JP2018140919A - Method for manufacturing single carbon nanotube - Google Patents

Method for manufacturing single carbon nanotube Download PDF

Info

Publication number
JP2018140919A
JP2018140919A JP2017037805A JP2017037805A JP2018140919A JP 2018140919 A JP2018140919 A JP 2018140919A JP 2017037805 A JP2017037805 A JP 2017037805A JP 2017037805 A JP2017037805 A JP 2017037805A JP 2018140919 A JP2018140919 A JP 2018140919A
Authority
JP
Japan
Prior art keywords
solution
carbon nanotubes
sds
single carbon
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017037805A
Other languages
Japanese (ja)
Other versions
JP6958777B2 (en
Inventor
柳和宏
Kazuhiro Yanagi
蓬田陽平
Yohei Yomogida
一之瀬遥太
Yota Ichinose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Public University Corp
Priority to JP2017037805A priority Critical patent/JP6958777B2/en
Publication of JP2018140919A publication Critical patent/JP2018140919A/en
Application granted granted Critical
Publication of JP6958777B2 publication Critical patent/JP6958777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing single carbon nanotubes, having good reproductivity, and capable of separating a semiconductor type from a metal mold at high purity.SOLUTION: A method for manufacturing single carbon nanotubes includes a liquid adjustment step of adjusting a surface active agent solution for separating carbon nanotubes, and a separation step of separating carbon nanotubes using the surface active agent solution thus obtained. In the method for manufacturing single carbon nanotubes, the liquid adjustment step includes a pH control step of controlling the pH of the surface active agent solution to 6-8.5.SELECTED DRAWING: Figure 1

Description

本発明は、再現性が良く、半導体型と金属型とを高純度で分離することができる単一カーボンナノチューブの製造方法に関するものである。   The present invention relates to a method for producing a single carbon nanotube, which has good reproducibility and can separate a semiconductor mold and a metal mold with high purity.

単層カーボンナノチューブ(以下、「SWCNT」という場合がある)はその巻き方(以下、「カイラリティ」と呼ぶ)によって様々な電子構造を備えるため、各種デバイスに応用するには個のカイラリティを単一化して電子構造を揃えるのが好ましい。しかし、合成時のSWCNT試料には様々なカイラリティのものが数多く含まれてしまい、SWCNTの応用においては高純度に特定のカイラリティを精製する手法の確立が必要不可欠であった。そのためその手法が種々提案されており、例えば、密度勾配遠心分離法やゲルクロマトグラフィー法といった方法がこれまで提案されてきた。特に、直径の小さな(1nm以下)のSWCNTの単一カイラリティ精製においては、ゲルクロマトグラフィー法はとても有力な手法であった。
従来SWCNTのゲルクロマトグラフィー分離においては、界面活性剤であるドデシル硫酸ナトリウム(SDS)やコール酸ナトリウム(SC)、デオキシコール酸ナトリウム(DOC)などが用いられ、それらの濃度を適宜微調整することによって単一カイラリティ分離が行われていた(非特許文献1及び2)。具体的には、はじめに、それら界面活性剤の分量や種類を適時調整した溶液を用意し、SWCNTを分散させて分散液を得、得られた溶液をクロマト管につめたゲルに流し、SWCNTをゲルに吸着させる。その後、界面活性剤の濃度や量比を変えた溶液(溶出液)を流すことで、ある特定のカイラリティのSWCNTを溶出させ、単一のカイラリティのSWCNT試料を得る手法である。
また、高純度で、且つ電子デバイスに応用できる大きさのSWCNTの結晶作製方法として、溶媒に単分散された単層カーボンナノチューブを過飽和状態にすることにより、単層カーボンナノチューブを結晶化させることを特徴とする単層カーボンナノチューブの結晶作製方法(特許文献1)や、選択的かつ精密にカイラリティを制御するべく、非磁性金属から成る触媒層を形成した基板の触媒層上に、プラズマCVD法により単層カーボンナノチューブを成長させる成長工程と、反応性イオンエッチングにより基板をエッチングするエッチング工程とを同時に行い、また成長工程では、プラズマCVD法の原料ガスとして炭化水素ガスを使用し、プラズマCVD法で発生するプラズマシース電場を制御し、エッチング工程では、反応性イオンエッチングにおける化学的活性種は水素ラジカル、物理的作用を担うものはイオンであり、ラジカル密度とイオン入射エネルギーとを制御する方法(特許文献2)など提案されている。
Single-walled carbon nanotubes (hereinafter sometimes referred to as “SWCNT”) have various electronic structures depending on how they are wound (hereinafter referred to as “chirality”). Therefore, a single chirality can be used for various devices. It is preferable that the electronic structure is made uniform. However, many SWCNT samples with various chiralities are included in the synthesis, and establishment of a method for purifying a specific chirality with high purity is indispensable for the application of SWCNTs. For this reason, various methods have been proposed. For example, methods such as density gradient centrifugation and gel chromatography have been proposed. In particular, in the single chirality purification of SWCNT having a small diameter (1 nm or less), the gel chromatography method was a very effective method.
Conventional gel chromatography separation of SWCNTs uses surfactants such as sodium dodecyl sulfate (SDS), sodium cholate (SC), sodium deoxycholate (DOC), etc., and fine-tune their concentrations as appropriate. The single chirality separation was performed by (Non-patent Documents 1 and 2). Specifically, first, a solution in which the amount and type of these surfactants are adjusted in a timely manner is prepared, SWCNT is dispersed to obtain a dispersion, and the obtained solution is poured into a gel packed in a chromatographic tube. Adsorb to gel. Thereafter, a solution (eluent) having a different concentration or quantity ratio of the surfactant is flowed to elute SWCNTs having a specific chirality, thereby obtaining a single chirality SWCNT sample.
In addition, as a crystal production method of SWCNT having a high purity and a size that can be applied to electronic devices, single-walled carbon nanotubes monodispersed in a solvent are brought into a supersaturated state to crystallize single-walled carbon nanotubes. A single-walled carbon nanotube crystal production method (Patent Document 1) and a plasma CVD method on a catalyst layer of a substrate on which a catalyst layer made of a nonmagnetic metal is formed in order to selectively and precisely control chirality. A growth process for growing single-walled carbon nanotubes and an etching process for etching the substrate by reactive ion etching are performed simultaneously. In the growth process, hydrocarbon gas is used as a source gas for plasma CVD, and plasma CVD is used. The generated plasma sheath electric field is controlled. Chemically active species in the etching is hydrogen radical, plays a physical action is ion has been proposed a method (Patent Document 2) for controlling the radical density and the ion incident energy.

特開2012−144426号公報JP 2012-144426 A 特開2013−86975号公報JP 2013-86975 A

Yomogida et al., Nature Communicaions 7, 12056 (2016)Yomogida et al., Nature Communicaions 7, 12056 (2016) Hirano et al., ACS Nano 7, 10285 (2013)Hirano et al., ACS Nano 7, 10285 (2013)

しかしながら、上述の提案に係る従来の提案では、高純度単一カイラリティSWCNTを効率的に得ることができる面では優れているものの、未だ半導体と金属を完全に分離することができず、純度が悪かった。また、同手法においては、上記の分散液、溶出液を以前と同様に用意しても、再現よく同じ結果が得られるわけではなかった。   However, although the conventional proposals related to the above-mentioned proposals are excellent in terms of efficiently obtaining high purity single chirality SWCNTs, the semiconductors and metals cannot be completely separated yet, and the purity is poor. It was. In the same method, even if the above dispersion and eluate were prepared as before, the same results could not be obtained with good reproducibility.

したがって、本発明の目的は、再現性が良く、半導体型と金属型とを高純度で分離することができる単一カーボンナノチューブの製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a method for producing a single carbon nanotube which has good reproducibility and can separate a semiconductor type and a metal type with high purity.

本発明者らは、上記課題を解消すべく鋭意検討した結果、以下の本発明を完成するに至った。
すなわち、水素イオン濃度が、分離結果に大きく影響を与えること、例えば、塩酸や水酸化ナトリウムといった強酸・強塩基を用いて、pHを3や12と大きく変えることで分離結果が変化することは知られていた(非特許文献2)。そこで、pHの影響について種々検討した結果、大気中の二酸化炭素が分散液・溶出液の水素イオン濃度に大きく影響を及ぼすことを知見し、更に検討した結果、pHの微妙な調整により、金属型と半導体型との精密な分離が可能であることを見出し、本発明を完成するに至った。
1.カーボンナノチューブの分離用の界面活性剤溶液を調整する液調整工程と
得られた界面活性剤溶液を用いてカーボンナノチューブを分離する分離工程とを具備する、
カリラリティが調整された単一カーボンナノチューブの製造方法において、
上記液調整工程は、pH調整剤を添加することで上記界面活性剤溶液のpHを6〜8.5の間で制御するpH制御工程を具備することを特徴とする単一カーボンナノチューブの製造方法。
2.上記pH調整剤が、弱酸化合物又は弱塩基化合物であることを特徴とする1記載の単一カーボンナノチューブの製造方法。
3.上記弱酸化合物が2酸化炭素であることを特徴とする2記載の単一カーボンナノチューブの製造方法。
4.上記pH制御工程は、2酸化炭素を添加することでpHが6以下となった第1の溶液を、pHが9以上の第2の溶液に投入することで、pHを8.4〜7.6の範囲で調整することにより行う、ことを特徴とする1記載の単一カーボンナノチューブの製造方法。
As a result of intensive studies to solve the above problems, the present inventors have completed the following present invention.
That is, it is known that the concentration of hydrogen ions has a great influence on the separation result, for example, the separation result changes when the pH is greatly changed to 3 or 12 using a strong acid or strong base such as hydrochloric acid or sodium hydroxide. (Non-Patent Document 2). Therefore, as a result of various investigations on the effect of pH, it was discovered that carbon dioxide in the atmosphere greatly affects the hydrogen ion concentration of the dispersion and eluate. As a result, the present invention was completed.
1. A liquid adjustment step of adjusting a surfactant solution for separation of carbon nanotubes and a separation step of separating carbon nanotubes using the obtained surfactant solution;
In the method for producing single carbon nanotubes with adjusted chirality,
The liquid adjusting step includes a pH control step of controlling the pH of the surfactant solution between 6 and 8.5 by adding a pH adjusting agent, and a method for producing single carbon nanotubes .
2. 2. The method for producing a single carbon nanotube according to 1, wherein the pH adjuster is a weak acid compound or a weak base compound.
3. 3. The method for producing a single carbon nanotube according to 2, wherein the weak acid compound is carbon dioxide.
4). In the pH control step, by adding the first solution having a pH of 6 or less by adding carbon dioxide to the second solution having a pH of 9 or more, the pH is 8.4 to 7. 6. The method for producing a single carbon nanotube according to 1, wherein the adjustment is performed within the range of 6.

本発明の単一カーボンナノチューブの製造方法によれば、再現性が良く、半導体型と金属型とを高純度で分離することができる。   According to the method for producing a single carbon nanotube of the present invention, the reproducibility is good and the semiconductor type and the metal type can be separated with high purity.

図1は実施例で得られた単一カーボンナノチューブの光吸収スペクトルを示すチャートである。FIG. 1 is a chart showing a light absorption spectrum of a single carbon nanotube obtained in the example.

以下、本発明をさらに詳細に説明する。
本発明の単一カーボンナノチューブの製造方法は、カーボンナノチューブの分離用の界面活性剤溶液を調整する液調整工程と
得られた界面活性剤溶液を用いてカーボンナノチューブを分離する分離工程とを行うことにより実施できる。
本発明の製造方法を実施して得られる上記単一カーボンナノチューブは、単層SWCNTにおいて、好ましくは、純度が99.99wt%以上、カイラリティが金属型又は半導体型のいずれかが9.9.9wt%以上であるSWCNTである。
以下、本発明についてさらに詳細に説明する。
Hereinafter, the present invention will be described in more detail.
The method for producing a single carbon nanotube of the present invention includes performing a liquid adjustment step of preparing a surfactant solution for separation of carbon nanotubes and a separation step of separating carbon nanotubes using the obtained surfactant solution. Can be implemented.
In the single-wall SWCNT, the single carbon nanotube obtained by carrying out the production method of the present invention preferably has a purity of 99.99 wt% or more and a chirality of 9.9.9 wt. % Of SWCNT.
Hereinafter, the present invention will be described in more detail.

<液調整工程>
本工程は、単に界面活性剤溶液を調整するのではなく、pH調整剤を添加することで上記界面活性剤溶液のpHを6〜8.5の間で制御するpH制御工程を行う。
(カーボンナノチューブ)
本工程において用いられる上記カーボンナノチューブは、公知のカーボンナノチューブの製造法により得られる不純物が存在し且つカイラリティも単一化されていない状態のものである。たとえば、純度が99wt%程度、カイラリティが金属型又は半導体型のいずれかが98〜70wt%程度のものを用いることができ、アルドリッチ社製などの市販品を用いることもできる。
(pH調整剤)
上記pH調整剤としては、弱酸化合物又は弱塩基化合物を好ましく挙げることができる。ここで弱酸化合物としては酢酸、2酸化炭素(溶液中で炭酸となるので弱酸化合物として用いることができる)、炭酸、硫化水素、シュウ酸、リン等を挙げることができ、使用に際しては単独または2種以上混合して用いることができる。また、上記弱塩基化合物としては炭酸水素ナトリウム等を挙げることができ、使用に際しては単独または2種以上混合して用いることができる。これらの中でも上記弱酸化合物としての2酸化炭素を好ましくは用いることができる。
上記pH調整剤の使用量は上記分散液又は上記溶出液のpHを上記の6〜8.5の間、好ましくは7.6〜8.4の間に調整できる量である。
(界面活性剤溶液)
界面活性剤としては、ドデシル硫酸ナトリウム(SDS)やコール酸ナトリウム(SC)、デオキシコール酸ナトリウム(DOC)等を挙げることができる。
界面活性剤溶液は、上記界面活性剤を水に溶解したものであり、濃度は好ましくはpHが9以上となるような濃度である。
<Liquid adjustment process>
This step does not simply adjust the surfactant solution, but performs a pH control step of controlling the pH of the surfactant solution between 6 and 8.5 by adding a pH adjuster.
(carbon nanotube)
The carbon nanotubes used in this step are in a state where impurities obtained by a known method for producing carbon nanotubes are present and chirality is not unified. For example, a material having a purity of about 99 wt% and a chirality of either metal type or semiconductor type of about 98 to 70 wt% can be used, and commercially available products such as those manufactured by Aldrich can also be used.
(PH adjuster)
As said pH adjuster, a weak acid compound or a weak base compound can be mentioned preferably. Here, examples of the weak acid compound include acetic acid, carbon dioxide (which can be used as a weak acid compound because it becomes carbonic acid in a solution), carbonic acid, hydrogen sulfide, oxalic acid, phosphorus and the like. A mixture of more than one species can be used. Moreover, sodium hydrogen carbonate etc. can be mentioned as said weak base compound, and it can be used individually or in mixture of 2 or more types in the case of use. Among these, carbon dioxide as the weak acid compound can be preferably used.
The amount of the pH adjusting agent used is an amount that can adjust the pH of the dispersion or the eluate between 6 and 8.5, preferably between 7.6 and 8.4.
(Surfactant solution)
Examples of the surfactant include sodium dodecyl sulfate (SDS), sodium cholate (SC), and sodium deoxycholate (DOC).
The surfactant solution is obtained by dissolving the above surfactant in water, and the concentration is preferably such that the pH is 9 or more.

pH制御工程について詳述すると、本工程は、2酸化炭素を添加することでpHが6以下となった第1の溶液を、pHが9以上の第2の溶液に投入することで、pHを8.4〜7.6の範囲で調整した適pH溶液を得ることにより行うことができ、この際、上記第1の溶液及び上記第2の溶液は、いずれも溶出液であるのが好ましい。
具体的には、まず、容器に界面活性剤と水等の溶剤を投入し、該界面活性剤を完全に溶解させて、界面活性剤溶液(第2の溶液)を得る。
次に得られた第2の溶液に2酸化炭素をバブリングして該界面活性剤溶液内に2酸化炭素を封入し、更に1分〜1時間撹拌を行い、pHを6程度に調整しておくことで上記の第1の溶液を得る。
そして、この第1の溶液を、pHを調整していない界面活性剤溶液である第2の溶液にpHを確認しながら投入することで上述のpHの範囲内に調整することで本工程を行い、適pH溶液を得る。この適pH溶液のpHは上述のように6〜8.5であるが、7.6〜8.4であるのが特に好ましい。
The pH control step will be described in detail. In this step, the pH is adjusted by adding the first solution having a pH of 6 or less by adding carbon dioxide to the second solution having a pH of 9 or more. It can carry out by obtaining the appropriate pH solution adjusted in the range of 8.4-7.6, and it is preferable that both the said 1st solution and the said 2nd solution are eluates in this case.
Specifically, first, a surfactant and a solvent such as water are put into a container, and the surfactant is completely dissolved to obtain a surfactant solution (second solution).
Next, carbon dioxide is bubbled into the obtained second solution, carbon dioxide is enclosed in the surfactant solution, and further stirred for 1 minute to 1 hour to adjust the pH to about 6. Thus, the first solution is obtained.
Then, this step is performed by adjusting the pH of the first solution to the second solution, which is a surfactant solution whose pH is not adjusted, while checking the pH. To obtain an appropriate pH solution. The pH of the appropriate pH solution is 6 to 8.5 as described above, but is particularly preferably 7.6 to 8.4.

<分離工程>
本工程は、2つのカイラリティが混在した単層カーボンナノチューブから、金属型又は半導体型のいずれかを除去する工程であり、通常のゲルクロマトグラフィー法と同様にカラムにゲル(通常この種のカーボンナノチューブの分離に用いられるゲルを特に制限なく用いることができる)を充填する。次にこのゲルを水で置換した後上記のpHを調整した界面活性剤溶液で置換する。そして、このゲルに単層カーボンナノチューブを上記のpHを調整した界面活性剤溶液で希釈した溶液を投入し、更に上記のpHを調整した界面活性剤溶液を数回投入して、廃棄と回収とを行う。
上記のpHを調整した界面活性剤溶液の投入量及び廃棄又は回収の関係は、上記の希釈した溶液の投入量(体積量)100に対して1〜10を投入し廃棄、10〜50を投入し回収、30〜60を投入し廃棄することにより行うのが好ましい。
<Separation process>
This step is a step of removing either the metal type or the semiconductor type from the single-walled carbon nanotube in which the two chiralities are mixed, and the gel (usually this kind of carbon nanotube is applied to the column in the same manner as the normal gel chromatography method). The gel used for the separation can be used without particular limitation). Next, the gel is replaced with water, and then replaced with a surfactant solution having the above pH adjusted. Then, a solution obtained by diluting the single-walled carbon nanotubes with the above-described pH-adjusted surfactant solution is added to this gel, and further the above-mentioned pH-adjusted surfactant solution is added several times to dispose of and recover. I do.
Regarding the relationship between the amount of the surfactant solution adjusted to the pH and the disposal or recovery, 1 to 10 is input and discarded and 10 to 50 is input with respect to the input (volume) 100 of the diluted solution. It is preferably carried out by collecting and discarding 30 to 60 and discarding.

<その他の工程>
本発明においては、上述の工程の他に本発明の趣旨を逸脱しない範囲で他の工程を付加することもできる。
<Other processes>
In the present invention, in addition to the above-described steps, other steps can be added without departing from the spirit of the present invention.

以上、本発明の実施の形態を説明したが、本発明は上述の説明に制限されるものではなく本発明の趣旨を逸脱しない範囲で種々変更可能である。   The embodiment of the present invention has been described above, but the present invention is not limited to the above description, and various modifications can be made without departing from the spirit of the present invention.

以下、本発明について実施例及び比較例を示してさらに具体的に説明するが本発明はこれらに何ら制限されるものではない。
なお、以下の説明において「%」とあるのは特に明記のない限り「重量%」を意味する。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not restrict | limited to these at all.
In the following description, “%” means “% by weight” unless otherwise specified.

〔実施例1〕溶出液のpHを制御した例
<液調整工程>
・pH制御工程:CO溶液調整法:
ドデシル硫酸ナトリウム(SDS)0.5% SC0.5%溶液の調整:
500mLの容器にSDS1.0g及び SC1.0g を入れると共に水 200mLを入れ界面活性剤であるSDS及びSCが完全に溶解するまで20〜30分バスソニケーション(Sharp社製、商品名「UT106H」)を行った。得られた容器をA溶液(acid)とした。
また、500mLの容器にSDS2.5g及び SC2.5g 及び水500mLを入れ界面活性剤であるSDS及びSCが完全に溶解するまで20〜30分バスソニケーションを行った。得られた溶液をB溶液(base)とした。A溶液及びB溶液のpHはいずれもおよそ9であった。
COバブリング:
A溶液の容器内にCOスプレー缶を用いて3〜5秒間COを封入する。蓋を閉めて、攪拌機を用いて10分間撹拌した。この時なるべく泡が立つように強めで撹拌した。撹拌後、pHはおよそ6になった。ついで、B溶液を20mLごと7つに分ける。これらの分割されたB溶液にA溶液を少量ずつ投入し、pHが8.4〜7.8の範囲において0.1きざみになるように7種類調整した。この時のA液の投入量は投入後のB溶液のpHの低下をみて判断して投入を行ったので、どのpHの溶液に何mlのA溶液を投入したかは省略する。ただし、B液20mLに対し、A液数百μLごとにpHは0.1変化するので、B溶液のpHの変化量に対して相当量のA溶液を投入したことになる。
<分離工程>
・pHゲルろ過のプロセス(金属型SWCNTを取り除く方法):
後述の方法により得られた単層カイラリティ(6,5)SWCNT(金属型の混入しているもの)を用意し、これを以下のようにして精製した。
6mLシリンジに脱脂綿を厚さ数mmほど敷き、水を少量滴下して脱脂綿を安定させた。ついでここにゲル(商品名「セファクリル」、GE社製)を3mL投入し、水 9mLでゲルを置換した。さらに上記B液 9mLでゲルを置換した。そしてこの段階で後述する方法で得られた単層カイラリティ(6,5)SWCNT溶液をB液で二倍に薄めたうえ、シリンジ内に全量(20mL)投入し、更にここに上述の液調整工程で得られたpH8.4の液を1mL投入して流出液は廃棄した。次に、このpH8.4の液を5mL投入し流出液を回収した。さらにpH8.4液を9mL投入し流出液は廃棄した。
この操作を他のpHの液についても同様に行った。pH7.8の液の作業が終了した後、A液原液を用いて同様に回収した。各pHの液において回収した液の光吸収スペクトル(紫外可視近赤外分光スペクトル)を測定した。その結果を図1に記す。
図1においては、上から順に各pHで脱離してきた回収液のスペクトルを示す。pHの大きな値のところでは金属型が多く混ざっているがpH8.0以下では金属型が混ざっていないことがわかる。これにより完全に半導体型CNT(6,5)と金属型CNTの分離を行うことができた。以上のように、COバブリングでpHを7.7から8.2の間で厳密に0.1ずつ調整することにより、半導体デバイス応用に不都合な金属型SWCNTを取り除くことが可能となり、高純度単一カイラリティSWCNT試料を得ることができる。
[Example 1] Example of controlling pH of eluate <Liquid adjustment step>
PH control step: CO 2 solution adjustment method:
Preparation of sodium dodecyl sulfate (SDS) 0.5% SC 0.5% solution:
Into a 500 mL container, 1.0 g of SDS and 1.0 g of SC and 200 mL of water are added, and 20 to 30 minutes until the surfactants SDS and SC are completely dissolved. Bath sonication (trade name “UT106H” manufactured by Sharp) is added. went. The obtained container was designated as solution A (acid).
In addition, 2.5 g of SDS and 2.5 g of SC and 500 mL of water were placed in a 500 mL container, and bath sonication was performed for 20 to 30 minutes until the surfactants SDS and SC were completely dissolved. The resulting solution was designated as solution B (base). The pH of both the A solution and the B solution was approximately 9.
CO 2 bubbling:
CO 2 is sealed in the container of the solution A for 3 to 5 seconds using a CO 2 spray can. The lid was closed and stirred for 10 minutes using a stirrer. At this time, the mixture was stirred so as to make bubbles as much as possible. After stirring, the pH was approximately 6. Next, the B solution is divided into seven 20 mL portions. A small amount of the A solution was added to these divided B solutions, and seven types were adjusted so that the pH would be 0.1 increments in the range of 8.4 to 7.8. At this time, the amount of solution A introduced was determined by observing the decrease in pH of solution B after the addition, and therefore, what pH of solution A was added to the solution at which pH was omitted. However, since the pH changes by 0.1 every several hundreds of μL with respect to 20 mL of the B solution, a considerable amount of the A solution is added with respect to the change amount of the pH of the B solution.
<Separation process>
-PH gel filtration process (method for removing metallic SWCNT):
Single-layer chirality (6,5) SWCNT (metal type mixed) obtained by the method described later was prepared and purified as follows.
Absorbent cotton was spread on a 6 mL syringe to a thickness of several millimeters, and a small amount of water was dropped to stabilize the absorbent cotton. Next, 3 mL of gel (trade name “Sefacryl”, manufactured by GE) was added thereto, and the gel was replaced with 9 mL of water. Furthermore, the gel was replaced with 9 mL of the B solution. At this stage, the single-layer chirality (6,5) SWCNT solution obtained by the method described later is diluted twice with B solution, and then the whole amount (20 mL) is charged into the syringe. 1 mL of the solution having a pH of 8.4 obtained in step 1 was added and the effluent was discarded. Next, 5 mL of this pH 8.4 solution was added to collect the effluent. Further, 9 mL of pH 8.4 solution was added and the effluent was discarded.
This operation was performed in the same manner for other pH solutions. After the work of the liquid with pH 7.8 was completed, the liquid was similarly collected using the liquid A stock solution. The light absorption spectrum (ultraviolet visible near-infrared spectrum) of the liquid collected at each pH was measured. The results are shown in FIG.
In FIG. 1, the spectrum of the recovered liquid desorbed at each pH in order from the top is shown. It can be seen that many metal types are mixed at a large pH value, but no metal type is mixed at pH 8.0 or lower. As a result, the semiconductor CNT (6, 5) and the metal CNT could be completely separated. As described above, by adjusting the pH strictly between 0.1 and 8.2 by CO 2 bubbling by 0.1, it becomes possible to remove metal-type SWCNT which is inconvenient for semiconductor device application, and high purity. A single chirality SWCNT sample can be obtained.

<通常純度CNT(金属型の混入したもの)の試料調整>
既報の調整法に従って調整した(Yomogida et al., Nature Comm. 7, 12056 2016)。すなわち、はじめに、以下の分散プロセスにより分散液を得た。
・分散プロセス:
はじめに、コール酸ナトリウム(SC)1%溶液にCoMoCAT(登録商標)カーボンナノチューブ(アルドリッチ社製)を分散させる。具体的には、50mLバイヤル瓶にSC 330mg、 水33mLを入れ、5分間バスソニケーションを行った。ついで、これにCoMoCAT(登録商標)カーボンナノチューブ 33mgを入れ、10分間バスソニケーションを行った。これをチップソニケーション(ブランソン、ソニファイアー)を強度30%で 3.0時間行った。その後、上澄み遠心を34400rpm で2.0時間行い、上澄み液を分散液として回収した。
ついで、分散液30mLとSDS4%溶液30mL(SDS1.2g 水 30mL)と混合しバスソニケーションを10分間行い、精製用のCNT分散液を得た。
また、以下の溶液調整を行った。
SDS2%SC0.5%溶液300mL(SDS6.0g SC1.5g 水 300mL)、SDS0.5%SC0.5%溶液500mL(SDS2.5g SC2.5g 水 500mL)、
SDS0.5%SC0.5%デオキシコール酸ナトリウム(DOC)0.05%溶液400mL(SDS2.0g SC2.0g DOC0.20g 水400mL)、
SC0.5%溶液400ML(SC2.0g 水 400mL)。
上記の各溶液について、それぞれ界面活性剤が完全に溶解するまで20〜30分バスソニケーションを行った。得られた溶液を下の表のように混合して、溶液を調製する。
<Preparation of normal purity CNT (metal type mixed)>
Adjustments were made according to previously reported adjustment methods (Yomogida et al., Nature Comm. 7, 12056 2016). That is, first, a dispersion was obtained by the following dispersion process.
・ Distributed process:
First, CoMoCAT (registered trademark) carbon nanotubes (manufactured by Aldrich) are dispersed in a 1% sodium cholate (SC) solution. Specifically, 330 mg of SC and 33 mL of water were placed in a 50 mL vial, and bath sonication was performed for 5 minutes. Next, 33 mg of CoMoCAT (registered trademark) carbon nanotubes was added thereto, and bath sonication was performed for 10 minutes. This was performed by chip sonication (Branson, sonicator) at an intensity of 30% for 3.0 hours. Thereafter, the supernatant was centrifuged at 34400 rpm for 2.0 hours, and the supernatant was recovered as a dispersion.
Next, 30 mL of the dispersion and 30 mL of SDS 4% solution (SDS 1.2 g, water 30 mL) were mixed and subjected to bath sonication for 10 minutes to obtain a CNT dispersion for purification.
Moreover, the following solution adjustment was performed.
SDS 2% SC 0.5% solution 300 mL (SDS 6.0 g SC 1.5 g water 300 mL), SDS 0.5% SC 0.5% solution 500 mL (SDS 2.5 g SC 2.5 g water 500 mL),
SDS 0.5% SC 0.5% sodium deoxycholate (DOC) 0.05% solution 400 mL (SDS 2.0 g SC 2.0 g DOC 0.20 g water 400 mL),
SC 0.5% solution 400 ML (SC 2.0 g water 400 mL).
Each solution was subjected to bath sonication for 20 to 30 minutes until the surfactant was completely dissolved. The resulting solution is mixed as shown in the table below to prepare a solution.

上記の溶液を調整したのち、ゲル分離の1周目を行った。すなわち、50mLシリンジを用意し、50mLシリンジに脱脂綿を数mmほど敷き、水を少量滴下して脱脂綿を安定させた。そこにゲル(商品名「セファクリル S−200」、GE社製)を30mL投入する。その後、水 90mLでゲルを置換し、更にSDS2%SC0.5%溶液 90mLでゲルを置換した。上述のCNT分散液(SDS2%SC0.5%)をそれぞれのシリンジに半分ずつ(30mL)投入して、有色の流出液を回収した。さらに各シリンジにSDS2%SC0.5%溶液を流出液の色が無くなるまで投入し、流出液を上記流出液とまとめて回収した。両シリンジからの回収液を一つの大きな容器に移し、その3倍体積分のSC0.5%溶液を入れ、4倍に薄めた。これによりSDS2%SC0.5%がSDS0.5%SC0.5%になった。
その後、ゲル分離の2周目を行う。カラム管 1本に上記ゲル12mLを投入し、水 36mLでゲルを置換した。さらにSDS0.5%SC0.5%溶液 36mLでゲルを置換した。一周目で得たCNT溶液(SDS0.5%SC0.5%)を全量ゲルに通し、この時、適宜Nなどで上から圧力をかけて時間の短縮をした。すべて通し終わったら、SDS0.5%SC0.5%溶液36mLでゲルを置換し、その後、以下のプロセスを行った。
SDS0.5%SC0.5%DOC0.010%溶液を全量投入し流出液は廃棄した。
SDS0.5%SC0.5%DOC0.020%溶液を全量投入し流出液は廃棄した。
SDS0.5%SC0.5%DOC0.025%溶液を全量投入し流出液は廃棄した。
SDS0.5%SC0.5%DOC0.030%溶液を6mL投入し流出液は廃棄した。
SDS0.5%SC0.5%DOC0.030%溶液を10mL投入し流出液は回収した。
SDS0.5%SC0.5%DOC0.030%溶液を残り全量投入し流出液は廃棄した。
SDS0.5%SC0.5%DOC0.035%溶液を6mL投入し流出液は廃棄した。
SDS0.5%SC0.5%DOC0.035%溶液を10mL投入し流出液は回収した。
SDS0.5%SC0.5%DOC0.035%用液を残り全量投入し流出液は廃棄した。
SDS0.5%SC0.5%DOC0.040%溶液を6mL投入し流出液は廃棄した。
SDS0.5%SC0.5%DOC0.040%溶液を10mL投入し流出液は回収した。
SDS0.5%SC0.5%DOC0.040%溶液を残り全量投入し流出液は廃棄した。
DOC0.030%の回収溶液と0.035%の回収溶液とに単一カイラリティ(6,5)SWCNTが多く含まれる。以上のプロセスで、高純度(金属型を90wt%程度含有する)の単層カイラリティ(6,5)SWCNTを得た。


After preparing the above solution, the first round of gel separation was performed. That is, a 50 mL syringe was prepared, absorbent cotton was spread on the 50 mL syringe for several mm, and a small amount of water was dropped to stabilize the absorbent cotton. 30 mL of gel (trade name “Sephacryl S-200”, manufactured by GE) is added thereto. Thereafter, the gel was replaced with 90 mL of water, and the gel was further replaced with 90 mL of an SDS 2% SC 0.5% solution. The above-mentioned CNT dispersion (SDS 2% SC 0.5%) was added to each syringe in half (30 mL), and the colored effluent was collected. Further, SDS 2% SC 0.5% solution was added to each syringe until the color of the effluent disappeared, and the effluent was collected together with the effluent. The recovered liquid from both syringes was transferred to one large container, and 3 times its volume of SC 0.5% solution was added and diluted 4 times. As a result, SDS 2% SC 0.5% became SDS 0.5% SC 0.5%.
Thereafter, the second round of gel separation is performed. One column tube was charged with 12 mL of the gel, and the gel was replaced with 36 mL of water. Further, the gel was replaced with 36 mL of SDS 0.5% SC 0.5% solution. The entire amount of the CNT solution (SDS 0.5% SC 0.5%) obtained in the first round was passed through the gel, and at this time, pressure was appropriately applied from above with N 2 or the like to shorten the time. When all was passed, the gel was replaced with 36 mL SDS 0.5% SC 0.5% solution, and then the following process was performed.
The entire amount of SDS 0.5% SC 0.5% DOC 0.010% solution was added and the effluent was discarded.
The entire amount of SDS 0.5% SC 0.5% DOC 0.020% solution was added and the effluent was discarded.
The entire amount of SDS 0.5% SC 0.5% DOC 0.025% solution was added and the effluent was discarded.
6 mL of SDS 0.5% SC 0.5% DOC 0.030% solution was added and the effluent was discarded.
10 mL of SDS 0.5% SC 0.5% DOC 0.030% solution was added and the effluent was recovered.
The remaining amount of SDS 0.5% SC 0.5% DOC 0.030% solution was added and the effluent was discarded.
6 mL of SDS 0.5% SC 0.5% DOC 0.035% solution was added and the effluent was discarded.
10 mL of SDS 0.5% SC 0.5% DOC 0.035% solution was added and the effluent was recovered.
All of the remaining solution for SDS 0.5% SC 0.5% DOC 0.035% was added and the effluent was discarded.
6 mL of SDS 0.5% SC 0.5% DOC 0.040% solution was added and the effluent was discarded.
10 mL of SDS 0.5% SC 0.5% DOC 0.040% solution was added and the effluent was recovered.
The remaining amount of SDS 0.5% SC 0.5% DOC 0.040% solution was added and the effluent was discarded.
A large amount of single chirality (6,5) SWCNT is contained in the DOC 0.030% recovery solution and the 0.035% recovery solution. Through the above process, single-layer chirality (6,5) SWCNT having high purity (containing about 90 wt% of the metal mold) was obtained.


Claims (4)

カーボンナノチューブの分離用の界面活性剤溶液を調整する液調整工程と
得られた界面活性剤溶液を用いてカーボンナノチューブを分離する分離工程とを具備する、
カリラリティが調整された単一カーボンナノチューブの製造方法において、
上記液調整工程は、pH調整剤を添加することで上記界面活性剤溶液のpHを6〜8.5の間で制御するpH制御工程を具備することを特徴とする単一カーボンナノチューブの製造方法。
A liquid adjustment step of adjusting a surfactant solution for separation of carbon nanotubes and a separation step of separating carbon nanotubes using the obtained surfactant solution;
In the method for producing single carbon nanotubes with adjusted chirality,
The liquid adjusting step includes a pH control step of controlling the pH of the surfactant solution between 6 and 8.5 by adding a pH adjusting agent, and a method for producing single carbon nanotubes .
上記pH調整剤が、弱酸化合物又は弱塩基化合物であることを特徴とする請求項1記載の単一カーボンナノチューブの製造方法。 The method for producing a single carbon nanotube according to claim 1, wherein the pH adjuster is a weak acid compound or a weak base compound. 上記弱酸化合物が2酸化炭素であることを特徴とする請求項2記載の単一カーボンナノチューブの製造方法。 The method for producing a single carbon nanotube according to claim 2, wherein the weak acid compound is carbon dioxide. 上記pH制御工程は、2酸化炭素を添加することでpHが6以下となった第1の溶液を、pHが9以上の第2の溶液に投入することで、pHを8.4〜7.6の範囲で調整することにより行う、ことを特徴とする請求項1記載の単一カーボンナノチューブの製造方法。



In the pH control step, by adding the first solution having a pH of 6 or less by adding carbon dioxide to the second solution having a pH of 9 or more, the pH is 8.4 to 7. The method for producing single carbon nanotubes according to claim 1, wherein the adjustment is performed within a range of 6.



JP2017037805A 2017-02-28 2017-02-28 Manufacturing method of single carbon nanotube Active JP6958777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017037805A JP6958777B2 (en) 2017-02-28 2017-02-28 Manufacturing method of single carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017037805A JP6958777B2 (en) 2017-02-28 2017-02-28 Manufacturing method of single carbon nanotube

Publications (2)

Publication Number Publication Date
JP2018140919A true JP2018140919A (en) 2018-09-13
JP6958777B2 JP6958777B2 (en) 2021-11-02

Family

ID=63526334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017037805A Active JP6958777B2 (en) 2017-02-28 2017-02-28 Manufacturing method of single carbon nanotube

Country Status (1)

Country Link
JP (1) JP6958777B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286663A (en) * 2008-05-29 2009-12-10 Kyushu Univ Method for separating carbon nanotubes
JP2010502548A (en) * 2006-08-30 2010-01-28 ノースウェスタン ユニバーシティ A population of monodispersed single-walled carbon nanotubes and related methods for providing this population

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502548A (en) * 2006-08-30 2010-01-28 ノースウェスタン ユニバーシティ A population of monodispersed single-walled carbon nanotubes and related methods for providing this population
JP2009286663A (en) * 2008-05-29 2009-12-10 Kyushu Univ Method for separating carbon nanotubes

Also Published As

Publication number Publication date
JP6958777B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
JP6877431B2 (en) Methods for producing graphene quantum dots with different oxygen contents, graphene quantum dots, and fluorescent materials
JP5663806B2 (en) Inexpensive separation method, separation material and separation container for carbon nanotube
JP5553282B2 (en) Carbon nanotube separation and recovery method and carbon nanotube
CN107298436B (en) Method for obtaining high-purity semiconductor single-walled carbon nanotubes
US8221881B2 (en) Silicon particle, silicon particle superlattice and method for producing the same
JP7131543B2 (en) Method for producing surface-treated carbon nanostructure
JP2011195431A (en) Simpler separating and recovering method of carbon nanotube
WO2014157338A1 (en) Separation and recovery method for carbon nanotubes having optical activity and carbon nanotubes having optical activity
WO2008057108A2 (en) Chirality-based separation of carbon nanotubes
JP2007076998A5 (en) Carbon nanotube dispersion
CN103482607A (en) Enrichment method of semiconductor type carbon nanotubes
JP2009013054A (en) Separation method and dispersion method of carbon nanotube and composition used for these methods
JP5481175B2 (en) Carbon nanotube diameter separation method
US10173149B2 (en) Methods for separating carbon nanotubes
WO2018158811A1 (en) Nanocarbon separation method, nanocarbon purification method, and nanocarbon dispersion liquid
JP6958777B2 (en) Manufacturing method of single carbon nanotube
KR20170092351A (en) Method of singlewall carbon nanotube separation and composition including singlewall carbon nanotube
CN111747400B (en) Method for improving concentration of monodisperse carbon nanotube dispersion liquid
Cao et al. The 3D WS2 microspheres: Preparation, characterization and optical absorption properties
JP5498195B2 (en) Separation of metal-type and semiconductor-type single-walled carbon nanotubes
CN107235482A (en) The preparation method of single-walled carbon nanotube of the clean surface without dispersant
JP2016135725A (en) Method for eluting and recovering carbon nanotube
JP7334901B2 (en) Separation method of low-defect carbon nanotubes and low-defect nanotubes
JP6237966B1 (en) Nanocarbon separation and purification method
US20100047444A1 (en) Assembling nanostructures on a substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210921

R150 Certificate of patent or registration of utility model

Ref document number: 6958777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150