JP2018143899A - Contaminant separation/recovery method of granule mixture - Google Patents

Contaminant separation/recovery method of granule mixture Download PDF

Info

Publication number
JP2018143899A
JP2018143899A JP2017037843A JP2017037843A JP2018143899A JP 2018143899 A JP2018143899 A JP 2018143899A JP 2017037843 A JP2017037843 A JP 2017037843A JP 2017037843 A JP2017037843 A JP 2017037843A JP 2018143899 A JP2018143899 A JP 2018143899A
Authority
JP
Japan
Prior art keywords
substance
granular
sound
separating
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017037843A
Other languages
Japanese (ja)
Other versions
JP6696922B2 (en
Inventor
知之 上薗
Tomoyuki Uezono
知之 上薗
直久 秋山
Naohisa Akiyama
直久 秋山
智也 召田
Tomoya Meshida
智也 召田
雅夫 中島
Masao Nakajima
雅夫 中島
恵司 今泉
Keiji Imaizumi
恵司 今泉
義樹 稲毛
Yoshiki Inage
義樹 稲毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Rix Corp
Original Assignee
Toyota Motor Corp
Rix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Rix Corp filed Critical Toyota Motor Corp
Priority to JP2017037843A priority Critical patent/JP6696922B2/en
Publication of JP2018143899A publication Critical patent/JP2018143899A/en
Application granted granted Critical
Publication of JP6696922B2 publication Critical patent/JP6696922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a contaminant separation/recovery method of granule mixture, which is capable of readily recovering one substance by separating the other substance efficiently and at high accuracy when recovering aggregates of one substance, in a state where granular other substance mixed in aggregates of the granular one substance is separated.SOLUTION: A contaminant separation/recovery method includes: a transportation plane 21 on which a granule mixture 1 obtained by mixing granular metal particles 5 in a granule aggregate group 2 that is an aggregate of granular AB material 4 is placed in a flatly dispersed state; a container recovery plane 31 on which the recovered AB material 4 is placed; and a sound source 10, in which the sound source 10 transmits a sound wave corresponding to a specific gravity of the AB material 4 from above on the transportation plane 21 to form an acoustic field of a stationary wave SW to capture the AB material 4 by a node ND of the stationary wave SW, and the AB material 4 is transferred on the container recovery plane 31 by separating the transportation plane 21, in a state captured by the node ND due to relative movement of the sound source 10 and the transportation plane 21.SELECTED DRAWING: Figure 1

Description

本発明は、例えば、二次電池の電極の製造工程において、粉粒状の導電材料の集まりの中に混入している異物粒子を分離させた状態で、この導電材料を回収する等、粉粒状の一の物質の集まりの中に混じっている粉粒状の他の物質を分離させた状態で、一の物質の集まりを回収する粉粒体混合物の混入物質分離回収方法に関する。   The present invention, for example, in the process of manufacturing an electrode of a secondary battery, collects the conductive material in a state where foreign particles mixed in the collection of the powdered conductive material are separated, and so on. The present invention relates to a method for separating and recovering a mixed substance of a granular material mixture in which a collection of one substance is collected in a state where other substances in the form of powder mixed in the collection of one substance are separated.

例えば、リチウムイオン二次電池等、非水電解質二次電池の電極を製造するにあたり、その材料に導電材料が使用され、導電材料は、一定の品質管理を経た上で、電極の製造工程に供給される。導電材料の一つであるアセチレンブラック(acetylene black)(以下、「AB材」と称する)の場合、AB材は、平均粒子径0.3μm程度という細かな粉末状であり、当該AB材の製造工程の中には、ステンレス製管内でAB材を送出する工程もある。この工程の際、管材の劣化等に起因したステンレス製の金属粒子が、送出されるAB材の集まりの中に、異物として混じり込んでしまうことがある。このような金属粒子は、製品としてAB材の出荷前に行う品質検査が実施されるものの、AB材の集まりの中に残留してしまう傾向にある。電極の製造工程には、このような金属粒子が、AB材の集まりに混じった状態で供給される場合があり得る。   For example, when manufacturing electrodes for non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries, conductive materials are used as the materials, and the conductive materials are supplied to the electrode manufacturing process after a certain quality control. Is done. In the case of acetylene black (hereinafter referred to as “AB material”), which is one of the conductive materials, the AB material is a fine powder having an average particle diameter of about 0.3 μm. Among the steps, there is also a step of sending AB material in a stainless steel tube. During this process, stainless steel metal particles due to deterioration of the pipe material or the like may be mixed as foreign substances in the collected AB material. Such metal particles tend to remain in the collection of AB materials, although a quality inspection is performed as a product before shipping the AB materials. In the electrode manufacturing process, such metal particles may be supplied in a state of being mixed in a group of AB materials.

設定した規格より大きい粒子径、例えば、50〜100μm程度の粒子径の金属粒子は、二次電池の電極にとって阻害要因となるため、電極の製造工程では、AB材の集まりに混ざった金属粒子を、AB材の集まりと分離させて取り除く必要がある。AB材の集まりと金属粒子とを分離するには、「ふるい方式」や「質量差分離方式」が考えられる。ふるい方式は、金属粒子が混じったAB材の集まりを、メッシュ構造の金網でふるいに掛ける手法である。質量差分離方式は、金属粒子が混ざったAB材の集まりに遠心力をかけ、金属粒子とAB材との質量差に基づく遠心力の大きさの差により、金属粒子とAB材とを分離しようとする手法である。   A metal particle having a particle size larger than the set standard, for example, a metal particle having a particle size of about 50 to 100 μm is an obstructive factor for the electrode of the secondary battery. Therefore, in the electrode manufacturing process, metal particles mixed in a collection of AB materials are used. It is necessary to separate and remove from the collection of AB materials. In order to separate the collection of AB materials from the metal particles, “sieving method” and “mass difference separation method” can be considered. The sieving method is a method in which a collection of AB materials mixed with metal particles is sieved with a mesh-structured wire mesh. In the mass difference separation method, a centrifugal force is applied to a group of AB materials mixed with metal particles, and the metal particles and the AB material are separated by the difference in centrifugal force based on the mass difference between the metal particles and the AB material. It is a technique.

また、音波を利用した粒子の分離技術として、例えば、特許文献1が開示されている。特許文献1は、流路内に流れる浮遊微粒子を、音響放射力と静電気力とにより、連続的に分離させるのにあたり、浮遊微粒子の一部を、静電気力により流路の一方側側壁に導くと共に、音響放射力を作用させるための定在波を走査し、この定在波による音場の節の位置を変化させることで、浮遊微粒子の他の一部を、流路の他方側側壁に導く技術である。特許文献1では、サブミリ流路内を流れる浮遊微粒子の中で、大径粒子と小径粒子とが、連続的に効率良く分離できるとされている。   Further, as a particle separation technique using sound waves, for example, Patent Document 1 is disclosed. In Patent Document 1, in order to continuously separate suspended fine particles flowing in a flow path by acoustic radiation force and electrostatic force, a part of the suspended fine particles is guided to one side wall of the flow path by electrostatic force. , By scanning the standing wave for applying the acoustic radiation force and changing the position of the node of the sound field by this standing wave, another part of the suspended fine particles is guided to the other side wall of the channel Technology. In Patent Document 1, it is said that large particles and small particles can be continuously and efficiently separated from the suspended fine particles flowing in the submillimeter channel.

特開2007−229557号公報JP 2007-229557 A

しかしながら、ふるい方式による分離では、金網の目開きが大きいと、捕捉対象の金属粒子までもが、AB材と共にメッシュを通過してしまうこともあり、分離精度が低下してしまう。その反対に、目開きを数十μm程度とメッシュを細密にすると、金網全体に対する開口率は20%程度にまで下がり、一塊状になったAB材が、金網を通過することができないこともあり、AB材の集まりが金網上に残り易く、それに伴う目詰まりが起こり易い。そのため、金属粒子を分離した状態にあるAB材の回収率、すなわち歩留まりは非常に低い。また、金属粒子が規格より小さい粒子であれば、金属粒子はメッシュを通過しても問題ないが、金属粒子の大きさや形状は一様ではなく、金属粒子が、規格の大きさを超えた細長形状である場合には、金属粒子はメッシュを通過できてしまうこともあり、問題となる。その他にも、金網には、メッシュの摩耗や破損が生じることもあり、金網のメンテナンスを定期的に行わなければならない上に、メッシュの破損を検出することも困難であり、破片や摩耗粉の混入というリスクもある。   However, in the separation by the sieving method, if the mesh of the wire mesh is large, even the metal particles to be captured may pass through the mesh together with the AB material, and the separation accuracy is lowered. On the other hand, if the mesh is made finer with a mesh size of about several tens of μm, the aperture ratio of the entire wire mesh is reduced to about 20%, and the AB material that is formed in a lump may not pass through the wire mesh. A collection of AB materials tends to remain on the wire mesh, and clogging is likely to occur. Therefore, the recovery rate of the AB material in a state where the metal particles are separated, that is, the yield is very low. Also, if the metal particles are smaller than the standard, the metal particles can be passed through the mesh, but the size and shape of the metal particles are not uniform, and the metal particles are slender exceeding the standard size. In the case of a shape, the metal particles may pass through the mesh, which is a problem. In addition, the metal mesh may wear and break the mesh, and the mesh must be regularly maintained, and it is difficult to detect the mesh breakage. There is also a risk of contamination.

また、質量差分離方式による分離では、金属粒子が混じったAB材の集まりのような微小粒子の場合、金属粒子の質量は一様でないものの、個々の粒子に作用する遠心力は、非常に小さく、AB材の集まりと規格外の金属粒子とを、精度高く分離することは困難である。精度高く分離するには、高い遠心力発生機構に加え、風の抵抗力差など他の機能効果を併用する機構も必要であり、設備として非常に大掛かり、かつ高コストなものとなるという問題がある。   Further, in the separation by the mass difference separation method, in the case of minute particles such as a collection of AB materials mixed with metal particles, although the mass of the metal particles is not uniform, the centrifugal force acting on each particle is very small. It is difficult to accurately separate a collection of AB materials and non-standard metal particles. In order to separate with high accuracy, in addition to a high centrifugal force generation mechanism, a mechanism that combines other functional effects such as wind resistance difference is also required, which is a very large facility and high cost. is there.

また、特許文献1の分離技術では、超音波による定在波を空間中に発生させるため、高価な超音波発生装置に加え、発信源と反射板の設置にも高精度な加工が必要であり、さらに振動数を走査する制御装置が必要となり、装置全体が非常に高価なものとなる。また、空間中で粒子を捕捉するため、粒子に作用する重力相当分の捕捉力が必要であり、定在波の節を外れた部分では、粒子の捕捉力が不足し、粒子が捕捉できない。そのため、定在波の節で捕捉できる粒子の量は非常に少なく、捕捉力の不足から捕捉した粒子が落下することも多い。そのような状況から、捕捉した粒子は、非常に遅い速度でしか動かせない。特許文献1でも、その速度は、数十μm/sとある。   In addition, in the separation technique disclosed in Patent Document 1, in order to generate standing waves by ultrasonic waves in the space, high-precision processing is required for installing the transmission source and the reflector in addition to the expensive ultrasonic generator. Furthermore, a control device for scanning the frequency is required, and the entire device becomes very expensive. In addition, in order to trap particles in space, a trapping force corresponding to the gravity acting on the particles is necessary, and the trapping force of the particles is insufficient in a portion outside the node of the standing wave, and the particles cannot be trapped. For this reason, the amount of particles that can be captured by the standing wave node is very small, and the captured particles often fall due to insufficient capturing power. Under such circumstances, the trapped particles can only move at a very slow speed. Even in Patent Document 1, the speed is several tens of μm / s.

特に、例えば、自動車に搭載するリチウムイオン二次電池向けの電極等を、量産体制で製造する場合には、金属粒子の混じったAB材(粉粒体混合物)が、電極の製造工程に大量に供給される。この場合、粉粒体混合物から規格外の金属粒子を回収する工程も、量産設備のインライン上で行いたいこともある。しかしながら、特許文献1の分離技術では、大径粒子と小径粒子とを分離するのに、サブミリ流路が必要となるため、特許文献1による単位時間当たりの粒子分離処理能力は、量産体制に必要な処理能力に及ばないこともあり、量産体制の下では、特許文献1の分離技術は適さない。また、特許文献1の分離技術では、大径粒子の集まりと小径粒子の集まりとが、サブミリ流路内で分離された後、それぞれの集まりをサブミリ流路内から回収する技術の開示もなく、AB材の集まりと分離した規格外の金属粒子が、回収できない。   In particular, for example, when an electrode for a lithium ion secondary battery mounted on an automobile is manufactured in a mass production system, a large amount of AB material (a mixture of powder particles) mixed with metal particles is used in the electrode manufacturing process. Supplied. In this case, there is a case where the step of recovering non-standard metal particles from the powder mixture is also desired to be performed in-line on the mass production facility. However, the separation technique of Patent Document 1 requires a submillimeter flow path to separate large and small diameter particles, so the particle separation processing capacity per unit time according to Patent Document 1 is necessary for mass production. However, the separation technique disclosed in Patent Document 1 is not suitable under a mass production system. Moreover, in the separation technique of Patent Document 1, there is no disclosure of a technique for collecting a collection of large diameter particles and a collection of small diameter particles in the submillimeter flow path after the collection in the submillimeter flow path, Non-standard metal particles separated from the collection of AB materials cannot be recovered.

本発明は、上記問題点を解決するためになされたものであり、粉粒状の一の物質の集まりの中に混じっている粉粒状の他の物質を分離させた状態で、一の物質の集まりを回収するのにあたり、他の物質を、効率良くかつ高い精度に分離させ、一の物質を簡単に回収することができる粉粒体混合物の混入物質分離回収方法を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and is a collection of one substance in a state in which the other substances in the granular form mixed in the collection of one substance in the granular form are separated. It is an object of the present invention to provide a method for separating and recovering a mixed substance of a granular material mixture in which other substances can be efficiently and accurately separated and one substance can be easily recovered.

上記課題を解決するためになされた本発明の一態様は、粉粒状の一の物質の集まりである粉粒体集合群に、粉粒状の他の物質が少なくとも1種混じった粉粒体混合物で、前記粉粒体集合群を、前記他の物質と分離して回収するのにあたり、前記粉粒体混合物を、広範囲に平たく分散した状態で載置する載置面と、回収された物質を載置する回収面と、音波を出力する音源と、を備え、前記載置面は、前記音源から送波される前記音波の反射波を生成する条件を満たす態様に形成され、前記音源と前記載置面とは相対的に移動可能であること、前記音源は、前記一の物質または前記他の物質のいずれか一方の対象物質の比重に対応した周波数の音波を、前記載置面と鉛直方向上方に対向する位置から前記載置面に向けて送波し、定在波の音響場を形成することにより、前記粉粒体混合物のうち、前記対象物質を、前記定在波の節で捕捉すること、前記対象物質は、前記音源と前記載置面との相対移動により、前記定在波の節で捕捉された状態で、前記載置面を離れて前記回収面に移されること、を特徴とする。   One aspect of the present invention made to solve the above problems is a powder mixture in which at least one other substance in the granular form is mixed with the powder aggregate group which is a collection of one substance in the granular form. In order to separate and collect the aggregate of particles, the mounting surface on which the powder mixture is placed in a widely dispersed state and the collected substance are placed. And a sound source that outputs a sound wave, wherein the placement surface is formed in a mode that satisfies a condition for generating a reflected wave of the sound wave transmitted from the sound source. The sound source is movable relative to the placement surface, and the sound source emits a sound wave having a frequency corresponding to the specific gravity of one of the one substance and the other substance in the vertical direction with respect to the placement face. A standing wave acoustic field transmitted from the position facing upward to the mounting surface. Forming the target substance in the powder mixture and capturing the target substance in the standing wave section; and the target substance is moved by the relative movement between the sound source and the mounting surface. It is characterized in that it is moved to the recovery surface after leaving the mounting surface in a state of being captured at a wave node.

この態様によれば、載置面に載置された粉粒体混合物の中から非対象物質を、載置面上で、非接触で簡単に分離することができ、非対象物質と分離した対象物質が、回収面に効率良く回収できる。しかも、載置面上で分離して回収面に移された対象物質の集まりの中には、非対象物質がほとんど混ざり込むことがなく、非対象物質と分離して、回収面に回収された対象物質の分離精度は、例えば、90%以上等、極めて高くすることができる。さらに、非接触であることから、分離装置に起因する新たな異物が混入するというリスクもない。   According to this aspect, the non-target substance can be easily separated in a non-contact manner from the powder / particle mixture placed on the placement surface, and the target separated from the non-target substance. Substances can be efficiently recovered on the recovery surface. In addition, non-target substances are hardly mixed in the collection of target substances separated on the mounting surface and transferred to the recovery surface, and separated from the non-target substances and recovered on the recovery surface. The separation accuracy of the target substance can be extremely high, for example, 90% or more. Furthermore, since it is non-contact, there is no risk that a new foreign substance resulting from the separation device is mixed.

上記の態様においては、前記音波は、可聴域帯に属する周波数のサイン波であり、前記音源は、音波制御部で発生させた電気信号を、音声として、前記音波に変換する音波拡声部を有し、前記音波拡声部と前記載置面とが、相対的に移動可能であること、が好ましい。   In the above aspect, the sound wave is a sine wave having a frequency belonging to an audible range, and the sound source has a sound wave amplifying unit that converts an electric signal generated by a sound wave control unit into the sound wave as a sound. And it is preferable that the said sound-amplifying part and the said mounting surface can move relatively.

この態様によれば、音波拡声部から発する音波に基づく定在波の音響場を、載置面上に形成するため、定在波の節から多少外れた位置でも、対象となる粒子(対象物質)が落下することがないため、対象物質が大量に捕捉できる。また、載置面に対し音波拡声部の移動により、この定在波の音響場は、載置面から回収面へと音波拡声部のこの移動に、追従することができる。それによって、捕捉された粒子群も定在波と共に移動するが、ここでも、粒子が落下することがないため、捕捉されたこれらの粒子群についても簡単に追従可能である。さらに、定在波の腹に位置する粒子や、一旦節の捕捉から外れた粒子に対しても、定在波の移動により、必ず節が複数回通過し、二重三重と複数重に捕捉されるため、このような粒子は、波間から漏れることもなく載置面全面に亘って処理可能である。また、可聴域帯に属する周波数の音波は、指向性が比較的広く、載置面の幅広い範囲に届き易いことから、定在波の音響場もより幅広い範囲で形成され易くなり、載置面に載せた粉粒体混合物の中から、対象物質は、定在波の節でより多く捕捉することができる。   According to this aspect, since the acoustic field of the standing wave based on the sound wave emitted from the sound wave loudspeaker is formed on the mounting surface, the target particle (target substance) is located even slightly away from the standing wave node. ) Does not fall, so a large amount of the target substance can be captured. Further, the acoustic field of this standing wave can follow this movement of the sound wave loudspeaker from the placement surface to the recovery surface by the movement of the sound wave loudspeaker with respect to the placement surface. As a result, the captured particle group also moves together with the standing wave. However, since the particle does not fall again, the captured particle group can be easily followed. In addition, even for particles located in the antinodes of standing waves or particles that have once fallen out of the capture of nodes, the movement of the standing waves will always cause the nodes to pass multiple times and be captured in double triple and multiple layers. Therefore, such particles can be processed over the entire mounting surface without leaking from the waves. In addition, since sound waves having frequencies belonging to the audible range have a relatively wide directivity and easily reach a wide range of the mounting surface, a standing wave acoustic field is easily formed in a wider range, and the mounting surface The target substance can be captured more in the standing wave section from the granular material mixture placed on the.

上記の態様においては、搬送面の送出により、前記搬送面に載せた被運搬物を搬送先に運ぶ搬送手段を備え、前記載置面は、前記搬送手段の前記搬送面であること、が好ましい。   In said aspect, it is preferable to provide the conveyance means which conveys the to-be-conveyed object mounted on the said conveyance surface to a conveyance destination by sending out a conveyance surface, and the said mounting surface is the said conveyance surface of the said conveyance means, It is preferable. .

この態様によれば、本発明に係る粉粒体混合物の混入物質分離回収方法を実施する分離回収装置として、本発明の音源と回収面のほか、搬送手段を必要するだけであり、このような分離回収装置は、極めて簡単な構造で構成することができる。また、対象物質が、例えば、自動車等に搭載されるリチウムイオン二次電池の電極を製造する材料等として使用される場合、搬送手段を装備した上述の分離回収装置は、例示した電極の製造工程を担う種々の生産設備を設置した生産ラインに、インラインで設置可能となり、本発明に係る粉粒体混合物の混入物質分離回収方法は、電極の量産体制下にも対応することができる。   According to this aspect, as the separation and collection apparatus for carrying out the contaminant separation and collection method for the granular material mixture according to the present invention, in addition to the sound source and the collection surface of the present invention, only the conveying means is required. The separation and recovery apparatus can be configured with a very simple structure. In addition, when the target substance is used as, for example, a material for manufacturing an electrode of a lithium ion secondary battery mounted on an automobile or the like, the above-described separation / recovery device equipped with a transport means is an electrode manufacturing process illustrated. It is possible to install in-line on a production line in which various production facilities for carrying out the above are installed, and the method for separating and recovering contaminants of the powder mixture according to the present invention can be applied under the mass production system of electrodes.

上記の態様においては、前記搬送面に垂直な上下方向、かつ前記搬送面の送出方向に対し、直交する方向を回収方向とすると、前記音源は、少なくとも1つ以上設けられ、前記載置面の上方の領域にある第1領域と、前記回収方向に対し、前記載置面の外側の領域にある第2領域との間を、自在に移動できること、が好ましい。   In the above aspect, if the recovery direction is a vertical direction perpendicular to the transport surface and a direction perpendicular to the delivery direction of the transport surface, at least one sound source is provided, It is preferable that the first region in the upper region can be freely moved between the first region in the upper region and the second region in the region outside the placement surface with respect to the collection direction.

この態様によれば、搬送面に載置された粉粒体混合物の中から非対象物質を、搬送面上で分離した後、対象物質は回収面に、非対象物質は別の場所に、それぞれ別々に自動化して回収することができる。そのため、粉粒体混合物の中から、非対象物質を分離した後の対象物質を回収するのに、その回収に伴うコストが抑制できる。   According to this aspect, after separating the non-target substance from the granular material mixture placed on the transport surface on the transport surface, the target substance is on the recovery surface, and the non-target substance is on another place, respectively. It can be automated and collected separately. Therefore, in collecting the target substance after separating the non-target substance from the powder and particle mixture, the cost associated with the recovery can be suppressed.

上記の態様においては、前記対象物質は、前記一の物質であり、前記一の物質の比重は、前記他の物質の比重より小さいこと、が好ましい。   In the above aspect, preferably, the target substance is the one substance, and the specific gravity of the one substance is smaller than the specific gravity of the other substance.

この態様によれば、定在波の音響場は、他の物質の比重より小さい一の物質の比重に合わせた周波数の音波に基づいて形成されているため、一の物質に対応した定在波では、一の物質より比重の大きい他の物質は、その節で捕捉できず、回収面に運ばれることもない。したがって、他の物質と分離した後の一の物質が、高い分離精度で回収面に回収できていると共に、他の物質が、回収面に回収した一の物質の集まりの中に入ってしまうのを、確実に阻止することができる。   According to this aspect, since the acoustic field of the standing wave is formed on the basis of the sound wave having a frequency that matches the specific gravity of the one substance smaller than the specific gravity of the other substance, the standing wave corresponding to the one substance is formed. Then, other substances having a specific gravity greater than that of one substance cannot be captured at the node, and are not transported to the recovery surface. Therefore, one substance after being separated from another substance can be recovered on the recovery surface with high separation accuracy, and the other substance enters the collection of one substance recovered on the recovery surface. Can be reliably prevented.

上記の態様においては、前記一の物質は、非水電解質二次電池の電極の製造に必要な電極材料であり、前記他の物質は、前記電極材料の製造工程で残留した金属製の異物であること、が好ましい。   In the above aspect, the one substance is an electrode material necessary for manufacturing an electrode of a nonaqueous electrolyte secondary battery, and the other substance is a metal foreign matter remaining in the manufacturing process of the electrode material. It is preferable.

この態様によれば、例えば、設定した規格より大きい金属粒子等を対象とした異物が、供給先から受け取る電極材料入りの集合体の中から簡単に短時間で除去でき、高精度に回収された電極材料だけが、非水電解質二次電池の電極の製造に供給できる。そのため、一連の電極の製造工程の生産効率が、例えば、「ふるい方式」や「質量差分離方式」、特許文献1のような分離技術等の従来技術を用いた場合に比して、大幅に向上する。ひいては、非水電解質二次電池のコストの低減化を実現することができる。   According to this aspect, for example, foreign matters targeting metal particles larger than the set standard can be easily removed in a short time from the assembly containing the electrode material received from the supply destination, and recovered with high accuracy. Only the electrode material can be supplied to manufacture the electrode of the non-aqueous electrolyte secondary battery. Therefore, the production efficiency of a series of electrode manufacturing processes is significantly higher than when using conventional techniques such as “sieving method”, “mass difference separation method”, and separation techniques such as Patent Document 1. improves. As a result, cost reduction of the nonaqueous electrolyte secondary battery can be realized.

本発明に係る粉粒体混合物の混入物質分離回収方法によれば、粉粒状の一の物質の集まりの中に混じっている粉粒状の他の物質を分離させた状態で、一の物質の集まりを回収するのにあたり、他の物質を、効率良くかつ高い精度に分離させ、一の物質を簡単に回収することができる。   According to the method for separating and recovering a mixed substance of a granular material mixture according to the present invention, a collection of one substance in a state where the other granular substance mixed in the collection of one granular substance is separated. In the recovery of other substances, other substances can be separated efficiently and with high accuracy, and one substance can be easily recovered.

本実施形態に係る粉粒体混合物の混入物質分離回収方法を説明する模式図であり、粉粒体混合物内のAB材を定在波の節で捕捉する直前の状態を示す図である。It is a mimetic diagram explaining the mixed substance separation collection method of a granular material mixture concerning this embodiment, and is a figure showing the state just before capturing AB material in a granular material mixture by a node of a standing wave. 図1に続き、粉粒体混合物内のAB材を定在波の節で捕捉した状態を示す図である。FIG. 2 is a diagram illustrating a state in which the AB material in the powder mixture is captured at a standing wave node following FIG. 1. 本実施形態に係る粉粒体混合物を搬送するコンベアの概略を示す図であり、対応する図1の状態を平面視で示す説明図である。It is a figure which shows the outline of the conveyor which conveys the granular material mixture which concerns on this embodiment, and is explanatory drawing which shows the corresponding state of FIG. 1 by planar view. 図3に続き、対応する図2の状態を平面視で示す説明図である。FIG. 4 is an explanatory diagram showing the corresponding state of FIG. 2 in plan view, following FIG. 3. 図4に続き、AB材がAB材回収容器の回収面に移された様子を、平面視で示す説明図である。It is explanatory drawing which shows a mode that AB material was moved to the collection | recovery surface of AB material collection | recovery container following FIG. 図5に示す状態を、正面視で示す説明図である。It is explanatory drawing which shows the state shown in FIG. 5 by a front view. 本実施形態に係る粉粒体混合物を搬送するコンベアに、複数のスピーカーを設置した様子を示す説明図である。It is explanatory drawing which shows a mode that the several speaker was installed in the conveyor which conveys the granular material mixture which concerns on this embodiment. 本実施形態に係る粉粒体混合物の混入物質分離回収方法に用いる音源で、スピーカーの発信周波数と、定在波の節による捕捉能力との関係を示すグラフである。It is a sound source used for the mixed substance isolation | separation collection | recovery method of the granular material mixture which concerns on this embodiment, and is a graph which shows the relationship between the transmission frequency of a speaker, and the capture capability by the node of a standing wave. 本実施形態に係る粉粒体混合物の混入物質分離回収方法に関する検証実験1の方法を、正面視で模式的に示した説明図であり、スピーカーの移動前で、疑似コンベアの搬送面に配した粉粒体混合物の状態を示す図である。It is explanatory drawing which showed typically the method of the verification experiment 1 regarding the mixing-substance separation-and-recovery method of the granular material mixture which concerns on this embodiment by the front view, and was arranged on the conveyance surface of the pseudo conveyor before the movement of a speaker. It is a figure which shows the state of a granular material mixture. 検証実験1の結果をまとめた表である。It is the table | surface which put together the result of the verification experiment 1. FIG. 検証実験1で、疑似コンベアの搬送面に残留した金属粒子の様子を示す説明図である。In verification experiment 1, it is explanatory drawing which shows the mode of the metal particle which remained on the conveyance surface of a pseudo conveyor. 検証実験1で、受け皿の皿回収面に集められたAB材の様子を示す説明図である。It is explanatory drawing which shows the mode of AB material collected on the tray collection | recovery surface of a saucer in the verification experiment 1. FIG. 本実施形態に係る粉粒体混合物の混入物質分離回収方法に関する検証実験2の方法を、正面視で模式的に示す説明図である。It is explanatory drawing which shows typically the method of the verification experiment 2 regarding the contaminant separation collection | recovery method of the granular material mixture which concerns on this embodiment by a front view. 図13に続き、検証実験2の方法を、平面視で模式的に示した説明図である。FIG. 14 is an explanatory diagram schematically showing the method of the verification experiment 2 in plan view, following FIG. 13. 検証実験2の結果をまとめた表である。It is the table | surface which put together the result of the verification experiment 2. FIG. 検証実験2で、プレートの載置面に残留した金属粒子の様子を示す説明図である。In verification experiment 2, it is explanatory drawing which shows the mode of the metal particle which remained on the mounting surface of a plate. 検証実験2で、受け皿の皿回収面に集められたAB材の様子を示す説明図である。It is explanatory drawing which shows the mode of AB material collected on the tray collection | recovery surface of a saucer in the verification experiment 2. FIG.

以下、本発明に係る粉粒体混合物の混入物質分離回収方法について、実施形態を図面に基づいて詳細に説明する。本発明に係る粉粒体混合物の混入物質分離回収方法のうち、粉粒状の一の物質は、本実施形態では、例えば、自動車等に搭載されるリチウムイオン二次電池の電極を製造するのにあたり、導電材料の一つとして使用されるアセチレンブラック(acetylene black)(以下、「AB材」と称する)を対象としている。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a method for separating and recovering a mixed substance of a granular material mixture according to the present invention will be described in detail based on the drawings. Of the mixed substance separation and recovery method of the granular material mixture according to the present invention, one granular material is used in the present embodiment, for example, in manufacturing an electrode of a lithium ion secondary battery mounted on an automobile or the like. Further, acetylene black (hereinafter referred to as “AB material”) used as one of conductive materials is targeted.

前述したように、メーカー等から納入された状態では、リチウムイオン二次電池の電極を製造する上で、許容範囲を超える粉粒状の金属粒子(他の物質)が、AB材の集まりであるAB材集合群(粉粒体集合群)に、異物として混じっているため、AB材集合群にこの異物を含んだAB材混合物(粉粒体混合物)は、電極の製造工程に供給できない。本実施形態に係る粉粒体混合物の混入物質分離回収方法は、AB材集合群を、AB材混合物に混じった金属粒子と分離して回収するのに行われ、電極の製造工程に供給する前に実施される。   As described above, in the state of being delivered from a manufacturer or the like, in manufacturing the electrode of the lithium ion secondary battery, the fine metal particles (other substances) exceeding the allowable range are a collection of AB materials. Since the material aggregate group (powder particle aggregate group) is mixed as a foreign material, the AB material mixture (powder particle mixture) containing the foreign material in the AB material aggregate group cannot be supplied to the electrode manufacturing process. The mixed substance separation and recovery method of the granular material mixture according to the present embodiment is performed to separate and recover the AB material aggregate group from the metal particles mixed in the AB material mixture, and before supplying to the electrode manufacturing process. To be implemented.

はじめに、AB材混合物について、簡単に説明する。AB材は、一定の大きさに分級されたAB材集合群において、平均粒子径0.3μm程度という細かな粉末状であり、嵩比重0.05(アセチレンブラックの物性値である真の比重は2.0)である。金属粒子は、AB材の製造工程で残留した金属製の異物であり、AB材を送出するのに用いる管材の劣化等に起因して生じたステンレス製の粉粒体で、AB材の送出と共に混ざり込んだ比重8.0の粒子である。このような金属粒子は、例えば、数μm程度の小さな粒子径のほか、数十〜100μm程度にも及ぶ大きな粒子径も含まれており、設定した規格(例えば、数十μmを超える粒子径)より大きい金属粒子は、二次電池の性能に大きく影響を及ぼすことから、電極を構成する上で阻害要因となり、排除の対象となる。   First, the AB material mixture will be briefly described. The AB material is a fine powder having an average particle diameter of about 0.3 μm in an AB material group grouped into a certain size, and has a bulk specific gravity of 0.05 (the true specific gravity which is a physical property value of acetylene black is 2.0). The metal particles are metallic foreign matters remaining in the manufacturing process of the AB material, and are stainless steel particles caused by deterioration of the tube material used for sending the AB material. It is a mixed particle with a specific gravity of 8.0. Such metal particles include, for example, a small particle size of about several μm and a large particle size of about several tens to 100 μm, and set standards (for example, a particle size exceeding several tens of μm). Larger metal particles greatly affect the performance of the secondary battery, and thus become an obstructive factor in the construction of the electrode and are excluded.

次に、本実施形態に係る粉粒体混合物の混入物質分離回収方法について、説明する。図1は、本実施形態に係る粉粒体混合物の混入物質分離回収方法を説明する模式図であり、粉粒体混合物内のAB材を定在波の節で捕捉する直前の状態を示す図である。図2は、図1に続き、粉粒体混合物内のAB材を定在波の節で捕捉した状態を示す図である。   Next, a method for separating and collecting contaminants of the powder / particle mixture according to the present embodiment will be described. FIG. 1 is a schematic diagram for explaining a method for separating and recovering contaminants of a granular material mixture according to this embodiment, and shows a state immediately before the AB material in the granular material mixture is captured at a standing wave node. It is. FIG. 2 is a diagram illustrating a state in which the AB material in the powder and granular material mixture is captured by a standing wave node following FIG. 1.

本実施形態に係る粉粒体混合物の混入物質分離回収方法は、例えば、生産ラインで、電極の製造工程を担う種々の生産設備の一つとして、インライン上に配設されたコンベア20(搬送手段)で実施されるほか、品質検査を行う場所で行うバッチ処理式の専用テーブル等上で実施される。この粉粒体混合物の混入物質分離回収方法は、AB材混合物1を、広範囲に平たく分散した状態で載置する載置面7と、回収された物質を載置する回収面8と、音波を出力する音源10と、を必要とする。載置面7は、音源10から送波される音波の反射波を生成する条件を満たす態様に形成された面である。   The mixed substance separation and recovery method for a granular material mixture according to the present embodiment is, for example, a conveyor 20 (conveying means) arranged on an in-line as one of various production facilities that take charge of an electrode manufacturing process in a production line. In addition, it is carried out on a dedicated table for batch processing that is performed at a place where quality inspection is performed. This mixed substance separation and recovery method of the granular material mixture includes a placing surface 7 on which the AB material mixture 1 is placed in a widely dispersed state, a collecting surface 8 on which the collected substance is placed, and a sound wave. And a sound source 10 to be output. The mounting surface 7 is a surface formed in a mode that satisfies the condition for generating a reflected wave of a sound wave transmitted from the sound source 10.

音源10は、本実施形態では、図1及び図2に示すように、音波制御部11で発生させた電気信号を、音声として、音波に変換するスピーカー12(音波拡声部)を有する。音源10と載置面7とは相対的に移動可能であり、本実施形態の場合、スピーカー12と載置面7とが、相対的に移動可能である。音源10は、可聴域帯に属する周波数の音波を、載置面7と鉛直方向上方に対向する位置に配置したスピーカー12により、載置面7に向けて送波する。この音波は、対象物質3であるAB材4の比重に対応した周波数であり、本実施形態では、170Hzのサイン波である。   In this embodiment, as shown in FIGS. 1 and 2, the sound source 10 includes a speaker 12 (sound sound amplifying unit) that converts an electrical signal generated by the sound wave control unit 11 into sound waves as sound. The sound source 10 and the placement surface 7 are relatively movable, and in the case of this embodiment, the speaker 12 and the placement surface 7 are relatively movable. The sound source 10 transmits a sound wave having a frequency belonging to the audible band toward the placement surface 7 by a speaker 12 disposed at a position facing the placement surface 7 in the vertical direction. This sound wave has a frequency corresponding to the specific gravity of the AB material 4 that is the target substance 3, and is a sine wave of 170 Hz in this embodiment.

音源10は、スピーカー12より発する音波に、例えば、載置面7上で、直径数〜数十cmに拡がる幅広の指向性を有すると共に、単振動する媒質(空気)によって、嵩比重0.05で平均粒子径0.3μm程度の粉末状のAB材4を、数〜数百μm程度の振幅で動かすことを可能とした仕様(音の強さ、音圧、音圧レベル)で構成されている。載置面7は、例えば、金属等からなり、進行波として、スピーカー12より発するサイン波を、吸収せずにスピーカー12側に反射できる条件を具備した材質からなる面(空気の音響インピーダンスに対し、スピーカー12から発する音波を反射できる音響インピーダンスを有する界面)である。スピーカー12の出力は6Wである。   The sound source 10 has, for example, a sound wave emitted from the speaker 12 having a wide directivity that extends from several to several tens of centimeters on the placement surface 7 and a bulk specific gravity of 0.05 by a medium (air) that vibrates in a simple manner. The specifications are such that the powdered AB material 4 having an average particle size of about 0.3 μm can be moved with an amplitude of about several to several hundreds of μm (sound intensity, sound pressure, sound pressure level). Yes. The mounting surface 7 is made of, for example, a metal or the like, and is a surface made of a material having a condition capable of reflecting a sine wave emitted from the speaker 12 as a traveling wave to the speaker 12 side without being absorbed (with respect to the acoustic impedance of air). , An interface having an acoustic impedance capable of reflecting sound waves emitted from the speaker 12. The output of the speaker 12 is 6W.

コンベア20について、簡単に説明する。図3は、本実施形態に係る粉粒体混合物を搬送するコンベアの概略を示す図であり、対応する図1の状態を平面視で示す説明図である。図4は、図3に続き、対応する図2の状態を平面視で示す説明図である。図5は、図4に続き、AB材がAB材回収容器の回収面に移された様子を、平面視で示す説明図であり、図5に示す状態を、正面視で示す説明図を、図6に示す。なお、図3と図4では、図を見易くする目的で、2つの音波領域の位置をずらして図示しているため、図3及び図4に示す音波領域と、図5に示す音波領域は一致していない。   The conveyor 20 will be briefly described. FIG. 3 is a diagram showing an outline of a conveyor that conveys the granular material mixture according to the present embodiment, and is an explanatory diagram showing the corresponding state of FIG. 1 in plan view. FIG. 4 is an explanatory diagram showing the corresponding state of FIG. 2 in plan view following FIG. FIG. 5 is an explanatory diagram showing the state in which the AB material is transferred to the recovery surface of the AB material recovery container following FIG. 4 in a plan view, and an explanatory diagram showing the state shown in FIG. 5 in a front view. As shown in FIG. In FIGS. 3 and 4, since the positions of the two sound wave regions are shifted for easy understanding, the sound wave regions shown in FIGS. 3 and 4 and the sound wave region shown in FIG. I have not done it.

図3〜図6に示すように、コンベア20は、送出方向Fに搬送面21を送出することにより、搬送面21に載せた被運搬物を搬送先に運ぶ周知の搬送手段であり、被運搬物であるAB材混合物1を、搬送面21の搬入側(図3中、下側)から搬出側(同図、上側)に搬送する。コンベア20は、図示しない制御装置により、例えば、設定された送り速度で搬送面21を送出する動作や、送出する搬送面21の停止、搬送面21のインチング送り動作等、搬送面21の送り速度を自在に可変できる仕様で構成されている。搬送面21は、前述した載置面7であり、本実施形態に係る粉粒体混合物の混入物質分離回収方法は、載置面7として、搬送面21に載せたAB材混合物1を対象に、AB材集合群2と金属粒子5とを分離して、AB材集合群2を回収する。   As shown in FIGS. 3 to 6, the conveyor 20 is a well-known transport means that transports a transported object placed on the transport surface 21 to a transport destination by sending the transport surface 21 in the sending direction F. AB material mixture 1 which is a thing is conveyed from the carrying-in side (lower side in FIG. 3) of the conveyance surface 21 to the carrying-out side (the same figure, upper side). The conveyor 20 is controlled by a control device (not shown), such as an operation for sending the conveyance surface 21 at a set feed speed, a stop of the conveyance surface 21 to be sent out, an inching feed operation for the conveyance surface 21, and the like. It is configured with specifications that can be freely changed. The conveying surface 21 is the mounting surface 7 described above, and the mixed substance separation and recovery method of the granular material mixture according to the present embodiment targets the AB material mixture 1 placed on the conveying surface 21 as the mounting surface 7. The AB material assembly group 2 and the metal particles 5 are separated, and the AB material assembly group 2 is recovered.

コンベア20において、搬送面21に垂直な上下方向V、かつ搬送面21の送出方向Fに対し、直交する方向を回収方向Cとすると、図5及び図6に示すように、AB材回収容器30が、搬送面21の下側を、回収方向Cに沿い、搬送面21とクロスした配置で設置されている。AB材回収容器30は、底面である容器回収面31を有し、容器回収面31の縁を側壁で覆った箱状に形成されており、AB材混合物1から金属粒子5を取り除いたAB材集合群2を回収する容器である。すなわち、AB材回収容器30の容器回収面31が、前述した回収面8である。   In the conveyor 20, when the vertical direction V perpendicular to the conveyance surface 21 and the direction orthogonal to the delivery direction F of the conveyance surface 21 are the collection direction C, as shown in FIGS. 5 and 6, as shown in FIGS. However, the lower side of the conveyance surface 21 is installed along the collection direction C so as to cross the conveyance surface 21. The AB material recovery container 30 has a container recovery surface 31 which is a bottom surface, is formed in a box shape in which the edge of the container recovery surface 31 is covered with a side wall, and the AB material is obtained by removing the metal particles 5 from the AB material mixture 1. This is a container for collecting the collective group 2. That is, the container recovery surface 31 of the AB material recovery container 30 is the recovery surface 8 described above.

また、搬送面21の搬出側の最先端には、金属粒子回収容器40が、その一部を搬送面21の下側に位置する配置で設置されている。金属粒子回収容器40は、底面である容器回収面41を有し、容器回収面41の縁を側壁で覆った箱状に形成されており、AB材混合物1に混入していた金属粒子5を回収する容器である。   In addition, a metal particle collection container 40 is installed at the most advanced position on the carry-out side of the conveyance surface 21 in a position where a part thereof is located below the conveyance surface 21. The metal particle recovery container 40 has a container recovery surface 41 which is a bottom surface, is formed in a box shape in which the edge of the container recovery surface 41 is covered with a side wall, and the metal particle 5 mixed in the AB material mixture 1 is collected. It is a container to collect.

コンベア20と共に、本実施形態に係る粉粒体混合物の混入物質分離回収方法を行う場合には、音源10は、1つのコンベア20に付き、1つ以上設けられている。図5及び図6に示すように、スピーカー12は、載置面7(搬送面21)の上方の領域にある第1領域45と、回収方向Cに対し、この搬送面21の外側の領域にある第2領域46との間を、自在に移動可能に設置されている。すなわち、第2領域46は、AB材回収容器30の容器回収面31のうち、上下方向Vに対し、搬送面21と重ならない範囲の部分である。スピーカー12と搬送面21との間は、発振距離d=8(mm)で一定に保たれている。   When performing the mixed substance separation / recovery method of the granular material mixture according to the present embodiment together with the conveyor 20, one or more sound sources 10 are attached to one conveyor 20. As shown in FIG. 5 and FIG. 6, the speaker 12 is located in a first region 45 above the placement surface 7 (conveying surface 21) and in a region outside the conveying surface 21 with respect to the collection direction C. It is installed so as to be freely movable between a certain second region 46. That is, the second region 46 is a portion of the container collection surface 31 of the AB material collection container 30 that does not overlap the transport surface 21 in the vertical direction V. The space between the speaker 12 and the conveying surface 21 is kept constant at an oscillation distance d = 8 (mm).

なお、1つのコンベア20に付き、複数の音源10を設けて良い。図7は、実施形態に係る粉粒体混合物を搬送するコンベアに、複数のスピーカーを設置した様子を示す説明図である。スピーカー12が1つの場合、スピーカー12が、搬送面21を回収方向Cに横切って、第1領域45と第2領域46との間を往復するため、スピーカー12の移動距離が大きく、移動時間が長くなる。図7に例示するように、2つ(複数)のスピーカー12を回収方向Cに並べて配置されると、1つ当たりのスピーカー12の移動距離がより小さくなり、移動時間の短縮化を図ることができる。   A plurality of sound sources 10 may be provided on one conveyor 20. Drawing 7 is an explanatory view showing signs that a plurality of speakers were installed in the conveyor which conveys the granular material mixture concerning an embodiment. When there is one speaker 12, the speaker 12 crosses the transport surface 21 in the collection direction C and reciprocates between the first region 45 and the second region 46, so the moving distance of the speaker 12 is large and the moving time is long. become longer. As illustrated in FIG. 7, when two (plural) speakers 12 are arranged in the collection direction C, the moving distance of each speaker 12 becomes smaller, and the moving time can be shortened. it can.

本実施形態に係る粉粒体混合物の混入物質分離回収方法では、スピーカー12が、進行波として、170Hzのサイン波を載置面7に向けて送波し続けると、その反射波として、載置面7で反射したサイン波と、次に送波される進行波との重合により、定在波SWが生じる。進行波と反射波とは、単振動の波動であり、進行波と反射波とを重ね合わせた合成波(定在波SW)の波長をλとすると、定在波SWでは、節と腹とが、1/2λ毎に交互に同じ位相・同じ周期で生じる。節は、媒質に振動が生じず、媒質に変位が生じない振幅0(振幅を「0」と、限りなく「0」に近い場合を含む)とする位置である。腹は、媒質に振動が最も大きく生じ、媒質に変位が最も大きい最大振幅値となる位置である。   In the mixed substance separation and recovery method of the granular material mixture according to the present embodiment, when the speaker 12 continues to transmit a sine wave of 170 Hz toward the placement surface 7 as a traveling wave, the placement wave is placed as the reflected wave. A standing wave SW is generated by superposition of the sine wave reflected by the surface 7 and the traveling wave transmitted next. The traveling wave and the reflected wave are simple vibration waves. When the wavelength of the combined wave (standing wave SW) obtained by superimposing the traveling wave and the reflected wave is λ, , Every 1 / 2λ alternately with the same phase and the same period. The node is a position where the amplitude is 0 (including the case where the amplitude is “0” and is close to “0” as much as possible) where no vibration occurs in the medium and no displacement occurs in the medium. The antinode is the position where the vibration is generated most in the medium and the maximum amplitude value is the largest in the medium.

ここで、本出願人が、AB材4と金属粒子5とを試料に、定在波の節による試料の捕捉能力と、スピーカーの発信周波数との関係について、調査する実験を行った。図8は、本実施形態に係る粉粒体混合物の混入物質分離回収方法に用いる音源で、スピーカーの発信周波数と、定在波の節による捕捉能力との関係を示すグラフである。実験の結果、定在波の節で試料を最も捕捉し易い条件として、図8に示すように、AB材4では、スピーカーの発信周波数がピークトップの170Hzにあるときであった。反対に、金属粒子5では、スピーカーの発信周波数を300Hzまで可変させても、定在波の節で金属粒子5を捕捉できる能力はなかった。   Here, the present applicant conducted an experiment to investigate the relationship between the sample capturing ability by the standing wave node and the transmission frequency of the speaker using the AB material 4 and the metal particles 5 as the sample. FIG. 8 is a graph showing a relationship between the transmission frequency of the speaker and the capturing ability by the standing wave node, which is a sound source used in the mixed substance separation and recovery method of the granular material mixture according to the present embodiment. As a result of the experiment, as shown in FIG. 8, the AB material 4 has a peak transmission frequency of 170 Hz, as shown in FIG. On the other hand, the metal particle 5 has no ability to capture the metal particle 5 at the standing wave node even if the oscillation frequency of the speaker is varied up to 300 Hz.

前述したように、AB材混合物1の成分は、平均粒子径0.3μm程度で嵩比重0.05(真の比重2.0)の粉末状のAB材4と、粒子径数十〜100μm程度で比重8.0の粒子状の金属粒子5であり、AB材4は、金属粒子5より軽くて小さいため、AB材4は、金属粒子5より定在波の節で捕捉し易いと考えられる。すなわち、定在波の媒質は、大気中の空気であり、金属粒子5より軽くて小さいAB材4が、単振動する空気により、運ばれ易い状態にある。そして、定在波SWが生じている音響場の下に、AB材4が晒されると、AB材4は、その自重と共に、空気の単振動による力を受けて、腹から節の位置に集められ、この節の位置で捕捉されるものと考えられる。   As described above, the components of the AB material mixture 1 include the powdered AB material 4 having an average particle size of about 0.3 μm and a bulk specific gravity of 0.05 (true specific gravity of 2.0), and a particle size of about several tens to 100 μm. Therefore, the AB material 4 is lighter and smaller than the metal particles 5, so that the AB material 4 is considered to be easier to capture at the node of the standing wave than the metal particles 5. . That is, the medium of the standing wave is air in the atmosphere, and the AB material 4 that is lighter and smaller than the metal particles 5 is easily carried by the air that vibrates. When the AB material 4 is exposed to the acoustic field in which the standing wave SW is generated, the AB material 4 receives the force due to the simple vibration of the air together with its own weight and collects it from the belly to the position of the node. And is considered to be captured at the location of this section.

次に、本実施形態に係る粉粒体混合物の混入物質分離回収方法により、AB材集合群2を、AB材混合物1に混じった金属粒子5と分離して回収するまでの一連の工程について、説明する。はじめに、AB材混合物1が、コンベア20の搬送面21に載せられて、搬出側に向けて送出される(図3)。その一方で、搬送面21の動きを一時停止した状態で、あるいは、搬送面21をゆっくりと送出した状態で、図1及び図3に示すように、スピーカー12は、発振距離dの位置で、回収方向Cに往復運動しながら、搬送面21上のAB材混合物1に向けて周波数170Hzのサイン波を送波する。これにより、図2及び図4に示すように、スピーカー12と搬送面21との間で定在波SWの音響場が生じるため、AB材混合物1のうち、AB材4が、この定在波SWの節NDで捕捉される。節NDで捕捉されたAB材4は、次第に局部的に集まり、AB材集合群2に成長する。   Next, a series of steps until the AB material aggregate group 2 is separated and recovered from the metal particles 5 mixed in the AB material mixture 1 by the mixed substance separation and recovery method of the granular material mixture according to the present embodiment, explain. First, the AB material mixture 1 is placed on the transport surface 21 of the conveyor 20 and sent toward the carry-out side (FIG. 3). On the other hand, in a state where the movement of the conveyance surface 21 is temporarily stopped or in a state where the conveyance surface 21 is slowly sent out, as shown in FIGS. 1 and 3, the speaker 12 is positioned at the oscillation distance d. While reciprocating in the collecting direction C, a sine wave having a frequency of 170 Hz is transmitted toward the AB material mixture 1 on the conveying surface 21. Thereby, as shown in FIGS. 2 and 4, an acoustic field of the standing wave SW is generated between the speaker 12 and the transport surface 21, and therefore, the AB material 4 of the AB material mixture 1 is the standing wave. Captured at SW node ND. The AB material 4 captured at the node ND gradually gathers locally and grows into the AB material aggregate group 2.

節NDで捕捉されたAB材4は、図5及び図6に示すように、搬送面21に対しスピーカー12を移動させることより、定在波SWの節NDに捕捉された状態で、移動するスピーカー12に追従し、搬送面21を離れて第1領域45から第2領域46へと移され、容器回収面31に向けた自由落下により、AB材回収容器30内に回収される。このとき、AB材4は、搬送面21上を滑るだけで、落下することがないため、簡単に追従可能である。さらに、定在波SWの腹に位置するAB材4の粒子や、一旦節NDの捕捉から外れたAB材4の粒子に対しても、定在波SWの移動により、必ず節NDが複数回通過し、二重三重と複数重に捕捉されるため、このようなAB材4は、波間から漏れることもなく搬送面21全面に亘って処理可能である。   As shown in FIGS. 5 and 6, the AB material 4 captured by the node ND moves while being captured by the node ND of the standing wave SW by moving the speaker 12 with respect to the transport surface 21. Following the speaker 12, the carrier surface 21 is moved from the first region 45 to the second region 46, and is recovered in the AB material recovery container 30 by free fall toward the container recovery surface 31. At this time, the AB material 4 simply slides on the transport surface 21 and does not fall, so that it can easily follow. In addition, the AB material 4 particles located on the antinode of the standing wave SW and the AB material 4 particles once deviated from the capture of the node ND always have a plurality of nodes ND due to the movement of the standing wave SW. Since it passes and is captured in double triple and multiple layers, such AB material 4 can be processed over the entire conveyance surface 21 without leaking from the waves.

他方、金属粒子5は、図5に示すように、定在波SWの有無に関係なく、コンベア20の搬送面21に載せられたまま、搬出側の最先端まで送出され、容器回収面41に向けた自由落下により、金属粒子回収容器40内に回収される。かくして、本実施形態に係る粉粒体混合物の混入物質分離回収方法により、AB材集合群2と、AB材混合物1に混じった金属粒子5とが、それぞれ分離され、AB材集合群2はAB材回収容器30内に、金属粒子5は金属粒子回収容器40内に、それぞれ回収される。   On the other hand, as shown in FIG. 5, the metal particles 5 are sent to the most advanced side on the carry-out side while being placed on the transfer surface 21 of the conveyor 20 regardless of the presence or absence of the standing wave SW, to the container recovery surface 41. It is recovered in the metal particle recovery container 40 by the directed free fall. Thus, the AB material aggregate group 2 and the metal particles 5 mixed in the AB material mixture 1 are separated from each other by the mixed substance separation and recovery method of the granular material mixture according to the present embodiment, and the AB material aggregate group 2 is AB. In the material recovery container 30, the metal particles 5 are recovered in the metal particle recovery container 40, respectively.

ここで、本実施形態に係る粉粒体混合物の混入物質分離回収方法の有意性を確認する目的で、2つの検証実験を行った。検証実験1は、コンベア20をモデルとした疑似コンベアを、試験装置に用いた実験である。検証実験2は、品質検査を行う場所等で行うバッチ処理式の専用テーブルをモデルとしたプレートを、試験装置に用いた実験である。検証実験2では、実験の繰り返し数は3である。   Here, two verification experiments were performed for the purpose of confirming the significance of the mixed substance separation and recovery method of the granular material mixture according to the present embodiment. The verification experiment 1 is an experiment in which a pseudo conveyor modeled on the conveyor 20 is used for a test apparatus. The verification experiment 2 is an experiment in which a plate modeled on a batch processing type dedicated table performed at a place where quality inspection is performed or the like is used as a test apparatus. In the verification experiment 2, the number of repetitions of the experiment is 3.

検証実験1について、図9〜図12を用いて説明する。図9は、本実施形態に係る粉粒体混合物の混入物質分離回収方法に関する検証実験1の方法を、正面視で模式的に示した説明図であり、スピーカーの移動前で、疑似コンベアの搬送面に配した粉粒体混合物の状態を示す図である。図10は、検証実験1の結果をまとめた表である。図11は、検証実験1で、疑似コンベアの搬送面に残留した金属粒子の様子を示す説明図であり、受け皿の皿回収面に集められたAB材の様子を示す説明図を、図12に示す。   Verification experiment 1 will be described with reference to FIGS. FIG. 9 is an explanatory view schematically showing the method of the verification experiment 1 related to the method for separating and recovering the mixed substances of the granular material mixture according to the present embodiment in front view, and transporting the pseudo conveyor before moving the speaker. It is a figure which shows the state of the granular material mixture distribute | arranged to the surface. FIG. 10 is a table summarizing the results of the verification experiment 1. FIG. 11 is an explanatory view showing the state of the metal particles remaining on the conveyance surface of the pseudo conveyor in the verification experiment 1, and FIG. 12 is an explanatory view showing the state of the AB material collected on the tray collection surface of the tray. Show.

検証実験1では、図9に示すように、前述したコンベア20に見立てた疑似コンベア20Aが、受け皿30Aの皿回収面31Aに載置されている。この疑似コンベア20Aは、直方体形状に形成されたステンレス製の箱であり、その上部に、搬送面21(載置面7)に相当する搬送面21Aを有している。受け皿30Aは、底面である皿回収面31Aを有し、皿回収面31Aの縁を側壁で覆った皿である。音源10は、発信周波数170Hzのサイン波による音波を、スピーカー12より搬送面21Aに向けて送波する。   In the verification experiment 1, as shown in FIG. 9, the pseudo conveyor 20 </ b> A that is regarded as the above-described conveyor 20 is placed on the dish collection surface 31 </ b> A of the tray 30 </ b> A. This pseudo conveyor 20A is a stainless steel box formed in a rectangular parallelepiped shape, and has a transport surface 21A corresponding to the transport surface 21 (mounting surface 7) at the top. The saucer 30A is a dish having a dish collection surface 31A that is a bottom surface, and an edge of the dish collection surface 31A covered with a side wall. The sound source 10 transmits a sound wave of a sine wave having a transmission frequency of 170 Hz from the speaker 12 toward the conveyance surface 21A.

搬送面21Aには、AB材混合物1が、当該疑似コンベア20Aの長手方向に沿い、広範囲に平たく分散した状態で載置されている。このAB材混合物1は実験前に、図10に示すように、AB材4を0.0308(g)、金属粒子5(図10では、「SUS粉末」と表記)を0.1504(g)、双方を調合して作製した総量0.1812(g)の人為的混合物である。スピーカー12は、搬送面21Aと鉛直方向上方に対向する位置である高さ10(mm)の位置に、高さを一定に保って設置され、図9中の矢印に示すように、搬送面21Aの両端縁(図9中、左右両側の縁)を完全に横切った態様でジグザグ状に、一定速度で移動する。   The AB material mixture 1 is placed on the transport surface 21A in a state where the AB material mixture 1 is flatly distributed over a wide range along the longitudinal direction of the pseudo conveyor 20A. Prior to the experiment, the AB material mixture 1 was prepared by using 0.0308 (g) for the AB material 4 and 0.1504 (g) for the metal particles 5 (referred to as “SUS powder” in FIG. 10) as shown in FIG. , An artificial mixture having a total amount of 0.1812 (g) prepared by blending both. The speaker 12 is installed at a height of 10 (mm), which is a position facing the conveyance surface 21A in the vertical direction, with a constant height, and as indicated by the arrows in FIG. 9, the conveyance surface 21A. It moves at a constant speed in a zigzag manner in such a manner that it completely crosses both end edges (the left and right edges in FIG. 9).

検証実験1の結果を示す。図10及び図11に示すように、搬送面21Aに残留する金属粒子5は、0.1496(g)であった。これは、金属粒子5の投入量0.1504(g)に対し、実に99.47%に相当する量である。他方、疑似コンベア20Aを取り除いた後の受け皿30Aの皿回収面31Aには、定在波SWの節ND(図2、図4参照)で捕捉されたAB材4が、スピーカー12の移動に追従して、搬送面21Aから皿回収面31Aに移されており、AB材混合物1の中からAB材4の集まりAB材集合群2が、受け皿31Aに回収されていることを確認できた。   The result of the verification experiment 1 is shown. As shown in FIGS. 10 and 11, the metal particles 5 remaining on the transport surface 21A were 0.1496 (g). This is an amount equivalent to 99.47% with respect to the input amount of the metal particles 5 of 0.1504 (g). On the other hand, the AB material 4 captured at the node ND of the standing wave SW (see FIGS. 2 and 4) follows the movement of the speaker 12 on the tray collection surface 31A of the tray 30A after the pseudo conveyor 20A is removed. Then, it was moved from the transport surface 21A to the dish collection surface 31A, and it was confirmed that the AB material aggregate group 2 of the AB materials 4 from the AB material mixture 1 was collected in the tray 31A.

次に、検証実験2について、図13〜図17を用いて説明する。図13は、本実施形態に係る粉粒体混合物の混入物質分離回収方法に関する検証実験2の方法を、正面視で模式的に示す説明図であり、その平面視で模式的に示した説明図を、図14に示す。図15は、検証実験2の結果をまとめた表である。図16は、検証実験2で、プレートの載置面に残留した金属粒子の様子を示す説明図であり、受け皿の皿回収面に集められたAB材の様子を示す説明図を、図17に示す。   Next, verification experiment 2 will be described with reference to FIGS. FIG. 13 is an explanatory view schematically showing the method of the verification experiment 2 related to the method for separating and collecting contaminants of the granular material mixture according to the present embodiment, and is an explanatory view schematically showing the plan view. Is shown in FIG. FIG. 15 is a table summarizing the results of the verification experiment 2. FIG. 16 is an explanatory view showing the state of metal particles remaining on the plate mounting surface in the verification experiment 2, and FIG. 17 is an explanatory view showing the state of the AB material collected on the tray collection surface of the tray. Show.

検証実験2では、図13に示すように、バッチ処理式の専用テーブルに見立てたプレート50が、受け皿60の皿回収面61に載置されている。このプレート50は、例えば、円盤状に形成された金属製等の試料台であり、その上部に、載置面7に相当するプレート上面51を有している。受け皿60は、底面である皿回収面61を有し、皿回収面61の縁を側壁で覆った皿である。音源10は、発信周波数170Hzのサイン波による音波を、スピーカー12よりプレート上面51に向けて送波する。スピーカー12は、プレート上面51の鉛直方向上方に対向する位置である高さ10(mm)の位置に、高さを一定に保ったまま設置され、図13に示すように、プレート上面51を径方向に完全に横切った態様による往復直線運動で、一定速度で移動する。   In the verification experiment 2, as shown in FIG. 13, the plate 50 that looks like a batch processing type dedicated table is placed on the tray collection surface 61 of the tray 60. The plate 50 is, for example, a metal sample table formed in a disk shape, and has a plate upper surface 51 corresponding to the mounting surface 7 on the upper part. The tray 60 is a dish having a dish collection surface 61 that is a bottom surface, and an edge of the dish collection surface 61 is covered with a side wall. The sound source 10 transmits a sound wave of a sine wave having a transmission frequency of 170 Hz from the speaker 12 toward the plate upper surface 51. The speaker 12 is installed at a height of 10 mm, which is a position facing the upper surface of the plate upper surface 51 in the vertical direction, with the height kept constant. As shown in FIG. It moves at a constant speed in a reciprocating linear motion in a manner completely crossing the direction.

プレート上面51には、AB材混合物1は、広範囲に平たく分散した状態で載置されている。このAB材混合物1は実験前に、図15に示すように、AB材4を[1回目;0.0510(g)、2回目;0.0502(g)、3回目;0.0505(g)]、金属粒子5(図15では、「SUS粉末」と表記)を[1回目;0.0292(g)、2回目;0.0301(g)、3回目;0.0307(g)]、双方を調合して作製した総量[1回目;0.0802(g)、2回目;0.0803(g)、3回目;0.0812(g)]の人為的混合物である。   The AB material mixture 1 is placed on the plate upper surface 51 in a state of being dispersed flatly over a wide range. Before the experiment, the AB material mixture 1 was subjected to the AB material 4 [first time; 0.0510 (g), second time; 0.0502 (g), third time; 0.0505 (g, as shown in FIG. )], The metal particles 5 (indicated as “SUS powder” in FIG. 15) [first time; 0.0292 (g), second time; 0.0301 (g), third time; 0.0307 (g)] , An artificial mixture of the total amount [1st time: 0.0802 (g), 2nd time: 0.0803 (g), 3rd time: 0.0812 (g)] prepared by blending both.

検証実験2の結果を示す。図15に示すように、プレート上面51に残留する試料(AB材混合物1)は、[1回目;0.0305(g)、2回目;0.0311(g)、3回目;0.0308(g)]であり、受け皿60の皿回収面61に移されたと推定されるAB材4の量は、[1回目;0.0497(g)、2回目;0.0492(g)、3回目;0.0504(g)]であった。これは、AB材4の投入量[1回目;0.0510(g)、2回目;0.0502(g)、3回目;0.0505(g)]に対し、実に[1回目;97.45%、2回目;98.01%、3回目;99.80%]に相当する量である。   The result of the verification experiment 2 is shown. As shown in FIG. 15, the sample (AB material mixture 1) remaining on the plate upper surface 51 is [first time; 0.0305 (g), second time; 0.0311 (g), third time; 0.0308 ( g)], and the amount of the AB material 4 estimated to have been transferred to the tray collection surface 61 of the tray 60 is [first time; 0.0497 (g), second time; 0.0492 (g), third time] 0.0504 (g)]. This is actually [First time: 97.05 (g)] against the input amount of AB material 4 [First time: 0.0510 (g), second time; 0.0502 (g), third time; 0.0505 (g)]. 45%, second time; 98.01%, third time; 99.80%].

検証実験2の結果について、考察する。図16及び図17に示すように、AB材混合物1の中からAB材4の集まりAB材集合群2を、受け皿60に回収できていることが確認できた。AB材集合群2が受け皿60に回収できた理由として、プレート上面51(載置面7)に載置されたAB材混合物1が、周波数170Hzのサイン波による音波に基づく定在波SW(図2参照)の音響場に晒されたことにより、AB材混合物1中の、AB材4の集まりであるAB材集合群2が、この定在波SWの節ND(図4参照)で捕捉された状態になる。節NDで捕捉されたAB材4は、スピーカー12の移動に追従して、プレート上面51から皿回収面61に移されたためと推察できる。   The result of the verification experiment 2 will be considered. As shown in FIGS. 16 and 17, it was confirmed that the AB material aggregate group 2 of the AB materials 4 from the AB material mixture 1 could be collected in the tray 60. The reason why the AB material group 2 can be collected in the tray 60 is that the AB material mixture 1 placed on the plate upper surface 51 (mounting surface 7) is a standing wave SW based on a sine wave having a frequency of 170 Hz (see FIG. 2), the AB material aggregate group 2 that is a collection of AB materials 4 in the AB material mixture 1 is captured by the node ND (see FIG. 4) of the standing wave SW. It becomes a state. It can be inferred that the AB material 4 captured at the node ND is moved from the plate upper surface 51 to the dish collection surface 61 following the movement of the speaker 12.

次に、本実施の形態に係る粉粒体混合物の混入物質分離回収方法の作用・効果について、説明する。本実施の形態に係る粉粒体混合物の混入物質分離回収方法は、粉粒状のAB材4の集まりである粉粒体集合群2に、その異物として、粉粒状の金属粒子5が混じった粉粒体混合物1で、粉粒体集合群2を、金属粒子5と分離して回収するのにあたり、粉粒体混合物1を、広範囲に平たく分散した状態で載置する載置面7(搬送面21,21A、プレート上面51)と、回収されたAB材4を載置する回収面8(容器回収面31、皿回収面31A,61)と、音波を出力する音源10と、を備え、載置面21は、音源10から送波される音波の反射波を生成する条件を満たす態様に形成されており、音源10と載置面21とは相対的に移動可能であること、音源10は、対象物質3(AB材4)の比重に対応した周波数170Hzの音波を、載置面21の鉛直方向上方に対向する位置から載置面21に向けて送波し、定在波SWの音響場を形成することにより、粉粒体混合物1のうち、AB材4を、定在波SWの節NDで捕捉すること、AB材4は、音源10と載置面21との相対移動により、定在波SWの節NDで捕捉された状態で、載置面21を離れて回収面31に移されること、を特徴とする。   Next, the operation and effect of the mixed substance separation and recovery method of the granular material mixture according to the present embodiment will be described. The mixed substance separation and recovery method of the granular mixture according to the present embodiment is a powder in which granular metal particles 5 are mixed as a foreign substance in the granular aggregate group 2 that is a collection of granular AB materials 4. In the granular mixture 1, when the granular aggregate group 2 is separated from the metal particles 5 and collected, the mounting surface 7 (conveying surface) on which the granular mixture 1 is placed in a state of being dispersed flat over a wide range. 21 and 21A, plate upper surface 51), a recovery surface 8 on which the recovered AB material 4 is placed (container recovery surface 31, dish recovery surfaces 31A and 61), and a sound source 10 that outputs sound waves. The placement surface 21 is formed in a mode that satisfies a condition for generating a reflected wave of a sound wave transmitted from the sound source 10, and that the sound source 10 and the placement surface 21 are relatively movable, A sound wave with a frequency of 170 Hz corresponding to the specific gravity of the target substance 3 (AB material 4) is loaded. The AB material 4 in the powder mixture 1 is made stationary by transmitting toward the mounting surface 21 from a position facing the upper side in the vertical direction of the surface 21 to form an acoustic field of the standing wave SW. Capturing at the node ND of the wave SW, the AB material 4 is separated from the mounting surface 21 while being captured at the node ND of the standing wave SW by the relative movement of the sound source 10 and the mounting surface 21. It is moved to the surface 31.

この特徴により、載置面7に載置されたAB材混合物1の中から金属粒子5を、載置面21上で、非接触で簡単に分離することができ、金属粒子5と分離したAB材4の集まりである粉粒体集合群2が、回収面31(AB材回収容器30の容器回収面31)に効率良く回収できる。しかも、載置面21上で分離して回収面31に移された粉粒体集合群2の中には、金属粒子5がほとんど混ざり込むことがなく、金属粒子5と分離して、AB材回収容器30に回収された粉粒体集合群2の分離精度は、100%近くと極めて高い。さらに、金属粒子5とAB材4との分離を非接触で行うことから、分離装置に起因する新たな異物が混入するというリスクもない。他方で、AB材4が、載置面21上で分離して回収面31に回収された後、載置面21上に残留した金属粒子5が、金属粒子回収容器40の容器回収面41に回収された状態では、回収された金属粒子5の集まりの中には、AB材4は、ほとんど混入しない。そのため、AB材混合物1を載置面21に載せたときの粉粒体集合群2の投入量に対し、AB材回収容器30に回収された粉粒体集合群2の歩留まりが、高くなる点でも、本実施の形態に係る粉粒体混合物の混入物質分離回収方法は、優れている。   With this feature, the metal particles 5 can be easily separated from the AB material mixture 1 placed on the placement surface 7 on the placement surface 21 in a non-contact manner, and the AB separated from the metal particles 5 can be separated. The granular material aggregate group 2 that is a collection of the materials 4 can be efficiently recovered on the recovery surface 31 (the container recovery surface 31 of the AB material recovery container 30). In addition, the metal particles 5 are hardly mixed in the powder aggregate group 2 separated on the mounting surface 21 and transferred to the collection surface 31, and separated from the metal particles 5, and the AB material. The separation accuracy of the granular material aggregate group 2 collected in the collection container 30 is extremely high at nearly 100%. Further, since the separation of the metal particles 5 and the AB material 4 is performed in a non-contact manner, there is no risk that new foreign matters resulting from the separation device are mixed. On the other hand, after the AB material 4 is separated on the placement surface 21 and collected on the collection surface 31, the metal particles 5 remaining on the placement surface 21 are placed on the container collection surface 41 of the metal particle collection container 40. In the collected state, the AB material 4 is hardly mixed in the collected metal particles 5. Therefore, the yield of the granular material aggregate group 2 recovered in the AB material recovery container 30 is higher than the input amount of the granular material aggregate group 2 when the AB material mixture 1 is placed on the placement surface 21. However, the mixed substance separation and recovery method of the granular material mixture according to the present embodiment is excellent.

従って、本実施形態に係る粉粒体混合物の混入物質分離回収方法によれば、粉粒状のAB材4の集まり(粉粒体集合群2)の中に混じっている粉粒状の金属粒子5を、粉粒体集合群2と分離させて回収するのにあたり、金属粒子5を、非常に安価で効率良く、非接触でかつ高い精度で分離させ、粉粒体集合群2(AB材4)を簡単に回収することができる、という優れた効果を奏する。   Therefore, according to the mixed substance separation and recovery method of the granular material mixture according to the present embodiment, the granular metal particles 5 mixed in the aggregate of granular AB materials 4 (the granular material group 2) In separating and recovering from the powder aggregate group 2, the metal particles 5 are separated at a very low cost, efficiently, non-contact and with high accuracy, and the powder aggregate group 2 (AB material 4) is separated. There is an excellent effect that it can be easily collected.

また、本実施形態に係る粉粒体混合物の混入物質分離回収方法では、音波は、可聴域帯に属する周波数170Hzのサイン波であり、音源10は、音波制御部11で発生させた電気信号を、音声として、音波に変換するスピーカー12を有し、スピーカー12と載置面7(搬送面21,21A、プレート上面51)とが、相対的に移動可能であること、を特徴とする。   Further, in the mixed substance separation and recovery method of the granular material mixture according to the present embodiment, the sound wave is a sine wave having a frequency of 170 Hz belonging to the audible range, and the sound source 10 generates an electric signal generated by the sound wave control unit 11. The speaker 12 that converts sound waves into sound waves is provided, and the speaker 12 and the placement surface 7 (the transport surfaces 21 and 21A and the plate upper surface 51) are relatively movable.

この特徴により、スピーカー12から発する音波に基づく定在波SWの音響場を、載置面21上に形成するため、定在波SWの節NDから多少外れた位置でも、対象物質3であるAB材4が落下することがないため、AB材4が大量に捕捉できる。また、載置面7に対しスピーカー12の移動により、この定在波SWの音響場は、載置面21から回収面8へとスピーカー12の移動に追従することができる。それによって、捕捉されたAB材集合群2も定在波SWと共に移動するが、ここでも、AB材4が落下することがないため、捕捉されたこれらのAB材集合群2についても簡単に追従可能である。また、前述したように、AB材4は、搬送面21上を滑るだけで、落下することがないため、簡単に追従可能である。加えて、定在波SWの腹に位置する粒子(AB材4)や、一旦節NDの捕捉から外れた粒子(AB材4)に対しても、定在波SWの移動により、必ず節NDが複数回通過し、二重三重と複数重に捕捉されるため、このようなAB材4は、波間から漏れることもなく搬送面21全面に亘って処理可能である。さらに、周波数170Hzの音波は、指向性が広く、載置面21の幅広い範囲に届き、かつ媒質の最大振幅も比較的大きいことから、定在波SWの音響場もより幅広い範囲で形成され易くなり、載置面21に載せたAB材混合物1の中から、対象物質3であるAB材4が、定在波SWの節NDで、より多く捕捉できる。また、サイン波の音波を発する音源10は、市場に数多く流通しているため、非常に安価である。   Due to this feature, since the acoustic field of the standing wave SW based on the sound wave emitted from the speaker 12 is formed on the placement surface 21, AB that is the target substance 3 is located even slightly away from the node ND of the standing wave SW. Since the material 4 does not fall, a large amount of AB material 4 can be captured. Further, the acoustic field of the standing wave SW can follow the movement of the speaker 12 from the placement surface 21 to the collection surface 8 by the movement of the speaker 12 with respect to the placement surface 7. As a result, the captured AB material group 2 also moves together with the standing wave SW. However, since the AB material 4 does not fall again, the captured AB material group 2 can be easily followed. Is possible. Further, as described above, the AB material 4 simply slides on the transport surface 21 and does not fall, so that it can be easily followed. In addition, even for particles (AB material 4) located in the antinodes of the standing wave SW and particles (AB material 4) once deviated from the capture of the node ND, the node ND is always generated by the movement of the standing wave SW. Passes a plurality of times and is trapped in double triples and multiples, so that the AB material 4 can be processed over the entire conveyance surface 21 without leaking from the waves. Furthermore, a sound wave having a frequency of 170 Hz has a wide directivity, reaches a wide range of the mounting surface 21, and has a relatively large maximum amplitude of the medium. Therefore, the acoustic field of the standing wave SW is easily formed in a wider range. Thus, more AB material 4 as the target substance 3 can be captured from the AB material mixture 1 placed on the placement surface 21 at the node ND of the standing wave SW. In addition, since many sound sources 10 that emit sine waves are distributed in the market, they are very inexpensive.

また、本実施形態に係る粉粒体混合物の混入物質分離回収方法では、搬送面21の送出により、搬送面21に載せた粉粒体混合物1を搬送先に運ぶコンベア20を備え、載置面7は、コンベア20の搬送面21であること、を特徴とする。   Moreover, in the mixed substance separation and recovery method of the granular material mixture according to the present embodiment, the conveyor surface 20 includes the conveyor 20 that conveys the granular material mixture 1 placed on the conveying surface 21 to the conveying destination by sending out the conveying surface 21. 7 is the conveyance surface 21 of the conveyor 20.

この特徴により、本実施形態に係る粉粒体混合物の混入物質分離回収方法を実施する分離回収装置として、音源10とコンベア20のほか、AB材回収容器30や金属粒子回収容器40を必要するだけであり、分離回収装置は、極めて簡単な構造で構成できるため、低コストである。また、AB材回収容器30に回収されなかったAB材4や、金属粒子回収容器40に回収されなかった金属粒子5が、このような分離回収装置の構造体や構成部品等の装置本体に、付着物として残留してしまうことも、ほとんどない。そのため、分離回収装置のメンテナンスは容易で、その作業性も良い。加えて、本実施形態のように、AB材4が、自動車等に搭載されるリチウムイオン二次電池の電極を製造する材料として使用される場合、コンベア20を装備した上述の分離回収装置は、電極の製造工程を担う種々の生産設備を設置した生産ラインに、インラインで設置可能となり、本実施形態に係る粉粒体混合物の混入物質分離回収方法は、電極の量産体制下にも対応することができる。   With this feature, only the AB material collection container 30 and the metal particle collection container 40 are required in addition to the sound source 10 and the conveyor 20 as the separation and collection apparatus for carrying out the mixed substance separation and collection method of the granular material mixture according to the present embodiment. In addition, since the separation and recovery device can be configured with a very simple structure, the cost is low. In addition, the AB material 4 that has not been recovered in the AB material recovery container 30 and the metal particles 5 that have not been recovered in the metal particle recovery container 40 are in the apparatus main body such as the structure and component parts of such a separation and recovery device. There is almost no residue as an adhering substance. Therefore, the maintenance of the separation and recovery device is easy and its workability is also good. In addition, when the AB material 4 is used as a material for manufacturing an electrode of a lithium ion secondary battery mounted on an automobile or the like as in the present embodiment, the above-described separation and recovery device equipped with the conveyor 20 is It can be installed in-line on a production line equipped with various production facilities that take charge of the electrode manufacturing process, and the method for separating and recovering the contaminant mixture of the granular material mixture according to the present embodiment should be compatible with the mass production system of the electrode. Can do.

また、本実施形態に係る粉粒体混合物の混入物質分離回収方法では、搬送面21に垂直な上下方向V、かつ搬送面21の送出方向Fに対し、直交する方向を回収方向Cとすると、音源10は、少なくとも1つ以上設けられ、搬送面21(載置面7)の上方の領域にある第1領域45と、回収方向Cに対し、搬送面21の外側の領域にある第2領域46との間を、自在に移動できること、を特徴とする。   Moreover, in the mixed substance separation and recovery method of the granular material mixture according to the present embodiment, the vertical direction V perpendicular to the transport surface 21 and the direction perpendicular to the delivery direction F of the transport surface 21 is the recovery direction C. At least one or more sound sources 10 are provided, and a first region 45 in the region above the transport surface 21 (mounting surface 7) and a second region in the region outside the transport surface 21 with respect to the collection direction C. It can move freely between 46 and 46.

この特徴により、搬送面21に載置されたAB材混合物1の中から金属粒子5を、搬送面21上で分離した後、AB材4(粉粒体集合群2)は、AB材回収容器30の容器回収面31(回収面31)に、金属粒子5は、金属粒子回収容器40の容器回収面41に、それぞれ別々に自動化して回収することができる。そのため、AB材混合物1の中から、金属粒子5を分離した後の粉粒体集合群2を回収するのに、その回収に伴うコストが抑制できる。   Due to this feature, after separating the metal particles 5 from the AB material mixture 1 placed on the conveying surface 21 on the conveying surface 21, the AB material 4 (powder body aggregate group 2) becomes an AB material collecting container. The metal particles 5 can be separately and automatically collected on the container collection surface 41 of the metal particle collection container 40 on the 30 container collection surface 31 (collection surface 31). Therefore, in collecting the powder aggregate group 2 after separating the metal particles 5 from the AB material mixture 1, the cost associated with the collection can be suppressed.

また、本実施形態に係る粉粒体混合物の混入物質分離回収方法では、対象物質3は、AB材4であり、AB材4の比重は、金属粒子5の比重より小さいこと、を特徴とする。この特徴により、定在波SWの音響場は、金属粒子5の比重より小さいAB材4の比重に合わせて、周波数170Hzの音波に基づいて形成されているため、AB材4に対応した定在波SWでは、AB材4より比重の大きい金属粒子5は、その節NDで捕捉できず、回収面31(AB材回収容器30の容器回収面31)に運ばれることもない。したがって、金属粒子5と分離した後の粉粒体集合群2が、高い分離精度でAB材回収容器30に回収できていると共に、金属粒子5が、回収した粉粒体集合群2に入ってしまうのを、確実に阻止することができる。   Further, in the mixed substance separation and recovery method of the granular material mixture according to the present embodiment, the target substance 3 is the AB material 4, and the specific gravity of the AB material 4 is smaller than the specific gravity of the metal particles 5. . Due to this feature, the acoustic field of the standing wave SW is formed based on sound waves having a frequency of 170 Hz in accordance with the specific gravity of the AB material 4 that is smaller than the specific gravity of the metal particles 5. In the wave SW, the metal particles 5 having a specific gravity greater than that of the AB material 4 cannot be captured at the node ND, and are not carried to the recovery surface 31 (the container recovery surface 31 of the AB material recovery container 30). Accordingly, the powder aggregate group 2 after being separated from the metal particles 5 can be recovered in the AB material recovery container 30 with high separation accuracy, and the metal particles 5 enter the recovered powder aggregate group 2. Can be surely prevented.

また、本実施形態に係る粉粒体混合物の混入物質分離回収方法では、AB材4は、リチウムイオン二次電池の電極の製造に必要な電極材料であり、金属粒子5は、電極材料の製造工程で残留したステンレス属製の異物であること、を特徴とする。この特徴により、設定した規格より大きい金属粒子5が、AB材混合物1から簡単に短時間で除去でき、高精度に回収されたAB材4(AB材集合群2)が、リチウムイオン二次電池の電極の製造に供給できる。そのため、一連の電極の製造工程の生産効率が、例えば、「ふるい方式」や「質量差分離方式」、特許文献1のような分離技術等の従来技術を用いた場合に比して、大幅に向上する。ひいては、リチウムイオン二次電池のコストの低減化が実現できる。   In the mixed substance separation and recovery method of the granular material mixture according to the present embodiment, the AB material 4 is an electrode material necessary for manufacturing an electrode of a lithium ion secondary battery, and the metal particles 5 are manufactured of an electrode material. It is characterized by being a foreign material made of stainless steel remaining in the process. With this feature, the metal particles 5 larger than the set standard can be easily removed from the AB material mixture 1 in a short time, and the AB material 4 (AB material group 2) recovered with high accuracy is a lithium ion secondary battery. Can be supplied for the manufacture of electrodes. Therefore, the production efficiency of a series of electrode manufacturing processes is significantly higher than when using conventional techniques such as “sieving method”, “mass difference separation method”, and separation techniques such as Patent Document 1. improves. As a result, the cost of the lithium ion secondary battery can be reduced.

以上において、本発明を実施形態に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できる。
(1)例えば、実施形態では、AB材4を定在波SWの節NDで捕捉するのに、周波数170Hzのサイン波による音波をスピーカー12から出力したが、音源から出力する音波は、疑似サイン波でも良い。また、音波の周波数は、実施形態に限定されるものでなく、定在波の節で捕捉できる本発明の対象物質の物性に対応していれば、どのような周波数値でも良い。
(2)また、実施形態では、スピーカー12の出力を6Wとしたが、音源から発する音波の出力値は、適宜変更可能である。
In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above-described embodiments, and can be appropriately modified and applied without departing from the gist thereof.
(1) For example, in the embodiment, to capture the AB material 4 at the node ND of the standing wave SW, a sound wave of a sine wave with a frequency of 170 Hz is output from the speaker 12, but the sound wave output from the sound source is a pseudo sign It can be a wave. The frequency of the sound wave is not limited to the embodiment, and any frequency value may be used as long as it corresponds to the physical property of the target substance of the present invention that can be captured at the standing wave section.
(2) In the embodiment, the output of the speaker 12 is 6 W. However, the output value of the sound wave emitted from the sound source can be changed as appropriate.

(3)また、実施形態では、周波数170Hzのサイン波による音波を、スピーカー12から発すると、その音が周囲に拡散されるため、本実施形態に係る粉粒体混合物の混入物質分離回収方法を行う場合には、必要に応じて、指向性の高いスピーカーを用いることや、防音対策が施されていても良い。
(4)また、実施形態では、AB材4の集まりである粉粒体集合群2に、金属粒子5が混じった粉粒体混合物1を挙げたが、粉粒体混合物は、一の物質の集まりの中に、他の物質を複数種の含む構成でも良く、本発明の粉粒体混合物の混入物質分離回収方法では、本発明の対象物質は、このような粉粒体混合物に含まれる複数種の他の物質の中から、特定の物質だけを、定在波の節で捕捉するものであっても良い。
(3) In the embodiment, when a sound wave of a sine wave having a frequency of 170 Hz is emitted from the speaker 12, the sound is diffused to the surroundings. When performing, a speaker with high directivity may be used or a soundproofing measure may be taken as necessary.
(4) Moreover, in embodiment, although the granular material mixture 1 with which the metal particle 5 was mixed was mentioned to the granular material aggregate group 2 which is a collection of AB material 4, a granular material mixture is one substance. The collection may include a plurality of other substances, and in the method for separating and recovering a mixed substance of the powder mixture of the present invention, the target substance of the present invention includes a plurality of substances contained in such a powder mixture. Of the other materials of the species, only a specific material may be captured in the standing wave section.

(5)また、実施形態では、リチウムイオン二次電池の電極を製造するのに用いるAB材4を、一の物質とし、AB材4の製造工程で残留した金属粒子5を、他の物質としたが、一の物質は、この他にも、例えば、薬品、塗料材等の粉体状の物質でも良く、他の物質は、このような一の物質といっしょに混じる異物であっても良い。 (5) In the embodiment, the AB material 4 used for manufacturing the electrode of the lithium ion secondary battery is set as one material, and the metal particles 5 remaining in the manufacturing process of the AB material 4 are replaced with other materials. However, in addition to this, one substance may be a powdery substance such as a medicine or a coating material, and the other substance may be a foreign substance mixed with the one substance. .

1 粉粒体混合物
2 粉粒体集合群
3 対象物質
4 AB材(一の物質)
5 金属粒子(他の物質)
7 載置面
8 回収面
10 音源
11 音波制御部
12 スピーカー(音波拡声部)
20 コンベア(搬送手段)
21,21A 搬送面(載置面)
31 容器回収面(回収面)
31A,61 皿回収面(回収面)
45 第1領域
46 第2領域
51 プレート上面(載置面)
SW 定在波
ND 節
V 上下方向
F 送出方向
C 回収方向
1 Powder mixture 2 Powder aggregate group 3 Target substance 4 AB material (one substance)
5 Metal particles (other substances)
7 Placement surface 8 Collection surface 10 Sound source 11 Sound wave control unit 12 Speaker (Sound wave loudspeaker)
20 Conveyor (conveying means)
21, 21A Transport surface (mounting surface)
31 Container collection surface (collection surface)
31A, 61 Dish collection surface (collection surface)
45 1st area | region 46 2nd area | region 51 Plate upper surface (mounting surface)
SW Standing wave ND Node V Vertical direction F Transmission direction C Collection direction

Claims (6)

粉粒状の一の物質の集まりである粉粒体集合群に、粉粒状の他の物質が少なくとも1種混じった粉粒体混合物で、前記粉粒体集合群を、前記他の物質と分離して回収するのにあたり、
前記粉粒体混合物を、広範囲に平たく分散した状態で載置する載置面と、回収された物質を載置する回収面と、音波を出力する音源と、を備え、
前記載置面は、前記音源から送波される前記音波の反射波を生成する条件を満たす態様に形成され、前記音源と前記載置面とは相対的に移動可能であること、
前記音源は、前記一の物質または前記他の物質のいずれか一方の対象物質の比重に対応した周波数の音波を、前記載置面と鉛直方向上方に対向する位置から前記載置面に向けて送波し、定在波の音響場を形成することにより、前記粉粒体混合物のうち、前記対象物質を、前記定在波の節で捕捉すること、
前記対象物質は、前記音源と前記載置面との相対移動により、前記定在波の節で捕捉された状態で、前記載置面を離れて前記回収面に移されること、
を特徴とする粉粒体混合物の混入物質分離回収方法。
A granular material mixture in which at least one other granular material is mixed with a granular aggregate group that is a collection of one granular material, and the granular aggregate group is separated from the other substance. To collect
The powder mixture is provided with a placement surface for placing the powder mixture in a widely flat state, a collection surface for placing the collected substance, and a sound source that outputs sound waves,
The placement surface is formed in a mode that satisfies a condition for generating a reflected wave of the sound wave transmitted from the sound source, and the sound source and the placement surface are relatively movable.
The sound source directs a sound wave having a frequency corresponding to the specific gravity of either one of the one substance and the other substance from a position facing the placement surface in the vertical direction toward the placement surface. By transmitting and forming a standing wave acoustic field to capture the target substance of the powder mixture at the standing wave section;
The target substance is moved to the recovery surface leaving the mounting surface in a state of being captured at the node of the standing wave by relative movement between the sound source and the mounting surface.
A method for separating and recovering contaminants from a granular mixture.
請求項1に記載する粉粒体混合物の混入物質分離回収方法において、
前記音波は、可聴域帯に属する周波数のサイン波であり、
前記音源は、音波制御部で発生させた電気信号を、音声として、前記音波に変換する音波拡声部を有し、
前記音波拡声部と前記載置面とが、相対的に移動可能であること、
を特徴とする粉粒体混合物の混入物質分離回収方法。
In the method for separating and recovering contaminants of the powder mixture according to claim 1,
The sound wave is a sine wave of a frequency belonging to the audible range,
The sound source has a sound wave loudspeaker unit that converts the electric signal generated by the sound wave control unit into sound waves as sound
The sonic loudspeaker and the mounting surface are relatively movable,
A method for separating and recovering contaminants from a granular mixture.
請求項1または請求項2に記載する粉粒体混合物の混入物質分離回収方法において、
搬送面の送出により、前記搬送面に載せた被運搬物を搬送先に運ぶ搬送手段を備え、
前記載置面は、前記搬送手段の前記搬送面であること、
を特徴とする粉粒体混合物の混入物質分離回収方法。
In the method for separating and recovering contaminants of the powder mixture according to claim 1 or 2,
A transport means for transporting a transported object placed on the transport surface to a transport destination by sending the transport surface;
The mounting surface is the transport surface of the transport means;
A method for separating and recovering contaminants from a granular mixture.
請求項3に記載する粉粒体混合物の混入物質分離回収方法において、
前記搬送面に垂直な上下方向、かつ前記搬送面の送出方向に対し、直交する方向を回収方向とすると、
前記音源は、少なくとも1つ以上設けられ、前記載置面の上方の領域にある第1領域と、前記回収方向に対し、前記載置面の外側の領域にある第2領域との間を、自在に移動できること、
を特徴とする粉粒体混合物の混入物質分離回収方法。
In the method for separating and recovering contaminants of the powder mixture according to claim 3,
When the direction perpendicular to the transport surface and the direction perpendicular to the delivery direction of the transport surface is the recovery direction,
At least one or more of the sound sources are provided, and a space between a first region in a region above the placement surface and a second region in a region outside the placement surface with respect to the collection direction, Being able to move freely,
A method for separating and recovering contaminants from a granular mixture.
請求項1乃至請求項4のいずれか1つに記載する粉粒体混合物の混入物質分離回収方法において、
前記対象物質は、前記一の物質であり、前記一の物質の比重は、前記他の物質の比重より小さいこと、
を特徴とする粉粒体混合物の混入物質分離回収方法。
In the method for separating and collecting contaminants of the powder mixture according to any one of claims 1 to 4,
The target substance is the one substance, and the specific gravity of the one substance is smaller than the specific gravity of the other substance;
A method for separating and recovering contaminants from a granular mixture.
請求項1乃至請求項5のいずれか1つに記載する粉粒体混合物の混入物質分離回収方法において、
前記一の物質は、非水電解質二次電池の電極の製造に必要な電極材料であり、前記他の物質は、前記電極材料の製造工程で残留した金属製の異物であること、
を特徴とする粉粒体混合物の混入物質分離回収方法。
In the method for separating and recovering contaminants of the granular material mixture according to any one of claims 1 to 5,
The one substance is an electrode material necessary for manufacturing an electrode of a nonaqueous electrolyte secondary battery, and the other substance is a metal foreign matter remaining in the manufacturing process of the electrode material,
A method for separating and recovering contaminants from a granular mixture.
JP2017037843A 2017-03-01 2017-03-01 Method for separating and collecting contaminants from a mixture of powder and granules Active JP6696922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017037843A JP6696922B2 (en) 2017-03-01 2017-03-01 Method for separating and collecting contaminants from a mixture of powder and granules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017037843A JP6696922B2 (en) 2017-03-01 2017-03-01 Method for separating and collecting contaminants from a mixture of powder and granules

Publications (2)

Publication Number Publication Date
JP2018143899A true JP2018143899A (en) 2018-09-20
JP6696922B2 JP6696922B2 (en) 2020-05-20

Family

ID=63589139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017037843A Active JP6696922B2 (en) 2017-03-01 2017-03-01 Method for separating and collecting contaminants from a mixture of powder and granules

Country Status (1)

Country Link
JP (1) JP6696922B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027219A1 (en) 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223874A (en) * 1990-01-30 1991-10-02 Canon Inc Method for conveying granular substance and developing method using the same
JP2001129487A (en) * 1999-11-04 2001-05-15 Toshiba Corp Shape fractionating device
JP2001157999A (en) * 1999-12-02 2001-06-12 Fuji Xerox Co Ltd Noncontact micromanipulation device and method
JP2003211091A (en) * 2001-11-13 2003-07-29 Nippon Steel Corp Sorting method and sorting apparatus
JP2016177925A (en) * 2015-03-19 2016-10-06 東洋インキScホールディングス株式会社 Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223874A (en) * 1990-01-30 1991-10-02 Canon Inc Method for conveying granular substance and developing method using the same
JP2001129487A (en) * 1999-11-04 2001-05-15 Toshiba Corp Shape fractionating device
JP2001157999A (en) * 1999-12-02 2001-06-12 Fuji Xerox Co Ltd Noncontact micromanipulation device and method
JP2003211091A (en) * 2001-11-13 2003-07-29 Nippon Steel Corp Sorting method and sorting apparatus
JP2016177925A (en) * 2015-03-19 2016-10-06 東洋インキScホールディングス株式会社 Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027219A1 (en) 2018-07-31 2020-02-06 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP6696922B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
US8813966B2 (en) Pneumatic vacuum separation plant for bulk materials
US9833763B2 (en) Optimizing acoustic efficiency of a sonic filter or separator
RU2013152082A (en) METHOD FOR PRODUCING BULK PRODUCTS WITH A GRADIENT OF POWDER PROPERTIES AND A DEVICE FOR ITS IMPLEMENTATION
JP2017221934A (en) Screening system having supply system, conveyance system and conveyance method
US10213797B2 (en) Electrostatic powder feeder
CN201959942U (en) Color sorter capable of dividing materials into three types
JP6696922B2 (en) Method for separating and collecting contaminants from a mixture of powder and granules
US20210069724A1 (en) System and method for an electrodynamic fragmentation
JP2009294092A (en) X-ray foreign matter detecting system
JP6373871B2 (en) Parts supply device
JP2011131154A (en) Sorting device
JP4355167B2 (en) Foreign matter inspection method in powder, foreign matter inspection device in powder, foreign matter removal method in powder and foreign matter removal device in powder
JP2923147B2 (en) Powder processing method and apparatus
TW201321543A (en) Cleaning module and cleaning method for substrates and/or substrate carriers
WO2014076449A2 (en) Method and apparatus for recycling
CN202704568U (en) Vacuum feeding machine with metal detector
JP2012196602A (en) Slag sorting facility
Dunst et al. Vibration assisted dosing, mixing and transport of dry fine powders
RU2482921C1 (en) Concentration conveyor
CN112638556A (en) Air flushing device and system for flushing containers
JP6184433B2 (en) Prepreg manufacturing equipment
JP6462444B2 (en) Wafer transfer device
JP5258675B2 (en) Sieve device
US20230030578A1 (en) Hybrid powder feed device
CN118073698A (en) Lithium battery pole piece material separation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190612

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200423

R151 Written notification of patent or utility model registration

Ref document number: 6696922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250