JP2018140389A - Coagulator - Google Patents

Coagulator Download PDF

Info

Publication number
JP2018140389A
JP2018140389A JP2018029278A JP2018029278A JP2018140389A JP 2018140389 A JP2018140389 A JP 2018140389A JP 2018029278 A JP2018029278 A JP 2018029278A JP 2018029278 A JP2018029278 A JP 2018029278A JP 2018140389 A JP2018140389 A JP 2018140389A
Authority
JP
Japan
Prior art keywords
tank
raw water
sludge
water supply
raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018029278A
Other languages
Japanese (ja)
Other versions
JP7045881B2 (en
Inventor
臨太郎 前田
Rintaro Maeda
臨太郎 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Publication of JP2018140389A publication Critical patent/JP2018140389A/en
Application granted granted Critical
Publication of JP7045881B2 publication Critical patent/JP7045881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coagulator which has a sludge thickening tank arranged inside a settling tank and can further improve the quality of treatment water.SOLUTION: A coagulator 1 has a settling tank 2 that subjects aggregation flock in raw water to sedimentation and separation, a sludge thickening tank 3 surrounded by the settling tank 2 to collect and thicken aggregation flock by overflowing the settling tank 2, and a raw water supply mechanism 10 that has a center line CL passing through the sludge thickening tank 3, rotates around the center line CL, and supplies raw water into the settling tank 2, where the raw water supply mechanism 10 has a raw water introduction part 19 located on the center line CL to introduce raw water, a raw water supply port 15 opened in the lower part of the internal space of the settling tank 2 to supply raw water into the settling tank 2, and a piping part 13 communicating with the raw water introduction part 19 and the raw water supply port 15 to extend above the sludge thickening tank 3 in a direction of leaving the center line CL.SELECTED DRAWING: Figure 1

Description

本発明は凝集沈殿装置に関し、特に沈殿槽に原水を供給する原水供給機構の構成に関する。   The present invention relates to a coagulation sedimentation apparatus, and more particularly to a configuration of a raw water supply mechanism that supplies raw water to a sedimentation tank.

水処理装置のひとつである凝集沈殿装置は用水処理、排水処理などに広く利用されている。特許文献1には、沈殿槽内で原水中の懸濁物質、凝集フロックを沈降分離させ、沈殿槽内でスラッジブランケットを形成して原水を清澄化する凝集沈殿装置が開示されている。沈殿槽の内部には、内部流路を備え、沈殿槽の中央を上下方向に延びる回転シャフトと、回転シャフトに接続されて径方向に延びる複数の吐出管と、が設けられている。吐出管には長手方向に沿って複数の吐出口が設けられている。原水は回転シャフトの内部流路を通り、吐出管に導入され、吐出管の吐出口から吐出される。凝集フロックは沈殿槽の下部の汚泥濃縮部に堆積して濃縮汚泥となり、定期的に引き抜かれる。しかし、汚泥濃縮部とスラッジブランケットが区画されていないため、濃縮汚泥を引き抜いた際にスラッジブランケットの界面が低下し不安定となり、処理水の水質が悪化する可能性がある。   A coagulation sedimentation apparatus, which is one of water treatment apparatuses, is widely used for water treatment, wastewater treatment, and the like. Patent Document 1 discloses a coagulation sedimentation apparatus in which suspended substances and coagulation flocs in raw water are settled and separated in a sedimentation tank, and a sludge blanket is formed in the sedimentation tank to clarify the raw water. Inside the settling tank, an internal flow path is provided, and a rotary shaft extending in the vertical direction in the center of the settling tank and a plurality of discharge pipes connected to the rotary shaft and extending in the radial direction are provided. The discharge pipe is provided with a plurality of discharge ports along the longitudinal direction. The raw water passes through the internal flow path of the rotating shaft, is introduced into the discharge pipe, and is discharged from the discharge port of the discharge pipe. Aggregated floc accumulates in the sludge concentration section at the bottom of the settling tank to form concentrated sludge, which is periodically withdrawn. However, since the sludge concentration part and the sludge blanket are not partitioned, the interface of the sludge blanket is lowered and becomes unstable when the concentrated sludge is pulled out, and the quality of the treated water may be deteriorated.

特許文献2には、原水中の凝集フロックを沈降分離させる沈殿槽と、沈殿槽に取り囲まれ、凝集フロックを沈殿槽から越水させて収集し濃縮させる汚泥濃縮槽と、を備える凝集沈殿装置が開示されている。沈殿槽と汚泥濃縮槽が同心円状に隣接配置され、さらに沈殿層と汚泥濃縮層が区画されているため、汚泥濃縮槽から濃縮汚泥を引抜く際に、沈殿槽のスラッジブランケットが受ける影響が小さく、処理水の水質の悪化が生じにくい。原水は沈殿槽の側壁を貫通する供給配管に接続されたリング状配管から供給される。   Patent Document 2 discloses a coagulation sedimentation apparatus including a sedimentation tank that settles and separates coagulated flocs in raw water, and a sludge concentration tank that is surrounded by the sedimentation tank and collects and concentrates by allowing water to overflow from the sedimentation tank. It is disclosed. The sedimentation tank and the sludge concentration tank are concentrically arranged adjacent to each other, and the sedimentation layer and the sludge concentration layer are partitioned, so the sludge blanket in the sedimentation tank is less affected when the concentrated sludge is drawn from the sludge concentration tank. Deterioration of the quality of treated water is unlikely to occur. The raw water is supplied from a ring-shaped pipe connected to a supply pipe that penetrates the side wall of the settling tank.

特許第4142321号公報Japanese Patent No. 4142321 実開昭63−176503号公報Japanese Utility Model Publication No. 63-176503

沈殿槽の中でスラッジブランケットを形成する凝集沈殿装置では、沈殿槽内に原水を均一に分散させることが重要である。原水を均一に分散できない場合、原水の偏流によってスラッジブランケットが乱され、これにより処理水中に微細フロックが流出して、処理水の水質が低下しやすい。特許文献2に記載の凝集沈殿装置では固定式のリング状配管を用いているため、特許文献1に記載の回転シャフトと複数の吐出管を備えた凝集沈殿装置のように原水を均一に分散させることができない。また、万が一、一部の吐出口が汚泥で部分的または全体的に閉塞した場合は、残りの吐出口から原水が供給するため、原水を均一に分散することができない。   In a coagulating sedimentation apparatus that forms a sludge blanket in a sedimentation tank, it is important to uniformly disperse raw water in the sedimentation tank. If the raw water cannot be uniformly dispersed, the sludge blanket is disturbed by the drift of the raw water, whereby fine flocs flow out into the treated water, and the quality of the treated water is likely to deteriorate. Since the coagulation sedimentation apparatus described in Patent Document 2 uses a fixed ring-shaped pipe, raw water is uniformly dispersed as in the coagulation sedimentation apparatus including the rotating shaft and the plurality of discharge pipes described in Patent Document 1. I can't. In addition, if some discharge ports are partially or totally blocked by sludge, the raw water is supplied from the remaining discharge ports, so that the raw water cannot be uniformly dispersed.

そこで、特許文献2に記載の凝集沈殿装置に特許文献1に記載の回転シャフトと複数の吐出管を適用すれば、それぞれの問題点を解消した凝集沈殿装置を得ることができる。しかしながら、特許文献2に開示された凝集沈殿装置は沈殿槽の内側に汚泥濃縮槽が配置されているため、特許文献1の回転シャフトと複数の吐出管を適用することができない。   Therefore, if the rotating shaft and the plurality of discharge pipes described in Patent Document 1 are applied to the coagulating sedimentation apparatus described in Patent Document 2, a coagulating sedimentation apparatus that solves each problem can be obtained. However, since the sludge concentration tank is arrange | positioned inside the sedimentation tank, the coagulation sedimentation apparatus disclosed by patent document 2 cannot apply the rotating shaft and several discharge pipe of patent document 1. FIG.

本発明は、沈殿槽の内側に汚泥濃縮槽が配置され、処理水の水質をさらに改善することができる凝集沈殿装置を提供することを目的とする。   An object of this invention is to provide the coagulation sedimentation apparatus which can arrange | position a sludge concentration tank inside a sedimentation tank and can further improve the quality of treated water.

本発明の凝集沈殿装置は、原水中の凝集フロックを沈降分離させる沈殿槽と、沈殿槽に取り囲まれ、凝集フロックを沈殿槽から越水させて収集し濃縮させる汚泥濃縮槽と、汚泥濃縮槽を通る中心線を有し、中心線の周りを回転し、原水を沈殿槽に供給する原水供給機構と、を有している。原水供給機構は、中心線上に位置し原水が導入される原水導入部と、沈殿槽の内部空間下部に開口し原水を沈殿槽に供給する原水供給口と、原水導入部と原水供給口とに連通し、汚泥濃縮槽の上方を中心線から離れる方向に延びる配管部と、を有する。   The coagulation sedimentation apparatus of the present invention comprises: a sedimentation tank that settles and separates the aggregated flocs in the raw water; a sludge concentration tank that is surrounded by the sedimentation tank and collects and concentrates by allowing the aggregated flocs to overflow from the sedimentation tank; and the sludge concentration tank A raw water supply mechanism that has a central line passing through, rotates around the central line, and supplies raw water to the settling tank. The raw water supply mechanism consists of a raw water introduction section that is located on the center line and into which raw water is introduced, a raw water supply opening that opens to the lower part of the interior space of the settling tank and supplies raw water to the settling tank, and a raw water introduction section and a raw water supply opening. And a piping part extending in a direction away from the center line above the sludge concentrating tank.

本発明の凝集沈殿装置では、汚泥濃縮槽が沈殿槽に取り囲まれ、さらに沈殿層と汚泥濃縮層が区画されているため、汚泥濃縮槽から濃縮汚泥を引抜く際に、沈殿槽のスラッジブランケットが受ける影響が小さく、処理水の水質の悪化が生じにくい。回転式の原水供給機構を用いているため、原水を均一に分散させることができる。また、原水が、汚泥濃縮槽の上方を中心線から離れる方向に延びる配管部を通って、原水供給機構の原水供給口から供給されるため、原水供給機構と汚泥濃縮槽の配置上の干渉も回避できる。従って、本発明によれば、処理水の水質をさらに改善することができる。   In the coagulation sedimentation apparatus of the present invention, the sludge concentration tank is surrounded by the sedimentation tank, and the sedimentation layer and the sludge concentration layer are further divided. Therefore, when extracting the concentrated sludge from the sludge concentration tank, the sludge blanket of the sedimentation tank is It is less affected and is unlikely to deteriorate the quality of the treated water. Since the rotary raw water supply mechanism is used, the raw water can be uniformly dispersed. In addition, since raw water is supplied from the raw water supply port of the raw water supply mechanism through a piping part extending in the direction away from the center line above the sludge concentration tank, there is also interference in the arrangement of the raw water supply mechanism and the sludge concentration tank. Can be avoided. Therefore, according to the present invention, the quality of treated water can be further improved.

第1の実施形態に係る凝集沈殿装置の模式的断面図である。It is a typical sectional view of the coagulation sedimentation apparatus concerning a 1st embodiment. 第2の実施形態に係る凝集沈殿装置の模式的断面図である。It is typical sectional drawing of the coagulation sedimentation apparatus which concerns on 2nd Embodiment. 第3の攪拌翼が設けられた原水供給機構の第3の配管部の斜視図である。It is a perspective view of the 3rd piping part of the raw | natural water supply mechanism provided with the 3rd stirring blade. 第1の配管部の変形例を示す凝集沈殿装置の模式的断面図である。It is typical sectional drawing of the coagulation sedimentation apparatus which shows the modification of a 1st piping part.

以下、図面を参照して本発明の凝集沈殿装置のいくつかの実施形態を説明する。本発明の凝集沈殿装置は如何なる由来の排水でも処理することができる。本発明の凝集沈殿装置で処理が可能な排水は、例えば、電子産業等でのエッチング工程で排出されるフッ素含有排水、火力発電所等で排出されるフッ素含有脱硫排水、液晶パネルや半導体工場から排出されるリン含有排水、下水処理場から排出されるリン含有排水、製鉄所等から排出される鉄鋼系排水を含む。以下の実施形態では、フッ素含有排水の処理に用いられる凝集沈殿装置について説明する。   Hereinafter, some embodiments of the coagulation sedimentation apparatus of the present invention will be described with reference to the drawings. The coagulation sedimentation apparatus of the present invention can treat waste water of any origin. Wastewater that can be treated with the coagulation sedimentation apparatus of the present invention includes, for example, fluorine-containing wastewater discharged in an etching process in the electronics industry, fluorine-containing desulfurization wastewater discharged from a thermal power plant, liquid crystal panels, and semiconductor factories. Includes phosphorus-containing wastewater discharged, phosphorus-containing wastewater discharged from sewage treatment plants, and steel-based wastewater discharged from steelworks. In the following embodiments, a coagulating sedimentation apparatus used for treating fluorine-containing wastewater will be described.

原水はまずカルシウム反応槽(図示せず)に導入され、消石灰が添加され、攪拌される。原水中のフッ素が消石灰と反応してフッ化カルシウムが生成される。原水は次に無機凝集反応槽(図示せず)に導入され、ポリ塩化アルミニウム(PAC)、硫酸バンド(硫酸アルミニウム)等の無機凝集剤が添加され、攪拌される。これによって、原水中に凝集フロックが形成される。原水は次に高分子凝集剤反応槽(図示せず)に導入され、ポリアクリルアミド等の高分子凝集剤が添加され、攪拌される。これによって、凝集フロックが粗大化される。以上の処理をされた原水が凝集沈殿装置に導入される。   The raw water is first introduced into a calcium reaction tank (not shown), slaked lime is added and stirred. Fluorine in the raw water reacts with slaked lime to produce calcium fluoride. The raw water is then introduced into an inorganic flocculation reaction tank (not shown), and an inorganic flocculating agent such as polyaluminum chloride (PAC) or sulfuric acid band (aluminum sulfate) is added and stirred. As a result, aggregated flocs are formed in the raw water. The raw water is then introduced into a polymer flocculant reaction tank (not shown), and a polymer flocculant such as polyacrylamide is added and stirred. As a result, the aggregated floc is coarsened. The raw water subjected to the above treatment is introduced into the coagulation sedimentation apparatus.

図1は、本発明の一実施形態に係る凝集沈殿装置の模式的断面図である。凝集沈殿装置1は、原水中の凝集フロックを沈降分離させる沈殿槽2と、沈殿槽2に取り囲まれ、凝集フロックを収集し濃縮する汚泥濃縮槽3と、を有している。沈殿槽2と汚泥濃縮槽3は円筒形状を有し、沈殿槽2と汚泥濃縮槽3の上下方向の中心線CLは一致している。沈殿槽2と汚泥濃縮槽3のいずれかまたは両方は多角形の形状を有していてもよい。凝集フロックが沈殿槽2から越水して汚泥濃縮槽3に収集されるように、汚泥濃縮槽3の頂部は沈殿槽2の頂部より低くされている。汚泥濃縮槽3の側面の下部に汚泥の取出しノズル4が設けられている。汚泥濃縮槽3の底面が沈殿槽2の底面より低い位置にあるため、汚泥の取出しノズル4と引き抜き配管32を沈殿槽2の外部に設けることができる。このため、沈殿槽2の内部を横断する汚泥取出しラインを設ける必要がない。沈殿槽2の側面の下部には汚泥の取出しノズル5が、頂部には処理水の取出しノズル6が設けられている。沈殿槽2の側壁7の外部に環状の受け槽8が設けられ、処理水の取出しノズル6は受け槽8に接続されている。側壁7を越水した処理水がいったん受け槽8に収集された後、取出しノズル6から排出されるため、沈殿槽2の最上部の処理水を効率よく収集することができる。   FIG. 1 is a schematic cross-sectional view of a coagulation sedimentation apparatus according to an embodiment of the present invention. The coagulation sedimentation apparatus 1 has a sedimentation tank 2 that settles and separates the aggregated floc in the raw water, and a sludge concentration tank 3 that is surrounded by the precipitation tank 2 and collects and concentrates the aggregated floc. The settling tank 2 and the sludge concentration tank 3 have a cylindrical shape, and the center lines CL in the vertical direction of the settling tank 2 and the sludge concentration tank 3 coincide with each other. Either or both of the sedimentation tank 2 and the sludge concentration tank 3 may have a polygonal shape. The top of the sludge concentration tank 3 is made lower than the top of the precipitation tank 2 so that the flocs floc overflow from the settling tank 2 and are collected in the sludge concentration tank 3. A sludge extraction nozzle 4 is provided at the lower part of the side surface of the sludge concentration tank 3. Since the bottom surface of the sludge concentration tank 3 is lower than the bottom surface of the sedimentation tank 2, the sludge extraction nozzle 4 and the extraction pipe 32 can be provided outside the sedimentation tank 2. For this reason, it is not necessary to provide the sludge extraction line which crosses the inside of the sedimentation tank 2. A sludge take-out nozzle 5 is provided at the lower part of the side surface of the settling tank 2 and a treated water take-out nozzle 6 is provided at the top. An annular receiving tank 8 is provided outside the side wall 7 of the settling tank 2, and the treated water take-out nozzle 6 is connected to the receiving tank 8. Since the treated water that has passed through the side wall 7 is once collected in the receiving tank 8 and then discharged from the take-out nozzle 6, the treated water at the top of the settling tank 2 can be collected efficiently.

沈殿槽2の内部には原水供給機構10が設けられている。原水供給機構10は、汚泥濃縮槽3の中心線CLと同軸の回転軸11と、回転軸11を取り囲み、回転軸11に沿って上下方向に延びる第1の配管部12と、第1の配管部12に接続され、汚泥濃縮槽3の上方を中心線CLから径方向外側且つ下側に延びる複数の第2の配管部13と、各第2の配管部13に接続され、それぞれの原水供給口15まで上下方向に延びる第3の配管部14と、を有している。回転軸11は汚泥濃縮槽3に挿入され、回転軸11の上部はモータ16に接続されている。回転軸11の下端は汚泥濃縮槽3の底板17に支持された軸受18で回転支持されている。第1の配管部12の上方は回転軸11に支持された原水導入部19となっている。第1の配管部12は回転軸11の外周面の一部を内包している。第1の配管部12は原水導入部19を介して回転軸11に支持されている。本実施形態では2つの第2の配管部13が180度の間隔で配置されているが、第2の配管部13の個数はこれに限定されず、沈殿槽2が大きい場合は3個以上の第2の配管部13を設けることもできる。複数の第2の配管部13を設けることで、原水を沈殿槽2に均一に供給することができる。第2の配管部13は一つだけでもよく、この場合、原水供給口15は一つだけ設けられる。原水供給口15は沈殿槽2の内部空間下部に開口し、原水を沈殿槽2に供給する。原水供給口15は沈殿槽2の底面2aと対向する下向きの開口であるが、斜め下向きの開口であってもよい。あるいは、第3の配管部14の端部をL字形状に形成し、原水供給口15から横向きの原水が吐出されるようにしてもよい。第1の配管部12は回転軸11に固定されている。この結果、原水供給機構10全体が中心線CLの周りを旋回ないし回転する。このため、万が一一部の第3の配管部14の原水供給口15が部分的または全体的に閉塞した場合も、原水供給機構10が回転しているため、原水を均等に分散することができる。   A raw water supply mechanism 10 is provided inside the sedimentation tank 2. The raw water supply mechanism 10 includes a rotation shaft 11 that is coaxial with the center line CL of the sludge concentration tank 3, a first piping portion 12 that surrounds the rotation shaft 11 and extends in the vertical direction along the rotation shaft 11, and a first piping. Connected to the part 12 and connected to each of the second pipe parts 13 and the plurality of second pipe parts 13 extending radially outward and downward from the center line CL above the sludge concentrating tank 3, and each raw water supply And a third pipe portion 14 extending in the vertical direction to the mouth 15. The rotating shaft 11 is inserted into the sludge concentration tank 3, and the upper portion of the rotating shaft 11 is connected to the motor 16. The lower end of the rotary shaft 11 is rotatably supported by a bearing 18 supported by the bottom plate 17 of the sludge concentration tank 3. Above the first piping part 12 is a raw water introduction part 19 supported by the rotary shaft 11. The first piping part 12 includes a part of the outer peripheral surface of the rotating shaft 11. The first piping part 12 is supported by the rotary shaft 11 via the raw water introduction part 19. In the present embodiment, the two second piping parts 13 are arranged at intervals of 180 degrees, but the number of the second piping parts 13 is not limited to this, and when the settling tank 2 is large, three or more. The 2nd piping part 13 can also be provided. By providing the plurality of second piping parts 13, raw water can be uniformly supplied to the sedimentation tank 2. Only one second piping part 13 may be provided. In this case, only one raw water supply port 15 is provided. The raw water supply port 15 opens to the lower part of the internal space of the settling tank 2 and supplies the raw water to the settling tank 2. The raw water supply port 15 is a downward opening facing the bottom surface 2a of the settling tank 2, but may be an obliquely downward opening. Or the edge part of the 3rd piping part 14 may be formed in L shape, and it may be made to discharge | emit horizontal raw water from the raw | natural water supply port 15. FIG. The first piping part 12 is fixed to the rotating shaft 11. As a result, the entire raw water supply mechanism 10 turns or rotates around the center line CL. For this reason, since the raw water supply mechanism 10 is rotating even if the raw water supply port 15 of a part of the third piping part 14 is partially or totally blocked, the raw water can be evenly dispersed. .

原水供給機構10の第1の配管部12から供給された原水は複数の第2の配管部13で分流し、第3の配管部14の原水供給口15から沈殿槽2に供給される。原水供給口15と沈殿槽2の底面2aとの間隔は小さいため、原水供給機構10から供給された原水は沈殿槽2の底面2aに当たり上昇流となる。沈殿槽2内の凝集フロックは重力による下向きの力と、原水供給口15から供給された原水の上昇流による上向きの力を受けて、沈殿槽2の内部を浮遊する。新たに供給された原水に含まれる凝集フロックは沈殿槽2の内部を浮遊する凝集フロックに捕捉され、合体する。これによって、凝集フロックの一部またはすべてが除去された処理水だけが上昇流となって沈殿槽2の上部に達する。   The raw water supplied from the first pipe part 12 of the raw water supply mechanism 10 is divided into a plurality of second pipe parts 13 and supplied to the sedimentation tank 2 from the raw water supply port 15 of the third pipe part 14. Since the gap between the raw water supply port 15 and the bottom surface 2a of the sedimentation tank 2 is small, the raw water supplied from the raw water supply mechanism 10 hits the bottom surface 2a of the sedimentation tank 2 and becomes an upward flow. The coagulation floc in the sedimentation tank 2 floats inside the sedimentation tank 2 by receiving a downward force due to gravity and an upward force due to the upward flow of the raw water supplied from the raw water supply port 15. Aggregated flocs contained in the newly supplied raw water are captured by the aggregated flocs floating inside the settling tank 2 and coalesced. Thereby, only the treated water from which part or all of the flocs floc has been removed becomes an upward flow and reaches the upper part of the settling tank 2.

この結果、沈殿槽2の下部に凝集フロックの層(スラッジブランケット51)が、上部にスラッジブランケット51から分離した処理水の層52が形成される。スラッジブランケット51の頂部界面は徐々に上昇していく。スラッジブランケット51の頂部界面が汚泥濃縮槽3の側壁の頂部に達すると、凝集フロックは汚泥濃縮槽3の側壁7を越水して汚泥濃縮槽3に収集される。以降、原水の通水中はスラッジブランケット51の界面から凝集フロックの越水が続き、スラッジブランケット51は一定の高さを保つ。スラッジブランケット51の上部では沈降速度が遅く細かな凝集フロックが浮遊しているため、細かな凝集フロックが汚泥濃縮槽3に越水し、沈降速度の高い大きな凝集フロックでスラッジブランケット51を形成することができる。これにより沈殿槽2の通水線速度を増加させることが可能となる。汚泥濃縮槽3は原水の上昇流がないため、凝集フロックは重力で汚泥濃縮槽3内を沈降して濃縮汚泥となる。濃縮汚泥は取出しノズル4から取り出される。   As a result, a layer of coagulated floc (sludge blanket 51) is formed at the bottom of the sedimentation tank 2, and a layer of treated water 52 separated from the sludge blanket 51 is formed at the top. The top interface of the sludge blanket 51 gradually rises. When the top interface of the sludge blanket 51 reaches the top of the side wall of the sludge concentration tank 3, the flocs floc flow over the side wall 7 of the sludge concentration tank 3 and are collected in the sludge concentration tank 3. Thereafter, the flow of the raw water continues to overflow the flocs flocs from the interface of the sludge blanket 51, and the sludge blanket 51 maintains a certain height. At the upper part of the sludge blanket 51, since the sedimentation speed is slow and fine flocculation flocs are floating, the fine flocculation flocs overflow the sludge concentration tank 3, and the sludge blanket 51 is formed with large flocculation flocs having a high sedimentation speed. Can do. Thereby, it becomes possible to increase the water transmission line speed of the settling tank 2. Since the sludge concentration tank 3 has no upward flow of raw water, the aggregated floc settles in the sludge concentration tank 3 by gravity and becomes concentrated sludge. The concentrated sludge is taken out from the take-out nozzle 4.

汚泥の取出しノズル4には汚泥取出しライン32が、汚泥の取出しノズル5には汚泥取出しライン31が接続されている。汚泥取出しライン32には第1の弁34が、汚泥取出しライン31には第2の弁33が設置されている。汚泥取出しライン31,32は合流し、その下流に汚泥引抜ポンプ35が設けられている。通常は汚泥の取出しノズル4から濃縮汚泥を引抜くため、第1の弁34を開き、第2の弁33を閉じる。沈殿槽2の汚泥は長期間滞留すると腐敗を生じ処理水の水質を悪化させることがあるため、定期的に第1の弁34を閉じ、第2の弁33を開いて、汚泥の取出しノズル5から汚泥を引抜くことが望ましい。この操作は沈殿槽2の汚泥が腐敗しない程度の間隔で行えば十分である。第1の弁34と第2の弁33を自動弁として、タイマーなどを用いて汚泥取出しライン31,32を切り替えることが望ましいが、沈殿槽2下部の汚泥の腐敗が頻繁に起こらない場合、第1の弁34と第2の弁33は手動弁でもよい。   A sludge extraction line 32 is connected to the sludge extraction nozzle 4, and a sludge extraction line 31 is connected to the sludge extraction nozzle 5. A first valve 34 is installed in the sludge extraction line 32, and a second valve 33 is installed in the sludge extraction line 31. The sludge take-out lines 31 and 32 merge, and a sludge extraction pump 35 is provided downstream thereof. Usually, in order to extract the concentrated sludge from the sludge take-out nozzle 4, the first valve 34 is opened and the second valve 33 is closed. If the sludge in the settling tank 2 stays for a long period of time, it may rot and deteriorate the quality of treated water. Therefore, the first valve 34 is periodically closed and the second valve 33 is opened to remove the sludge. It is desirable to extract sludge from It is sufficient if this operation is performed at intervals such that the sludge in the sedimentation tank 2 does not rot. It is desirable to switch the sludge extraction lines 31 and 32 using a timer or the like using the first valve 34 and the second valve 33 as automatic valves, but if the sludge at the bottom of the settling tank 2 does not rot frequently, The first valve 34 and the second valve 33 may be manual valves.

汚泥濃縮槽3の内部の回転軸11の側面には第1の攪拌翼26,27が設けられている。第1の攪拌翼26,27は汚泥濃縮槽3に堆積した濃縮度が高い汚泥を常時攪拌し、固着を防止する。特に汚泥濃縮槽3の底面の近傍に設けられた第1の攪拌翼27は底部に堆積した汚泥を攪拌するだけでなく掻き寄せる機能も有する。第1の攪拌翼27は、汚泥濃縮槽3の底面に堆積した汚泥を掻き寄せ、汚泥の取出しノズル4からの排出を容易にする。第1の攪拌翼26,27は回転軸11に固定された平板であり、攪拌及び掻き寄せが可能な限りその形状は限定されない。第1の攪拌翼26,27は鉛直面と平行でもよいし、非平行でもよい。本実施形態では第1の攪拌翼26,27は同じ構造を有している。第1の攪拌翼26,27は原水供給機構10に設けられているため、駆動のための動力源や動力の伝達機構を独立して設ける必要がない。   First stirring blades 26 and 27 are provided on the side surface of the rotating shaft 11 inside the sludge concentration tank 3. The first stirring blades 26 and 27 constantly agitate the highly concentrated sludge accumulated in the sludge concentration tank 3 to prevent sticking. In particular, the first stirring blade 27 provided in the vicinity of the bottom surface of the sludge concentration tank 3 not only stirs the sludge accumulated on the bottom but also has a function of scraping it. The first stirring blade 27 scrapes the sludge accumulated on the bottom surface of the sludge concentration tank 3 and facilitates the discharge of the sludge from the take-out nozzle 4. The first agitating blades 26 and 27 are flat plates fixed to the rotating shaft 11 and their shapes are not limited as long as the agitating and scraping are possible. The first stirring blades 26 and 27 may be parallel to the vertical plane or non-parallel. In the present embodiment, the first stirring blades 26 and 27 have the same structure. Since the first stirring blades 26 and 27 are provided in the raw water supply mechanism 10, it is not necessary to provide a power source for driving and a power transmission mechanism independently.

汚泥濃縮槽3を沈殿槽2の内側に同心配置することで次の利点が得られる。汚泥濃縮槽3では高濃度の汚泥が堆積するため、汚泥の固着や汚泥取出しラインの閉塞が起こりやすく、汚泥濃縮槽3に攪拌翼や汚泥掻き寄せ装置が必要となる。スラッジブランケットの下方に汚泥濃縮部が設けられている場合、凝集沈殿装置の停止時にスラッジブランケット内の凝集フロックが濃縮汚泥上に沈降し、汚泥の沈降濃縮が過度に促進され、汚泥取出しラインの閉塞や掻き寄せ装置のトルク異常を招くことがある。また、スラッジブランケットと汚泥濃縮部が上下配置されるため凝集沈殿装置が高くなりやすく、屋内設置が困難な場合がある。これに対して、本実施形態では汚泥濃縮槽3の上方にスラッジブランケット51が存在しないため、凝集沈殿装置1の停止時に汚泥濃縮槽3の汚泥の沈降濃縮が過度に促進されることがない。凝集沈殿装置1の高さは沈殿槽2の高さと汚泥濃縮槽3の沈殿槽2からの突出し高さで決定されるため、凝集沈殿装置1の高さを抑えることも容易である。さらに、沈殿槽2と汚泥濃縮槽3が壁で物理的に分離されるため、汚泥濃縮槽3から濃縮汚泥を引抜く際に、沈殿槽2のスラッジブランケット51に与える影響が小さく、処理水の水質の悪化が生じにくい。   By arranging the sludge concentration tank 3 concentrically inside the sedimentation tank 2, the following advantages are obtained. Since sludge with a high concentration accumulates in the sludge concentration tank 3, sludge is likely to stick and the sludge take-out line is blocked, and the agitation blade and the sludge scraping device are required for the sludge concentration tank 3. When a sludge concentrating unit is installed below the sludge blanket, the aggregated floc in the sludge blanket settles on the concentrated sludge when the coagulation settling machine is stopped, and sludge sedimentation and concentration are excessively promoted, and the sludge removal line is blocked. And torque of the scraping device may be caused. Moreover, since the sludge blanket and the sludge concentrating part are arranged one above the other, the coagulation sedimentation device tends to be high, and indoor installation may be difficult. On the other hand, in this embodiment, since the sludge blanket 51 does not exist above the sludge concentration tank 3, sedimentation concentration of sludge in the sludge concentration tank 3 is not excessively promoted when the coagulation sedimentation apparatus 1 is stopped. Since the height of the coagulation sedimentation apparatus 1 is determined by the height of the sedimentation tank 2 and the protruding height of the sludge concentration tank 3 from the sedimentation tank 2, it is easy to suppress the height of the coagulation sedimentation apparatus 1. Furthermore, since the sedimentation tank 2 and the sludge concentration tank 3 are physically separated by a wall, when the concentrated sludge is drawn out from the sludge concentration tank 3, the sludge blanket 51 of the sedimentation tank 2 has little influence on the treated water. Water quality is unlikely to deteriorate.

また、沈殿槽2と汚泥濃縮槽3を(同心配置ではなく)横方向に隣接配置する場合、原水供給機構10の駆動装置とは別に、汚泥濃縮槽の攪拌翼や汚泥掻き寄せ装置の駆動装置が必要となる。沈殿槽2と汚泥濃縮槽3を同心配置することで、原水供給機構10の回転軸11で汚泥濃縮槽3の第1の撹拌翼26,27を駆動することができるため、装置のコストの増加を抑制することができる。さらに、沈殿槽2の汚泥濃縮槽3に隣接する部分と、汚泥濃縮槽3から離れた部分でスラッジブランケットの高さに違いが生じ、これにより原水が沈殿槽2内を均一に流れず、スラッジブランケットが乱され処理水の水質が悪化する。本実施形態では汚泥濃縮槽3の周囲に沈殿槽2が設けられているため、沈殿槽2の全周から汚泥濃縮槽3に凝集フロックが均一に越流し、沈殿槽2のスラッジブランケット51の高さが均一に保たれる。   In addition, when the sedimentation tank 2 and the sludge concentration tank 3 are disposed adjacent to each other in the lateral direction (not concentrically), the agitation blades of the sludge concentration tank and the drive device of the sludge scraping device are separated from the drive device of the raw water supply mechanism 10. Is required. By arranging the sedimentation tank 2 and the sludge concentration tank 3 concentrically, the first stirring blades 26 and 27 of the sludge concentration tank 3 can be driven by the rotating shaft 11 of the raw water supply mechanism 10, which increases the cost of the apparatus. Can be suppressed. Further, the height of the sludge blanket is different between the portion adjacent to the sludge concentration tank 3 and the portion away from the sludge concentration tank 3, so that the raw water does not flow uniformly in the precipitation tank 2, and the sludge The blanket is disturbed and the quality of treated water deteriorates. In this embodiment, since the sedimentation tank 2 is provided around the sludge concentration tank 3, the flocs uniformly flow from the entire circumference of the sedimentation tank 2 to the sludge concentration tank 3, and the sludge blanket 51 of the sedimentation tank 2 is high. Is kept uniform.

沈殿槽2と汚泥濃縮槽3の合計面積が同じ条件で、汚泥濃縮槽3が沈殿槽2の内側にある場合と、沈殿槽2の外側にある場合とで汚泥濃縮槽3の幅を比較した場合、汚泥濃縮槽3を外側に配置した方が汚泥濃縮槽3の幅が小さくなるため、汚泥による閉塞が起こりやすくなる。幅の狭い汚泥濃縮槽3に閉塞防止のための撹拌翼を設置することも難しい。これを解決するためには汚泥濃縮槽3の幅を大きくする必要があり、設置面積の増加につながるため、汚泥濃縮槽3は沈殿槽2の内側に設置するのが好ましい。   When the total area of the sedimentation tank 2 and the sludge concentration tank 3 is the same, the width of the sludge concentration tank 3 was compared between the case where the sludge concentration tank 3 is inside the precipitation tank 2 and the case where it is outside the precipitation tank 2. In this case, since the width of the sludge concentration tank 3 is smaller when the sludge concentration tank 3 is arranged outside, the sludge is likely to be blocked by the sludge. It is also difficult to install a stirring blade for preventing clogging in the narrow sludge concentration tank 3. In order to solve this, it is necessary to increase the width of the sludge concentration tank 3, which leads to an increase in the installation area. Therefore, it is preferable to install the sludge concentration tank 3 inside the precipitation tank 2.

図2は本発明の第2の実施形態に係る凝集沈殿装置を、図3は第3の攪拌翼の構成を示している。例えばフッ素排水を対象とする場合、本実施形態では、原水はまずカルシウム反応槽と無機凝集反応槽に導入され、前述の処理を受けるが、高分子凝集剤反応槽は設けられず、高分子凝集剤は配管内に添加されるだけである。すなわち、高分子凝集剤を添加した原水の攪拌、また凝集反応は凝集沈殿装置1の上流側では行われず、原水供給機構10に設けられた第2及び第3の攪拌翼28,29で行われる。これによって凝集フロックの移送中の破壊を最小限に抑えることができる。   FIG. 2 shows a coagulation sedimentation apparatus according to the second embodiment of the present invention, and FIG. 3 shows the configuration of a third stirring blade. For example, when fluorine wastewater is targeted, in this embodiment, raw water is first introduced into a calcium reaction vessel and an inorganic agglomeration reaction vessel and subjected to the above-described treatment, but a polymer flocculant reaction vessel is not provided, and polymer agglomeration is performed. The agent is only added into the pipe. That is, the stirring of the raw water added with the polymer flocculant and the flocculation reaction are not performed on the upstream side of the coagulating sedimentation apparatus 1, but are performed by the second and third stirring blades 28 and 29 provided in the raw water supply mechanism 10. . This minimizes the breakage during the transfer of the coagulated flocs.

回転軸11の外周面の第1の配管部12で内包される部分には、原水を攪拌する第2の攪拌翼28が設けられている。第2の攪拌翼28は回転軸11の高さ方向に複数個設けられている。第2の攪拌翼28は原水を攪拌し、未反応の高分子凝集剤を均一に原水中に均一に分散させる。第2の攪拌翼28は鉛直面に対して傾斜した平板であるが、第1の攪拌翼26,27と同じ構造とすることもできる。第2の攪拌翼28は原水供給機構10に設けられているため、駆動のための動力源や動力の伝達機構を独立して設ける必要がない。   A second stirring blade 28 that stirs the raw water is provided in a portion of the outer peripheral surface of the rotating shaft 11 that is included in the first piping portion 12. A plurality of second stirring blades 28 are provided in the height direction of the rotating shaft 11. The second stirring blade 28 stirs the raw water and uniformly disperses the unreacted polymer flocculant in the raw water. The second stirring blade 28 is a flat plate inclined with respect to the vertical plane, but may have the same structure as the first stirring blades 26 and 27. Since the second stirring blade 28 is provided in the raw water supply mechanism 10, it is not necessary to provide a power source for driving and a power transmission mechanism independently.

原水供給機構10の第3の配管部14の外側側面には、原水を攪拌する第3の攪拌翼29が設けられている。第3の攪拌翼29は平板の形状を有し、180度の間隔で上下方向に複数個設けられている。第3の攪拌翼29は原水中の未反応の高分子凝集剤を攪拌し、沈殿槽2内に均一に分散させ、凝集フロックを形成させる。また沈殿槽2内が第3の撹拌翼29で撹拌されることにより、第3の攪拌翼29と凝集フロック、あるいは凝集フロック同士の衝突によって、凝集フロックが機械的に脱水され、より密度、沈降速度の高い凝集フロックが形成される。   A third stirring blade 29 that stirs the raw water is provided on the outer side surface of the third pipe portion 14 of the raw water supply mechanism 10. The third stirring blade 29 has a flat plate shape, and a plurality of third stirring blades 29 are provided in the vertical direction at intervals of 180 degrees. The third stirring blade 29 stirs the unreacted polymer flocculant in the raw water and disperses it uniformly in the precipitation tank 2 to form a floc floc. Further, the inside of the precipitation tank 2 is agitated by the third agitating blade 29, whereby the agglomerated floc is mechanically dehydrated by collision between the third agitating blade 29 and the agglomerated flocs or between the agglomerated flocs, resulting in higher density and sedimentation. Agglomerated flocs with high speed are formed.

また、未反応の高分子凝集剤はスラッジブランケット51中の微細フロックの再凝集を引き起こし、スラッジブランケット51を強固なものにし、処理水の水質を高める。第3の攪拌翼29は原水供給機構10に設けられているため、駆動のための動力源や動力の伝達機構を独立して設ける必要がない。   Further, the unreacted polymer flocculant causes re-aggregation of fine flocs in the sludge blanket 51, strengthens the sludge blanket 51, and improves the quality of treated water. Since the third stirring blade 29 is provided in the raw water supply mechanism 10, it is not necessary to provide a power source for driving and a power transmission mechanism independently.

本実施形態のように、沈殿槽2内で高分子凝集剤を添加した原水の攪拌、または凝集反応を行う場合、沈殿槽2の中心では撹拌周速が沈殿槽2の外側に比べて小さいために(実質的にゼロに近い)、締まった凝集フロックができにくく、沈殿槽2の中心部では軽い凝集フロックが多くなる。そのため、汚泥濃縮槽3を沈殿槽2の外側に配置した場合、沈殿槽2の中心部で形成された軽い凝集フロックが処理水中に流出し、清澄な処理水を得ることができない。しかしながら、汚泥濃縮槽3が沈殿槽2の中心に設置されている場合、中心軸に近い部分であっても周速を早くすることができ、更に濃縮汚泥を前段に戻す汚泥循環を行っている場合には、沈殿槽2の中心の汚泥濃縮槽3に吸い込まれるような流れが発生している。このため、沈殿槽2の中心部で軽い凝集フロックが形成されたとしても、軽い凝集フロックは汚泥濃縮槽3に吸い込まれやすいため、処理水中に流出することなく清澄な処理水を得ることができる。   When the raw water to which the polymer flocculant is added or the agglomeration reaction is performed in the precipitation tank 2 as in the present embodiment, the stirring peripheral speed is smaller at the center of the precipitation tank 2 than the outside of the precipitation tank 2. (Substantially close to zero), it is difficult to form a tight agglomeration floc and light agglomeration flocs increase in the center of the settling tank 2. Therefore, when the sludge concentration tank 3 is disposed outside the sedimentation tank 2, the light flocculated floc formed at the center of the sedimentation tank 2 flows out into the treated water, and clear treated water cannot be obtained. However, when the sludge concentration tank 3 is installed at the center of the sedimentation tank 2, the peripheral speed can be increased even in a portion close to the central axis, and sludge circulation is performed to return the concentrated sludge to the previous stage. In such a case, a flow that is sucked into the sludge concentration tank 3 at the center of the settling tank 2 is generated. For this reason, even if a light agglomeration floc is formed in the center of the sedimentation tank 2, the light agglomeration flock is easily sucked into the sludge concentration tank 3, so that clear treated water can be obtained without flowing out into the treated water. .

図4は第1の配管部の変形例を示す凝集沈殿装置の模式的断面図である。原水導入部19の下端は概ね水平なリング状の底板19aとされ、第1の配管部12は底板19aに接続されている。第1の配管部12が原水導入部19の側壁に接続されている構造と比べて、汚泥が原水導入部19の底部に堆積しにくいため、汚泥が第1の配管部12の入口を閉塞しにくくなる。第1の配管部12と第2の配管部13の上部を45°エルボで製作することで、第1の実施形態と比べて製作性(溶接性)がさらに向上する。また、第1の配管部12が上下方向に延びているため、第1の配管部12に接続される第2の配管部13の上端は原水導入部19から視認できる。高圧洗浄機、パイプホースクリーナーなどの配管洗浄器具を原水導入部19から第1の配管部12を通して第2の配管部13及び第3の配管部14に容易に挿入できるため、これらの配管部12,13,14の清掃が容易に行え、保守性が改善される。   FIG. 4 is a schematic cross-sectional view of a coagulation sedimentation apparatus showing a modification of the first piping section. The lower end of the raw water introduction portion 19 is a substantially horizontal ring-shaped bottom plate 19a, and the first piping portion 12 is connected to the bottom plate 19a. Compared with the structure in which the first piping part 12 is connected to the side wall of the raw water introduction part 19, sludge is less likely to accumulate on the bottom of the raw water introduction part 19, so that the sludge blocks the inlet of the first piping part 12. It becomes difficult. Manufacturability (weldability) is further improved by manufacturing the upper portions of the first piping portion 12 and the second piping portion 13 with a 45 ° elbow compared to the first embodiment. Further, since the first piping part 12 extends in the vertical direction, the upper end of the second piping part 13 connected to the first piping part 12 is visible from the raw water introduction part 19. Since pipe cleaning instruments such as a high-pressure cleaner and a pipe hose cleaner can be easily inserted from the raw water introduction part 19 through the first pipe part 12 into the second pipe part 13 and the third pipe part 14, these pipe parts 12 , 13, 14 can be easily cleaned, and maintainability is improved.

以上本発明をいくつかの実施形態によって説明したが、本発明はこれらの実施形態に限定されない。例えば、本実施形態では沈殿槽2の内側にある汚泥濃縮槽3の底面が沈殿槽2の底面より低い位置にされているが、沈殿槽2を汚泥濃縮槽3の内側に配置し、沈殿槽2の底面が汚泥濃縮槽3の底面より低い位置になるように構成してもよい。すなわち、この変形例は、原水中の凝集フロックを沈降分離させる沈殿槽と、凝集フロックを沈殿槽から越水させて収集し濃縮させる汚泥濃縮槽の一方である第1の槽と、第1の槽に取り囲まれた、沈殿槽と汚泥濃縮槽の他方である第2の槽と、第1の槽の側面に設けられ、第1の槽の底部に沈降した汚泥を取り出すための第1の取出しノズルと、第2の槽の側面に設けられ、第2の槽の底部に沈降した汚泥を取り出すための第2の取出しノズルと、を有している。そして、第2の槽の底部は第1の槽の底部より低く、第2の取出しノズルは第1の槽の底部より下方に位置している。この場合、原水供給機構10としては上述の分岐構造ではなく、中心線CLに沿って上下方向に延びる配管と、この配管から分岐する複数の供給配管で構成することができる。   As mentioned above, although this invention was demonstrated by some embodiment, this invention is not limited to these embodiment. For example, in this embodiment, the bottom surface of the sludge concentration tank 3 inside the sedimentation tank 2 is positioned lower than the bottom surface of the precipitation tank 2, but the sedimentation tank 2 is disposed inside the sludge concentration tank 3, and the sedimentation tank You may comprise so that the bottom face of 2 may become a position lower than the bottom face of the sludge concentration tank 3. FIG. That is, this modification includes a first tank that is one of a sedimentation tank that settles and separates the aggregated floc in the raw water, a sludge concentration tank that collects and concentrates the aggregated floc by overflowing the sedimentation tank, A second tank, which is the other of the settling tank and the sludge concentration tank, surrounded by the tank, and a first take-out for taking out the sludge that is provided on the side surface of the first tank and settles at the bottom of the first tank A nozzle, and a second take-out nozzle provided on a side surface of the second tank for taking out the sludge settled on the bottom of the second tank. And the bottom part of the 2nd tank is lower than the bottom part of the 1st tank, and the 2nd extraction nozzle is located below from the bottom part of the 1st tank. In this case, the raw water supply mechanism 10 can be configured by a pipe extending in the vertical direction along the center line CL and a plurality of supply pipes branched from the pipe, instead of the above-described branch structure.

1 凝集沈殿装置
2 沈殿槽
3 汚泥濃縮槽
10 原水供給機構
11 回転軸
12 第1の配管部
13 第2の配管部
14 第3の配管部
15 原水供給口
19 原水導入部
26,27 第1の攪拌翼
28 第2の攪拌翼
29 第3の攪拌翼
51 スラッジブランケット
CL 中心線
DESCRIPTION OF SYMBOLS 1 Coagulation sedimentation apparatus 2 Sedimentation tank 3 Sludge concentration tank 10 Raw water supply mechanism 11 Rotating shaft 12 1st piping part 13 2nd piping part 14 3rd piping part 15 Raw water supply port 19 Raw water introduction part 26,27 1st Stirring blade 28 Second stirring blade 29 Third stirring blade 51 Sludge blanket CL Center line

Claims (7)

原水中の凝集フロックを沈降分離させる沈殿槽と、
前記沈殿槽に取り囲まれ、前記凝集フロックを前記沈殿槽から越水させて収集し濃縮させる汚泥濃縮槽と、
前記汚泥濃縮槽を通る中心線を有し、前記中心線の周りを回転し、前記原水を前記沈殿槽に供給する原水供給機構と、を有し、
前記原水供給機構は、前記中心線上に位置し前記原水が導入される原水導入部と、前記沈殿槽の内部空間下部に開口し前記原水を前記沈殿槽に供給する原水供給口と、前記原水導入部と前記原水供給口とに連通し、前記汚泥濃縮槽の上方を前記中心線から離れる方向に延びる配管部と、を有する凝集沈殿装置。
A sedimentation tank that settles and separates the flocs in the raw water;
A sludge concentrating tank surrounded by the settling tank and collecting and concentrating the flocs flocs from the settling tank;
Having a center line passing through the sludge concentration tank, rotating around the center line, and having a raw water supply mechanism for supplying the raw water to the settling tank,
The raw water supply mechanism includes a raw water introduction part that is located on the center line and into which the raw water is introduced, a raw water supply port that opens to a lower inner space of the settling tank and supplies the raw water to the settling tank, and the raw water introduction A coagulation sedimentation apparatus comprising: a piping section that communicates with the raw water supply port and extends above the sludge concentration tank in a direction away from the center line.
前記原水供給機構は、前記中心線と同軸の回転軸と、前記回転軸に固定され、前記原水導入部に接続された第1の配管部と、前記第1の配管部に接続され、前記汚泥濃縮槽の上方を前記中心線から離れる方向に延びる少なくとも一つの第2の配管部と、前記第2の配管部に接続され、前記原水供給口を備える第3の配管部と、を有する、請求項1に記載の凝集沈殿装置。   The raw water supply mechanism includes a rotation shaft coaxial with the center line, a first pipe portion fixed to the rotation shaft and connected to the raw water introduction portion, connected to the first piping portion, and the sludge It has at least 1 2nd piping part extended in the direction away from the said centerline above a concentration tank, and a 3rd piping part connected to the said 2nd piping part and provided with the said raw | natural water supply port. Item 2. The coagulation sedimentation apparatus according to Item 1. 前記原水供給機構の前記第3の配管部の外周面に、前記原水を攪拌する第3の攪拌翼が設けられている、請求項2に記載の凝集沈殿装置。   The coagulation sedimentation apparatus of Claim 2 with which the 3rd stirring blade which stirs the said raw | natural water is provided in the outer peripheral surface of the said 3rd piping part of the said raw | natural water supply mechanism. 前記回転軸は前記汚泥濃縮槽の内部を延びており、前記回転軸の外周面の前記汚泥濃縮槽の内部に位置する部分に、前記汚泥濃縮槽の汚泥を攪拌ないし掻き寄せる第1の攪拌翼が設けられている、請求項2または3に記載の凝集沈殿装置。   The rotating shaft extends inside the sludge concentrating tank, and a first stirring blade that stirs or scrapes the sludge in the sludge concentrating tank on a portion of the outer peripheral surface of the rotating shaft located inside the sludge concentrating tank. The coagulation sedimentation apparatus of Claim 2 or 3 provided with these. 前記第1の配管部が前記回転軸の外周面の一部を内包するように前記回転軸に支持され、前記回転軸の前記外周面の、前記第1の配管部に内包される部分に、前記原水を攪拌する第2の攪拌翼が設けられている、請求項4に記載の凝集沈殿装置。   The first piping part is supported by the rotating shaft so as to include a part of the outer peripheral surface of the rotating shaft, and the outer peripheral surface of the rotating shaft is included in the first piping part. The coagulation sedimentation apparatus of Claim 4 with which the 2nd stirring blade which stirs the said raw | natural water is provided. 前記第1の配管部は前記原水導入部の底部に接続され、且つ上下方向に延びている、請求項2から5のいずれか1項に記載の凝集沈殿装置。   The coagulation sedimentation apparatus according to any one of claims 2 to 5, wherein the first pipe part is connected to a bottom part of the raw water introduction part and extends in a vertical direction. 原水中の凝集フロックを沈降分離させる沈殿槽と、前記凝集フロックを前記沈殿槽から越水させて収集し濃縮させる汚泥濃縮槽の一方である第1の槽と、前記第1の槽に取り囲まれた、前記沈殿槽と前記汚泥濃縮槽の他方である第2の槽と、前記第1の槽の側面に設けられ、前記第1の槽の底部に沈降した汚泥を取り出すための第1の取出しノズルと、前記第2の槽の側面に設けられ、前記第2の槽の底部に沈降した汚泥を取り出すための第2の取出しノズルと、を有し、
前記第2の槽の底部は前記第1の槽の底部より低く、前記第2の取出しノズルは前記第1の槽の底部より下方に位置している凝集沈殿装置。
Surrounded by a first tank that is one of a sedimentation tank that settles and separates the aggregated floc in the raw water, a sludge concentration tank that collects and concentrates the aggregated floc by overflowing the sedimentation tank, and the first tank. In addition, a second tank that is the other of the settling tank and the sludge concentration tank, and a first takeout for taking out the sludge that is provided on the side surface of the first tank and settles at the bottom of the first tank. A nozzle, and a second take-out nozzle provided on a side surface of the second tank for taking out the sludge settled on the bottom of the second tank,
The bottom of the second tank is lower than the bottom of the first tank, and the second take-out nozzle is located below the bottom of the first tank.
JP2018029278A 2017-02-24 2018-02-22 Coagulation sedimentation device Active JP7045881B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017032938 2017-02-24
JP2017032938 2017-02-24

Publications (2)

Publication Number Publication Date
JP2018140389A true JP2018140389A (en) 2018-09-13
JP7045881B2 JP7045881B2 (en) 2022-04-01

Family

ID=63526185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018029278A Active JP7045881B2 (en) 2017-02-24 2018-02-22 Coagulation sedimentation device

Country Status (1)

Country Link
JP (1) JP7045881B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157284A (en) * 2019-03-28 2020-10-01 住友重機械エンバイロメント株式会社 Coagulation/precipitation treatment apparatus, coagulation/precipitation treatment system and operational method for coagulation/precipitation treatment apparatus
JP2020203264A (en) * 2019-06-19 2020-12-24 オルガノ株式会社 Water treatment method and water treatment device
JP2020203263A (en) * 2019-06-19 2020-12-24 オルガノ株式会社 Water treatment method and water treatment device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189008A (en) * 1982-04-30 1983-11-04 Chiyoda Chem Eng & Constr Co Ltd Apparatus for removing turbidity of water
JPS63176503U (en) * 1987-01-14 1988-11-16
JPH05293349A (en) * 1992-04-16 1993-11-09 Japan Organo Co Ltd Slow and rapid agitating tank
JPH09168730A (en) * 1995-12-20 1997-06-30 Hitachi Ltd Agitator
JP2004358313A (en) * 2003-06-03 2004-12-24 Ebara Corp Flocculating sedimentation method and device
WO2008120704A1 (en) * 2007-03-30 2008-10-09 Kurita Water Industries Ltd. Fluorine-containing wastewater treating apparatus and treating method
JP2010184179A (en) * 2009-02-10 2010-08-26 Japan Organo Co Ltd Coagulation sedimentation equipment
JP2010274199A (en) * 2009-05-28 2010-12-09 Sumitomo Heavy Industries Environment Co Ltd Coagulation sedimentation apparatus
JP2012125716A (en) * 2010-12-16 2012-07-05 Japan Organo Co Ltd Flocculation sedimentation apparatus
JP2013128903A (en) * 2011-12-22 2013-07-04 Japan Organo Co Ltd Coagulation-sedimentation apparatus
JP2015181975A (en) * 2014-03-20 2015-10-22 住友重機械エンバイロメント株式会社 Flocculation and sedimentation tank and flocculation and sedimentation system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5293349B2 (en) 2009-03-31 2013-09-18 富士電機株式会社 vending machine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189008A (en) * 1982-04-30 1983-11-04 Chiyoda Chem Eng & Constr Co Ltd Apparatus for removing turbidity of water
JPS63176503U (en) * 1987-01-14 1988-11-16
JPH05293349A (en) * 1992-04-16 1993-11-09 Japan Organo Co Ltd Slow and rapid agitating tank
JPH09168730A (en) * 1995-12-20 1997-06-30 Hitachi Ltd Agitator
JP2004358313A (en) * 2003-06-03 2004-12-24 Ebara Corp Flocculating sedimentation method and device
WO2008120704A1 (en) * 2007-03-30 2008-10-09 Kurita Water Industries Ltd. Fluorine-containing wastewater treating apparatus and treating method
JP2010184179A (en) * 2009-02-10 2010-08-26 Japan Organo Co Ltd Coagulation sedimentation equipment
JP2010274199A (en) * 2009-05-28 2010-12-09 Sumitomo Heavy Industries Environment Co Ltd Coagulation sedimentation apparatus
JP2012125716A (en) * 2010-12-16 2012-07-05 Japan Organo Co Ltd Flocculation sedimentation apparatus
JP2013128903A (en) * 2011-12-22 2013-07-04 Japan Organo Co Ltd Coagulation-sedimentation apparatus
JP2015181975A (en) * 2014-03-20 2015-10-22 住友重機械エンバイロメント株式会社 Flocculation and sedimentation tank and flocculation and sedimentation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157284A (en) * 2019-03-28 2020-10-01 住友重機械エンバイロメント株式会社 Coagulation/precipitation treatment apparatus, coagulation/precipitation treatment system and operational method for coagulation/precipitation treatment apparatus
JP2020203264A (en) * 2019-06-19 2020-12-24 オルガノ株式会社 Water treatment method and water treatment device
JP2020203263A (en) * 2019-06-19 2020-12-24 オルガノ株式会社 Water treatment method and water treatment device
JP7344017B2 (en) 2019-06-19 2023-09-13 オルガノ株式会社 Water treatment method and water treatment equipment
JP7344018B2 (en) 2019-06-19 2023-09-13 オルガノ株式会社 Water treatment method and water treatment equipment

Also Published As

Publication number Publication date
JP7045881B2 (en) 2022-04-01

Similar Documents

Publication Publication Date Title
CN110382074B (en) Flocculation and sedimentation device
US8715498B2 (en) System and apparatus for treating well flow-back and produced water or other wastewater
JP5085609B2 (en) Coagulation sedimentation equipment
JP2018140389A (en) Coagulator
CN108706770A (en) A kind of industrial waste water integrated water purification apparatus of steel plant
JP2013078715A (en) Flocculation and sedimentation apparatus
KR101964830B1 (en) Water treatment apparatus
WO2018155524A1 (en) Flocculation device
KR100946402B1 (en) High speed coagulation sedimentation system
KR101020238B1 (en) Apparatus for treating wastewater using nano air flotation and method thereof
KR101145049B1 (en) A processing apparatus for sewage and waste water treatment
JP4651052B2 (en) Sludge separation apparatus and sludge separation method
KR101087502B1 (en) Apparatus for integral water treatment
JP5713793B2 (en) Coagulation sedimentation equipment
JP2012045498A (en) Concentrator
KR100844503B1 (en) Method and apparatus for treating wastewater
CN208632262U (en) A kind of industrial waste water integrated water purification apparatus of steel plant
KR100647716B1 (en) Flocculation and sedimentation combined device for water treatment
KR100753874B1 (en) Flocculator having a scum discharging part
JP6640837B2 (en) Water treatment device and water treatment method
KR101552506B1 (en) Apparatus for Concentrating Microorganism Sludge
JP7339726B2 (en) Renewal method of water treatment tank
JP2018140381A (en) Coagulator
CN208120872U (en) A kind of effluent treatment plant
JP2001038105A (en) Reaction settling tank for waste water treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220322

R150 Certificate of patent or registration of utility model

Ref document number: 7045881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150