JP2018123993A - ボイラシステム、および、ボイラシステムの運転方法 - Google Patents

ボイラシステム、および、ボイラシステムの運転方法 Download PDF

Info

Publication number
JP2018123993A
JP2018123993A JP2017015014A JP2017015014A JP2018123993A JP 2018123993 A JP2018123993 A JP 2018123993A JP 2017015014 A JP2017015014 A JP 2017015014A JP 2017015014 A JP2017015014 A JP 2017015014A JP 2018123993 A JP2018123993 A JP 2018123993A
Authority
JP
Japan
Prior art keywords
temperature
opening degree
air
cold air
boiler system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017015014A
Other languages
English (en)
Other versions
JP6853053B2 (ja
Inventor
佑亮 金村
Yusuke Kanamura
佑亮 金村
将時 八原
Masatoki Yahara
将時 八原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2017015014A priority Critical patent/JP6853053B2/ja
Publication of JP2018123993A publication Critical patent/JP2018123993A/ja
Application granted granted Critical
Publication of JP6853053B2 publication Critical patent/JP6853053B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Abstract

【課題】ボイラ効率を向上しつつ、コストの低減が可能なボイラシステムを提供する。【解決手段】ボイラシステムは、搬送用空気(一次空気)を供給するための搬送用空気供給ラインと、排ガス排出ラインと、排ガス排出ラインを流れる排ガスによって、搬送用空気供給ラインを流れる搬送用空気を予熱するための空気予熱器と、搬送用空気供給ラインにおける空気予熱器の上流側と下流側とを接続する、搬送用空気が空気予熱器を迂回して流れるための迂回ラインと、迂回ラインに設けられた、迂回ラインを流れる搬送用空気の流量を調整可能な冷空気量調整手段と、搬送用空気供給ラインに設けられたミル装置と、ミル装置の出口温度あるいは入口温度の少なくとも一方の温度を検出する温度検出手段と、を備え、冷空気量調整手段の開度は、温度検出手段により検出される温度が所定の温度範囲にある正常運転時の場合には、所定の中間開度に固定される。【選択図】 図1

Description

本開示は、ボイラを備えたボイラシステムに関し、特に、燃料を乾燥および搬送するための1次空気(搬送用空気)の温度調整に関する。
例えば石炭を燃料とする石炭焚きボイラを備えるボイラシステムは、石炭を粉砕して微粉炭等の微粉を得るためのミル装置を備えており、ミル装置で生成された微粉燃料は、ミル装置に供給される一次空気(搬送用空気)により微粉炭管を介してボイラ(バーナ)に搬送される。石炭には水分が含まれており乾燥が不十分であった場合において、搬送途中で水分凝縮が生じた場合には、微粉炭管への微粉炭の固着、詰まりを引き起こしたり、燃焼性能へ影響を及ぼす可能性がある。このため、従来から、ミル装置に導入する一次空気を、ボイラの排ガスの熱を利用した空気予熱器(エアヒータ)で予め加熱(予熱)し、この予熱された空気によって燃料を乾燥させている。より具体的には、ミル装置に一次空気を供給するダクトにおいて、空気予熱器で予熱される一次空気(熱空気)の流量を調整する熱空気ダンパと、空気予熱器をバイパスし、予熱されない一次空気(冷空気)の流量を調整する冷空気ダンパの各々の開度制御により、熱空気と冷空気の流量割合を調整し、それらを混合することで所要温度となった一次空気をミル装置に供給する(例えば、特許文献1〜3参照)。なお、石炭中の水分量については炭種により異なっており、一般的には、水分が多い炭種ほどミル装置に供給される一次空気温度は高くなる。
従来、上述した冷空気ダンパおよび熱空気ダンパの各々の開度制御は、一次空気による石炭の乾燥が適切に行われるように、ミル装置の出口または入口における一次空気の温度が一定となるのを目標に行われていた(例えば、特許文献1〜2)。例えば特許文献1では、一次空気予熱器における熱交換率を向上するために、冷空気ダンパを全閉に近いある値にして冷空気の流量を少なくした上で、ミル装置の出口温度が一定となるのを目標に各々のダンパの開度を制御する。その結果、冷空気ダンパの開度が上記の全閉に近い値よりも大きい場合には、ミル装置に供給される一次空気の温度を低下させるべく、一次空気予熱器へ流入する排ガス量を制御するガスダンパの開度を絞る。つまり、一次空気予熱器に流入する排ガスの量を少なくすることで、排ガスからのエネルギーの回収量を低減する。逆に、冷空気ダンパの開度が上記の全閉に近い値よりも小さい場合には、ミル装置に供給される一次空気の温度を増大させるべく、一次空気予熱器のガスダンパの開度を大きくする。これによって、一次空気予熱器によって一旦予熱した一次空気(熱空気)を冷空気で冷却するのを抑制できることから、一次空気予熱器における熱交換効率を向上し、排ガスの熱量を有効に利用することができるとされる。
特開昭60−105819号公報 実開昭63−86545号公報 特開平10−281453号公報
ミル装置の出口や入口における一次空気の温度(ミル出口温度、ミル入口温度)は、上述した石炭などの燃料中の水分量や、ミル装置への燃料の供給量、一次空気の供給量によって、変動する。このため、特許文献1のような、ミル出口温度が一定となるようにミル装置へ供給する一次空気の温度を調整する方法では、例えば、燃料の種類が多岐にわたる場合には、上記の冷空気ダンパや熱空気ダンパ、ガスダンパの開度制御のみならず、ミル出口温度の設定値(目標値)を燃料の種類や季節に応じて変更する必要が生じるなど、ボイラシステムの運転を複雑化させる一因ともなる。また、冬場などの温度が低い環境において、燃料中の水分量が最も多い種類の燃料を用いるときに冷空気の流量の割合は最小になるが、この条件においても冷空気の流量が冷空気ダンパの調整範囲内となるようにした場合、水分量の少ない燃料では冷空気の流量が多くなり、空気予熱器を通過する一次空気(熱空気)の流量が低下するため、空気予熱器による熱交換量が低下し、空気予熱器出口ガス温度を低減させることが難しく、熱損失の増加につながる。また、こういった、燃料中の水分量の最小、最大の条件の全てにおいて確実にミル出口温度が一定となるようにシステム設計するのは、広範な条件に対応可能な設備が必要になるなど、設備コストや運転コストの増加の一因ともなる。
上述の事情に鑑みて、本発明の少なくとも一実施形態は、ボイラ効率を向上しつつ、コストの低減が可能なボイラシステムを提供することを目的とする。
(1)本発明の少なくとも一実施形態に係るボイラシステムは、
ボイラに燃料を搬送するための搬送用空気を供給するための搬送用空気供給ラインと、
前記ボイラの内部における前記燃料の燃焼によって生じた排ガスを外部へ排出するための排ガス排出ラインと、
前記搬送用空気供給ラインおよび前記排ガス排出ラインの各々に接続され、前記排ガス排出ラインを流れる前記排ガスによって、前記搬送用空気供給ラインを流れる前記搬送用空気を予熱するための空気予熱器と、
前記搬送用空気供給ラインにおける前記空気予熱器の上流側と下流側とを接続する、前記搬送用空気が前記空気予熱器を迂回して流れるための迂回ラインと、
前記迂回ラインに設けられた、前記迂回ラインを流れる前記搬送用空気の流量を調整可能な冷空気量調整手段と、
前記搬送用空気供給ラインに設けられた、前記ボイラに供給する前記燃料を粉砕するためのミル装置と、
前記ミル装置の出口温度あるいは入口温度の少なくとも一方の温度を検出する温度検出手段と、を備え、
前記冷空気量調整手段の開度は、前記温度検出手段により検出される前記温度が所定の温度範囲にある正常運転時の場合には、所定の中間開度に固定される。
上記(1)の構成によれば、正常運転時には、迂回ラインに設けられた冷空気量調整手段の開度が所定の中間開度に固定される。この正常運転時は、例えば、ミル装置において燃料(石炭など)が過度に高温になることにより生じる発火や、搬送用空気供給ラインのミル装置の下流において燃料及び搬送用空気が過度に低温であることにより生じる水分の凝縮などといった、ボイラシステムの安全性に関わる異常が生じるおそれがないと判定される正常な運転時となる。これによって、例えばミル装置の出口温度が設定値となるように燃料中の水分量や燃料供給量に応じて冷空気ダンパや熱空気ダンパ、ガスダンパの開度を制御するような従来の方法に比べて、ボイラシステムの構成およびその運転を簡素化することができる。
また、上記の正常運転時に固定される所定の中間開度を、例えば全開時の30%以下などといった閉側にするほど、搬送用空気(一次空気)のうち空気予熱器を通過する熱空気の割合を高くすることができ、空気予熱器における熱交換量を増加させることができる。
したがって、ボイラ効率の向上、およびこれに伴う燃料コストの低減を図りつつ、ボイラシステムの構成および運転の簡素化によるコストの低減を図ることができる。
(2)幾つかの実施形態では、上記(1)の構成において、
前記所定の中間開度は、全開時の開度の30%以下で、かつ、0%よりも大きい。
上記(2)の構成によれば、ボイラシステムの正常運転時には、冷空気量調整手段は30%以下、かつ、0%よりも大きい範囲となる閉側の所定の中間開度(α)に固定される(0%<α≦30%)。所定の中間開度が小さいほど迂回ラインを流れる冷空気の流量は少なくなる。よって、ボイラシステムの正常運転時において、上記の所定の中間開度を30%以下(α≠0)に固定することによって冷空気の流量を低量に維持することで、上述したように、ボイラ効率の向上および燃料コストの低減を図ることができる。
また、上記の構成によれば、所定の中間開度(α)と全開(100%)との間に設けられる開度変更可能な開側のレンジ(100−α%)は70%以上になる。したがって、ボイラシステムの高温側での異常運転時には、冷空気量調整手段の開度を開側に大きく変更することができ、変更後の開度に応じて増やされる冷空気による搬送用空気の低温化を通して、ミル装置の入口及び/又は出口における温度を適切に制御することができる。さらに、冷空気量調整手段の開度を閉側にも0〜α(0%<α≦30%)の範囲で変更できる。このため、ボイラシステムの低温側での異常運転時には、冷空気量調整手段の開度を閉側に変更することで、変更後の開度に応じて減少される冷空気に伴って増大する熱空気による搬送用空気の高温化を通して、ミル装置の入口及び/又は出口における温度を適切に制御することができる。
(3)幾つかの実施形態では、上記(1)〜(2)の構成において、
前記温度検出手段により検出された前記温度が前記温度範囲を外れた場合に、前記冷空気量調整手段の開度を前記所定の中間開度から変更する制御装置を、さらに備える。
上記(3)の構成によれば、制御装置は、ミル装置の出口温度または入口温度の少なくとも一方の温度が正常運転時を判定可能な上記の所定の温度範囲を外れた場合を、ボイラシステムの安全性に関わる異常運転時にあると判定する。また、制御装置は、異常運転時にあると判定した場合には、ボイラシステムの運転状態が正常となるように、所定の中間開度に固定されていた冷空気量調整手段の開度を、状況に応じて開側あるいは閉側へ自動で変更する。これによって、冷空気の流量が増大あるいは減少されるので、ミル装置へ供給される搬送用空気の温度を低温化あるいは高温化することができる。したがって、このように搬送用空気の温度調整が行われ、その結果、ミル装置の出口温度及び/又は入口温度が正常運転時の温度範囲に入るように調整されるので、ボイラシステムを異常運転状態から正常運転状態へ復帰させることができ、ボイラシステムの安全性を確保できる。
(4)幾つかの実施形態では、上記(3)の構成において、
前記制御装置は、前記温度が前記温度範囲の上限を超えた場合には、前記冷空気量調整手段の開度を前記所定の中間開度よりも大きくする。
上記(4)の構成によれば、制御装置は、正常運転時を判定するための温度範囲の上限との比較に基づいて、燃料の発火防止等の観点から高温側の異常運転時を判断すると共に、その上限を超えた場合には、正常運転時において固定されている冷空気量調整手段の開度を開側へ変更する。これによって、冷空気の流量を増大させることができるので、ミル装置へ供給する搬送用空気の温度を低温化させることができ、ミル装置の出口温度および/または入口温度を正常運転時の温度範囲まで低下させることができる。
(5)幾つかの実施形態では、上記(3)〜(4)の構成において、
前記制御装置は、前記温度が前記温度範囲の下限を下回った場合には、前記冷空気量調整手段の開度を前記所定の中間開度よりも小さくする。
上記(5)の構成によれば、制御装置は、正常運転時を判定するための温度範囲の下限との比較に基づいて、ミル装置の下流での搬送用空気中に含まれる水蒸気の凝縮防止等の観点から低温側の異常運転時を判断すると共に、その下限を下回った場合には、正常運転時において固定されている冷空気量調整手段の開度を閉側へ変更する。これによって、冷空気の流量を減少させることができるので、これに伴って増大する熱空気によりミル装置へ供給する搬送用空気の温度を高温化させることができ、ミル装置の出口温度および/または入口温度を正常運転時の温度範囲まで上昇させることができる。
(6)幾つかの実施形態では、上記(5)の構成において、
前記搬送用空気供給ラインに設けられた、前記ミル装置に供給される前記搬送用空気の流量を調整する搬送用空気量調整手段を、さらに備え、
前記制御装置は、前記冷空気量調整手段の開度が前記所定の中間開度よりも小さい開度である下限開度になった場合に、前記搬送用空気量調整手段を用いて前記搬送用空気の流量を増大する。
上記(6)の構成によれば、冷空気量調整手段を限界(下限開度)まで閉じても、ミル装置における温度が正常運転時の温度範囲に入らないような場合には、ボイラに供給する燃料の量に応じて決められる搬送用空気の量を増大させる。このように、搬送用空気量調整手段によって、空気予熱器を流れる搬送用空気の総量を増大させることによって、空気予熱器により予熱された搬送用空気(熱空気)をミル装置に、より多く供給することができ、ミル装置下流の搬送用空気の温度をより確実に、正常運転時の温度範囲の下限以上に高温化することができる。
(7)幾つかの実施形態では、上記(1)〜(6)の構成において、
前記ボイラに燃焼用空気を供給するための燃焼用空気供給ラインを、さらに備え、
前記燃焼用空気供給ラインは前記空気予熱器に接続されており、
前記空気予熱器は、前記排ガス排出ラインを流れる高温の前記排ガスによって、前記搬送用空気供給ラインを流れる前記搬送用空気および前記燃焼用空気供給ラインを流れる前記燃焼用空気を同時に予熱する。
上記(7)の構成によれば、搬送用空気(一次空気)および燃焼用空気(二次空気)の両方を一か所で同時に予熱するような空気予熱器において、ボイラシステムのボイラ効率を向上させることができる。
(8)幾つかの実施形態では、上記(1)〜(7)の構成において、
前記冷空気量調整手段の開度は、前記正常運転時の場合には、前記ボイラが部分負荷で運転されている場合にも、前記所定の中間開度に固定される。
上記(8)の構成によれば、ボイラの運転負荷にかかわらず、ボイラシステムのボイラ効率を向上させることができる。
(9)本発明の少なくとも一実施形態に係るボイラシステムの運転方法は、
上記(1)〜(8)のいずれか1項に記載のボイラシステムの運転方法であって、
ミル装置の出口温度あるいは入口温度の少なくとも一方の温度を取得するミル温度取得ステップと、
前記ミル温度取得ステップで取得した前記温度が所定の温度範囲にあるか否かによって、前記ボイラシステムが正常運転時であるか否かを判定する正常性判定ステップと、
前記正常性判定ステップによって前記正常運転時が判定された場合に、搬送用空気供給ラインを流れる搬送用空気を予熱する空気予熱器を迂回して前記搬送用空気が流れるための迂回ラインに設けられた冷空気量調整手段であって、ボイラシステムが正常運転時の場合に所定の中間開度に固定される前記冷空気量調整手段の開度を、前記所定の中間開度のまま維持する中間開度維持ステップと、を備える。
上記(9)の構成によれば、上記(1)と同様の効果を奏することができる。
(10)幾つかの実施形態では、上記(9)の構成において、
前記所定の中間開度は全開時の開度の30%以下で、かつ、0%よりも大きい。
上記(10)の構成によれば、上記(2)と同様の効果を奏することができる。
(11)幾つかの実施形態では、上記(9)〜(10)の構成において、
前記温度が前記温度範囲の上限を超えた場合には、前記冷空気量調整手段の開度を前記所定の中間開度よりも大きくする開度増大ステップを、さらに備える。
上記(11)の構成によれば、上記(4)と同様の効果を奏することができる。
(12)幾つかの実施形態では、上記(9)〜(11)の構成において、
前記制御装置は、前記温度が前記温度範囲の下限を下回った場合には、前記冷空気量調整手段の開度を前記所定の中間開度よりも小さくする開度絞りステップを、さらに備える。
上記(12)の構成によれば、上記(5)と同様の効果を奏することができる。
(13)幾つかの実施形態では、上記(12)の構成において、
前記冷空気量調整手段の開度が前記所定の中間開度よりも小さい開度である下限開度になった場合に、前記搬送用空気供給ラインに設けられた、前記ミル装置に供給される前記搬送用空気の流量を調整する搬送用空気量調整手段を用いて前記搬送用空気の流量を増大する搬送用空気増大ステップを、さらに備える。
上記(13)の構成によれば、上記(6)と同様の効果を奏することができる。
本発明の少なくとも一実施形態によれば、ボイラ効率を向上しつつ、コストの低減が可能なボイラシステムが提供される。
本発明の一実施形態にかかるボイラシステムの概略図である。 本発明の一実施形態にかかるボイラシステムの運転方法を示すフロー図である。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
図1は、本発明の一実施形態にかかるボイラシステム1の概略図である。図1に示されるように、ボイラシステム1はボイラ2を備えたシステムであり、図1に示されるように、ボイラ2に接続される排ガス排出ラインLeおよび搬送用空気供給ラインL1と、空気予熱器3と、迂回ラインLbと、冷空気量調整手段4と、ミル装置5と、温度検出手段52と、を備える。なお、図1に示される実施形態では、ボイラ2は、例えば石炭を燃料Fとする石炭焚きボイラであるが、他の幾つかの実施形態では、ボイラ2は、例えばバイオマス燃料など、石炭以外の固体燃料を燃料Fとするボイラ2であっても良い。以下では、石炭焚きボイラを備えるボイラシステム1を例に説明をする。
図1に示されるように、ボイラシステム1においてボイラ2には、ボイラ2に燃料Fを搬送するための搬送用空気G1(一次空気)を供給するための搬送用空気供給ラインL1と、燃料Fを燃焼するための燃焼用空気G2(二次空気)をボイラ2に供給するための燃焼用空気供給ラインL2と、ボイラ2の内部における燃料Fの燃焼によって生じた排ガスGeを外部(システム外)へ排出するための排ガス排出ラインLeといったダクトがそれぞれ接続される。搬送用空気供給ラインL1には一次空気送風機81(PAF:Primary Air Fan)が設置されており、一次空気送風機81により搬送用空気G1はボイラ2に向けて送風される。他方、燃焼用空気供給ラインL2には押込送風機82(FDF:Forced Draft Fan)が設置されており、押込送風機82により燃焼用空気G2はボイラ2に向けて送風される。図1に示される実施形態では、一次空気送風機81は、搬送用空気供給ラインL1における迂回ラインLbの分岐位置よりも上流側に設置されている。
そして、ボイラ2は、搬送用空気供給ラインL1を介した燃料Fおよび搬送用空気G1の混合気と、燃焼用空気供給ラインL2を介した燃焼用空気G2とをボイラ2の内部の燃焼室にバーナ(不図示)を介して吹き込むことで燃焼を行う。ボイラ2は、100%の負荷のみならず、100%よりも小さい部分負荷などで運転されても良い。また、ボイラ2における燃焼によって生じた排ガスGeは、排ガス排出ラインLeを通って、煙突91を介してボイラシステム1の外部に排出される。この排ガス排出ラインLeには、誘引通風機や環境装置(例えば、排ガスから窒素酸化物を除去する脱硝装置、煤塵を除去する集塵器、硫黄酸化物を除去する脱硫装置など)が設置される場合がある。通常、ボイラ2内部には、排ガスGeの熱を回収するための不図示の過熱器、再熱器、節炭器などが設けられることにより、これらの内部を流通される水などの流体と排ガスGeとの間で熱交換が行われ、蒸気を生成するように構成される。
また、図1に示されるように、搬送用空気供給ラインL1には、ボイラ2に供給する燃料Fを粉砕するためのミル装置5が設けられる。ミル装置5には、石炭(燃料F)が供給されるようになっており、ミル装置5によって粉砕した微粉炭(微粉)は、搬送用空気供給ラインL1におけるミル装置5の下流側の部分(微粉炭管L1a)を搬送用空気G1によって搬送されることで、ボイラ2(バーナ)に供給される。この際、ミル装置5からボイラ2に供給する微粉燃料(燃料F)の量はボイラ2の出力指令値に応じて決定されると共に、この出力指令値(微粉燃料の量)に応じて一次空気送風機81からの搬送用空気G1の流量も決められるようになっている。
なお、図1に示されるように、ミル装置5に供給される搬送用空気G1の流量や、後述する熱空気Ghの流量を制御可能な熱空気量制御手段83が、搬送用空気供給ラインL1におけるミル装置5の上流側に設けられていても良い。図1に示される実施形態では、熱空気量制御手段83は、搬送用空気供給ラインL1と迂回ラインLbの合流地点と、後述する空気予熱器3との間に設けられており、搬送用空気供給ラインL1におけるミル装置5と熱空気量制御手段83との間に設置された不図示の流量計に基づいた流量制御が可能となっている。本実施形態では、熱空気量制御手段83の開度は、迂回ラインLbを流れ、後述する冷空気量調整手段4により調整される冷空気Gbの流量と、搬送用空気供給ラインL1を流れ、後述する空気予熱器3で加熱(予熱)される熱空気Ghの流量との和が、ミル装置5に投入される燃料Fの量に応じた搬送用空気G1の流量となるように決定されても良い。他方、押込送風機82が送風する燃焼用空気G2の流量制御は、排ガス排出ラインLeに設置された、排ガスGe中の酸素量を検出可能な酸素計測手段(不図示)の検出値が設定値となるように押込送風機82の出力を制御することにより、行われても良い。また、図1に示される実施形態では、排ガス排出ラインLeにおける空気予熱器3を介した熱交換に利用される排ガスGeの流量を調整可能なガスダンパ(不図示)などは設けられていないが、他の幾つかの実施形態では、このガスダンパが排ガス排出ラインLeにおける空気予熱器3の下流側あるいは上流側に設置されていても良い。
ここで、ボイラ2の燃料Fである石炭は、石炭の種類や降雨によって含有する水分量が異なるという特質を有しており、ミル装置5にて乾燥したのちに搬送用空気により微粉炭管L1aを介してボイラ2に投入される。このときに乾燥が不十分であった場合、搬送途中で生じた水分凝縮が、微粉炭管L1aへの微粉炭の固着、詰まりを引き起こしたり、燃焼性能へ影響を及ぼす可能性がある。そのため搬送用空気G1は、上述した搬送用空気供給ラインL1および排ガス排出ラインLeの各々に接続された空気予熱器3によって予め加熱(予熱)された後にミル装置5に供給されるようになっている。つまり、搬送用空気G1は、空気予熱器3を介して相対的に高温の排ガスGeの熱によって加熱されることで高温化され、その熱によって石炭を乾燥させるようになっている。なお、幾つかの実施形態では、図1に示されるように、空気予熱器3には、搬送用空気供給ラインL1および排ガス排出ラインLeに加えて、燃焼用空気供給ラインL2も接続されることで、排ガス排出ラインLeを流れる相対的に高温の排ガスGeによって、相対的に低温の燃焼用空気G2および搬送用空気G1を同時に予熱するように構成しても良い。
また、搬送用空気供給ラインL1には、図1に示されるように、搬送用空気供給ラインL1における上記の空気予熱器3の上流側と下流側とを接続する迂回ラインLb(ダクト)が接続されている。つまり、搬送用空気G1は、この迂回ラインLbを流れることによって、空気予熱器3を通過することなく、空気予熱器3を迂回しながら、搬送用空気供給ラインL1を流れることが可能となる。
この迂回ラインLbには、図1に示されるように、迂回ラインLbを流れる搬送用空気G1の流量を調整可能な冷空気量調整手段4が設置される。図1に示される実施形態では、冷空気量調整手段4はダンパとなっている。そして、冷空気量調整手段4の開度は、ボイラシステム1の正常運転時には、所定の中間開度αに固定される。なお、後述するように、正常運転時ではない異常運転時に限って、ボイラシステム1を異常な運転状態から正常な運転状態に復帰させるように、冷空気量調整手段4の開度が変更される。図1に示される実施形態では、この所定の中間開度αは、例えば全開時の開度の10%などの絞り側の開度となっている。
ここで、上記のボイラシステム1の正常運転時とは、ミル装置5の出口温度Tdあるいは入口温度Tuの少なくとも一方の温度(以下、検出温度T)を検出する温度検出手段52(例えば、温度計)により検出される検出温度Tが、所定の温度範囲Rにある場合を意味する。つまり、上記の所定の温度範囲Rは、ボイラシステム1の運転が正常であるか否かを判定するための指標であり、ボイラシステム1の運転における安全上の理由で定められる。より詳細には、上記の所定の温度範囲Rの上限Buは、上記の検出温度Tがこの上限Buを超える場合(T>Bu)にはミル装置5において燃料Fが発火する可能性が生じるような温度になる。具体的には、ミル装置5の出口温度Tdで言うと、上限Buは90℃から100℃であっても良い。ミル装置5の入口温度Tuで言うと、上限Buは320℃以上であっても良い。他方、上記の所定の温度範囲Rの下限Bdは、上記の検出温度Tがこの下限Bdを下回る場合(T<Bd)には、搬送用空気供給ラインL1におけるミル装置5とボイラ2とを接続する部分において微粉燃料(燃料F)が凝縮する可能性が生じるような温度になる。微粉燃料が凝縮すると、搬送用空気供給ラインL1に燃料による詰まりを招来する。具体的には、ミル装置5の出口温度Tdで言うと、下限Bdは50℃〜60℃であっても良い。ミル装置5の入口温度Tuで言うと、下限Bdは150℃以下であっても良い。
なお、ミル装置5の出口温度Tdおよび入口温度Tuの両方が監視される場合には、出口温度Tdおよび入口温度Tuの各々に応じた所定の温度範囲Rが、それぞれ設けられることになる。また、上記の温度はあくまで例示であって、上述した温度範囲Rの数値範囲を限定するものではない。
そして、ボイラシステム1が正常運転時と判定されている状況にあっては、ボイラ2が100%の負荷で運転されている場合や、100%より小さい部分負荷で運転されている場合にかかわらず、冷空気量調整手段4の開度を所定の中間開度αに固定することによって、ボイラ効率を向上させることが可能となる。すなわち、迂回ラインLbを流れる搬送用空気G1(以下、冷空気Gbという。)は、空気予熱器3によって予熱されないために温度が低い状態(例えば常温)のままにある。そして、この低温の冷空気Gbは、迂回ラインLbが空気予熱器3の下流において搬送用空気供給ラインL1に合流することにより、空気予熱器3による予熱によって温度が上昇された搬送用空気G1(以下、熱空気Gh)を冷却する効果を有しており、また搬送用空気G1はミル装置5に投入される燃料Fの量により決定される。このため、冷空気量調整手段4の開度が大きいと、その分だけ冷空気Gbの流量が増えるので、熱空気Ghが減少することとなり、空気予熱器3における熱交換量が減少し、排ガスから十分に熱回収することができず、そのため空気予熱器3の出口ガス温度を低減させることが難しく、熱損失の増加となる。
この点、従来のように、上述した検出温度Tが一定となるのを目標に冷空気量調整手段4(冷空気ダンパ)や熱空気量制御手段83(熱空気ダンパ)、ガスダンパ(不図示)などを制御する手法では、検出温度Tが目標よりも大きくなれば、冷空気Gbの流量がそれまでよりも増加され、その分熱空気量は減少され、上述したように空気予熱器3による熱交換量が減少する。あるいは、ガスダンパによって排ガスGeの流量が減少されるので、空気予熱器3における排ガスGeのエネルギーの回収量が低減される。
ところが、本発明においては、正常運転時と判定されている限り、検出温度Tが増加あるいは減少しても、温度調整のために冷空気量調整手段4や熱空気量制御手段83、ガスダンパ(不図示)の開度を制御することはなく、冷空気量調整手段4の開度は所定の中間開度αで固定される。これによって、正常運転時と判定されている限り、冷空気Gbの流量は増加も減少もされないので、熱空気Ghの流量も増減されることはなく、空気予熱器3による熱交換量が減少することはない。つまり、熱損失の増加を抑えることができる。しかも、本発明では、正常運転時においては、冷空気量調整手段4の開度調整のみならず、上述した検出温度Tが所定の温度範囲Rにあるようにするための、ガスダンパの制御を必要としないなど、ボイラシステム1の運転や、ボイラシステム1の構成を簡素化することができる。また、冷空気量調整手段4が固定される所定の中間開度αを絞り側に設定するほど、冷空気Gbの流量は低減し、その分熱空気Ghの流量が増加して排ガスからの熱回収量が増えるため、正常運転時におけるボイラ効率の向上を図ることができる。
上記の構成によれば、正常運転時には、迂回ラインLbに設けられた冷空気量調整手段4の開度が所定の中間開度αに固定される。これによって、ボイラシステム1の構成およびその運転を簡素化することができる。また、上記の正常運転時に固定される所定の中間開度αを、例えば全開時の30%以下などといった閉側にするほど、冷空気Gbの流量を低減し熱空気Ghの流量を増加させることができるため、空気予熱器3における熱交換量が増加し、熱損失を低減することができる。したがって、燃料コストの低減を図りつつ、ボイラシステム1の構成および運転の簡素化によるコストの低減を図ることができる。
幾つかの実施形態では、上述した冷空気量調整手段4が固定される所定の中間開度αは、全開時の開度の30%以下で、かつ、0%よりも大きい。所定の中間開度αが全開時の開度の30%以下であることによって、上述したように、熱空気Ghの流量を増加させて、正常運転時におけるボイラ効率の向上を図ることができる。また、後述するように、冷空気量調整手段4の開度は、低温側の異常運転時において、固定された所定の中間開度αから閉側に変更される場合がある。上記の所定の中間開度αは、冷空気量調整手段4の開度を閉側に変更することによって、冷空気Gbの流量をより減少させ、その分熱空気Ghの流量をより増加させることで、一層のボイラ効率の向上を図ることができる。
具体的には、所定の中間開度αは所望のボイラ効率に基づいて決めても良く、冷空気量調整手段4の全開時の開度の例えば5%、10%、15%といった5〜15%の範囲など、30%以下の値で適宜決定しても良い。例えば、所定の中間開度αを10%とした場合には、所定の中間開度αと全開(100%)との間には90%(=100%−10%)というように、所定の中間開度αから変更可能な開度の開側レンジ(100−α%)を大きく設けることができる。このため、上述したミル装置5における検出温度Tが上限Buを超えた際(高温側の異常運転時)には、冷空気量調整手段4を所定の中間開度αから開側に変更し、冷空気Gbの流量を増やすことにより生じる搬送用空気G1の低温化を通して、ミル装置5の出口温度及び/又は入口温度を正常運転時と判断される温度範囲に制御することが可能となる。他方、この場合には、閉側には、0%〜10%というように、所定の中間開度αから閉側に変更可能な閉側レンジ(0〜α%)が設けられる。このため、ミル装置5における検出温度Tが下限Bdを下回った際(低温側の異常運転時)には、冷空気量調整手段4を所定の中間開度αから閉側に変更し、冷空気Gbの流量を減らすことにより生じる搬送用空気G1の高温化を通して、ミル装置5の出口温度及び/又は入口温度を正常運転時と判断される温度範囲に制御することも可能となる。
上記の構成によれば、ボイラシステム1の正常運転時には、冷空気量調整手段は30%以下で、かつ、0%よりも大きい範囲となる閉側の所定の中間開度αに固定される(0%<α≦30%)。所定の中間開度αが小さいほど迂回ラインLbを流れる冷空気Gbの流量は少なくなる。よって、ボイラシステム1の正常運転時において、上記の所定の中間開度αを30%以下(α≠0)に固定することによって冷空気Gbの流量を低量に維持することで、上述したように、ボイラ効率の向上および燃料Fコストの低減を図ることができる。
また、上記の構成によれば、所定の中間開度αと全開(100%)との間に設けられる開度変更可能な開側のレンジ(100−α%)は70%以上になる。したがって、ボイラシステム1の高温側での異常運転時には、冷空気量調整手段4の開度を開側に大きく変更することができ、変更後の開度に応じて増やされる冷空気Gbによる搬送用空気G1の低温化を通して、ミル装置5の入口温度及び/又は出口温度を、正常運転時と判断される温度範囲に制御することができる。さらに、冷空気量調整手段4の開度を閉側にも0〜α(0%<α≦30%)の範囲で変更できる。このため、ボイラシステム1の低温側での異常運転時には、冷空気量調整手段4の開度を閉側に変更することで、変更後の開度に応じて冷空気Gbが減少するのに伴って増大する熱空気Ghによる搬送用空気G1の高温化を通して、ミル装置5の出口温度及び/又は入口温度を正常運転時と判断される温度範囲に制御することも可能となる。
次に、ボイラシステム1の異常運転時の運転方法およびそのための構成について説明する。
幾つかの実施形態では、図1に示されるように、ボイラシステム1は、温度検出手段52により検出された検出温度Tが、正常運転時を判定するための上述した所定の温度範囲Rを外れた場合に、冷空気量調整手段4の開度を所定の中間開度αから変更する制御装置6を、さらに備える。制御装置6はコンピュータで構成されており、図示しないCPU(プロセッサ)や、ROMやRAMといったメモリ(記憶装置)を備えている。そして、主記憶装置にロードされたプログラムの命令に従ってCPUが動作(データの演算など)することで、後述する冷空気量調整手段4の開度の変更を実行する。なお、制御装置6は、単独のコンピュータで構成されても良いし、ボイラシステム1を制御する他のブログラムと共にコンピュータ上で稼働するように構成されても良い。
図1に示される実施形態では、ボイラシステム1は、ミル装置5の出口温度Tdを検出するための出口温度検出手段52d(温度検出手段52)、および、ミル装置5の入口温度Tuを検出するための入口温度検出手段52u(温度検出手段52)の両方を備えている。そして、出口温度検出手段52dおよび入口温度検出手段52uの各々は、搬送用空気供給ラインL1上に設置されることで、上述した出口温度Tdおよび入口温度Tuを検出するよう構成されている。図1に示される実施形態では、出口温度検出手段52dは搬送用空気供給ラインL1におけるミル装置5の下流の微粉炭管L1aに設置され、入口温度検出手段52uはミル装置5の上流側の搬送用空気供給ラインL1上に設置されている。出口温度検出手段52dが搬送用空気供給ラインL1におけるミル装置5の微粉炭管L1aに設置されて搬送用空気G1の温度を検出する。ただし、本実施形態に本発明は限定されず、出口温度検出手段52dおよび入口温度検出手段52uは、それぞれ、ミル装置5の出口温度、入口温度を検出可能な位置に設置されていれば良い。
そして、制御装置6は、出口温度検出手段52dおよび入口温度検出手段52uにそれぞれ接続されており、出口温度検出手段52dによって検出された出口温度Td、および、入口温度検出手段52uによって検出された入口温度Tuの両方が、それぞれ入力されるように構成されている。同様に、制御装置6は冷空気量調整手段4に接続されており、冷空気量調整手段4の開度を変更(調整)可能に構成されている。また、制御装置6は、出口温度Tdに基づいてボイラシステム1の運転状態が正常であるか否かを判定するための出口側温度範囲Rdの情報、および、入口温度Tuに基づいてボイラシステム1の運転状態が正常であるか否かを判定するための入口側温度範囲Ruの情報の両方を不揮発性などのメモリに保持している。
このような構成を有することで、制御装置6は、出口温度Tdが入力されると、出口温度Tdが出口側温度範囲Rdに入っているかを判定し、他方、入口温度Tuが入力されると、入口温度Tuが入口側温度範囲Ruに入っているかを判定する。この際、出口温度Tdが出口側温度範囲Rdに入っていない(出口温度Tdが出口側温度範囲Rdから外れている)と判定した場合、あるいは、入口温度Tuが入口側温度範囲Ruに入っていない(入口温度Tuが入口側温度範囲Ruから外れている)と判定した場合のいずれか一方が生じた場合には、ボイラシステム1の運転が異常であると判定し、冷空気量調整手段4の開度を所定の中間開度αから変更するよう構成される。
ただし、本実施形態に本発明は限定されず、他の幾つかの実施形態では、ボイラシステム1は、出口温度検出手段52d(温度検出手段52)、あるいは、入口温度検出手段52u(温度検出手段52)のいずれか一方を備えていても良い。この場合には、制御装置6は、出口側温度範囲Rdあるいは入口側温度範囲Ruのうちの対応するいずれか一方を備えていれば良い。
上記の構成によれば、制御装置6は、ミル装置5の出口温度Tdまたは入口温度Tuの少なくとも一方の検出温度Tが正常運転時を判定可能な上記の所定の温度範囲Rを外れた場合を、ボイラシステム1の安全性に関わる異常運転時にあると判定する。また、制御装置6は、異常運転時を判定した場合には、ボイラシステム1の運転状態が正常となるように、所定の中間開度αに固定されていた冷空気量調整手段4の開度を、状況に応じて開側あるいは閉側に自動で変更する。これによって、冷空気Gbの流量が増大あるいは減少されるので、ミル装置5へ供給される搬送用空気G1の温度を低温化あるいは高温化することができる。したがって、温度調整された搬送用空気G1によって、所定の温度範囲を外れたと判定されたミル装置5の出口温度Tdおよび/または入口温度Tuが、それぞれの正常運転時の温度範囲Rに入るように調整されるので、ボイラシステム1を異常運転状態から正常運転状態へ復帰させることができ、ボイラシステム1の安全性を確保できる。
より詳細には、制御装置6は、温度検出手段52(52u、52d)により検出される出口温度Tdが上述した出口側温度範囲Rdの上限Buを超えた場合(Td>Bu)および/または入口温度Tuが上述した入口側温度範囲Ruの上限Buを超えた場合(Tu>Bu)には、冷空気量調整手段4の開度を所定の中間開度αよりも大きくする。上述したように、これらの上限Buは、上記の出口温度Td、入口温度Tuが過度に高温であるために、ミル装置5において燃料Fが発火する可能性が生じるような温度である。よって、制御装置6は出口温度Tdと出口側温度範囲Rdの上限Buとを比較し、および/または入口温度Tuと入口側温度範囲Ruの上限Buとを比較し、その結果、出口温度Tdが出口側温度範囲Rdの上限Buよりも大きい場合、および/または入口温度Tuが入口側温度範囲Ruの上限Buよりも大きい場合には、冷空気量調整手段4の開度を所定の中間開度αから開側に変更し、冷空気Gbの流量を増やすことにより生じる搬送用空気G1の低温化を通して、ミル装置5の出口温度Tdおよび/または入口温度Tuを、それぞれの温度範囲Rの上限(出口側温度範囲Rdの上限Bu、入口側温度範囲Ruの上限Bu)以下とする。
例えば、幾つかの実施形態では、制御装置6は、冷空気量調整手段4の開度を、上述した所定の中間開度αから全開(開度100%)に変更しても良い。これによって、冷空気Gbの流量は最大となるので、最大流量の冷空気Gbによって、検出温度Tを正常運転時に対応する上記の所定の温度範囲Rに戻すことができる。つまり、出口温度Tdを出口側温度範囲Rdの範囲内に戻し、入口温度Tuを入口側温度範囲Ruの範囲内に戻すことができる。
あるいは、他の幾つかの実施形態では、制御装置6は、検出温度Tと所定の温度範囲Rの上限Buとの差異に応じた分だけ、冷空気量調整手段4の開度を所定の中間開度αから開側へ変更するように構成しても良い。つまり、出口温度Tdと出口側温度範囲Rdの上限Buとの差異および/または入口温度Tuと入口側温度範囲Ruの上限Buとの差異に応じて冷空気量調整手段4の開度を変更する。具体的には、制御装置6は、検出温度Tと上記の上限Buとの差異(出口温度Tdと出口側温度範囲Rdの上限Buとの差異および/または入口温度Tuと入口側温度範囲Ruの上限Buとの差異)と、冷空気量調整手段4の開度あるいは開側への開度の変更量との関係を示す開側変更情報をメモリに保持する。そして、温度検出手段52から入力された検出温度Tと上限Buとの差異(同上)を演算して、その演算結果と開側変更情報とから、設定すべき冷空気量調整手段4の開度あるいは変更すべき開側への開度の変更量を取得し、取得した情報に基づいて冷空気量調整手段4の開度を変更しても良い。これによって、冷空気Gbの流量を必要以上に増大させることによる、ボイラ効率の低下を抑制することが可能となる。
上記の構成によれば、制御装置6は、正常運転時を判定するための温度範囲Rの上限Bu(出口側温度範囲Rdの上限Buおよび/または入口側温度範囲Ruの上限Bu)との比較に基づいて、燃料Fの発火の恐れが生じる高温側の異常運転時を判断すると共に、その上限を超えた場合には、正常運転時において固定されている冷空気量調整手段4の開度を開側へ変更する。これによって、冷空気Gbの流量を増大させることができるので、ミル装置5へ供給する搬送用空気G1の温度を低温化させることができ、ミル装置5の出口温度Tdおよび/または入口温度Tuを、それぞれの正常運転時の温度範囲まで低下させることができる。
他方、制御装置6は、温度検出手段52(52u、52d)により検出される検出温度Tが温度範囲Rの下限Bdを下回った場合には、冷空気量調整手段4の開度を所定の中間開度αよりも小さくする。つまり、出口温度Tdが出口側温度範囲Rdの下限Bdを下回った場合および/または入口温度Tuが入口側温度範囲Ruの下限Bdを下回った場合(Tu<Bd)には、冷空気量調整手段4の開度を所定の中間開度αよりも小さくする。上述したように、これらの下限Bdは、上記の検出温度T(出口温度Tdおよび/または入口温度Tu)が過度に低温であるために、搬送用空気供給ラインL1におけるミル装置5とボイラ2とを接続する部分において乾燥過程で蒸発した水分が凝縮する可能性が生じるような温度である。よって、制御装置6は検出温度Tと下限Bdとを比較し、その結果、検出温度Tが下限Bdよりも小さい場合には、冷空気量調整手段4の開度を所定の中間開度αから閉側に変更する。つまり、出口温度Tdと出口側温度範囲Rdの下限Bdとを比較し、その結果、出口温度Tdがこの下限Bdよりも小さい場合には、冷空気量調整手段4の開度を上記の通り変更する。および/または、入口温度Tuと入口側温度範囲Ruの下限Bdとを比較し、入口温度Tuがこの下限Bdよりも小さい場合には、冷空気量調整手段4の開度を上記の通り変更する。これによって、変更後の開度に応じて冷空気Gbを減少することで生じる搬送用空気G1の高温化を通して、ミル装置5下流における燃料F及び搬送用空気G1の昇温を行う。
する。
例えば、幾つかの実施形態では、制御装置6は、冷空気量調整手段4の開度を、上述した所定の中間開度αから全閉(開度0%)に変更しても良い。これによって、冷空気Gbの流量は例えば0などの最小となるので、熱空気Ghの冷空気Gbによる冷却度合いを弱めることで、検出温度Tを正常運転時に対応する上記の所定の温度範囲Rに戻すことができる。
あるいは、他の幾つかの実施形態では、制御装置6は、検出温度Tと所定の温度範囲Rの下限Bdとの差異(出口温度Tdと出口側温度範囲Rdの下限Bdとの差異および/または入口温度Tuと入口側温度範囲Ruの下限Bdとの差異)に応じた分だけ、冷空気量調整手段4の開度を所定の中間開度αから閉側へ変更するように構成しても良い。具体的には、制御装置6は、検出温度Tと上記の下限Bdとの差異(同上)と、冷空気量調整手段4の開度あるいは閉側への開度の変更量との関係を示す閉側変更情報をメモリに保持する。そして、温度検出手段52から入力された検出温度Tと下限Bdとの差異(同上)を演算して、その演算結果と閉側変更情報とから、設定すべき冷空気量調整手段4の開度あるいは変更すべき閉側への開度の変更量を取得し、取得した情報に基づいて冷空気量調整手段4の開度を変更しても良い。
上記の構成によれば、制御装置6は、正常運転時を判定するための温度範囲Rの下限Bdとの比較に基づいて、ミル装置5の下流(微粉炭管L1a)での搬送用空気中に含まれる水蒸気の凝縮防止等の観点からの凝縮等の低温側の異常運転時を判断すると共に、その下限を下回った場合には、正常運転時において固定されている冷空気量調整手段4の開度を閉側へ変更する。これによって、冷空気Gbの流量を減少させることができるので、これに伴って増大する熱空気Ghによりミル装置5へ供給する搬送用空気G1の温度を高温化させることができ、ミル装置5の出口温度Tdを正常運転時の温度範囲まで上昇させることができる。
ところで、冷空気量調整手段4の開度はもともと10%などの閉側に固定されているので、低温側の異常運転時において冷空気量調整手段4を全閉(開度0%)にしても、状況によっては、ミル装置5に供給される搬送用空気G1の温度を十分に高めることができない場合が想定される。
このため、幾つかの実施形態では、ボイラシステム1は、搬送用空気供給ラインL1に設けられた、ミル装置5に供給される流量(搬送用空気供給ラインL1を流れて、ミル装置5の入口に到達する搬送用空気G1の流量)を調整する搬送用空気量調整手段7を、さらに備えている。そして、制御装置6は、冷空気量調整手段4の開度が所定の中間開度αよりも小さい開度である、例えば0%といった下限開度B0になった場合に、搬送用空気量調整手段7を用いて搬送用空気G1の流量を増大する。つまり、冷空気量調整手段4を限界(下限開度B0)まで閉じても、ミル装置5における検出温度Tが正常運転時の温度範囲Rに入らないような場合には、ボイラ2に供給する燃料Fの量に応じて通常決められる搬送用空気G1の量を一時的に増大させて、空気予熱器3を流れる搬送用空気G1(熱空気Gh)の総量を増やすように構成する。
図1に示される実施形態では、搬送用空気量調整手段7は、上述した熱空気量制御手段83であり、冷空気Gbと熱空気Ghの合計である搬送用空気G1の流量がミル装置5に投入される燃料Fの量により決定される量となるように開度が決定されている。図1に示されるように制御装置6は熱空気量制御手段83に接続されており、熱空気量制御手段83の開度を制御することが可能となっている。具体的には、制御装置6は、熱空気量制御手段83に対して開度を増大させる命令信号を送信する。そして、熱空気量制御手段83はこの開度増大の命令信号を受信すると、熱空気量制御手段83の開度が増大する。これによって、ミル装置5に向けて送風される空気の流量(搬送用空気G1の流量)が増える。なお、他の幾つかの実施形態では、搬送用空気量調整手段7は、一次空気送風機81(PAF)であっても良い。その他の幾つかの実施形態では、搬送用空気量調整手段7は、熱空気量制御手段83および一次空気送風機81の両方であっても良い。この場合には、熱空気量制御手段83を全開しても、それでも、ミル装置5における検出温度Tが正常運転時の温度範囲Rに入らないような場合に、制御装置6は一次空気送風機81(PAF)に開度増大の命令信号を送信するように構成しても良い。
上記の構成によれば、搬送用空気量調整手段7によって、空気予熱器3を流れる搬送用空気G1の総量を増大させることによって、より多くの熱空気をミル装置5に供給することができ、ミル装置5下流(微粉炭管L1a)の搬送用空気G1の温度をより確実に、正常運転時の温度範囲の下限Bd以上に高温化することができる。
以下、上述したボイラシステム1の運転方法について、図2を用いて説明する。
図2は、本発明の一実施形態にかかるボイラシステム1の運転方法を示すフロー図である。図2に示されるように、ボイラシステム1の運転方法は、ミル温度取得ステップ(S1)と、運転正常性判定ステップ(S2)と、中間開度維持ステップ(S4)と、を備える。これらのステップを備えるボイラシステム1の運転方法を、図2のフローに従って説明する。なお、図2のフローは、上述した制御装置6が実行しても良いし、人手によって実行しても良い。また、図2のフローは、例えば常に連続で繰り返し実行される。
図2のステップS1において、ミル温度取得ステップが実行される。ミル温度取得ステップ(S1)は、上述したミル装置5(図1参照)の出口温度Tdあるいは入口温度Tuの少なくとも一方の温度(検出温度T)を取得するステップである。次のステップS2において、運転正常性判定ステップが実行される。運転正常性判定ステップ(S2)は、ミル温度取得ステップ(S1)で取得した検出温度Tが所定の温度範囲Rにあるか否かによって、ボイラシステム1が正常運転時であるか否かを判定するステップである。上述した通り、検出温度Tが所定の温度範囲Rに入っている場合には正常と判定する。逆に、検出温度Tが所定の温度範囲Rから外れている場合に異常と判定する。
そして、ステップS3において、運転正常性判定ステップ(S2)によって正常運転時であると判定された場合には、ステップS4において中間開度維持ステップが実行される。中間開度維持ステップ(S4)は、運転正常性判定ステップ(S2)によって正常運転時であると判定された場合(ステップS3でYes)に、搬送用空気供給ラインL1を流れる上記の搬送用空気G1(一次空気)を予熱する空気予熱器3を迂回して搬送用空気G1が流れるための迂回ラインLbに設けられた冷空気量調整手段4であって、ボイラシステム1が正常運転時の場合に所定の中間開度αに固定される冷空気量調整手段4の開度を、所定の中間開度αのまま維持するステップである。つまり、中間開度維持ステップ(S4)は、正常運転時において所定の中間開度αに固定されている冷空気量調整手段4の開度を変更しないステップとなる。この所定の中間開度αは、上述したように、全開時の開度の例えば10%など、30%以下であっても良い。このように、正常運転時には冷空気量調整手段4の開度を所定の中間開度αに固定することによって、上述したように、ボイラ効率の向上、およびこれに伴う燃料コストの低減を図りつつ、ボイラシステム1の構成および運転の簡素化によるコストの低減を図ることができる。また、所定の中間開度αが小さいほど、冷空気Gbの流量を減らすことができ、熱空気Ghを増加させることができるため空気予熱器3における熱交換量が増加し、熱損失を低減することができるので、ボイラ効率の向上および燃料コストの低減を図ることができる。
また、図2に示されるように、幾つかの実施形態では、ボイラシステム1の運転方法は、上記の検出温度Tが温度範囲Rの上限Buを超えた場合には、冷空気量調整手段4の開度を所定の中間開度αよりも大きくする開度増大ステップ(S6)をさらに備えていても良い。つまり、この開度増大ステップ(S6)は、出口温度Tdが出口側温度範囲Rdの上限Buよりも大きい場合、および/または、入口温度Tuが入口側温度範囲Ruの上限Buよりも大きい場合に実行される。図2に示される実施形態では、上述したステップS3において、逆に、ボイラシステム1が異常と判定された場合(ステップS3でNo)には、ステップS5において検出温度Tが温度範囲Rの上限Buを超えたか否かを判定している。つまり、ステップS5において出口温度Tdが出口側温度範囲Rdの上限Buを超えたか否か、および/または、入口温度Tuが入口側温度範囲Ruの上限Buを超えたか否かを判定している。そして、開度増大ステップ(S6)は、ステップS5において検出温度Tが温度範囲Rの上限Buを超えたと判定した場合(Td>Bu)に実行される。つまり、開度増大ステップ(S6)は、出口温度Tdが出口側温度範囲Rdの上限Buを超えた場合、および/または、入口温度Tuが入口側温度範囲Ruの上限Buを超えた場合に実行される。開度増大ステップ(S6)の実行によって、迂回ラインLbを流れる冷空気Gbの流量を増やすことができる。つまり、既に説明した通り、増大された冷空気Gbによって、ミル装置5に供給される搬送用空気G1の温度をより低温化することができるので、上記の検出温度T(出口温度Tdおよび/または入口温度Tu)を低下させて、発火等の発生を回避することができる。
また、図2に示されるように、幾つかの実施形態では、ボイラシステム1の運転方法は、取得した検出温度Tが温度範囲Rの下限Bdを下回った場合には、冷空気量調整手段4の開度を所定の中間開度αよりも小さくする開度絞りステップ(S7)をさらに備えていても良い。つまり、この開度絞りステップ(S7)は、出口温度Tdが出口側温度範囲Rdの下限Bdよりも小さい場合、および/または、入口温度Tuが入口側温度範囲Ruの下限Bdよりも小さい場合に実行される。図2に示される実施形態では、上述したステップS5において、逆に、検出温度Tが温度範囲Rの上限Buを超えていないと判定された場合には、検出温度Tが所定の温度範囲Rの下限(下限Bd)を下回った場合(出口側温度範囲Rdの下限Bdよりも小さい場合、および/または、入口温度Tuが入口側温度範囲Ruの下限Bdよりも小さい場合)となるため、この場合に開度絞りステップ(S7)が実行される。開度絞りステップ(S7)の実行によって、迂回ラインLbを流れる冷空気Gbの流量を減らすことができる。これによって、既に説明した通り、ミル装置5に供給される搬送用空気G1の温度をより高温化することができるので、ミル装置5およびその下流の搬送用空気G1の温度を上昇させて、搬送用空気供給ラインL1のミル装置5の下流における乾燥過程で蒸発した水分の凝縮の発生を防止することができる。
また、図2に示されるように、幾つかの実施形態では、ボイラシステム1の運転方法は、冷空気量調整手段4の開度が下限開度B0になった場合に、搬送用空気供給ラインL1に設けられた、ミル装置5に供給される搬送用空気G1の流量を調整する搬送用空気量調整手段7を用いて搬送用空気G1の流量を増大する搬送用空気増大ステップ(S9)を、さらに備えていても良い。
図2に示される実施形態では、搬送用空気増大ステップ(S9)は、上述した開度絞りステップ(S7)により冷空気量調整手段4の開度が下限開度B0(例えば開度0%)に達してもなお、検出温度Tが温度範囲Rの下限(下限Bd)を下回っている場合に実行される(ステップS8でYes)。具体的には、ステップS8において、冷空気量調整手段4の開度が下限開度B0で、かつ、検出温度Tが温度範囲Rの下限Bdを下回っている場合(冷空気量調整手段4の開度=下限開度B0、かつ、T<Bd(Td<RdのBdおよび/またはTu<RuのBd))には、ステップS9において搬送用空気増大ステップが実行される。搬送用空気増大ステップ(S9)の実行によって、空気予熱器3を流れる搬送用空気G1の総量を増大させることによって、より多くの熱空気Ghをミル装置5に供給することができ、ミル装置5に供給される搬送用空気G1の温度をより確実に、正常運転時の温度範囲Rの下限Bd(出口側温度範囲Rdの下限Bdおよび/または入口側温度範囲Ruの下限Bd)以上に高温化することができる。
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
1 ボイラシステム
2 ボイラ
3 空気予熱器
4 冷空気量調整手段
5 ミル装置
52 温度検出手段
52d 出口温度検出手段
52u 入口温度検出手段
6 制御装置
7 搬送用空気量調整手段
81 一次空気送風機
82 押込送風機
83 熱空気量制御手段
91 煙突

L1 搬送用空気供給ライン
L1a 微粉炭管
L2 燃焼用空気供給ライン
Lb 迂回ライン
Le 排ガス排出ライン
G1 搬送用空気
G2 燃焼用空気
Gb 冷空気
Gh 熱空気
Ge 排ガス
F 燃料(微粉燃料)

T 検出温度
Td ミル装置の出口温度
Tu ミル装置の入口温度
R 所定の温度範囲
Rd 出口側温度範囲
Ru 入口側温度範囲
Bd 温度範囲の下限(下限値)
Bu 温度範囲の上限(上限値)
B0 下限開度

Claims (13)

  1. ボイラに燃料を搬送するための搬送用空気を供給するための搬送用空気供給ラインと、
    前記ボイラの内部における前記燃料の燃焼によって生じた排ガスを外部へ排出するための排ガス排出ラインと、
    前記搬送用空気供給ラインおよび前記排ガス排出ラインの各々に接続され、前記排ガス排出ラインを流れる前記排ガスによって、前記搬送用空気供給ラインを流れる前記搬送用空気を予熱するための空気予熱器と、
    前記搬送用空気供給ラインにおける前記空気予熱器の上流側と下流側とを接続する、前記搬送用空気が前記空気予熱器を迂回して流れるための迂回ラインと、
    前記迂回ラインに設けられた、前記迂回ラインを流れる前記搬送用空気の流量を調整可能な冷空気量調整手段と、
    前記搬送用空気供給ラインに設けられた、前記ボイラに供給する前記燃料を粉砕するためのミル装置と、
    前記ミル装置の出口温度あるいは入口温度の少なくとも一方の温度を検出する温度検出手段と、を備え、
    前記冷空気量調整手段の開度は、前記温度検出手段により検出される前記温度が、前記出口温度あるいは入口温度の各々に関し設定された所定の温度範囲にある正常運転時の場合には、所定の中間開度に固定されることを特徴とするボイラシステム。
  2. 前記所定の中間開度は、全開時の開度の30%以下で、かつ、0%よりも大きいことを特徴とする請求項1に記載のボイラシステム。
  3. 前記温度検出手段により検出された前記温度が前記温度範囲を外れた場合に、前記冷空気量調整手段の開度を前記所定の中間開度から変更する制御装置を、さらに備えることを特徴とする請求項1または2に記載のボイラシステム。
  4. 前記制御装置は、前記温度が前記温度範囲の上限を超えた場合には、前記冷空気量調整手段の開度を前記所定の中間開度よりも大きくすることを特徴とする請求項3に記載のボイラシステム。
  5. 前記制御装置は、前記温度が前記温度範囲の下限を下回った場合には、前記冷空気量調整手段の開度を前記所定の中間開度よりも小さくすることを特徴とする請求項3または4に記載のボイラシステム。
  6. 前記搬送用空気供給ラインに設けられた、前記ミル装置に供給される前記搬送用空気の流量を調整する搬送用空気量調整手段を、さらに備え、
    前記制御装置は、前記冷空気量調整手段の開度が前記所定の中間開度よりも小さい開度である下限開度になった場合に、前記搬送用空気量調整手段を用いて前記搬送用空気の流量を増大することを特徴とする請求項5に記載のボイラシステム。
  7. 前記ボイラに燃焼用空気を供給するための燃焼用空気供給ラインを、さらに備え、
    前記燃焼用空気供給ラインは前記空気予熱器に接続されており、
    前記空気予熱器は、前記排ガス排出ラインを流れる高温の前記排ガスによって、前記搬送用空気供給ラインを流れる前記搬送用空気および前記燃焼用空気供給ラインを流れる前記燃焼用空気を同時に予熱することを特徴とする請求項1〜6のいずれか1項に記載のボイラシステム。
  8. 前記冷空気量調整手段の開度は、前記正常運転時の場合には、前記ボイラが部分負荷で運転されている場合にも、前記所定の中間開度に固定されることを特徴とする請求項1〜7のいずれか1項に記載のボイラシステム。
  9. 請求項1〜8のいずれか1項に記載のボイラシステムの運転方法であって、
    ミル装置の出口温度あるいは入口温度の少なくとも一方の温度を取得するミル温度取得ステップと、
    前記ミル温度取得ステップで取得した前記温度が所定の温度範囲にあるか否かによって、前記ボイラシステムが正常運転時であるか否かを判定する正常性判定ステップと、
    前記正常性判定ステップによって前記正常運転時が判定された場合に、搬送用空気供給ラインを流れる搬送用空気を予熱する空気予熱器を迂回して前記搬送用空気が流れるための迂回ラインに設けられた冷空気量調整手段であって、ボイラシステムが正常運転時の場合に所定の中間開度に固定される前記冷空気量調整手段の開度を、前記所定の中間開度のまま維持する中間開度維持ステップと、を備えることを特徴とするボイラシステムの運転方法。
  10. 前記所定の中間開度は全開時の開度の30%以下で、かつ、0%よりも大きいことを特徴とする請求項9に記載のボイラシステムの運転方法。
  11. 前記温度が前記温度範囲の上限を超えた場合には、前記冷空気量調整手段の開度を前記所定の中間開度よりも大きくする開度増大ステップを、さらに備えることを特徴とする請求項9または10に記載のボイラシステムの運転方法。
  12. 前記制御装置は、前記温度が前記温度範囲の下限を下回った場合には、前記冷空気量調整手段の開度を前記所定の中間開度よりも小さくする開度絞りステップを、さらに備えることを特徴とする請求項9〜11のいずれか1項に記載のボイラシステムの運転方法。
  13. 前記冷空気量調整手段の開度が前記所定の中間開度よりも小さい開度である下限開度になった場合に、前記搬送用空気供給ラインに設けられた、前記ミル装置に供給される前記搬送用空気の流量を調整する搬送用空気量調整手段を用いて前記搬送用空気の流量を増大する搬送用空気増大ステップを、さらに備えることを特徴とする請求項12に記載のボイラシステムの運転方法。
JP2017015014A 2017-01-31 2017-01-31 ボイラシステム、および、ボイラシステムの運転方法 Active JP6853053B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017015014A JP6853053B2 (ja) 2017-01-31 2017-01-31 ボイラシステム、および、ボイラシステムの運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017015014A JP6853053B2 (ja) 2017-01-31 2017-01-31 ボイラシステム、および、ボイラシステムの運転方法

Publications (2)

Publication Number Publication Date
JP2018123993A true JP2018123993A (ja) 2018-08-09
JP6853053B2 JP6853053B2 (ja) 2021-03-31

Family

ID=63111315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017015014A Active JP6853053B2 (ja) 2017-01-31 2017-01-31 ボイラシステム、および、ボイラシステムの運転方法

Country Status (1)

Country Link
JP (1) JP6853053B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105629A1 (ja) * 2018-11-21 2020-05-28 三菱日立パワーシステムズ株式会社 微粉炭機の微粉炭乾燥システム及びその微粉炭乾燥方法並びに微粉炭乾燥プログラム、微粉炭機、ガス化複合発電設備
JP2021067408A (ja) * 2019-10-24 2021-04-30 三菱パワー株式会社 安定運転制御システム及び固体燃料粉砕装置、並びに安定運転制御方法、並びに安定運転制御プログラム
CN113100072A (zh) * 2021-03-09 2021-07-13 四川金梓源农业有限公司 一种楼宇养猪***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105819A (ja) * 1983-11-14 1985-06-11 Hitachi Ltd 空気予熱器制御方法
US4739713A (en) * 1986-06-26 1988-04-26 Henkel Kommanditgesellschaft Auf Aktien Method and apparatus for reducing the NOx content of flue gas in coal-dust-fired combustion systems
JPS6386545U (ja) * 1986-11-18 1988-06-06
JPH10281453A (ja) * 1997-04-04 1998-10-23 Ishikawajima Harima Heavy Ind Co Ltd 石炭焚ボイラ設備におけるミルの一次空気制御方法
JP2002327911A (ja) * 2001-05-01 2002-11-15 Tokuyama Corp ボイラ設備
JP2008145007A (ja) * 2006-12-07 2008-06-26 Ihi Corp 石炭焚きボイラ装置
JP2012112551A (ja) * 2010-11-22 2012-06-14 Ihi Corp 石炭・バイオマス混焼装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105819A (ja) * 1983-11-14 1985-06-11 Hitachi Ltd 空気予熱器制御方法
US4739713A (en) * 1986-06-26 1988-04-26 Henkel Kommanditgesellschaft Auf Aktien Method and apparatus for reducing the NOx content of flue gas in coal-dust-fired combustion systems
JPS6386545U (ja) * 1986-11-18 1988-06-06
JPH10281453A (ja) * 1997-04-04 1998-10-23 Ishikawajima Harima Heavy Ind Co Ltd 石炭焚ボイラ設備におけるミルの一次空気制御方法
JP2002327911A (ja) * 2001-05-01 2002-11-15 Tokuyama Corp ボイラ設備
JP2008145007A (ja) * 2006-12-07 2008-06-26 Ihi Corp 石炭焚きボイラ装置
JP2012112551A (ja) * 2010-11-22 2012-06-14 Ihi Corp 石炭・バイオマス混焼装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105629A1 (ja) * 2018-11-21 2020-05-28 三菱日立パワーシステムズ株式会社 微粉炭機の微粉炭乾燥システム及びその微粉炭乾燥方法並びに微粉炭乾燥プログラム、微粉炭機、ガス化複合発電設備
JP2020085305A (ja) * 2018-11-21 2020-06-04 三菱日立パワーシステムズ株式会社 微粉炭機の微粉炭乾燥システム及びその微粉炭乾燥方法並びに微粉炭乾燥プログラム、微粉炭機、ガス化複合発電設備
JP7325948B2 (ja) 2018-11-21 2023-08-15 三菱重工業株式会社 微粉炭機の微粉炭乾燥システム及びその微粉炭乾燥方法並びに微粉炭乾燥プログラム、微粉炭機、ガス化複合発電設備
US12031720B2 (en) 2018-11-21 2024-07-09 Mitsubishi Heavy Industries, Ltd. Pulverized coal drying system for pulverizer, pulverized coal drying method therefor, pulverized coal drying program, pulverizer, and integrated gasification combined cycle
JP2021067408A (ja) * 2019-10-24 2021-04-30 三菱パワー株式会社 安定運転制御システム及び固体燃料粉砕装置、並びに安定運転制御方法、並びに安定運転制御プログラム
JP7395314B2 (ja) 2019-10-24 2023-12-11 三菱重工業株式会社 安定運転制御システム及び固体燃料粉砕装置、並びに安定運転制御方法、並びに安定運転制御プログラム
CN113100072A (zh) * 2021-03-09 2021-07-13 四川金梓源农业有限公司 一种楼宇养猪***
CN113100072B (zh) * 2021-03-09 2022-11-29 四川金梓源农业有限公司 一种楼宇养猪***

Also Published As

Publication number Publication date
JP6853053B2 (ja) 2021-03-31

Similar Documents

Publication Publication Date Title
JP2019095174A (ja) ボイラシステム、および、ボイラシステムの運転方法
JP2018123993A (ja) ボイラシステム、および、ボイラシステムの運転方法
TWI480493B (zh) Operation method of pulverized coal - fired boiler equipment and equipment for pulverized coal - fired boiler
JP7261113B2 (ja) ボイラの制御装置、ボイラシステム、発電プラント、及びボイラの制御方法
CN105841488B (zh) 流化床锅炉负荷调节及低氮燃烧方法与装置
JP2017106652A (ja) ボイラシステム及びその制御方法
KR20200052873A (ko) 보일러의 공기예열장치 및 보일러의 운전방법
JP2020106012A (ja) 発電プラントのバイパス制御システム及びその制御方法並びに制御プログラム、発電プラント
JP7455781B2 (ja) 発電プラント用のアンモニア供給ユニット、発電プラント用のアンモニア気化処理方法、及び発電プラント
EP2993398B1 (en) Flue-gas treatment apparatus and its method of operation
JP2019148349A (ja) ボイラシステム、および、ボイラシステムの運転方法
JPS6316173B2 (ja)
JP7307340B2 (ja) 微粉炭機の運転制御方法
JP2001289405A (ja) 微粉炭焚きボイラ装置
JP5408150B2 (ja) ボイラシステム
JPH0434048B2 (ja)
JP7209814B2 (ja) 排熱回収システム
KR102175427B1 (ko) 배가스 현열 회수 장치
CN110793057B (zh) 一种防止燃煤电厂空气预热器堵塞的***及方法
JP5168983B2 (ja) 横型ミルの出口空気温度制御装置
WO2024057818A1 (ja) ボイラ制御装置、ボイラ制御方法、及び、ボイラ制御プログラム
TW202338262A (zh) 氨燃料鍋爐系統
TW202338261A (zh) 氨燃料鍋爐系統
JPH07122483B2 (ja) 微粉炭焚ボイラ
JP2020159632A (ja) 微粉燃料焚きボイラ

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20200129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210311

R150 Certificate of patent or registration of utility model

Ref document number: 6853053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150