JP2019178015A - Hydrogen production method involving direct decomposition of hydrocarbon - Google Patents

Hydrogen production method involving direct decomposition of hydrocarbon Download PDF

Info

Publication number
JP2019178015A
JP2019178015A JP2018066571A JP2018066571A JP2019178015A JP 2019178015 A JP2019178015 A JP 2019178015A JP 2018066571 A JP2018066571 A JP 2018066571A JP 2018066571 A JP2018066571 A JP 2018066571A JP 2019178015 A JP2019178015 A JP 2019178015A
Authority
JP
Japan
Prior art keywords
gas
catalyst
hydrocarbon
hydrogen
vol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018066571A
Other languages
Japanese (ja)
Inventor
俊幸 山中
Toshiyuki Yamanaka
俊幸 山中
林 浩志
Hiroshi Hayashi
浩志 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2018066571A priority Critical patent/JP2019178015A/en
Publication of JP2019178015A publication Critical patent/JP2019178015A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

To provide a technique capable of producing hydrogen for long hours continuously by preventing the deactivation of a hydrocarbon decomposing catalyst without suspending a reaction.SOLUTION: A hydrogen production method involving the direct decomposition of a hydrocarbon is provided. At the time of heating, a hydrocarbon decomposing catalyst is allowed to contact a reaction gas that contains not only a hydrocarbon but also at least one gas selected from air, oxygen and water vapor.SELECTED DRAWING: None

Description

本発明は、炭化水素の直接分解による水素製造方法に関する。   The present invention relates to a method for producing hydrogen by direct cracking of hydrocarbons.

水素は従来、各種水素添加反応の還元剤、あるいはアンモニアやメタノールの製造用原料として大量に使用されている。近年、クリーンエネルギーとして着目され、燃料電池の燃料としても注目されている。燃料電池車の開発も進められており、実用化されれば水素のエネルギーとしての需要は大きく、今後も水素の使用量は増大することが想定される。   Conventionally, hydrogen is used in large quantities as a reducing agent for various hydrogenation reactions or as a raw material for producing ammonia and methanol. In recent years, it has attracted attention as clean energy and has attracted attention as a fuel for fuel cells. The development of fuel cell vehicles is also underway, and if it is put to practical use, the demand for hydrogen energy will be large, and it is expected that the amount of hydrogen used will increase in the future.

水素の製造方法としては様々な方法があり、メタン等の炭化水素と水蒸気を反応させて水素を製造する水蒸気改質法が一般的に広く用いられているが、さらにメタン等の炭化水素を直接分解することで水素を製造する方法は二酸化炭素等を多量に生じないためクリーンエネルギーの製造方法として注目されている。   There are various methods for producing hydrogen, and a steam reforming method in which hydrogen is produced by reacting a hydrocarbon such as methane with water vapor is generally widely used. A method for producing hydrogen by decomposing has attracted attention as a method for producing clean energy because it does not produce a large amount of carbon dioxide or the like.

水蒸気改質法及び炭化水素の直接分解法においては、反応の進行に伴ない触媒活性が低下することが知られており、水蒸気の供給を止めて炭化水素と空気又は空気を供給することにより触媒性能を回復させる技術(特許文献1及び2)、炭化水素の供給を停止して空気を導入して触媒を再生する技術(特許文献3)が知られている。   In the steam reforming method and the direct cracking method of hydrocarbons, it is known that the catalytic activity decreases with the progress of the reaction, and the catalyst is supplied by stopping the supply of steam and supplying hydrocarbons and air or air. Techniques for restoring performance (Patent Documents 1 and 2) and techniques for regenerating a catalyst by stopping the supply of hydrocarbons and introducing air (Patent Document 3) are known.

特開2002−282710号公報JP 2002-282710 A 特開2007−284322号公報JP 2007-284322 A 特開2004−59340号公報JP 2004-59340 A

しかしながら、前記の触媒活性を回復させる手段は、いずれも、反応途中で水素製造を停止して、空気を導入するという工程が必要であり、工業的生産上好ましいものではない。また、水素製造を再開しても、一定時間経過後には、また反応を停止しなければならない。
従って、本発明の課題は、失活した触媒活性を回復するのではなく、触媒活性を長時間低下させずに、炭化水素の直接分解により水素を製造する方法を提供することにある。
However, any means for recovering the catalytic activity described above requires a step of stopping the hydrogen production during the reaction and introducing air, which is not preferable for industrial production. Even if hydrogen production is resumed, the reaction must be stopped after a certain period of time.
Accordingly, an object of the present invention is to provide a method for producing hydrogen by direct decomposition of hydrocarbons without recovering the deactivated catalyst activity but without reducing the catalyst activity for a long time.

そこで本発明者は、炭化水素の直接分解による水素製造触媒の耐久性維持方法を検討してきたところ、触媒反応系に流通させる炭化水素ガスに少量の酸素、空気又は水蒸気を含ませれば炭化水素ガスのみの場合よりも触媒が失活することなく水素生成反応が進行し、より多くの水素の製造が可能となることを見出し、本発明を完成した。   Therefore, the present inventor has studied a method for maintaining the durability of a hydrogen production catalyst by direct cracking of hydrocarbons. If a small amount of oxygen, air or water vapor is included in the hydrocarbon gas to be circulated in the catalytic reaction system, As a result, the inventors have found that the hydrogen generation reaction proceeds without deactivation of the catalyst as compared with the case of only hydrogen, and that more hydrogen can be produced, and the present invention has been completed.

すなわち、本発明は、次の〔1〕〜〔6〕を提供するものである。   That is, the present invention provides the following [1] to [6].

〔1〕炭化水素の直接分解による水素製造方法であって、炭化水素分解触媒に、反応ガスとして炭化水素以外に、空気、酸素および水蒸気から選ばれる1種以上を含むガスを接触させて加熱することを特徴とする水素製造方法。
〔2〕前記反応ガス中の炭化水素ガス以外のガス成分の濃度が、0.1〜10vol%である〔1〕記載の水素製造方法。
〔3〕前記反応ガス中の空気又は酸素の濃度が、0.1〜10vol%である〔1〕記載の水素製造方法。
〔4〕前記反応ガス中の水蒸気の濃度が、0.1〜5vol%である〔1〕記載の水素製造方法。
〔5〕炭化水素分解触媒が、カルシウムアルミネート微粒子に遷移金属を担持した触媒である〔1〕〜〔4〕のいずれかに記載の水素製造方法。
〔6〕前記カルシウムアルミネートが、12CaO・7Al23化合物である〔5〕記載の水素製造方法。
[1] A hydrogen production method by direct cracking of hydrocarbons, wherein a hydrocarbon cracking catalyst is heated by contacting a gas containing at least one selected from air, oxygen and water vapor in addition to hydrocarbons as a reaction gas. A method for producing hydrogen.
[2] The hydrogen production method according to [1], wherein the concentration of gas components other than the hydrocarbon gas in the reaction gas is 0.1 to 10 vol%.
[3] The method for producing hydrogen according to [1], wherein the concentration of air or oxygen in the reaction gas is 0.1 to 10 vol%.
[4] The method for producing hydrogen according to [1], wherein the concentration of water vapor in the reaction gas is 0.1 to 5 vol%.
[5] The method for producing hydrogen according to any one of [1] to [4], wherein the hydrocarbon decomposition catalyst is a catalyst in which a transition metal is supported on calcium aluminate fine particles.
[6] The method for producing hydrogen according to [5], wherein the calcium aluminate is a 12CaO · 7Al 2 O 3 compound.

本発明方法によれば、触媒失活までの時間が顕著に延長されるため、炭化水素の直接分解による水素製造の耐久性が改善できる。   According to the method of the present invention, since the time until the catalyst is deactivated is significantly extended, the durability of hydrogen production by direct cracking of hydrocarbons can be improved.

ガス流通触媒反応管の模式図を示す。The schematic diagram of a gas distribution catalyst reaction tube is shown.

本発明は、炭化水素の直接分解による水素製造方法であって、炭化水素分解触媒に、反応ガスとして炭化水素以外に、空気、酸素および水蒸気から選ばれる1種以上を含むガスを接触させて加熱することを特徴とする。   The present invention relates to a method for producing hydrogen by direct cracking of hydrocarbons, wherein the hydrocarbon cracking catalyst is heated by contacting a gas containing one or more selected from air, oxygen and water vapor in addition to hydrocarbons as a reaction gas. It is characterized by doing.

本発明に用いられる反応ガスは、炭化水素を含む混合ガスである。
炭化水素ガスとしては、飽和炭化水素ガスが好ましく、炭素数1〜4の飽和炭化水素ガスがより好ましく、メタンガスがさらに好ましい。反応ガス中の炭化水素の濃度は、高効率な水素生成反応を維持するため、体積換算で85.0vol%以上が好ましく、90vol%〜99.9vol%がより好ましく、92.0vol%〜99.9vol%がさらに好ましい。
The reaction gas used in the present invention is a mixed gas containing hydrocarbons.
As the hydrocarbon gas, a saturated hydrocarbon gas is preferable, a saturated hydrocarbon gas having 1 to 4 carbon atoms is more preferable, and methane gas is more preferable. The concentration of the hydrocarbon in the reaction gas is preferably 85.0 vol% or more in terms of volume, more preferably 90 vol% to 99.9 vol%, and 92.0 vol% to 99.99% in order to maintain a highly efficient hydrogen production reaction. 9 vol% is more preferable.

反応ガスは、炭化水素以外に空気、酸素および水蒸気のうち1種以上のガス成分を少量含むことで触媒の耐久性が維持できる。
反応ガス中の空気又は酸素の濃度は0.1vol%〜10vol%が好ましく、0.1vol%〜8.0vol%がより好ましく、1.0vol%〜5.0vol%がさらに好ましい。酸素又は空気としては、経済上の点から空気が好ましい。
水蒸気の反応ガス中の濃度は0.1vol%〜5.0vol%が好ましく、0.1vol%〜4.0vol%がより好ましく、1.0vol%〜3.0vol%がさらに好ましい。
The reaction gas can maintain the durability of the catalyst by containing a small amount of one or more gas components of air, oxygen and water vapor in addition to hydrocarbons.
The concentration of air or oxygen in the reaction gas is preferably 0.1 vol% to 10 vol%, more preferably 0.1 vol% to 8.0 vol%, and even more preferably 1.0 vol% to 5.0 vol%. As oxygen or air, air is preferable from an economical point of view.
The concentration of water vapor in the reaction gas is preferably 0.1 vol% to 5.0 vol%, more preferably 0.1 vol% to 4.0 vol%, and even more preferably 1.0 vol% to 3.0 vol%.

本発明の水素製造触媒は、遷移金属担持触媒であり、触媒担体としては、アルミナ、カルシウムアルミネート等金属酸化物の担体が使用できるが、助触媒としての機能を有すると考えられる点から、カルシウムアルミネートがより好ましい。特にカルシウムアルミネートとしては12CaO・7Al23化合物であることが好ましい。また、触媒担体は微粒子であることが好ましく、特にカルシウムアルミネート微粒子の担体であることが好ましい。 The hydrogen production catalyst of the present invention is a transition metal-supported catalyst. As the catalyst carrier, a metal oxide carrier such as alumina or calcium aluminate can be used, but it is considered that the catalyst has a function as a promoter. More preferred is aluminate. In particular, the calcium aluminate is preferably a 12CaO · 7Al 2 O 3 compound. The catalyst carrier is preferably a fine particle, particularly preferably a calcium aluminate fine particle carrier.

カルシウムアルミネート微粒子の担体は、カルシウム化合物及びアルミニウム化合物の混合物を、加熱することにより製造することができる。   The carrier of calcium aluminate fine particles can be produced by heating a mixture of a calcium compound and an aluminum compound.

原料として用いるカルシウム化合物としては、酸化カルシウム、炭酸カルシウム等が挙げられる。また、アルミニウム化合物としては、酸化アルミニウムが挙げられるが、酸化アルミニウムの結晶構造はα型、γ型のいずれでもよい。また、これらのカルシウム化合物及びアルミニウム化合物は、粉末、固体焼結物、固体単結晶など形状を問わない。原料の混合比率は、酸化物換算のモル比〔(CaO)/(Al23)〕で、1.5以上1.9以下が好ましく、1.6以上1.8以下がより好ましい。 Examples of calcium compounds used as raw materials include calcium oxide and calcium carbonate. Examples of the aluminum compound include aluminum oxide. The crystal structure of aluminum oxide may be either α-type or γ-type. Moreover, these calcium compounds and aluminum compounds do not ask | require shapes, such as a powder, a solid sintered compact, and a solid single crystal. The mixing ratio of the raw materials, in a molar ratio of oxide basis [(CaO) / (Al 2 O 3) ] is preferably 1.5 to 1.9, more preferably 1.6 to 1.8.

カルシウム化合物及びアルミニウム化合物の混合物の加熱は、真空中、不活性ガス雰囲気中、水素雰囲気中、酸素雰囲気中等で行なうことができる。但し、水蒸気を含む雰囲気は好ましくない。酸素濃度21%程度の乾燥空気中でも行うことができる。なお、酸素雰囲気中で加熱製造する場合は、原料の混合比率をモル比〔(CaO)/(Al23)〕で1.5以上1.7以下の範囲にすることが、高純度の12CaO・7Al23化合物を得る観点から好ましい。
加熱条件は、最高温度を原料化合物が反応してカルシウムアルミネートが生成する温度以上とすることが好ましく、1250℃以上2500℃以下とするのがより好ましく、1300℃以上1800℃以下とするのがさらに好ましい。原料化合物を溶融させて12CaO・7Al23化合物を製造する場合は、1400℃以上とすることが好ましい。
The mixture of calcium compound and aluminum compound can be heated in a vacuum, in an inert gas atmosphere, in a hydrogen atmosphere, in an oxygen atmosphere, or the like. However, an atmosphere containing water vapor is not preferable. It can be performed even in dry air having an oxygen concentration of about 21%. In addition, when manufacturing by heating in an oxygen atmosphere, the mixing ratio of the raw materials is set to a range of 1.5 to 1.7 in terms of molar ratio [(CaO) / (Al 2 O 3 )]. From the viewpoint of obtaining a 12CaO · 7Al 2 O 3 compound, it is preferable.
As for the heating conditions, the maximum temperature is preferably not less than the temperature at which the raw material compound reacts to produce calcium aluminate, more preferably not less than 1250 ° C and not more than 2500 ° C, and more preferably not less than 1300 ° C and not more than 1800 ° C Further preferred. If the starting compound is melted to produce a 12CaO · 7Al 2 O 3 compound is preferably set to 1400 ° C. or higher.

前記温度に加熱することにより、原料化合物が反応してカルシウムアルミネートが生成するので、必要に応じて粉砕しカルシウムアルミネート微粒子を得る。溶融した場合は冷却して固化物とし、得られた固化物を粉砕すれば12CaO・7Al23化合物の微粒子が得られる。
冷却条件は、特に制限されないが、溶融した場合は溶融後の温度が1200℃以下となるまでは降温速度50℃/時間以上600℃/時間以下が好ましい。
生成したカルシウムアルミネートは、結晶質およびガラス質のいずれでもよい。12CaO・7Al23化合物の純度は50%以上でその他のカルシウムアルミネート化合物を含んでもよいが、触媒担体として効果的に性能を発揮するためには、12CaO・7Al23化合物の純度が80%以上であることが好ましく、90%以上がより好ましい。
By heating to the said temperature, since a raw material compound reacts and calcium aluminate produces | generates, it grind | pulverizes as needed and obtains calcium aluminate microparticles | fine-particles. When melted, it is cooled to obtain a solidified product, and the obtained solidified product is pulverized to obtain fine particles of 12CaO · 7Al 2 O 3 compound.
The cooling conditions are not particularly limited, but when melted, the temperature lowering rate is preferably 50 ° C./hour or more and 600 ° C./hour or less until the temperature after melting becomes 1200 ° C. or less.
The produced calcium aluminate may be either crystalline or glassy. The purity of the 12CaO · 7Al 2 O 3 compound is 50% or more and may contain other calcium aluminate compounds. However, in order to effectively perform as a catalyst carrier, the purity of the 12CaO · 7Al 2 O 3 compound is It is preferably 80% or more, more preferably 90% or more.

カルシウムアルミネート固化物の粉砕工程は、乾式粉砕ならびにカルシウムアルミネートの水和を防ぐため有機溶媒を用いた湿式粉砕のいずれかの微粉砕方法を用いることができる。得られる微粒子は、BET比表面積が2m2/g以上の微粉末であることが触媒活性の点で好ましい。 In the pulverization step of the calcium aluminate solidified product, any of fine pulverization methods of dry pulverization and wet pulverization using an organic solvent can be used to prevent hydration of calcium aluminate. The fine particles obtained are preferably fine powders having a BET specific surface area of 2 m 2 / g or more from the viewpoint of catalytic activity.

前記担体に担持される遷移金属としては、具体的には、Ni、Pt、Pd、Ru、Rh、Co等の8族、9族及び10族から選ばれる元素の1種又は2種以上が挙げられる。例えば、二元系、三元系等の不均一触媒でもよい。水素製造活性の点から、Ni、Pt、Pd、Ru、Rhがより好ましく、Niが特に好ましい。
遷移金属の粒子径は、水素製造活性の点、担体表面への高い分散度を確保する点から、小さいことが好ましく、メジアン径として1nm以上1000nm以下が好ましく、1nm以上100nm以下がより好ましく、1nm以上10nm以下がさらに好ましい。ここで、メジアン径は、動的光散乱法による累積頻度が50%となる粒径値である。
Specific examples of the transition metal supported on the carrier include one or more elements selected from Group 8, Group 9 and Group 10, such as Ni, Pt, Pd, Ru, Rh, and Co. It is done. For example, a heterogeneous catalyst such as a binary system or a ternary system may be used. From the viewpoint of hydrogen production activity, Ni, Pt, Pd, Ru, and Rh are more preferable, and Ni is particularly preferable.
The particle diameter of the transition metal is preferably small from the viewpoint of hydrogen production activity and securing a high degree of dispersion on the support surface. The median diameter is preferably 1 nm to 1000 nm, more preferably 1 nm to 100 nm, and more preferably 1 nm. More preferably, it is 10 nm or less. Here, the median diameter is a particle diameter value at which the cumulative frequency by the dynamic light scattering method is 50%.

前記担体への金属の担持は、例えば有機溶媒を用いた含浸法で行うことができる。具体的には、金属のヘキサン等の有機溶媒分散液中に担体を投入後、撹拌し、溶媒を蒸発させればよい。ここで、金属の担持量は、担体に対して、0.1〜40質量%が好ましく、1〜20質量%がより好ましい。   The metal can be supported on the carrier by, for example, an impregnation method using an organic solvent. Specifically, the support may be added to an organic solvent dispersion such as metal hexane and then stirred to evaporate the solvent. Here, 0.1-40 mass% is preferable with respect to a support | carrier, and, as for the metal load, 1-20 mass% is more preferable.

触媒および反応ガスの反応温度は、400℃以上が好ましく、高転化率を維持するためには600℃以上がより好ましい。また反応温度の上限は1000℃で十分である。   The reaction temperature of the catalyst and the reaction gas is preferably 400 ° C. or higher, and more preferably 600 ° C. or higher in order to maintain a high conversion rate. The upper limit of the reaction temperature is sufficient to be 1000 ° C.

より具体的には、図1に示すようなガス流通触媒反応管を用いて炭化水素ガスから水素を製造するのが好ましい。すなわち、触媒を設置した反応管中で炭化水素ガス(メタンガス等)及び前記のガスを流通させて反応ガスを回収すればよい。反応管は加熱炉により400℃以上に加熱する。   More specifically, it is preferable to produce hydrogen from hydrocarbon gas using a gas flow catalyst reaction tube as shown in FIG. That is, the reaction gas may be recovered by circulating a hydrocarbon gas (methane gas or the like) and the above gas in a reaction tube provided with a catalyst. The reaction tube is heated to 400 ° C. or higher by a heating furnace.

本発明によれば、触媒失活までの時間が長くなることで炭化水素の直接分解による水素製造の生産性が改善できる。   According to the present invention, productivity for hydrogen production by direct cracking of hydrocarbons can be improved by increasing the time until catalyst deactivation.

次に実施例を挙げて本発明を更に詳細に説明する。   EXAMPLES Next, an Example is given and this invention is demonstrated still in detail.

(試験例1)
(触媒作製)
以下に示すとおり担体作製および触媒担持処理を施して触媒を作製した。
(担体作製)
酸化カルシウムとα型酸化アルミニウムがモル比[CaO]/[Al23]=1.63となる混合粉末を酸化マグネシウム坩堝に入れ、酸素濃度21%の乾燥空気中で昇温速度400℃/時間で1440℃まで昇温し、溶融させた状態で3時間保持した後降温速度150℃/時間で室温まで徐冷し固化物を作製した。得られた固化物は、黄色がかった白色の固体であって粉末X線回折より12CaO・7Al23を主相とする回折パターンが確認された。得られた凝固物は、ジェットミルにて粉砕し、粉砕後のBET比表面積が3.5m2/gであった。
(Test Example 1)
(Catalyst preparation)
As shown below, a carrier was prepared and a catalyst support treatment was performed to prepare a catalyst.
(Carrier production)
Calcium and α-type aluminum oxide oxide molar ratio [CaO] / [Al 2 O 3] = 1.63 to become a mixed powder placed in a magnesium oxide crucible, oxygen concentration of 21% dry air at a Atsushi Nobori rate of 400 ° C. / The temperature was raised to 1440 ° C. over time, held in the molten state for 3 hours, and then gradually cooled to room temperature at a temperature drop rate of 150 ° C./hour to produce a solidified product. The obtained solidified product was a yellowish white solid, and a diffraction pattern having 12CaO · 7Al 2 O 3 as a main phase was confirmed by powder X-ray diffraction. The obtained solidified product was pulverized by a jet mill, and the BET specific surface area after pulverization was 3.5 m 2 / g.

(触媒担持)
上記で作製した触媒用担体に活性金属を担持するため、担持量が5質量%となるようNiナノ粒子(メジアン径5nm)のヘキサン分散液中に担体粉末を投入後、スターラーで24時間撹拌しヘキサン溶媒を蒸発させNi触媒を作製した。
(Catalyst support)
In order to support the active metal on the catalyst support prepared above, the support powder was put into a hexane dispersion of Ni nanoparticles (median diameter 5 nm) so that the supported amount was 5% by mass, and then stirred with a stirrer for 24 hours. The hexane solvent was evaporated to prepare a Ni catalyst.

(反応ガス)
メタン95.0vol%および乾燥空気5.0vol%を混合して反応ガスとした。
(Reactive gas)
Methane 95.0 vol% and dry air 5.0 vol% were mixed to obtain a reaction gas.

(触媒耐久性評価)
図1の模式構成図に示すガス流通触媒反応管を用いて、メタンの直接分解による水素生成に対する触媒活性を調べた。
石英反応管内に触媒試料を設置し、窒素ガス流通雰囲気にて700℃まで昇温した後5000mL/hrの流速で混合ガスを流し24時間保持した。反応ガスの分析として、反応ガス流通から2時間おきに反応ガスを回収してガスクロマトグラフィーにてメタンガス濃度及び水素ガス濃度を測定し、メタン転化率ならびに水素収率を算出して触媒活性の耐久性を評価した。
その結果、反応ガス流通開始から24時間時点でのメタン転化率が33.0%、水素収率が27.4%であり反応性が低下することなく性能を維持した。
(Catalyst durability evaluation)
Using the gas flow catalytic reaction tube shown in the schematic configuration diagram of FIG. 1, the catalytic activity for hydrogen generation by direct decomposition of methane was examined.
A catalyst sample was placed in a quartz reaction tube, heated to 700 ° C. in a nitrogen gas flow atmosphere, and then mixed gas was flowed at a flow rate of 5000 mL / hr and held for 24 hours. For analysis of the reaction gas, the reaction gas is collected every 2 hours from the reaction gas flow, the methane gas concentration and the hydrogen gas concentration are measured by gas chromatography, the methane conversion rate and the hydrogen yield are calculated, and the durability of the catalyst activity Sex was evaluated.
As a result, the methane conversion at 24 hours from the start of the reaction gas flow was 33.0%, the hydrogen yield was 27.4%, and the performance was maintained without lowering the reactivity.

(試験例2)
(触媒作製)
試験例1と同様の手法で作製した触媒を用いた。
(Test Example 2)
(Catalyst preparation)
A catalyst produced by the same method as in Test Example 1 was used.

(反応ガス)
メタン99.0vol%および水蒸気1.0vol%を混合して反応ガスとした。
(Reactive gas)
Methane 99.0 vol% and water vapor 1.0 vol% were mixed to obtain a reaction gas.

(触媒耐久性評価)
図1の模式構成図に示すガス流通触媒反応管を用いて、メタンの直接分解による水素生成に対する触媒活性を調べた。
石英反応管内に触媒試料を設置し、窒素ガス流通雰囲気にて700℃まで昇温した後5000mL/hrの流速で混合ガスを流し24時間保持した。反応ガスの分析として、反応ガス流通から2時間おきに反応ガスを回収してガスクロマトグラフィーにてメタンガス濃度及び水素ガス濃度を測定し、メタン転化率ならびに水素収率を算出して触媒活性の耐久性を評価した。
その結果、反応ガス流通開始から24時間時点でのメタン転化率が31.2%、水素収率が30.5%であり耐久性が低下することなく性能を維持した。
(Catalyst durability evaluation)
Using the gas flow catalytic reaction tube shown in the schematic configuration diagram of FIG. 1, the catalytic activity for hydrogen generation by direct decomposition of methane was examined.
A catalyst sample was placed in a quartz reaction tube, heated to 700 ° C. in a nitrogen gas flow atmosphere, and then mixed gas was flowed at a flow rate of 5000 mL / hr and held for 24 hours. For analysis of the reaction gas, the reaction gas is collected every 2 hours from the reaction gas flow, the methane gas concentration and the hydrogen gas concentration are measured by gas chromatography, the methane conversion rate and the hydrogen yield are calculated, and the durability of the catalyst activity Sex was evaluated.
As a result, the methane conversion at 24 hours from the start of the reaction gas flow was 31.2%, and the hydrogen yield was 30.5%, maintaining the performance without deteriorating the durability.

(比較例)
(触媒作製)
試験例1と同様の手法で作製した触媒を用いた。
(Comparative example)
(Catalyst preparation)
A catalyst produced by the same method as in Test Example 1 was used.

(反応ガス)
メタンガスのみを反応ガスとして用いた。
(Reactive gas)
Only methane gas was used as the reaction gas.

(触媒耐久性評価)
図1の模式構成図に示すガス流通触媒反応管を用いて、メタンの直接分解による水素生成に対する触媒活性を調べた。
石英反応管内に触媒試料を設置し、窒素ガス流通雰囲気にて700℃まで昇温した後5000mL/hrの流速で混合ガスを流し24時間保持した。反応ガスの分析として、反応ガス流通から2時間おきに反応ガスを回収してガスクロマトグラフィーにてメタンガス濃度及び水素ガス濃度を測定し、メタン転化率ならびに水素収率を算出して触媒活性の耐久性を評価した。
その結果、反応ガス流通開始から16時間時点でのメタン転化率が32.2%、水素収率が28.7%であり反応性を維持したが、18時間時点でのメタン転化率が9.0%、水素収率が7.4%と反応性が著しく低下し、さらに24時間時点でのメタン転化率が4.4%、水素収率が2.6%であったため触媒が失活したと判断した。
(Catalyst durability evaluation)
Using the gas flow catalytic reaction tube shown in the schematic configuration diagram of FIG. 1, the catalytic activity for hydrogen generation by direct decomposition of methane was examined.
A catalyst sample was placed in a quartz reaction tube, heated to 700 ° C. in a nitrogen gas flow atmosphere, and then mixed gas was flowed at a flow rate of 5000 mL / hr and held for 24 hours. For analysis of the reaction gas, the reaction gas is collected every 2 hours from the reaction gas flow, the methane gas concentration and the hydrogen gas concentration are measured by gas chromatography, the methane conversion rate and the hydrogen yield are calculated, and the durability of the catalyst activity Sex was evaluated.
As a result, the methane conversion rate at 16 hours from the start of the reaction gas flow was 32.2% and the hydrogen yield was 28.7%, and the reactivity was maintained, but the methane conversion rate at 18 hours was 9. The reactivity was remarkably reduced to 0% and the hydrogen yield of 7.4%, and the catalyst was deactivated because the methane conversion at 24 hours was 4.4% and the hydrogen yield was 2.6%. It was judged.

Claims (6)

炭化水素の直接分解による水素製造方法であって、炭化水素分解触媒に、反応ガスとして炭化水素以外に、空気、酸素および水蒸気から選ばれる1種以上を含むガスを接触させて加熱することを特徴とする水素製造方法。   A method for producing hydrogen by direct cracking of hydrocarbons, wherein a hydrocarbon cracking catalyst is heated by contacting a gas containing one or more selected from air, oxygen and water vapor in addition to hydrocarbons as a reaction gas A hydrogen production method. 前記反応ガス中の炭化水素ガス以外のガス成分の濃度が、0.1〜10vol%である請求項1記載の水素製造方法。   The hydrogen production method according to claim 1, wherein the concentration of gas components other than hydrocarbon gas in the reaction gas is 0.1 to 10 vol%. 前記反応ガス中の空気又は酸素の濃度が、0.1〜10vol%である請求項1記載の水素製造方法。   The hydrogen production method according to claim 1, wherein the concentration of air or oxygen in the reaction gas is 0.1 to 10 vol%. 前記反応ガス中の水蒸気の濃度が、0.1〜5vol%である請求項1記載の水素製造方法。   The method for producing hydrogen according to claim 1, wherein the concentration of water vapor in the reaction gas is 0.1 to 5 vol%. 炭化水素分解触媒が、カルシウムアルミネート微粒子に遷移金属を担持した触媒である請求項1〜4のいずれか1項記載の水素製造方法。   The method for producing hydrogen according to any one of claims 1 to 4, wherein the hydrocarbon decomposition catalyst is a catalyst in which a transition metal is supported on calcium aluminate fine particles. 前記カルシウムアルミネートが、12CaO・7Al23化合物である請求項5記載の水素製造方法。 Wherein the calcium aluminate, 12CaO · 7Al 2 O 3 The method of producing hydrogen according to claim 5, wherein the compound.
JP2018066571A 2018-03-30 2018-03-30 Hydrogen production method involving direct decomposition of hydrocarbon Pending JP2019178015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018066571A JP2019178015A (en) 2018-03-30 2018-03-30 Hydrogen production method involving direct decomposition of hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018066571A JP2019178015A (en) 2018-03-30 2018-03-30 Hydrogen production method involving direct decomposition of hydrocarbon

Publications (1)

Publication Number Publication Date
JP2019178015A true JP2019178015A (en) 2019-10-17

Family

ID=68277515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018066571A Pending JP2019178015A (en) 2018-03-30 2018-03-30 Hydrogen production method involving direct decomposition of hydrocarbon

Country Status (1)

Country Link
JP (1) JP2019178015A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000271481A (en) * 1999-03-25 2000-10-03 Sumitomo Metal Mining Co Ltd Hydrocarbon catalytically decomposing catalyst and production of hydrogen and carbon using the same
JP2003334448A (en) * 2002-05-16 2003-11-25 Toyota Motor Corp Hydrogen generating catalyst and hydrogen generating using it
JP2006315891A (en) * 2005-05-11 2006-11-24 Japan Steel Works Ltd:The Method of manufacturing functional nanocarbon and hydrogen by direct decomposition of lower hydrocarbon
JP2015209344A (en) * 2014-04-24 2015-11-24 Jfeエンジニアリング株式会社 Hydrogen-carbon material production method and production apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000271481A (en) * 1999-03-25 2000-10-03 Sumitomo Metal Mining Co Ltd Hydrocarbon catalytically decomposing catalyst and production of hydrogen and carbon using the same
JP2003334448A (en) * 2002-05-16 2003-11-25 Toyota Motor Corp Hydrogen generating catalyst and hydrogen generating using it
JP2006315891A (en) * 2005-05-11 2006-11-24 Japan Steel Works Ltd:The Method of manufacturing functional nanocarbon and hydrogen by direct decomposition of lower hydrocarbon
JP2015209344A (en) * 2014-04-24 2015-11-24 Jfeエンジニアリング株式会社 Hydrogen-carbon material production method and production apparatus

Similar Documents

Publication Publication Date Title
US10173202B2 (en) Supported metal catalyst and method of synthesizing ammonia using the same
JP6143761B2 (en) Hydrogen production catalyst and method for producing hydrogen
RU2551383C2 (en) Ammonia synthesis catalyst and ammonia synthesis method
Pinzón et al. Hydrogen production by ammonia decomposition over ruthenium supported on SiC catalyst
US9393551B2 (en) Catalyst for reforming tar-containing gas, method for preparing catalyst for reforming tar-containing gas, method for reforming tar-containing gas using catalyst for reforming tar containing gas, and method for regenerating catalyst for reforming tar-containing gas
US7001586B2 (en) CO-free hydrogen from decomposition of methane
KR100732784B1 (en) Process for the production of dimethylether from hydrocarbon
KR20190072580A (en) A process for producing a catalyst containing an intermetallic compound and a catalyst prepared by the process
CN102275963B (en) Preparation method of aluminium oxide material
Shiozaki et al. Partial oxidation of methane over a Ni/BaTiO 3 catalyst prepared by solid phase crystallization
JP3755662B2 (en) Method for producing carbon nanotube
WO2018044241A1 (en) Method of producing a methanation catalyst
JP6280443B2 (en) Catalyst, catalyst production method, ammonia synthesis method, ammonia decomposition method
JP2015504356A (en) Catalyst composition for methane steam reforming in fuel cells
US6995115B2 (en) Catalyst for the generation of CO-free hydrogen from methane
US8129304B2 (en) Intermetallic compound Ni3Al catalyst for reforming methanol and methanol reforming method using same
JP6851860B2 (en) Hydrogen production catalyst and hydrogen production method
Chen et al. Production of hydrogen by partial oxidation of methanol over ZnO-promoted copper catalysts supported on rice husk ash
JP7156113B2 (en) Catalyst for reforming tar-containing gas, method for producing catalyst for reforming tar-containing gas, and method for reforming tar-containing gas using catalyst for reforming tar-containing gas
JP2019178015A (en) Hydrogen production method involving direct decomposition of hydrocarbon
TANG et al. Effect of modifiers on the performance of Cu-ZnO-based catalysts for low-temperature methanol synthesis
JP6941454B2 (en) Method for producing catalyst carrier
KR101594901B1 (en) Cokes oven gas reforming catalyst for manufacturing synthesis gas, method for preparing the same and method for manufacturing synthesis gas from cokes oven gas using the same
KR101655092B1 (en) Manufacturing method of methane using methanation catalyst derived from hydrotalcite-type compound, methanation catalyst, and preparation mehtod of the same
JP7040978B2 (en) Calcium aluminate powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220809