JP5236337B2 - Solid wire for pulse MAG welding of thin steel sheet - Google Patents

Solid wire for pulse MAG welding of thin steel sheet Download PDF

Info

Publication number
JP5236337B2
JP5236337B2 JP2008098174A JP2008098174A JP5236337B2 JP 5236337 B2 JP5236337 B2 JP 5236337B2 JP 2008098174 A JP2008098174 A JP 2008098174A JP 2008098174 A JP2008098174 A JP 2008098174A JP 5236337 B2 JP5236337 B2 JP 5236337B2
Authority
JP
Japan
Prior art keywords
wire
welding
amount
gap
bead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008098174A
Other languages
Japanese (ja)
Other versions
JP2009248121A (en
Inventor
大輔 大村
勇 木本
翔太 芝崎
Original Assignee
日鐵住金溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鐵住金溶接工業株式会社 filed Critical 日鐵住金溶接工業株式会社
Priority to JP2008098174A priority Critical patent/JP5236337B2/en
Publication of JP2009248121A publication Critical patent/JP2009248121A/en
Application granted granted Critical
Publication of JP5236337B2 publication Critical patent/JP5236337B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

本発明は、薄鋼板たとえば板厚2.0〜4.5mmの鋼板の、パルス溶接を使用したAr+CO、Ar+OまたはAr+CO+O等の混合ガスシールドのアーク溶接(以下、パルスMAG溶接)に適した薄鋼板のパルスMAG溶接用ソリッドワイヤに関し、特に高速溶接および溶接部の間隙(以下、ギャップという)が大きい場合においてもアークが安定してスパッタ発生量が少なく、良好なビード形状が得られる薄鋼板のパルスMAG溶接用ソリッドワイヤに関するものである。 The present invention relates to arc welding of a mixed gas shield such as Ar + CO 2 , Ar + O 2 or Ar + CO 2 + O 2 using pulse welding of a steel plate having a thickness of 2.0 to 4.5 mm (hereinafter referred to as pulse MAG welding). Solid wire for pulse MAG welding of thin steel sheets suitable for welding, especially when high-speed welding and the gap (hereinafter referred to as the gap) of the weld are large, the arc is stable and the amount of spatter generated is small, and a good bead shape is obtained. The present invention relates to a solid wire for pulse MAG welding of a thin steel plate.

ソリッドワイヤを用いたガスシールドアーク溶接方法は高能率であり、機械的性能の良好な溶接金属と良好なビード形状が得られることから薄鋼板の溶接に広く適用されている。またスパッタ発生量の低減および高速溶接性確保の面から、主成分をArガスとし、これにCOを混合、更にはOガスを混合させたシールドガスを使用したパルスMAG溶接方法が近年増加している。これらの溶接は生産性の向上から高速度で高電流の溶接条件で施工され、良好な溶接ビードを形成し健全な溶接継手を作製している。 A gas shielded arc welding method using a solid wire is highly efficient, and is widely applied to welding of thin steel sheets because a weld metal with good mechanical performance and a good bead shape can be obtained. Also, from the viewpoint of reducing spatter generation and ensuring high-speed weldability, the number of pulse MAG welding methods using Ar gas as the main component, CO 2 mixed with this, and shielding gas mixed with O 2 gas has increased in recent years. doing. These welds are constructed under high-speed and high-current welding conditions to improve productivity, and form a good weld bead to produce a sound welded joint.

パルスMAG溶接とは、平均溶接電流より高電流となるピーク電流と平均電流より低電流としたベース電流を周期的に付加する溶接方法である。このようにしてピーク電流期間でワイヤを溶融しベース電流期間で溶滴を溶融池に移行させることにより、平均のアーク電圧が低い場合でも溶滴が溶融池と短絡することなく溶滴を移行させることができる。パルスMAG溶接においては、ピーク電流、ピーク電圧、ピーク時間の積からなるワイヤの溶融エネルギーを適正にすることにより1回のパルスピーク電流時に1個の溶滴を生成させ、ベース電流期間に溶滴を移行させる。このような1パルス−1ドロップ移行となるパルス条件により、溶滴はスムーズに溶融池に移行しスパッタ発生量が低減される。   Pulse MAG welding is a welding method in which a peak current that is higher than the average welding current and a base current that is lower than the average current are periodically added. In this way, by melting the wire in the peak current period and transferring the droplet to the molten pool in the base current period, the droplet is transferred without short-circuiting the molten pool even when the average arc voltage is low. be able to. In pulse MAG welding, one droplet is generated at the time of one pulse peak current by optimizing the melting energy of the wire consisting of the product of peak current, peak voltage, and peak time. To migrate. Under such a pulse condition of 1 pulse-1 drop transition, the droplet smoothly moves to the molten pool, and the amount of spatter generated is reduced.

一方、ピーク電流、ピーク電圧、ピーク時間の積とワイヤを溶融するエネルギーとが不均衡になると溶滴移行時期がベース電流期間およびピーク電流期間に不連続に発生することになり、溶滴移行はスムーズに行われることがなくスパッタとして飛散することになる。また、特に高速度の溶接においてはアンダーカットが発生し易く、これを抑制する手段としてアーク電圧を低下した条件を採用することが一般的であるが、短いアーク長ではパルスMAG溶接法でもスプレーアークとはならず、ベース期間中に短絡が生じ多量のスパッタが発生してしまう。高速度の溶接においてはアンダーカットおよびハンピングを防止し、スパッタの発生を抑制するためにできる限り短いアーク長でも短絡が生じず、安定な溶滴移行を実現できるワイヤが必要となっている。   On the other hand, if the product of peak current, peak voltage, and peak time and the energy to melt the wire become imbalanced, the droplet transfer timing will occur discontinuously in the base current period and the peak current period. It will not be performed smoothly and will be spattered. In particular, undercuts are likely to occur particularly in high-speed welding, and it is common to employ conditions that reduce the arc voltage as a means to suppress this. However, a short circuit occurs during the base period and a large amount of spatter is generated. In order to prevent undercut and humping in high-speed welding and to suppress the occurrence of spatter, there is a need for a wire that can realize stable droplet transfer without causing a short circuit even with an arc length as short as possible.

図1(a)、(b)、(c)、(d)に薄鋼板の重ね継手部の横向姿勢でギャップGがある場合のビード形成状態の例を示す。図1(a)は、溶け落ちやビードの垂れがなく良好なビード形状の溶接金属3が得られた例である。図1(b)は、アンダーカット4が生じた例、図1(c)は、溶融金属が前板1側に垂れた例、図1(d)は、溶融金属が前板1と後板2の間のギャップG内に垂れ落ちた例である。このように、重ね継手部のギャップGが大きい場合はアンダーカットが生じたり溶融金属が垂れ易くなり、良好な溶接ビード形成が困難という問題があった。   FIGS. 1A, 1B, 1C, and 1D show examples of a bead formation state when there is a gap G in the lateral orientation of the lap joint portion of a thin steel plate. FIG. 1A is an example in which a weld metal 3 having a good bead shape without melting or bead dripping is obtained. 1B is an example in which an undercut 4 occurs, FIG. 1C is an example in which molten metal hangs down to the front plate 1, and FIG. This is an example of dripping into the gap G between the two. As described above, when the gap G of the lap joint portion is large, there is a problem that undercut occurs or the molten metal tends to sag and it is difficult to form a good weld bead.

このような背景から、パルスMAG溶接用として低スパッタ化が可能なワイヤとして、特開昭61−159296号公報(特許文献1)、特開昭62−296993号公報(引用文献2)および特開昭63−157794号公報(特許文献3)等に種々の技術が開示されている。しかし、これらの従来技術は、主として、C、Si、Mn、PおよびSからなる組成に、Al、Ti、OおよびN等の成分を添加し、それらの各成分の量を最適化することを特徴としている。しかしこれらの従来技術においては高速溶接時の耐ギャップ性については全く認識されておらず、ギャップを有する箇所の高速溶接ではアークが不安定でスパッタ発生量が多く、ビード形状も不満足であった。またこれら技術は比較的多くのOを含んでおり、ワイヤ製造時銅めっき後の伸線においてワイヤ表面に亀裂が生じ、溶接時にワイヤ表面の銅めっきが剥離してチップ詰まりが生じるという問題もあった。   From such a background, Japanese Patent Application Laid-Open No. 61-159296 (Patent Document 1), Japanese Patent Application Laid-Open No. 62-296993 (Cited Document 2), and Japanese Patent Application Laid-Open No. 62-296993 are disclosed as wires capable of reducing spatter for pulse MAG welding. Various techniques are disclosed in Japanese Patent Laid-Open No. 63-157794 (Patent Document 3). However, these conventional techniques mainly add components such as Al, Ti, O and N to a composition composed of C, Si, Mn, P and S, and optimize the amount of each of those components. It is a feature. However, in these conventional techniques, the gap resistance at the time of high-speed welding was not recognized at all, and the arc was unstable, the amount of spatter was large, and the bead shape was unsatisfactory in the high-speed welding at the gap. In addition, these techniques contain a relatively large amount of O, and there is a problem that the wire surface cracks during wire drawing after copper plating during wire production, and the copper plating on the wire surface peels off during welding, resulting in chip clogging. It was.

また、特開2002−346787号公報(特許文献4)には、ワイヤ表面に銅めっきを施さずに、溶接時にシールドガス中の解離酸素と溶滴の鉄とを結合させ、極めて高い濃度の溶滴表面酸素層によって溶滴の粘性、特に表面近傍の表面張力を低下させる技術の開示がある。これによって溶滴の離脱を容易にし、アーク長を短くしても溶滴先端が短絡し難くなり、安定なスプレー移行となり、スパッタ発生量が極めて少なくなるというものである。しかし、前記技術においても高速溶接時の耐ギャップ性については全く認識されておらず、ギャップを有する箇所の高速溶接ではアークが不安定で、低スパッタ化が不十分でビード形状も不満足であった。さらに、ワイヤ表面に銅めっきが施されていないので、ワイヤ表面とチップとの摩擦が大きくチップが摩耗して頻繁に交換をすることとなり、著しく作業能率を低下させていた。
特開昭61−159296号公報 特開昭62−296993号公報 特開昭63−157794号公報 特開2002−346787号公報
Japanese Patent Laid-Open No. 2002-346787 (Patent Document 4) discloses a method for bonding dissociated oxygen in a shielding gas and iron in a droplet during welding without performing copper plating on the surface of the wire. There is a disclosure of a technique for reducing the viscosity of a droplet, particularly the surface tension near the surface, by a droplet surface oxygen layer. This facilitates the detachment of the droplets, and even if the arc length is shortened, the tip of the droplet is difficult to short-circuit, resulting in a stable spray transfer, and the amount of spatter generated is extremely reduced. However, even in the above-mentioned technology, the gap resistance at the time of high-speed welding was not recognized at all, and the arc was unstable in high-speed welding of the portion having the gap, the low spattering was insufficient, and the bead shape was also unsatisfactory. . Furthermore, since the copper plating is not applied to the wire surface, the friction between the wire surface and the tip is large, and the tip is worn and frequently exchanged, so that the work efficiency is remarkably lowered.
JP-A 61-159296 JP 62-296993 A JP-A 63-157794 JP 2002-346787 A

本発明は、ギャップが大きい場合においても高速度の溶接が可能で、溶滴が小さく移行が安定かつ規則的に行われ、ビード形状が良好で、アークが安定しスパッタ発生量が極めて少なく、さらにチップ詰まりやチップの大きな摩耗が生じないパルスMAG溶接用銅めっきソリッドワイヤを提供することを目的とする。   The present invention enables welding at a high speed even when the gap is large, the droplets are small, the transition is performed stably and regularly, the bead shape is good, the arc is stable, and the amount of spatter generated is extremely small. An object of the present invention is to provide a copper-plated solid wire for pulse MAG welding that does not cause chip clogging or large chip wear.

本発明の要旨は、薄鋼板のパルスMAG溶接用ソリッドワイヤにおいて、C:0.02〜0.10質量%、Si:0.52〜1.0質量%、Mn:1.1〜1.8質量%、Ti:0.09〜0.25質量、Al:0.09〜0.25質量%、但しTi+Al:0.21〜0.45質量%、Ti/Al:0.7〜1.5で、S:0.010〜0.025質量%を含有し、銅めっきを厚さ:0.3〜1.1μm有し、その他はP:0.025質量%以下、O:0.010質量%以下で、残部はFeおよび不可避不純物からなることを特徴とする。 The gist of the present invention is that in a solid wire for pulse MAG welding of a thin steel plate, C: 0.02 to 0.10 mass%, Si: 0.52 to 1.0 mass%, Mn: 1.1 to 1.8. % By mass, Ti: 0.09 to 0.25 % by mass, Al: 0.09 to 0.25% by mass, provided that Ti + Al: 0.21 to 0.45% by mass, Ti / Al: 0.7 to 1. 5, containing S: 0.010 to 0.025 mass%, having a copper plating thickness of 0.3 to 1.1 μm, the others being P: 0.025 mass% or less, O: 0.010 The balance is characterized by being composed of Fe and inevitable impurities at a mass% or less.

本発明の薄鋼板のパルスMAG溶接用ソリッドワイヤによれば、パルスMAG溶接においてギャップが大きい場合においても高速度の溶接が可能で、アークが安定しスパッタ発生量が極めて少なく、溶接部の手直しがなく、さらにチップ詰まりやチップ摩耗が生じないなど溶接能率が優れた溶接が可能となる。   According to the solid wire for pulse MAG welding of a thin steel plate of the present invention, high-speed welding is possible even when the gap is large in pulse MAG welding, the arc is stable, the amount of spatter generation is extremely small, and the welded part is reworked In addition, it is possible to perform welding with excellent welding efficiency such as no chip clogging or chip wear.

以下、本発明の薄鋼板のパルスMAG溶接用ソリッドワイヤについて詳細に説明する。本発明者らは上記の問題点を解決するために、各種成分の異なるワイヤを試作して、パルス条件で1m/min以上の高速度の溶接を行い、アーク状態、ビード形状、スパッタ発生状況および耐ギャップ性につき詳細に調査した。   Hereinafter, the solid wire for pulse MAG welding of the thin steel plate of the present invention will be described in detail. In order to solve the above-mentioned problems, the inventors made a trial manufacture of wires having different components, and performed welding at a high speed of 1 m / min or more under pulse conditions, and the arc state, bead shape, spatter generation state, and The gap resistance was investigated in detail.

その結果、ワイヤ組成のC、Si、Mn、S量の適正化と、TiおよびAlの量ならびにTiとAlの比の調整によって、アークの安定性、溶融金属の粘性および表面張力の適正化を図り、スパッタ発生量減および広幅で外観の良好なビードが得られることを見出した。   As a result, by optimizing the amount of C, Si, Mn, and S in the wire composition and adjusting the amount of Ti and Al and the ratio of Ti and Al, the stability of the arc, the viscosity of the molten metal, and the surface tension can be optimized. As a result, it was found that a bead having a good appearance with a reduced spatter generation amount and a wide width was obtained.

以下、本発明におけるワイヤ組成とその含有量の限定理由について説明する。
[C:0.02〜0.10質量%]
Cはアークを安定化し溶滴を細粒化する作用があり、0.02質量%(以下、%という)未満では溶滴が大きくなってアークが不安定になりスパッタ発生量が多くなる。一方、0.10%を超えると溶融金属の粘性が低くなり溶融金属が垂れてビード形状が不良となる。また、スパッタ発生量が増加するばかりでなく、溶接金属を著しく硬化させ耐割れ性が劣化する。
Hereinafter, the reason for limiting the wire composition and the content thereof in the present invention will be described.
[C: 0.02 to 0.10% by mass]
C has the effect of stabilizing the arc and making the droplets finer. If the amount is less than 0.02% by mass (hereinafter referred to as “%”), the droplets become large, the arc becomes unstable, and the amount of spatter generated increases. On the other hand, if it exceeds 0.10%, the viscosity of the molten metal becomes low and the molten metal drips and the bead shape becomes poor. Further, not only the spatter generation amount increases, but also the weld metal is remarkably hardened and the crack resistance is deteriorated.

[Si:0.52〜1.0%]
Siは溶接金属の主脱酸剤として不可欠であると共に、ワイヤの電気抵抗を増大させてワイヤの溶融量を増加させ、さらに溶融金属の粘度を増大させる効果が大きい元素である。これによって良好な耐ギャップ性が得られ、広幅の溶接ビードを形成できる。しかし、0.52%未満では上記効果が得られず、また、1.0%を超えると溶融金属の粘度が過度に上昇するため溶融金属が高速度の溶接速度に追従できず、ハンピングビードとなり易い。
[Si: 0.52 to 1.0%]
Si is an indispensable element as a main deoxidizer for weld metal, and is an element that has a large effect of increasing the electric resistance of the wire to increase the melting amount of the wire and further increasing the viscosity of the molten metal. As a result, good gap resistance can be obtained, and a wide weld bead can be formed. However, if the content is less than 0.52 %, the above effect cannot be obtained. If the content exceeds 1.0%, the viscosity of the molten metal excessively increases, so that the molten metal cannot follow the high welding speed. It is easy to become.

[Mn:1.1〜1.8%]
MnはSiと共に脱酸剤として作用する他、溶融金属の粘度を高くし表面張力を低下させる効果がある。1.1%未満ではその効果が得られず、ブローホール等の気孔欠陥が発生しやすくなると共に、溶融金属の粘度が低いことから溶融金属が垂れてビード外観が不良で十分な耐ギャップ性が得られない。一方、Mnが1.8%を超えると、溶融金属の粘度が高くなり過ぎて広幅のビードが得られない。
[Mn: 1.1 to 1.8%]
Mn acts as a deoxidizer together with Si, and has the effect of increasing the viscosity of the molten metal and reducing the surface tension. If it is less than 1.1%, the effect cannot be obtained, and pore defects such as blow holes are likely to occur, and since the molten metal has a low viscosity, the molten metal drips and the bead appearance is poor and sufficient gap resistance is provided. I can't get it. On the other hand, if Mn exceeds 1.8%, the viscosity of the molten metal becomes too high and a wide bead cannot be obtained.

[Ti:0.09〜0.25%]
Tiは高速溶接時のアークを安定させスパッタ発生量を少なくすると共に脱酸剤として働きブローホールの発生を抑制する。Tiが0.09%未満であるとアークが不安定でスパッタ発生量が多くなる。一方、0.25%を超えると溶滴の大きさが均一にならず1パルス−1ドロップの移行を乱してスパッタ発生量が多くなる。
[Ti: 0.09 to 0.25%]
Ti stabilizes the arc during high-speed welding, reduces the amount of spatter generated, and acts as a deoxidizer to suppress the occurrence of blowholes. When Ti is less than 0.09%, the arc is unstable and the amount of spatter generated increases. On the other hand, if it exceeds 0.25%, the size of the droplet is not uniform and the transition of 1 pulse-1 drop is disturbed, resulting in an increase in the amount of spatter generated.

[Al:0.09〜0.25%]
Alは溶融金属の粘性を高くして垂れ性を改善し、高速溶接時のアークを安定させスパッタ発生量を少なくする。Alが0.09%未満であるとアークが不安定となりスパッタ発生量が多くなる。また、溶融金属の粘性が低くなって溶融金属が垂れてビード外観が不良で十分な耐ギャップ性が得られない。一方、0.25%を超えると、溶融金属の粘度が高くなり過ぎて広幅のビードが得られない。
[Al: 0.09 to 0.25%]
Al increases the viscosity of the molten metal to improve the sagging property, stabilizes the arc during high-speed welding, and reduces the amount of spatter generated. If Al is less than 0.09%, the arc becomes unstable and the amount of spatter generated increases. Further, the viscosity of the molten metal is lowered, the molten metal drips, the bead appearance is poor, and sufficient gap resistance cannot be obtained. On the other hand, if it exceeds 0.25%, the viscosity of the molten metal becomes too high and a wide bead cannot be obtained.

[Ti+Al:0.21〜0.45%、Ti/Al:0.7〜1.5]
TiとAlを共存させることによって、溶融金属中の酸化物(介在物)が多くなり粘性が適正となって耐ギャップ性が良好となる。しかし、Ti+Alが0.21%未満であると、溶融金属の粘性が低くなって溶融金属が垂れてビード外観が不良で十分な耐ギャップ性が得られない。一方、Ti+Alが0.45%を超えると、溶融金属中の酸化物が多くなり過ぎ粘性が高くなり過ぎて凸ビードとなり耐ギャップ性が得られない。また、Ti/Alが0.7未満であるとスパッタ発生量が多くなる。一方、1.5を超えると溶滴の大きさが均一にならず1パルス−1ドロップの移行を乱してスパッタ発生量が多くなる。
[Ti + Al: 0.21-0.45%, Ti / Al: 0.7-1.5]
By coexisting Ti and Al, the oxide (inclusions) in the molten metal increases, the viscosity becomes appropriate, and the gap resistance is improved. However, if Ti + Al is less than 0.21%, the viscosity of the molten metal becomes low, the molten metal drips, the bead appearance is poor, and sufficient gap resistance cannot be obtained. On the other hand, if Ti + Al exceeds 0.45%, the amount of oxide in the molten metal increases so much that the viscosity becomes too high, resulting in a convex bead and no gap resistance. If Ti / Al is less than 0.7, the amount of spatter generated increases. On the other hand, when the ratio exceeds 1.5, the size of the droplet is not uniform, and the transition of 1 pulse-1 drop is disturbed, resulting in an increase in the amount of spatter generated.

[S:0.010〜0.025%]
Sは溶融金属の表面張力を低下してビード止端部のなじみを良好にする。Sが0.010%未満であるとビード止端部のなじみが不良となる。しかし、Sが0.025%を超えると溶接金属の耐割れ性を劣化する。
[S: 0.010 to 0.025%]
S lowers the surface tension of the molten metal and improves the familiarity of the bead toe. If S is less than 0.010%, the familiarity of the bead toe portion becomes poor. However, if S exceeds 0.025%, the crack resistance of the weld metal deteriorates.

[ワイヤ表面の銅めっき厚さ:0.3〜1.1μm]
ワイヤ表面の銅めっきは、ワイヤとチップ間の通電性を良好にしてアークを安定にする。銅めっき厚さが0.3μm未満であると、特に低電圧の溶接条件においてはワイヤとチップ間の通電性が部分的に悪くなり、アークが不安定になってスパッタ発生量が多くなる。一方、銅めっき厚さが1.1μmを超えると、溶接金属の銅含有量が多くなって耐割れ性が劣化する。
[Copper plating thickness on wire surface: 0.3 to 1.1 μm]
Copper plating on the surface of the wire improves the electrical conductivity between the wire and the chip and stabilizes the arc. When the copper plating thickness is less than 0.3 μm, particularly in low-voltage welding conditions, the electrical conductivity between the wire and the chip is partially deteriorated, the arc becomes unstable, and the amount of spatter generated increases. On the other hand, if the copper plating thickness exceeds 1.1 μm, the copper content of the weld metal increases and the crack resistance deteriorates.

なお、Oが0.010%を超えると、ワイヤ製造時にワイヤ表面に亀裂が生じ溶接時にワイヤ表面の銅めっきが剥離してチップ詰まりが生じ易くなる。したがって、Oは0.010%以下とする。また、Pが0.025%を超えると溶接金属の耐割れ性が劣化するので、Pは0.025%以下とする。
以下、実施例により本発明の効果を具体的に説明する。
If O exceeds 0.010%, the wire surface is cracked during wire production, and the copper plating on the wire surface is peeled off during welding, and chip clogging is likely to occur. Therefore, O is set to 0.010% or less. On the other hand, if P exceeds 0.025%, the crack resistance of the weld metal deteriorates, so P is made 0.025% or less.
Hereinafter, the effect of the present invention will be specifically described with reference to examples.

表1に示す各種成分のワイヤ表面に銅めっきを施したワイヤ径1.2mmのソリッドワイヤを試作した。   A solid wire having a wire diameter of 1.2 mm, in which the surface of each component wire shown in Table 1 was plated with copper, was manufactured.

Figure 0005236337
Figure 0005236337

JIS G3131 SPCCの板厚2.3mm、長さ500mmの鋼板を、図2に示すようにテーパ型スペーサ5を後板2と前板1に挟んでギャップ長さG=2mm、G=4mmのテーパギャップを形成した横向重ね継手とし、表2に示す溶接条件で溶接した。なお溶接電源は溶接電流(ベース電流とピーク電流との平均的な電流)増減のためのワイヤ送給速度の調整と、ピーク電流とピーク時間の設定をすることができ、平均溶接電流値に従って数十Hzないし300Hzのパルス周波数となるものであるが、各試作ワイヤとも1パルス−1ドロップ移行のパルスMAG溶接ができるようにパルスピーク電流値とパルスピーク時間を設定した。 A gap length G 1 = 2 mm, G 2 = 4 mm is obtained by sandwiching a steel plate of JIS G 3131 SPCC having a plate thickness of 2.3 mm and a length of 500 mm with a tapered spacer 5 sandwiched between the rear plate 2 and the front plate 1 as shown in FIG. The transverse lap joint with the taper gap was formed and welded under the welding conditions shown in Table 2. The welding power source can adjust the wire feed speed to increase or decrease the welding current (average current between the base current and peak current) and set the peak current and peak time. Although the pulse frequency is 10 Hz to 300 Hz, the pulse peak current value and the pulse peak time were set so that pulse MAG welding of 1 pulse-1 drop transition was possible for each prototype wire.

Figure 0005236337
Figure 0005236337

溶接は図3に示すように、ワイヤ狙い位置6は前板1側の鋼板板厚の中心、トーチ7の角度θは30°でギャップ長さG(2mm)側からスタートして溶融金属が架橋できなくなるところまでを溶接可能ギャップとした。 As shown in FIG. 3, the welding target position 6 is the center of the steel plate thickness on the front plate 1 side, the angle θ of the torch 7 is 30 °, and the gap metal starts from the gap length G 1 (2 mm) side. The gap where welding could not be performed was defined as a weldable gap.

試験結果としては各ワイヤによる溶接可能ギャップ長さ、アークの安定性およびビード形状を調査した。上記の溶接可能ギャップ長さは3.5mm以上を良好とした。またスパッタ発生量も調査したが、これは銅製の捕集箱を用いて、図2に示す横向重ね継手のギャップ長さGを2mmの一定として表2に示す溶接条件で5回溶接し、1分間当たりのスパッタ発生量を算出した。これによりスパッタ発生量が0.5g/min以下を良好とした。それらの結果を表3にまとめて示す。 As test results, the weldable gap length, arc stability and bead shape of each wire were investigated. The weldable gap length was set to be 3.5 mm or more. The spatter generation rate was also investigated, which use a copper collecting box, welded five times with welding conditions shown in Table 2 the gap length G 1 of the sideways lap joint shown in FIG. 2 as a constant 2 mm, The amount of spatter generated per minute was calculated. As a result, the spatter generation amount was set to 0.5 g / min or less. The results are summarized in Table 3.

Figure 0005236337
Figure 0005236337

表1および表3中、ワイヤ記号W1〜W8が本発明例、ワイヤ記号W9〜W17は比較例である。
本発明例であるワイヤ記号W1〜W8は、C、Si、Mn、Ti、Al、Ti+Al、Ti/AlおよびS量が適正で、ワイヤ表面の銅めっき厚さも適量であるので、アークが安定し、溶融金属の粘性および表面張力が適正で溶接可能ギャップが広く、スパッタ発生量が少なく外観の良好なビードが得られるなど極めて満足な結果であった。
In Tables 1 and 3, wire symbols W1 to W8 are examples of the present invention, and wire symbols W9 to W17 are comparative examples.
The wire symbols W1 to W8, which are examples of the present invention, have an appropriate amount of C, Si, Mn, Ti, Al, Ti + Al, Ti / Al, and S, and an appropriate amount of copper plating on the surface of the wire. The molten metal had an appropriate viscosity and surface tension, a wide weldable gap, a small amount of spatter, and a bead with a good appearance.

比較例中ワイヤ記号W9は、Cが少ないのでアークが不安定でスパッタ発生量が多かった。また、Ti+Alが多いので粘性が高くなって凸ビードとなり溶接可能ギャップが狭かった。
ワイヤ記号W10は、Cが多いので溶融金属が垂れてビード形状が不良で、スパッタ発生量が多く高温割れも生じた。また、Sが少ないのでビード止端部のなじみも不良であった。
In the comparative example, the wire symbol W9 had less C, so the arc was unstable and the amount of spatter was large. Moreover, since there was much Ti + Al, viscosity became high, it became a convex bead, and the weldable gap was narrow.
In the wire symbol W10, since there are many Cs, the molten metal dripped, the bead shape was poor, the amount of spatter was large, and hot cracking also occurred. Further, since S was small, the conformability of the bead toe portion was poor.

ワイヤ記号W11は、Siが少ないので凸ビードとなり溶接可能ギャップが狭かった。また、Ti/Alが高いのでスパッタ発生量も多かった。
ワイヤ記号W12は、Siが多いのでハンピングビードとなり、アークもやや不安定であった。また、Ti/Alが低いのでスパッタ発生量も多かった。
The wire symbol W11 was a convex bead because of less Si, and the weldable gap was narrow. Moreover, since Ti / Al was high, the amount of spatter generated was large.
The wire symbol W12 was a humping bead because of a large amount of Si, and the arc was somewhat unstable. Moreover, since Ti / Al was low, the amount of spatter generated was large.

ワイヤ記号W13は、Mnが少ないので溶融金属が垂れてビード外観が不良で、溶接可能ギャップも狭くなった。また、ピットも生じた。さらに、Tiが少ないのでアークが不安定でスパッタ発生量が多かった。
ワイヤ記号W14は、Mnが多いのでビード幅が狭く溶接可能ギャップが狭かった。また、Tiが多いのでスパッタ発生量も多かった。
Since the wire symbol W13 has a small amount of Mn, the molten metal dripped, the bead appearance was poor, and the weldable gap was also narrowed. There was also a pit. Further, since Ti is small, the arc is unstable and the amount of spatter generated is large.
Since the wire symbol W14 has a large amount of Mn, the bead width was narrow and the weldable gap was narrow. Moreover, since there was much Ti, the amount of spatter generation was also large.

ワイヤ記号W15は、Ti+Alが少ないので溶融金属が垂れてビード外観が不良で、溶接可能ギャップも狭くなった。また、Sが多いので高温割れも生じた。
ワイヤ記号W16は、Alが多いので凸ビードとなり溶接可能ギャップも狭くなった。また、ワイヤ表面の銅めっき厚さが薄いのでアークが不安定でスパッタ発生量も多かった。
In the wire symbol W15, since there is little Ti + Al, the molten metal dripped, the bead appearance was poor, and the weldable gap became narrow. Moreover, since there was much S, the hot crack also arose.
The wire symbol W16 is a convex bead due to the large amount of Al, and the weldable gap is also narrowed. Further, since the copper plating thickness on the wire surface was thin, the arc was unstable and the amount of spatter was large.

ワイヤ記号W17は、Alが少ないのでアークが不安定でスパッタ発生量が多くなり、溶融金属が垂れて溶接可能ギャップ性も狭かった。また、ワイヤ表面の銅めっき厚さが厚いので高温割れも生じた。   In the wire symbol W17, since the Al content is small, the arc is unstable and the amount of spatter generated increases, and the molten metal drips and the weldable gap is narrow. Moreover, since the copper plating thickness on the wire surface was thick, hot cracking also occurred.

(a)、(b)、(c)、(d)はそれぞれ横向重ね継手部の溶接におけるビード形成状態の例を示す図である。(A), (b), (c), (d) is a figure which shows the example of the bead formation state in the welding of a horizontal lap joint part, respectively. 本発明の実施例に用いた横向重ね継手の試験板を示す図である。It is a figure which shows the test plate of the horizontal lap joint used for the Example of this invention. 本発明の実施例に用いた横向重ね継手部のワイヤ狙い位置を示す図である。It is a figure which shows the wire aim position of the horizontal lap joint part used for the Example of this invention.

符号の説明Explanation of symbols

1 前板
2 後板
3 溶接金属
4 アンダーカット
5 スペーサ
6 ワイヤ狙い位置
7 トーチ
G ギャップ長さ
θ トーチ角度
1 Front plate 2 Rear plate 3 Weld metal 4 Undercut 5 Spacer 6 Wire target position 7 Torch G Gap length θ Torch angle

Claims (1)

薄鋼板のパルスMAG溶接用ソリッドワイヤにおいて、C:0.02〜0.10質量%、Si:0.52〜1.0質量%、Mn:1.1〜1.8質量%、Ti:0.09〜0.25質量、Al:0.09〜0.25質量%、但しTi+Al:0.21〜0.45質量%、Ti/Al:0.7〜1.5で、S:0.010〜0.025質量%を含有し、銅めっきを厚さ:0.3〜1.1μm有し、その他はP:0.025質量%以下、O:0.010質量%以下で、残部はFeおよび不可避不純物からなることを特徴とする薄鋼板のパルスMAG溶接用ソリッドワイヤ。 In a solid wire for pulse MAG welding of a thin steel plate, C: 0.02 to 0.10% by mass, Si: 0.52 to 1.0% by mass, Mn: 1.1 to 1.8% by mass, Ti: 0 0.09 to 0.25 % by mass, Al: 0.09 to 0.25% by mass, Ti + Al: 0.21 to 0.45% by mass, Ti / Al: 0.7 to 1.5, S: 0 0.010 to 0.025% by mass, copper plating has a thickness of 0.3 to 1.1 μm, the other is P: 0.025% by mass or less, O: 0.010% by mass or less , the balance Is a solid wire for pulse MAG welding of a thin steel plate, characterized by comprising Fe and inevitable impurities.
JP2008098174A 2008-04-04 2008-04-04 Solid wire for pulse MAG welding of thin steel sheet Active JP5236337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008098174A JP5236337B2 (en) 2008-04-04 2008-04-04 Solid wire for pulse MAG welding of thin steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008098174A JP5236337B2 (en) 2008-04-04 2008-04-04 Solid wire for pulse MAG welding of thin steel sheet

Publications (2)

Publication Number Publication Date
JP2009248121A JP2009248121A (en) 2009-10-29
JP5236337B2 true JP5236337B2 (en) 2013-07-17

Family

ID=41309297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008098174A Active JP5236337B2 (en) 2008-04-04 2008-04-04 Solid wire for pulse MAG welding of thin steel sheet

Country Status (1)

Country Link
JP (1) JP5236337B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180076460A (en) * 2016-12-28 2018-07-06 고려용접봉 주식회사 A solid wire having reduced slag
JP6800770B2 (en) * 2017-02-08 2020-12-16 日鉄溶接工業株式会社 Pulse MAG welding method for thin steel sheets
KR101989308B1 (en) * 2018-10-12 2019-06-14 고려용접봉 주식회사 A solid wire having reduced slag

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204195A (en) * 1990-01-04 1991-09-05 Nippon Steel Corp Wire for gas shielded arc fillet welding
JP3465647B2 (en) * 1999-11-02 2003-11-10 Jfeスチール株式会社 Pulsed CO2 welding steel wire

Also Published As

Publication number Publication date
JP2009248121A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP6119940B1 (en) Vertical narrow groove gas shielded arc welding method
EP2610361B1 (en) Flux-cored welding wire for carbon steel and process for arc welding
JP6800770B2 (en) Pulse MAG welding method for thin steel sheets
JP2012051030A (en) Narrow groove butt welding method for thick steel sheet
JP2007301623A (en) High speed gas shielded arc welding method for horizontal lap joint of steel sheet
JP5066375B2 (en) Copper-plated solid wire for pulse MAG welding
JP5236337B2 (en) Solid wire for pulse MAG welding of thin steel sheet
JP2007260692A (en) Submerged arc welding method of thick steel plate
JP5925703B2 (en) Solid wire for gas shielded arc welding of thin steel sheet
JP2007260684A (en) Multiple electrode submerged arc welding method of thick steel plate
JP3951593B2 (en) MAG welding steel wire and MAG welding method using the same
JP2016193444A (en) Multi-electrode one surface single layer submerged arc welding method
JP6709177B2 (en) Pulse MAG welding method for thin steel sheet
JP2801161B2 (en) Solid wire for pulse MAG welding
JP6676553B2 (en) MAG welding wire for high strength thin steel sheet and pulse MAG welding method using the same
JP5066378B2 (en) Copper plated solid wire for pulse MAG welding of hot dip galvanized steel sheet
JP5037369B2 (en) Solid wire for pulse MAG welding
JP5086881B2 (en) High-speed gas shield arc welding method for thin steel sheet
JP3861979B2 (en) Steel wire for carbon dioxide shielded arc welding
JP2015100813A (en) Solid wire for gas shield arc weld for thin steel plate
JP2002346787A (en) Solid wire for pulse mag welding
JP5280060B2 (en) Gas shield arc welding method
JP6676552B2 (en) MAG welding wire for high strength thin steel sheet and pulse MAG welding method using the same
KR100501984B1 (en) Steel wire for mag welding in dc-electrode and mag welding method using the same
JP2010064140A (en) Solid wire for gas shielded arc welding of steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5236337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250