JP2018122307A - Pulsed mag welding method for thin steel sheet - Google Patents

Pulsed mag welding method for thin steel sheet Download PDF

Info

Publication number
JP2018122307A
JP2018122307A JP2017013821A JP2017013821A JP2018122307A JP 2018122307 A JP2018122307 A JP 2018122307A JP 2017013821 A JP2017013821 A JP 2017013821A JP 2017013821 A JP2017013821 A JP 2017013821A JP 2018122307 A JP2018122307 A JP 2018122307A
Authority
JP
Japan
Prior art keywords
pulse
wire
welding method
welding
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017013821A
Other languages
Japanese (ja)
Other versions
JP6709177B2 (en
Inventor
友勝 岩上
Tomokatsu Iwagami
友勝 岩上
木本 勇
Isamu Kimoto
勇 木本
大五郎 古田
Daigoro Furuta
大五郎 古田
藤井 良雄
Yoshio Fujii
良雄 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2017013821A priority Critical patent/JP6709177B2/en
Publication of JP2018122307A publication Critical patent/JP2018122307A/en
Application granted granted Critical
Publication of JP6709177B2 publication Critical patent/JP6709177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pulsed MAG welding method for a thin steel sheet capable of materializing stable arc and a favorable bead shape and thereby capable of highly efficiently providing such a high-quality weld zone that there is no slug remaining on a bead surface, there is little amount of sputter generation by the stable arc, and there is no welding defect by the favorable bead shape.SOLUTION: The pulsed MAG welding method for a thin sheet steel is provided that uses a solid wire containing, by mass % based on the wire total mass, 0.005-0.08% of C, 0.20-0.50% of Si, 1.00-1.60%of Mn, 0.02-0.20% of Sb, 0.08-0.45% of Cu, with 0.02% or less of P and 0.02% or less of S. The pulsed MAG welding method for a thin sheet steel applies pulse in which a pulse peak current (Ip) and a pulse peak time (Tp) satisfy the following formula: 415≤Ip(A)×Tp (msec)≤780 where the pulse peak current (Ip) is 440-600A, and a pulse base current (Ib) is 30-80A.SELECTED DRAWING: Figure 1

Description

本発明は、薄鋼板のパルスMAG溶接方法に関し、特に板厚が1.2〜6mmの薄鋼板の重ね継手部やT継手部を溶接するに際してビード表面に残存するスラグがなく、アークを安定させてスパッタ発生量が少なく、ビード形状が良好で、溶接欠陥がないなど、高能率で高品質な溶接部を得る上で好適な薄鋼板のパルスMAG溶接方法に関する。   The present invention relates to a pulse MAG welding method for a thin steel plate, and in particular, when welding a lap joint portion or a T joint portion of a thin steel plate having a thickness of 1.2 to 6 mm, there is no slag remaining on the bead surface and the arc is stabilized. In particular, the present invention relates to a pulse MAG welding method for a thin steel sheet suitable for obtaining a high-efficiency and high-quality welded part such as a low spatter generation amount, a good bead shape, and no welding defects.

自動車の足回り部材は、板厚が1.2〜6mmの薄鋼板の場合がほとんどで、通常、溶接後に防錆および美観のために塗料を電着塗装される。
自動車用薄鋼板の足回り部材の溶接は、ガスシールドアーク溶接用ソリッドワイヤを用いて継手部の品質特性の面からスパッタの発生量を低減させて部材への付着を少なくする目的と、高速度での溶接性確保の面からシールドガスとしてArガスを主成分とし、これにCO2ガスを混合、さらにはO2ガスを混合したガスを用いたパルスMAG溶接方法が近年増加している。パルスMAG溶接方法は、平均電流を低くして溶接できることから薄鋼板の溶接では耐溶け落ち性も向上できるとともに、高速度の溶接条件で施工できるので生産性が高く、品質の良好な溶接継手部が得られる。
The undercarriage member of an automobile is mostly a thin steel plate having a thickness of 1.2 to 6 mm, and is usually electrodeposited with a paint for rust prevention and aesthetic appearance after welding.
The purpose of welding undercarriage members of thin steel sheets for automobiles is to reduce the amount of spatter generated by using solid wire for gas shielded arc welding and to reduce the amount of spatter generated from the aspect of quality characteristics of the joints, and at high speed. Ar gas as a main component as the shielding gas from the viewpoint of weldability secure, the mixing CO 2 gas thereto, further the pulse MAG welding method using a mixed gas of O 2 gas is increased in recent years. The pulse MAG welding method can weld with a low average current, so it can improve the melt-off resistance when welding thin steel plates, and it can be applied under high-speed welding conditions, so it is highly productive and has good quality. Is obtained.

パルスMAG溶接とは、溶接電流として平均電流値より高電流となるピーク電流と平均
電流値より低電流としたベース電流を周期的に流す溶接方法である。これによりピーク電流期間では一定に送給されている溶接用ワイヤを電磁ピンチ力などの作用で溶滴状態に溶融させ、ベース電流期間中にこの溶滴を溶融池に安定的に移行させるので、高速溶接時に溶滴が溶融池と短絡することなくスムーズに溶融池へ移行させることができる。
Pulse MAG welding is a welding method in which a peak current that is higher than the average current value as a welding current and a base current that is lower than the average current value are periodically passed. As a result, the welding wire, which is constantly fed during the peak current period, is melted into a droplet state by an action such as an electromagnetic pinch force, and this droplet is stably transferred to the molten pool during the base current period. The droplets can be smoothly transferred to the molten pool without short-circuiting with the molten pool during high-speed welding.

このように、パルス溶接電源を適用することにより、パルスMAG溶接においてピーク
電流、ピーク時間、アーク電圧の積からなる溶融エネルギーに対応したワイヤ送給量毎の溶滴生成量にする。すなわち、1回のパルスピーク電流時に1個の溶滴を生成させ、ベース電流期間に溶滴を溶融池に規則的に移行させる1パルス−1ドロップ移行となるパルス条件とするにより、溶滴はスムーズに溶融池に移行してスパッタ発生量が低減される。このため溶接電源は、溶接用ワイヤの送給速度に対応してパルスの周波数を数十Hz〜300Hz程度まで変化させることが可能となっている。
In this way, by applying the pulse welding power source, the droplet generation amount for each wire feeding amount corresponding to the melting energy consisting of the product of peak current, peak time, and arc voltage in pulse MAG welding is obtained. That is, by forming a single droplet at the time of one pulse peak current and setting a pulse condition of 1 pulse-1 drop transition that regularly transfers the droplet to the molten pool during the base current period, The amount of spatter generated is reduced by smoothly moving to the molten pool. For this reason, the welding power source can change the frequency of the pulse from about several tens of Hz to about 300 Hz corresponding to the feeding speed of the welding wire.

薄鋼板溶接のパルスMAG溶接用ワイヤとして、例えば、特開平8−99175号公報
(特許文献1)に、薄板高張力鋼板をワイヤ成分、シールドガス組成およびパルス付与条件を限定して溶接し、溶接金属の機械的性質を良好にすることができるとともにスパッタの発生量が少なく溶接作業性に優れる技術が開示されている。しかし、特許文献1に開示の技術においても、アークが安定して、ビード形状が良好な溶接金属を得ることができない。さらに、スラグ生成量が多くなり塗料を塗装後にスラグとともに塗料が剥がれるという問題があった。
As a pulse MAG welding wire for thin steel plate welding, for example, in Japanese Patent Application Laid-Open No. Hei 8-99175 (Patent Document 1), a thin high strength steel plate is welded by limiting the wire component, shield gas composition and pulse application conditions, and welding. A technique that can improve the mechanical properties of a metal and that has a low spatter generation amount and excellent welding workability is disclosed. However, even with the technique disclosed in Patent Document 1, it is impossible to obtain a weld metal with a stable arc and a good bead shape. Furthermore, there was a problem that the amount of slag generation increased and the paint was peeled off together with the slag after the paint was applied.

また、特開平9−239583号公報(特許文献2)、特開2001−321985号
公報(特許文献3)および特開2009−166066号公報(特許文献4)には、パルスMAG溶接用ソリッドワイヤの開示がある。しかし、特許文献2〜特許文献4に記載の溶接用ソリッドワイヤを用いたパルスMAG溶接においても、スラグ生成量が多く塗装後にスラグとともに塗料が剥がれるという問題があった。
In addition, Japanese Patent Laid-Open No. 9-239583 (Patent Document 2), Japanese Patent Laid-Open No. 2001-321985 (Patent Document 3) and Japanese Patent Laid-Open No. 2009-166066 (Patent Document 4) describe a solid wire for pulse MAG welding. There is disclosure. However, even in the pulse MAG welding using the welding solid wire described in Patent Documents 2 to 4, there is a problem that the amount of slag generated is large and the paint is peeled off together with the slag after coating.

一方、特開2016−203247号公報(特許文献5)には、ガスシールドアーク溶
接用フラックス入りワイヤにシリコン酸化物、クロム酸化物およびニッケル酸化物の少なくとも1種を含有させて薄鋼板の溶接をし、ビード表面に酸化皮膜層を形成して塗料塗装後の剥離を防止した技術の開示がある。しかし、特許文献5に開示されているビード表面の酸化皮膜層は、自動車の車体構造部材に適用した場合、季節の変化、寒冷地および温暖地など自動車の使用環境の温度差による溶接金属と酸化皮膜層との熱膨張の差によって酸化皮膜層が塗料とともに剥がれるという問題がある。
On the other hand, in JP-A-2006-203247 (Patent Document 5), welding of thin steel sheets is performed by containing at least one of silicon oxide, chromium oxide and nickel oxide in a flux-cored wire for gas shield arc welding. In addition, there is a disclosure of a technique in which an oxide film layer is formed on the bead surface to prevent peeling after coating. However, when the bead surface oxide film layer disclosed in Patent Document 5 is applied to a body structure member of an automobile, it is oxidized with a weld metal due to a temperature difference in an environment in which the automobile is used, such as seasonal changes, cold regions and warm regions. There is a problem that the oxide film layer is peeled off together with the paint due to a difference in thermal expansion from the film layer.

特開平8−99175号公報JP-A-8-99175 特開平9−239583号公報Japanese Patent Laid-Open No. 9-239583 特開2001−321985号公報JP 2001-321985 A 特開2009−166066号公報JP 2009-166066 A 特開2016−203247号公報JP, 2006-203247, A

そこで本発明は、上述した問題点に鑑みて案出されたものであり、板厚が1.2〜6m
mである薄鋼板の重ね継手部やT継手部を溶接するに際してビード表面に残存するスラグがなく、アークが安定してスパッタ発生量が少なく、ビード形状が良好で溶接欠陥がないなど、高能率に高品質な溶接部が得られる薄鋼板のパルスMAG溶接方法を提供することを目的とする。
Therefore, the present invention has been devised in view of the above-described problems, and has a thickness of 1.2 to 6 m.
High efficiency, such as no slag remaining on the bead surface when welding lap joints and T joints of thin steel plates of m, stable arc, low spatter generation, good bead shape and no weld defects Another object of the present invention is to provide a pulse MAG welding method for a thin steel plate that can obtain a high-quality weld.

本発明の要旨は、板厚1.2〜6mmである薄鋼板のパルスMAG溶接方法において、
ワイヤ全質量に対する質量%で、C:0.005〜0.08%、Si:0.20〜0.50%、Mn:1.00〜1.60%、Sb:0.02〜0.20%、Cu:0.08〜0.45%を含有し、P:0.02%以下、S:0.02%以下であり、残部はFeおよび不可避不純物よりなるソリッドワイヤを用いて、パルスピーク電流(Ip):440〜600A、パルスベース電流(Ib):30〜80Aとし、前記パルスピーク電流(Ip)とパルスピーク時間(Tp)が下記式(1)を満足するパルスを付加して溶接することを特徴とする薄鋼板のパルスMAG溶接方法。
415≦Ip(A)×Tp(msec)≦780・・・・・(1)
The gist of the present invention is a pulse MAG welding method of a thin steel plate having a thickness of 1.2 to 6 mm.
% By mass with respect to the total mass of the wire, C: 0.005 to 0.08%, Si: 0.20 to 0.50%, Mn: 1.00 to 1.60%, Sb: 0.02 to 0.20 %, Cu: 0.08 to 0.45%, P: 0.02% or less, S: 0.02% or less, and the balance is a pulse peak using a solid wire made of Fe and inevitable impurities. Current (Ip): 440 to 600 A, pulse base current (Ib): 30 to 80 A, a pulse in which the pulse peak current (Ip) and the pulse peak time (Tp) satisfy the following formula (1) is added and welding is performed. A pulse MAG welding method for a thin steel sheet.
415 ≦ Ip (A) × Tp (msec) ≦ 780 (1)

また、ワイヤ全質量に対する質量%で、NiおよびMoの1種または2種の合計:0.
40%以下をさらに含有することも特徴とする薄鋼板のパルスMAG溶接方法にある。
Moreover, it is the mass% with respect to the total mass of the wire, and the total of one or two of Ni and Mo: 0.0.
The pulse MAG welding method of a thin steel sheet is characterized by further containing 40% or less.

本発明の薄鋼板のパルスMAG溶接方法によれば、板厚が1.2〜6mmの薄鋼板の重
ね継手部やT継手部を溶接するに際してビード表面に残存するスラグがなく、アークが安定してスパッタ発生量が少なく、ビード形状が良好で溶接欠陥がないなど、高能率に高品質な溶接部が得られる。
According to the pulse MAG welding method of a thin steel plate of the present invention, when welding a lap joint portion or a T joint portion of a thin steel plate having a thickness of 1.2 to 6 mm, there is no slag remaining on the bead surface, and the arc is stabilized. As a result, the spatter generation amount is small, the bead shape is good and there are no welding defects, and a high-quality welded portion can be obtained with high efficiency.

本発明の実施例に用いた重ねすみ肉継手溶接のワイヤ狙い位置を示す図である。It is a figure which shows the wire aim position of the lap fillet joint welding used for the Example of this invention.

本発明者らは、上述した問題点を解決するために、薄鋼板を重ねすみ肉継手とし、各種成分のソリッドワイヤを用いて各種パルス条件で0.8m/min以上の溶接速度で溶接を行い、ビード表面に残存するスラグの有無、アークの安定性、スパッタの発生状況、ビード形状および溶接欠陥の有無について詳細に検討した結果、次の知見を得た。   In order to solve the above-mentioned problems, the present inventors made thin steel plates into a fillet joint, and welded at a welding speed of 0.8 m / min or more under various pulse conditions using solid wires of various components. As a result of detailed examination of the presence or absence of slag remaining on the bead surface, the stability of the arc, the occurrence of spatter, the bead shape and the presence or absence of welding defects, the following knowledge was obtained.

(1)ワイヤ組成は、Siの含有量およびMnの含有量を適正としてスラグ生成量を少なくし、Sbの含有量を適正化することによって、少量生成したスラグを溶融プール表面に浮上することができ、溶融プールに浮上したスラグをクレータ部まで運ぶことによってビード表面に残存するスラグがなくなるという効果が得られた。また、Cの含有量、Mnの含有量、Siの含有量およびCuの含有量の適正化によって、アークが安定してスパッタ発生量の少ない溶接ができた。さらに、NiおよびMoを適量含有することによって、生成スラグが溶融プール表面に浮上したままクレータ部まで移動する効果を向上することができた。   (1) The wire composition may cause a small amount of slag to float on the surface of the molten pool by optimizing the Sb content by reducing the slag generation amount with the appropriate Si content and Mn content. It was possible to obtain the effect that the slag remaining on the bead surface disappeared by transporting the slag that floated to the molten pool to the crater portion. Further, by optimizing the C content, the Mn content, the Si content, and the Cu content, the arc was stabilized and welding with less spatter generation was achieved. Furthermore, by containing appropriate amounts of Ni and Mo, the effect of moving the generated slag to the crater portion while floating on the molten pool surface could be improved.

(2)上述した組成のワイヤを用いてパルス条件が1パルス−1ドロップの溶滴移行となる領域にすることで、80cm/min以上の高速度の溶接でアークが安定してスパッタ発生量が少なく良好なビード形状が得られる。   (2) By using the wire having the above-described composition and making the region where the pulse condition is 1 pulse-1 drop droplet transfer, the arc is stabilized by high-speed welding at 80 cm / min or more, and the amount of spatter generated is reduced. Less bead shape can be obtained.

以下、本発明の薄鋼板のパルスMAG溶接方法の限定理由について説明する。
まず、ワイヤ成分組成について説明する。なお、各成分の含有率は、ワイヤ全質量に対する質量%で表すものとし、その質量%に関する記載を単に%と記載する。
Hereinafter, the reason for limitation of the pulse MAG welding method of the thin steel plate of this invention is demonstrated.
First, the wire component composition will be described. In addition, the content rate of each component shall be represented by the mass% with respect to the total mass of a wire, and the description regarding the mass% is only described as%.

[C:0.005〜0.08%]
Cは、アークを安定させて溶滴を細粒化する作用がある。Cが0.005%未満では、溶滴の細粒化が困難となってアークが不安定でスパッタ発生量が多くなる。一方、Cが0.08%を超えると、スパッタ発生量が多くなるばかりでなく、溶接金属の耐割れ性が劣化する。したがって、Cは0.005〜0.08%とする。
[C: 0.005 to 0.08%]
C has the effect of stabilizing the arc and making the droplets fine. If C is less than 0.005%, it is difficult to make the droplets finer, the arc becomes unstable, and the amount of spatter generated increases. On the other hand, if C exceeds 0.08%, not only the amount of spatter generated increases, but also the crack resistance of the weld metal deteriorates. Therefore, C is 0.005 to 0.08%.

[Si:0.20〜0.50%]
Siは、溶融金属の表面張力を調整してビード形状を良好にする作用がある。Siが0.20%未満では、上記効果が得られず、ビード形状が不良となる。一方、Siが0.50%を超えると、溶融金属の表面張力が過度に上昇するため凸ビードとなりやすい。また、アークが不安定でスパッタ発生量、スラグ生成量が多くなる。したがって、Siは0.20〜0.50%とする。
[Si: 0.20 to 0.50%]
Si has the effect of adjusting the surface tension of the molten metal to improve the bead shape. If Si is less than 0.20%, the above effect cannot be obtained, and the bead shape becomes poor. On the other hand, when the Si content exceeds 0.50%, the surface tension of the molten metal is excessively increased, so that a convex bead tends to be formed. Further, the arc is unstable, and the amount of spatter generation and slag generation increases. Therefore, Si is 0.20 to 0.50%.

[Mn:1.00〜1.60%]
Mnは、脱酸元素として重要な元素である。Mnが1.00%未満では、特に高速度の溶接条件でピットが発生しやすくなる。一方、Mnが1.60%を超えると、スパッタ発生量およびスラグ生成量が多くなる。したがって、Mnは1.00〜1.60%とする。
[Mn: 1.00 to 1.60%]
Mn is an important element as a deoxidizing element. If Mn is less than 1.00%, pits are likely to be generated particularly under high-speed welding conditions. On the other hand, when Mn exceeds 1.60%, the amount of spatter generation and the amount of slag generation increase. Therefore, Mn is set to 1.00 to 1.60%.

[Sb:0.02〜0.20%]
Sbは、溶接時に生成した少量のスラグを溶融プール表面に浮上させてクレータ部まで運ぶことによってビード表面に残存するスラグを無くす効果がある。Sbが0.02%未満であると、生成したスラグを溶融プール表面に浮上させてクレータ部まで運ぶ効果が少なくなりスラグがビード表面に残存する。一方、Sbが0.20%を超えると、溶接金属の耐割れ性が劣化する。したがって、Sbは0.02〜0.20%とする。
[Sb: 0.02 to 0.20%]
Sb has the effect of eliminating slag remaining on the bead surface by floating a small amount of slag generated during welding to the surface of the molten pool and carrying it to the crater portion. When Sb is less than 0.02%, the effect of floating the generated slag on the surface of the molten pool and transporting it to the crater portion is reduced, and the slag remains on the bead surface. On the other hand, if Sb exceeds 0.20%, the crack resistance of the weld metal deteriorates. Therefore, Sb is set to 0.02 to 0.20%.

[Cu:0.08〜0.45%]
Cuは、鋼中に不可避的不純物として0.02%程度含有されるが、本発明のCuは主としてワイヤ表面に施した銅めっきをいう。通常、銅めっきはワイヤ送給性と通電性を安定化するのに極めて重要な表面処理方法である。銅めっき厚が薄いと溶接中のチップ磨耗が激しくなり、溶接中にワイヤ送給性と通電性が劣化し、その結果、アークが不安定になる。Cuが0.08%未満であると、必要なワイヤ送給性と通電性が得られずアークが不安定となる。一方、Cuが0.45%を超えると、溶接金属の耐割れ性が劣化する。したがって、Cuは0.08〜0.45%とする。なお、ワイヤ表面の銅めっき厚さは0.2〜1.0μmであることが耐チップ磨耗性および通電性から好ましい。
[Cu: 0.08 to 0.45%]
Cu is contained in steel in an amount of about 0.02% as an inevitable impurity, but Cu of the present invention mainly refers to copper plating applied to the wire surface. In general, copper plating is a surface treatment method that is extremely important for stabilizing the wire feeding property and the current carrying property. If the copper plating thickness is thin, tip wear during welding becomes severe, and wire feedability and electrical conductivity deteriorate during welding, resulting in an unstable arc. If the Cu content is less than 0.08%, the required wire feedability and electrical conductivity cannot be obtained and the arc becomes unstable. On the other hand, if Cu exceeds 0.45%, the crack resistance of the weld metal deteriorates. Therefore, Cu is made 0.08 to 0.45%. In addition, it is preferable that the copper plating thickness of the wire surface is 0.2-1.0 micrometer from chip | tip wear resistance and electrical conductivity.

[P:0.02%以下]
Pは不純物であり、Pの増加により溶接金属の割れを引き起こすので0.02%以下とする。好ましくは0.015%以下である。
[S:0.02%以下]
Sは不純物であり、Sの増加により溶接金属の割れを引き起こすので0.02%以下とする。好ましくは0.015%以下である。
[P: 0.02% or less]
P is an impurity, and an increase in P causes cracks in the weld metal. Preferably it is 0.015% or less.
[S: 0.02% or less]
S is an impurity, and an increase in S causes cracking of the weld metal, so 0.02% or less. Preferably it is 0.015% or less.

[NiおよびMoの1種または2種の合計:0.40%以下]
NiおよびMoは、Sbの生成スラグの溶融プールへ浮上させる作用を助長する。すなわち、NiおよびMoは、溶融プールを小さくし、生成した少量のスラグをアーク点近傍の溶融プール上に凝集させてクレータ部まで移動する作用を有する。NiおよびMoの1種または2種の合計が0.40%を超えると、溶接金属の耐割れ性が劣化する。したがって、NiおよびMoの1種または2種の合計は0.40%以下とする。なお、前記効果を得るためのNiおよびMoの1種または2種の合計は0.05%以上である。
[Total of one or two of Ni and Mo: 0.40% or less]
Ni and Mo promote the action of levitating the generated slag of Sb to the molten pool. That is, Ni and Mo have a function of making the molten pool small and aggregating a small amount of generated slag on the molten pool near the arc point to move to the crater portion. If the total of one or two of Ni and Mo exceeds 0.40%, the crack resistance of the weld metal deteriorates. Therefore, the total of one or two of Ni and Mo is 0.40% or less. The total of one or two of Ni and Mo for obtaining the above effect is 0.05% or more.

さらに、80cm/min以上の高速度の溶接条件でアークが安定してスパッタ発生量が少なく、ビード形状が良好となる最適パルスMAG条件範囲を検討した結果、1パルス−1ドロップ領域であるパルスピーク電流Ipとパルスピーク時間Tpの領域において、短絡がし難くアークが安定してスパッタ発生量の少ない溶接となり、良好なビード形状が得られる最適のパルスMAG条件範囲を見出した。   Furthermore, as a result of examining the optimum pulse MAG condition range in which the arc is stable under the high-speed welding conditions of 80 cm / min or more, the amount of spatter generation is small, and the bead shape is good, the pulse peak which is one pulse-1 drop region In the region of the current Ip and the pulse peak time Tp, the optimum pulse MAG condition range in which a short-circuit is difficult to occur, the arc is stable, the amount of spatter generation is small, and a good bead shape is obtained was found.

[パルスピーク電流(Ip):440〜600A]
パルスピーク電流(Ip)が440A未満では、電磁ピンチ効果による溶滴の生成と離脱がスムーズに行われなくなり、不均一な凸ビードとなる。また、アークが不安定でスパッタ発生量が多くなる。一方、パルスピーク電流(Ip)が600Aを超えると、アーク力によりスパッタ発生量が多くなる。したがって、パルスピーク電流(Ip)は440〜600Aとする。
[Pulse peak current (Ip): 440 to 600 A]
When the pulse peak current (Ip) is less than 440 A, the generation and separation of droplets due to the electromagnetic pinch effect are not smoothly performed, resulting in uneven convex beads. Also, the arc is unstable and the amount of spatter generated increases. On the other hand, when the pulse peak current (Ip) exceeds 600 A, the amount of spatter generated increases due to the arc force. Therefore, the pulse peak current (Ip) is set to 440 to 600A.

[パルスベース電流(Ib):30〜80A]
パルスベース電流(Ib)は、ベース期間でアークを保持できる電流値が必要となる。パルスベース電流(Ib)が30A未満では、アークが不安定となりスパッタ発生量が多く、ビード形状が劣化する。一方、パルスベース電流(Ib)が80Aを超えると、溶滴の離脱が速やかに行われず、アークが不安定でスパッタ発生量が多くなる。したがって、パルスベース電流(Ib)は30〜80Aとする。
[Pulse base current (Ib): 30-80A]
The pulse base current (Ib) requires a current value that can hold the arc in the base period. If the pulse base current (Ib) is less than 30 A, the arc becomes unstable, the amount of spatter generated is large, and the bead shape deteriorates. On the other hand, when the pulse base current (Ib) exceeds 80 A, the droplets are not released quickly, the arc is unstable, and the amount of spatter generated increases. Therefore, the pulse base current (Ib) is 30 to 80A.

[415≦Ip(A)×Tp(msec)≦780]
下記式(1)で示すパルス電流(Ip)とパルスピーク時間(Tp)の積(Ip×Tp
)で得られる値を限定することによって、ピーク時間の短い領域でアーク電圧が高い場合においても、溶滴の短絡がピーク時及びベース時に適度に生じて良好なビード形状が得られる。パルスピーク電流(Ip)とパルスピーク時間(Tp)の積(Ip×Tp)が415未満では、ピーク電流期間で溶滴を形成するためのエネルギーが不足し十分な溶滴の形成ができず、凸ビードとなる。一方、パルスピーク電流(Ip)とパルスピーク時間(Tp)の積が780を超えると、過度に成長した溶滴が短絡しやすくなり再点弧時のアーク力で溶融地が吹き飛ばされることからアークが不安定でスパッタ発生量が多くなる。したがって、Ip×Tpは、下記式(1)で示される範囲とする。
415≦Ip(A)×Tp(msec)≦780 ・・・・(1)
[415 ≦ Ip (A) × Tp (msec) ≦ 780]
The product of the pulse current (Ip) and the pulse peak time (Tp) represented by the following formula (1) (Ip × Tp
By limiting the value obtained in (1), even when the arc voltage is high in a region where the peak time is short, short-circuiting of the droplets occurs moderately at the peak and at the base, and a good bead shape is obtained. If the product (Ip × Tp) of the pulse peak current (Ip) and the pulse peak time (Tp) is less than 415, the energy for forming the droplet is insufficient during the peak current period, and sufficient droplet formation is not possible. It becomes a convex bead. On the other hand, if the product of the pulse peak current (Ip) and the pulse peak time (Tp) exceeds 780, the excessively grown droplets are likely to be short-circuited, and the molten ground is blown away by the arc force at the time of re-ignition. Is unstable and the amount of spatter is increased. Therefore, Ip × Tp is set to a range represented by the following formula (1).
415 ≦ Ip (A) × Tp (msec) ≦ 780 (1)

以下、実施例により本発明の効果をさらに具体的に説明する。
まず、原料鋼を真空溶解し、鍛造、圧延、伸線、焼鈍そして銅めっきした後、1.2m
mのワイヤ径まで伸線してスプールに巻き取った試作ワイヤの化学成分を表1に示す。
Hereinafter, the effects of the present invention will be described more specifically with reference to examples.
First, the raw steel is vacuum melted, forged, rolled, drawn, annealed and copper plated, then 1.2m
Table 1 shows chemical components of the prototype wire drawn to a wire diameter of m and wound on a spool.

表1に示すワイヤW1〜W8は本発明例であり、ワイヤW9〜W17は比較例である。 Wires W1 to W8 shown in Table 1 are examples of the present invention, and wires W9 to W17 are comparative examples.

表1に示す試作ワイヤを用いて、表2に示す板厚3.2mmの鋼板を図1に示す上板1
の端部と下板2の表面との間を、表3および表4に示すパルスMAG溶接条件で溶接長400mmを溶接した。ワイヤの狙い位置は重ね継手のコーナー部とし、溶接トーチ2の角度θは60°とした。溶接試験は、ビード表面のスラグ残存の有無(クレータ部のスラグ
は除く)、アークの安定性、スパッタ発生量、ビード形状および溶接欠陥の有無を目視
で評価した。それらの結果を表4にまとめて示す。
Using the prototype wire shown in Table 1, a steel plate having a thickness of 3.2 mm shown in Table 2 is converted into an upper plate 1 shown in FIG.
A weld length of 400 mm was welded between the end of the plate and the surface of the lower plate 2 under the pulse MAG welding conditions shown in Tables 3 and 4. The target position of the wire was the corner portion of the lap joint, and the angle θ of the welding torch 2 was 60 °. In the welding test, the presence or absence of slag remaining on the bead surface (excluding slag on the crater), the stability of the arc, the amount of spatter, the bead shape, and the presence or absence of welding defects were evaluated visually. The results are summarized in Table 4.

表4中の試験No.1〜No.8は本発明例、試験No.9〜No.19は比較例であ
る。
Test No. in Table 4 1-No. 8 is an example of the present invention, test No. 9-No. 19 is a comparative example.

本発明例である試験No.1〜No.8は、ワイヤ記号W1〜W8が本発明で規定した各成分範囲内で、パルスMAG溶接条件が適正であるので、ビード表面へスラグの残存がなく、アークが安定してスパッタ発生量が少なく、ビード形状が良好で溶接欠陥が無く、極めて満足な結果であった。なお、試験No.1、No.4、No.7および試験No.8は、ワイヤ記号W1、W4、W7およびワイヤ記号W8のSiとMnの合計が比較的多いのでスラグ生成量も比較的多くなったが、NiおよびMoの1種または2種を適量含んでいるので、ビード表面へスラグの残存はなかった。   Test No. which is an example of the present invention. 1-No. No. 8, since the wire symbols W1 to W8 are within the respective component ranges defined in the present invention and the pulse MAG welding conditions are appropriate, no slag remains on the bead surface, the arc is stable, and the amount of spatter generated is small. The bead shape was good, there were no weld defects, and the results were extremely satisfactory. In addition, Test No. 1, no. 4, no. 7 and test no. No. 8 has a relatively large sum of Si and Mn of the wire symbols W1, W4, W7 and the wire symbol W8, so the amount of slag generation was also relatively large, but it contains an appropriate amount of one or two of Ni and Mo. Therefore, no slag remained on the bead surface.

比較例中の試験No.9は、ワイヤ記号W9のCが少ないので、アークが不安定でスパ
ッタ発生量が多かった。また、NiとMoの合計が多いので、クレータ割れが生じた。
試験No.10は、ワイヤ記号W10のCが多いので、スパッタ発生量が多く、クレータ割れが発生した。また、パルスピーク電流Ipとピーク時間Tpの積Ip×Tpが低いので、凸ビードとなった。
Test No. in the comparative example. In No. 9, since the C of the wire symbol W9 is small, the arc is unstable and the amount of spatter generated is large. Moreover, since there was much sum of Ni and Mo, the crater crack occurred.
Test No. No. 10 had a lot of C in the wire symbol W10, so the amount of spatter was large and crater cracking occurred. Further, since the product Ip × Tp of the pulse peak current Ip and the peak time Tp was low, a convex bead was formed.

試験No.11は、ワイヤ記号W11のSiが少ないので、ビード形状が不良であった
。また、パルスピーク電流Ipとピーク時間Tpの積Ip×Tpが高いので、アークが不安定でスパッタ発生量が多かった。試験No.12は、ワイヤ記号W12のSiが多いので、ビード表面にスラグが残存し、アークが不安定でスパッタ発生量多く、凸ビードとなった。また、Cu多いので、クレータ割れが発生した。試験No.13は、ワイヤ記号W13のMnが少ないので、ピットが生じた。また、パルスピーク電流(Ip)が低いので、アークが不安定でスパッタ発生量が多く、凸ビードとなった。
Test No. No. 11 had a poor bead shape because there was less Si in the wire symbol W11. Further, since the product Ip × Tp of the pulse peak current Ip and the peak time Tp is high, the arc is unstable and the amount of spatter generated is large. Test No. No. 12 had a large amount of Si of the wire symbol W12, so slag remained on the bead surface, the arc was unstable, the amount of spatter was large, and a convex bead was formed. Moreover, since there was much Cu, the crater crack generate | occur | produced. Test No. No. 13 had pits because the Mn of the wire symbol W13 was small. Further, since the pulse peak current (Ip) was low, the arc was unstable, the amount of spatter was large, and a convex bead was formed.

試験No.14は、ワイヤ記号W14のMnが多いので、ビード表面にスラグが残存し、スパッタ発生量が多かった。試験No.15は、ワイヤ記号W15のSbが少ないので、ビード表面にスラグが残存した。また、パルスベース電流(Ib)が低いので、アークが不安定でスパッタ発生量が多く、ビード形状も不良であった。試験No.16は、ワイ
ヤ記号W16のSbが多いので、クレータ割れが発生した。また、パルスベース電流(
Ib)が高いので、アークが不安定でスパッタ発生量が多かった。
Test No. No. 14 had a large amount of Mn of the wire symbol W14, so that slag remained on the bead surface and the amount of spatter was large. Test No. No. 15 had a small amount of Sb of the wire symbol W15, so that slag remained on the bead surface. Further, since the pulse base current (Ib) was low, the arc was unstable, the amount of spatter generation was large, and the bead shape was poor. Test No. In No. 16, crater cracking occurred because there was much Sb of the wire symbol W16. Also, the pulse base current (
Since Ib) was high, the arc was unstable and the amount of spatter generated was large.

試験No.17は、ワイヤ記号W17のCuが少ないので、アークが不安定であった。
また、パルスピーク電流(Ip)が高いので、スパッタ発生量が多かった。試験No.1
8は、ワイヤ記号W6が本発明で規定した各成分範囲内であるが、パルスピーク電流I
pとピーク時間Tpの積Ip×Tpが低いので、凸ビードとなった。試験No.19は、
ワイヤ記号W7が本発明で規定した各成分範囲内であるが、パルスピーク電流Ipとピ
ーク時間Tpの積Ip×Tpが高いので、アークが不安定でスパッタ発生量が多かった。
Test No. In No. 17, the arc of the arc was unstable because there was little Cu in the wire symbol W17.
Further, since the pulse peak current (Ip) was high, the amount of spatter generated was large. Test No. 1
8 is within each component range defined by the wire symbol W6 in the present invention, but the pulse peak current I
Since the product Ip × Tp of p and peak time Tp was low, a convex bead was formed. Test No. 19
Although the wire symbol W7 is within each component range defined in the present invention, the product Ip × Tp of the pulse peak current Ip and the peak time Tp is high, so the arc is unstable and the amount of spatter generated is large.

1 上板
2 下板
3 溶接トーチ
θ トーチ角度


特許出願人 日鐡住金溶接工業株式会社
代理人 弁理士 椎 名 彊
1 Upper plate 2 Lower plate 3 Welding torch θ Torch angle


Patent Applicant Nippon Steel & Sumikin Welding Industry Co., Ltd.
Attorney: Attorney Shiina

Claims (2)

板厚1.2〜6mmである薄鋼板のパルスMAG溶接方法において、
ワイヤ全質量に対する質量%で、
C:0.005〜0.08%、
Si:0.20〜0.50%、
Mn:1.00〜1.60%、
Sb:0.02〜0.20%
Cu:0.08〜0.45%を含有し、
P:0.02%以下、
S:0.02%以下であり、
残部はFeおよび不可避不純物よりなるソリッドワイヤを用いて、
パルスピーク電流(Ip):440〜600A、
パルスベース電流(Ib):30〜80Aとし、
前記パルスピーク電流(Ip)とパルスピーク時間(Tp)が下記式(1)を満足するパルスを付加して溶接することを特徴とする薄鋼板のパルスMAG溶接方法。
415≦Ip(A)×Tp(msec)≦780・・・・・(1)
In the pulse MAG welding method of a thin steel plate having a plate thickness of 1.2 to 6 mm,
% By mass relative to the total mass of the wire
C: 0.005-0.08%,
Si: 0.20 to 0.50%,
Mn: 1.00 to 1.60%,
Sb: 0.02 to 0.20%
Cu: 0.08 to 0.45% is contained,
P: 0.02% or less,
S: 0.02% or less,
The remainder uses a solid wire made of Fe and inevitable impurities,
Pulse peak current (Ip): 440 to 600 A,
Pulse base current (Ib): 30-80A,
A pulse MAG welding method for a thin steel sheet, wherein the pulse peak current (Ip) and the pulse peak time (Tp) are welded by applying a pulse satisfying the following formula (1).
415 ≦ Ip (A) × Tp (msec) ≦ 780 (1)
ワイヤ全質量に対する質量%で、NiおよびMoの1種または2種の合計:0.40%以下をさらに含有することを特徴とする請求項1に記載の薄鋼板のパルスMAG溶接方法。 2. The pulse MAG welding method for a thin steel sheet according to claim 1, further comprising: 0.40% or less in total of one or two of Ni and Mo in mass% with respect to the total mass of the wire.
JP2017013821A 2017-01-30 2017-01-30 Pulse MAG welding method for thin steel sheet Active JP6709177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017013821A JP6709177B2 (en) 2017-01-30 2017-01-30 Pulse MAG welding method for thin steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017013821A JP6709177B2 (en) 2017-01-30 2017-01-30 Pulse MAG welding method for thin steel sheet

Publications (2)

Publication Number Publication Date
JP2018122307A true JP2018122307A (en) 2018-08-09
JP6709177B2 JP6709177B2 (en) 2020-06-10

Family

ID=63110799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017013821A Active JP6709177B2 (en) 2017-01-30 2017-01-30 Pulse MAG welding method for thin steel sheet

Country Status (1)

Country Link
JP (1) JP6709177B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113500275A (en) * 2021-07-22 2021-10-15 南京航空航天大学 GMAW (gas metal arc welding) welding process for improving formation and performance of high-speed electric arc lap welding seam of sheet steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305389A (en) * 1997-05-09 1998-11-17 Kawasaki Steel Corp Steel wire for pulse mag welding and manufacture therefor
JP2002001578A (en) * 2000-05-17 2002-01-08 Illinois Tool Works Inc <Itw> Welding wire with improved slag-removing property
JP2004090045A (en) * 2002-08-30 2004-03-25 Nippon Steel Corp Gas shielded arc welding wire for low alloy steel excellent in hydrochloric acid resistance and sulfuric acid resistance, and gas shielded arc welding method using same
JP2007301623A (en) * 2006-05-15 2007-11-22 Nippon Steel & Sumikin Welding Co Ltd High speed gas shielded arc welding method for horizontal lap joint of steel sheet
JP2008207211A (en) * 2007-02-26 2008-09-11 Nippon Steel & Sumikin Welding Co Ltd Copper-plated solid wire for pulse mag welding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305389A (en) * 1997-05-09 1998-11-17 Kawasaki Steel Corp Steel wire for pulse mag welding and manufacture therefor
JP2002001578A (en) * 2000-05-17 2002-01-08 Illinois Tool Works Inc <Itw> Welding wire with improved slag-removing property
JP2004090045A (en) * 2002-08-30 2004-03-25 Nippon Steel Corp Gas shielded arc welding wire for low alloy steel excellent in hydrochloric acid resistance and sulfuric acid resistance, and gas shielded arc welding method using same
JP2007301623A (en) * 2006-05-15 2007-11-22 Nippon Steel & Sumikin Welding Co Ltd High speed gas shielded arc welding method for horizontal lap joint of steel sheet
JP2008207211A (en) * 2007-02-26 2008-09-11 Nippon Steel & Sumikin Welding Co Ltd Copper-plated solid wire for pulse mag welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113500275A (en) * 2021-07-22 2021-10-15 南京航空航天大学 GMAW (gas metal arc welding) welding process for improving formation and performance of high-speed electric arc lap welding seam of sheet steel
CN113500275B (en) * 2021-07-22 2022-06-21 南京航空航天大学 GMAW (gas metal arc welding) welding process for improving formation and performance of high-speed electric arc lap welding seam of sheet steel

Also Published As

Publication number Publication date
JP6709177B2 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
JP6800770B2 (en) Pulse MAG welding method for thin steel sheets
JP5472244B2 (en) Narrow groove butt welding method for thick steel plates
CN110753597A (en) Arc welding method and solid wire
JP2007098459A (en) High-speed gas-shielded arc welding method of zinc-based metal-plated steel plate
JP2007118068A (en) Narrow groove butt welding method for thick steel plate
JP4930048B2 (en) Plasma arc hybrid welding method to improve joint fatigue strength of lap fillet welded joint
JP6683635B2 (en) Pulse MAG welding method for high strength thin steel sheet
JP5925703B2 (en) Solid wire for gas shielded arc welding of thin steel sheet
JP2005246479A (en) Multilayer carbon dioxide gas shielded arc welding method for steel plate
JP3951593B2 (en) MAG welding steel wire and MAG welding method using the same
JP6709177B2 (en) Pulse MAG welding method for thin steel sheet
JP5066375B2 (en) Copper-plated solid wire for pulse MAG welding
JP5236337B2 (en) Solid wire for pulse MAG welding of thin steel sheet
JP7311473B2 (en) arc welding method
JP2005169414A (en) Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same
JP6676553B2 (en) MAG welding wire for high strength thin steel sheet and pulse MAG welding method using the same
JP3861979B2 (en) Steel wire for carbon dioxide shielded arc welding
JP6892305B2 (en) Arc welding method
JP5066378B2 (en) Copper plated solid wire for pulse MAG welding of hot dip galvanized steel sheet
JP5037369B2 (en) Solid wire for pulse MAG welding
JP5280060B2 (en) Gas shield arc welding method
JP6676552B2 (en) MAG welding wire for high strength thin steel sheet and pulse MAG welding method using the same
JP2015100813A (en) Solid wire for gas shield arc weld for thin steel plate
WO2018159844A1 (en) Arc welding method
WO2022230904A1 (en) Arc-welded joint and arc-welding method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200522

R150 Certificate of patent or registration of utility model

Ref document number: 6709177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250