Sukri et al. Effect of cobalt loading on suppression of carbon formation in carbon dioxide reforming of methane over Co/MgO catalyst
WO2018044241A1 (en) Method of producing a methanation catalyst
JP6280443B2 (en) Catalyst, catalyst production method, ammonia synthesis method, ammonia decomposition method
JP6851860B2 (en) Hydrogen production catalyst and hydrogen production method
US6995115B2 (en) Catalyst for the generation of CO-free hydrogen from methane
Shah et al. Partial oxidation of surrogate Jet-A fuel over SiO2 supported MoO2
Chen et al. Production of hydrogen by partial oxidation of methanol over ZnO-promoted copper catalysts supported on rice husk ash
JP2008279337A (en) Hydrocarbon modifying catalyst
JP6941454B2 (en) Method for producing catalyst carrier
JP7040978B2 (en) Calcium aluminate powder
JP7418849B2 (en) Oxynitrogen hydride, metal support containing oxynitrogen hydride, and catalyst for ammonia synthesis
CN110479323B (en) Catalyst for preparing CO by reverse water-gas conversion method and preparation method thereof
KR102271431B1 (en) A catalyst for liquid phase reforming of biomass, the method for producing the same, and the method for producing high purity hydrogen
KR101655092B1 (en) Manufacturing method of methane using methanation catalyst derived from hydrotalcite-type compound, methanation catalyst, and preparation mehtod of the same
JP2019178015A (en) Hydrogen production method involving direct decomposition of hydrocarbon
KR101594901B1 (en) Cokes oven gas reforming catalyst for manufacturing synthesis gas, method for preparing the same and method for manufacturing synthesis gas from cokes oven gas using the same
JP2004261771A (en) Unsupported catalyst for directly decomposing hydrocarbon, production method thereof and production method of hydrogen and carbon by directly decomposing hydrocarbon
JP2019172540A (en) Method for producing calcium aluminate powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210310

R150 Certificate of patent or registration of utility model

Ref document number: 6851860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250