JP2018109656A - 光モジュール - Google Patents

光モジュール Download PDF

Info

Publication number
JP2018109656A
JP2018109656A JP2016256126A JP2016256126A JP2018109656A JP 2018109656 A JP2018109656 A JP 2018109656A JP 2016256126 A JP2016256126 A JP 2016256126A JP 2016256126 A JP2016256126 A JP 2016256126A JP 2018109656 A JP2018109656 A JP 2018109656A
Authority
JP
Japan
Prior art keywords
light
lens
mirror
receiving element
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016256126A
Other languages
English (en)
Other versions
JP6880733B2 (ja
Inventor
正信 川村
Masanobu Kawamura
正信 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2016256126A priority Critical patent/JP6880733B2/ja
Priority to CN201711392231.1A priority patent/CN108254838A/zh
Priority to US15/852,457 priority patent/US10048458B2/en
Publication of JP2018109656A publication Critical patent/JP2018109656A/ja
Application granted granted Critical
Publication of JP6880733B2 publication Critical patent/JP6880733B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • G02B6/425Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

【課題】迷光を抑制することができる光モジュールを提供する。【解決手段】光モジュール1は、基板20と、基板20の表面に実装される発光素子21及び受光素子22と、発光素子21から放出される光の一部を受光素子22に導くブロック10とを備える。ブロック10は、発光素子21から放射された光をコリメート光に変換するコリメートレンズ17aと、コリメートレンズ17aによって変換されたコリメート光を2つの光に分岐する分岐部30と、集光レンズ14aと、ミラー40と、ミラー40によって反射された光を屈折させる屈折部50と、屈折部50によって屈折された光を受光素子22に集光する集光レンズ18aとを有する。屈折部50は、ミラー40によって反射された光L3を集光レンズ18aに導く面51と、ミラー40によって反射された光L4を集光レンズ18aから逸らす面52と、を有する。【選択図】図7

Description

本発明は、光モジュールに関するものである。
特許文献1には、レンズアレイ、光電変換装置及び光ファイバを備えた光モジュールが記載されている。光電変換装置は、半導体基板と、半導体基板に実装された複数の発光素子と、半導体基板に発光素子と同数配置された受光素子と、を備えている。レンズアレイは、発光素子からの光を受光する第1のレンズ面と、第1のレンズ面からの光を全反射させる全反射面と、全反射面からの光を反射及び透過させる反射/透過層と、反射/透過層を透過した光を光ファイバに集光させる第2のレンズ面と、反射/透過層を反射した光を受光素子に集光させる第3のレンズ面と、を備えている。光ファイバ、第1のレンズ面、第2のレンズ面及び第3のレンズ面は、発光素子及び受光素子と同数配置されている。
特開2011−133807号公報
ところで、従来の10Gbpsの伝送速度の光モジュールでは、前述した受光素子とレンズ面との位置合わせの誤差が、受光素子が実装された面内において30μm程度まで許容されていた。この程度の許容量であれば、受光素子とレンズ面との位置関係を製造時に許容範囲内に収めることができていた。しかしながら、近年、光通信分野での伝送速度の高速化に伴い、光モジュールの各部品の小型化が進行している。25Gbps以上の伝送速度の光モジュールでは、例えば、フォトダイオードの広帯域化に伴って受光素子の受光径が小さくなり、受光素子とレンズ面との位置合わせの誤差は、受光素子が実装された面内において10μm程度までしか許容されなくなっている。
また、前述したレンズアレイは樹脂製であり、成型されるレンズアレイの各レンズは数μm程度のピッチのばらつきを有する。また、受光素子はダイボンダ等によって基板上に実装されるが、ダイボンダでは、受光素子の実装精度として受光素子の実装される面(実装面)内で10μm程度のばらつきを生じうる。このように、レンズアレイの成型、半導体基板上への受光素子の実装、及び半導体基板上へのレンズアレイの搭載によって、実装面で10μmより大きいばらつきが生じる可能性がある。この場合、受光素子とレンズとの位置合わせの誤差が許容量を超えるので、受光素子に対する光のずれが発生し、例えば、隣接する受光素子に光が入り込み、迷光が生じうるという問題がある。迷光は、隣接する受光素子が本来受信する光信号に対して余分なノイズを与えることとなり、隣接する受光素子の受信性能を劣化させる。また、自身の受光素子においても、隣接する受光素子が受信すべき光の一部を迷光として受けると、それがノイズとなり、自身の受信性能を劣化させる。このように、互いに隣接する受光素子において、迷光は受光素子の受信性能を相互に劣化させる要因と成り得る。
本発明は、かかる問題に鑑みてなされたものであり、迷光を抑制することができる光モジュールを提供することを目的とする。
上記問題を解決するため、本発明の一側面に係る光モジュールは、基板と、基板の表面に実装される発光素子と、基板の表面に実装される受光素子と、基板上に搭載され、発光素子から放出される光の一部を受光素子に導くブロックと、を備え、ブロックは、発光素子から放射された光をコリメート光に変換するコリメートレンズと、コリメートレンズによって変換されたコリメート光を2つの光に分岐する分岐部と、分岐部において分岐された一方の光を光導波部材に集光する第1の集光レンズと、分岐部において分岐された他方の光を反射するミラーと、ミラーによって反射された光を屈折させる屈折部と、屈折部によって屈折された光を受光素子に集光する第2の集光レンズと、を有し、屈折部は、ミラーによって反射された光を第2の集光レンズに導く第1の面と、ミラーによって反射された光を第2の集光レンズから逸らす第2の面と、を有する。
本発明の一側面によれば、迷光を抑制することができる。
図1は、本発明の一実施形態に係る光モジュールを示す断面図である。 図2は、図1の光モジュールのブロックを示す斜視図である。 図3は、図2のブロックを図2とは異なる方向から見た斜視図である。 図4は、図1の光モジュールの分岐部を拡大した図である。 図5は、図4の分岐部を示す平面図である。 図6は、図4の分岐部の各面を拡大した図である。 図7は、図1の光モジュールを示す断面図である。 図8は、図1の光モジュールの屈折部を示す図である。 図9は、図8の屈折部及び発光素子を示す図である。 図10は、図8の屈折部及び発光素子を示す図である。
[本願発明の実施形態の説明]
最初に、本発明の実施形態の内容を列記して説明する。本発明の一実施形態に係る光モジュールは、基板と、基板の表面に実装される発光素子と、基板の表面に実装される受光素子と、基板上に搭載され、発光素子から放出される光の一部を受光素子に導くブロックと、を備え、ブロックは、発光素子から放射された光をコリメート光に変換するコリメートレンズと、コリメートレンズによって変換されたコリメート光を2つの光に分岐する分岐部と、分岐部において分岐された一方の光を光導波部材に集光する第1の集光レンズと、分岐部において分岐された他方の光を反射するミラーと、ミラーによって反射された光を屈折させる屈折部と、屈折部によって屈折された光を受光素子に集光する第2の集光レンズと、を有し、屈折部は、ミラーによって反射された光を第2の集光レンズに導く第1の面と、ミラーによって反射された光を第2の集光レンズから逸らす第2の面と、を有する。
この光モジュールでは、発光素子から放出された光は、コリメートレンズによってコリメート光に変換され、コリメート光は、分岐部において分岐される。分岐された一方の光は、第1の集光レンズを介して光導波部材に集光される。また、分岐部において分岐された他方の光は、ミラ−に到達して反射され、屈折部及び第2の集光レンズを介して受光素子に入射する。屈折部は、ミラーによって反射された光を第2の集光レンズに導く第1の面と、ミラーによって反射された光を第2の集光レンズから逸らす第2の面と、を有する。従って、第1の面に入射した光は、屈折部によって第2の集光レンズに導かれる。よって、第1の面に入射した光を第2の集光レンズを介して確実に対応する受光素子に入射させることができる。一方、第2の面に入射した光は、屈折部によって第2の集光レンズから逸らされる。従って、第1の面に入射した光を確実に対応する受光素子に集光させることができると共に、第2の面に入射した光を確実に受光素子から逸らすことができる。よって、隣接する受光素子に光が入り込む事態を回避することができるので、迷光を抑制することができる。
上記の光モジュールにおいては、屈折部は、第2の面を含む突起部を有し、第2の集光レンズの直径は、ミラーによって反射された光のうち突起部に当たった光が第2の集光レンズに入射しない程度に小さい値とされていてもよい。ミラーによって反射された光のうち突起部に当たった光が入射しない程度に第2の集光レンズの直径を小さくした場合、本来の光路からずれて突起部に当たった光が第2の集光レンズに入射しないようにすることができる。従って、隣接する受光素子への光の入り込みを一層確実に回避できるので、迷光を一層確実に抑制できる。
上記の光モジュールにおいては、分岐部は、コリメート光の入射角がブロックの有する臨界角以上となりコリメート光を全反射させてコリメート光を第1の集光レンズに導く第3の面と、コリメート光の入射角がブロックの有する臨界角未満となりコリメート光を透過させてコリメート光をミラーに導く第4の面と、を有してもよい。分岐部が第3の面と第4の面とを有する場合、ブロックによって確実にコリメート光を分岐することができる。
[本願発明の実施形態の詳細]
本発明の実施形態に係る光モジュールの具体例を、以下に図面を参照しつつ説明する。なお、本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の範囲内での全ての変更が含まれることが意図される。以下の説明では、図面の説明において、同一又は相当する要素には同一の符号を付し、重複する説明を省略する。
図1は、光モジュール1を示す断面図である。光モジュール1は、複数の光信号を送信することが可能なモジュールである。光モジュール1は、例えば、光トランシーバの内部に設けられており、MTコネクタ2に内蔵された光ファイバ3(光導波部材)を介して光トランシーバの光レセプタクルと光学的に結合される。光ファイバ3は、例えば、マルチモードファイバであるが、シングルモードファイバ又は他の光導波部材であってもよい。
光モジュール1は、樹脂製のブロック10と、基板20とを備えている。基板20は、例えば、プリント基板である。ただし、基板20はプリント基板に限定されず、半導体基板であっても良い。基板20の表面には光学デバイス及び電子デバイスが実装されている。ブロック10は、基板20上に搭載されており、基板20上に実装されている光学デバイス及び電子デバイスの上を覆っている。
基板20に実装されている光学デバイスは、例えば、発光素子21及び受光素子22である。発光素子21は、例えば、半導体レーザダイオードの一種であるVCSEL(垂直共振型面発光レーザ)である。受光素子22は、モニタ用のフォトダイオードである。また、基板20には、発光素子21を駆動させるための回路(駆動回路)と、受光素子22を含む各種フォトダイオードから出力される電気信号を増幅するための回路(増幅回路)とが設けられている。なお、基板20にはそれらの回路以外の回路がさらに設けられていても良い。
図2は、ブロック10、発光素子21、受光素子22,23を示す斜視図である。受光素子23は、例えば、MTコネクタ2に内蔵された光ファイバ3を介して与えられる光信号を受信するフォトダイオードである。また、ブロック10は、発光素子21から放射される光を透過させる透明樹脂によって構成されており、例えば、ULTEM(登録商標)によって構成されている。ブロック10の光の屈折率は、例えば1.64である。なお、発光素子21、受光素子22,23は基板20に実装されているが、図2において、それらの素子の位置を明確に示すために基板20は図示されていない。
図3は、ブロック10を示す斜視図である。図2及び図3に示されるように、ブロック10は、前面11と、底面12と、上面13とを有する。前面11は、その中央部に光学ポート11aを露出させている。光学ポート11aには、発光素子21に対応するレンズアレイ14と、受光素子23に対応するレンズアレイ24とが露出している。前面11は、光学ポート11aを介して光ファイバ3と接続することができる。
レンズアレイ14は、複数の集光レンズ14a(第1の集光レンズ)によって構成されている。各集光レンズ14aは、ブロック10と共に一体成形されている。レンズアレイ24は、複数のコリメートレンズ24aによって構成されており、各コリメートレンズ24aもブロック10と共に一体成形されている。集光レンズ14aの数は、発光素子21の数と同じになるように設定されるが、それよりも多くても良い。コリメートレンズ24aの数は、受光素子23の数と同じになるように設定されるが、それよりも多くても良い。なお、ここでは、コリメート光を入射して光を集光させるためのレンズを集光レンズと言い、発光素子21から放射された光をコリメート光に変換するためのレンズをコリメートレンズと言う。それぞれの用途の違いからレンズの形状や焦点距離等が異なる場合があるが、いずれも光学レンズである。
光学ポート11aには、前述したMTコネクタ2の光ファイバ3が光学的に接続される。光学的な接続によって、例えば、集光レンズ14aによって集光された光が光ファイバ3に効率良く入射され、集光レンズ14aと光ファイバ3とが光学的に結合した状態(光結合)が得られる。また、光学ポート11aに対するMTコネクタ2の位置を規定するため、レンズアレイ14,24の各レンズが並ぶ方向の両側(外側)には、一対のガイドピン15が設けられている。光学ポート11aの外周には段差11bが設けられており、段差11bの外縁は、各角部が円形とされた平行四辺形状である。ガイドピン15の位置は、MTコネクタの形状に合わせて上述の光結合の効率が良くなるように設定される。
ブロック10の底面12は、凹状の収容部16を有する。収容部16は、基板20の実装面に実装されている発光素子21及び受光素子22,23等の光デバイスを覆うように設定される。収容部16が覆う基板20上の領域には、発光素子21及び受光素子22,23等の光学デバイス以外に、発光素子21を駆動する駆動回路(ドライバ)と、受光素子22から出力される電気信号を増幅する増幅器(トランスインピーダンス増幅器)等が収容される。収容部16がブロック10の内部に向かって凹状の形状となっていることで、ブロック10の底面12が基板20の実装面と接して配置された場合でも、それらの光学デバイス(発光素子21及び受光素子22、23等)や電子デバイス(上述の駆動回路や増幅回路)が基板20に実装されている状態にて、それらのデバイスの上面、実装面の法線方向にスペースを確保して、それらのデバイスがブロック10と接触するのを防ぐことができる。
収容部16が覆う基板20の実装面上の領域には、さらに発光素子21から出力される光パワーを制御する制御回路が収容されてもよく、この制御回路は、例えば、APC(Automatic Power Control)回路である。APC回路は、受光素子22からの出力を受け取って発光素子21に供給する駆動電流を制御する。APC回路は、受光素子22が受光した光(モニタ光)の強度に応じて駆動電流を制御し、この駆動電流の増減により発光素子21が放射する光の強度を制御する。例えば、モニタ光の強度が所定の値よりも小さいときには駆動電流を増やして発光素子が放射する光の強度を増やし、反対に、モニタ光の強度が所定の値よりも大きいときには駆動電流を減らして発光素子が放射する光の強度を減らすことで、発光素子が放出する光の強度を一定値に保つことができる。
発光素子21及び受光素子22,23は、複数のレンズの配列方向である横方向に沿って基板20の実装面上に配置されている。つまり、発光素子21と受光素子22,23は、ブロック10に結合されるMTコネクタ2の光ファイバ3の光軸に対して垂直な横方向(実装面と並行な方向)に延びている。例えば、互いに直交するX軸,Y軸,Z軸の3つの軸に対応させて説明すると、光ファイバ3の光軸をZ軸方向とし、基板20の法線をY軸方向とすると、発光素子21と受光素子22,23はX軸方向に沿って配置されている。ブロック10の底面12には、3つのレンズアレイ17,18,25が設けられており、レンズアレイ17,18,25は、発光素子21及び受光素子22,23に沿って横方向に延びている。すなわち、基板20の実装面に実装された発光素子21及び受光素子22,23のそれぞれの並んだ方向に沿って、レンズアレイを構成する個々のレンズとそれぞれの素子とが一対一で対応(対向)するように配置されている。
前面11に近い側のレンズアレイ18は、受光素子22に上下方向(実装面の法線方向)に対向している。前面11から離れた側のレンズアレイ17,25は、発光素子21及び受光素子23のそれぞれに上下方向(実装面の法線方向)に対向している。レンズアレイ17,18,25は、光学ポート11aに形成されたレンズアレイ14,24と同様、ブロック10に一体成形によって形成されている。
ブロック10の底面12には、2つのガイドピン19が設けられている。各ガイドピン19は、基板20に対するブロック10の位置を固定するために設けられる。各ガイドピン19は、基板20の表面(実装面)に形成された孔に挿入され、これによりブロック10の位置を固定する。このとき、ブロック10におけるガイドピン19の位置と基板20の実装面に形成された孔の位置は、上述したように、ブロック10に形成された各レンズアレイを構成するレンズと光デバイス(発光素子21及び受光素子22,23)とがそれぞれ対向するように設定される。また、ブロック10の上面13には、発光素子21からの光を、ブロック10の内部において反射させるミラー40が露出している。ミラー40については後に詳述する。
発光素子21及び受光素子22,23は、それぞれレンズアレイ17,18,25に対応して配置される。レンズアレイ17は4つのコリメートレンズ17aを含んでおり、レンズアレイ18は、4つの集光レンズ18a(第2の集光レンズ)を含んでおり、レンズアレイ25は4つの集光レンズ25aを含んでいる。各コリメートレンズ17aは発光素子21に対向し、各集光レンズ18aは受光素子22に対向し、各集光レンズ25aは受光素子23に対向している。ここで、対向しているというのは、例えば、発光素子21から放射された光がコリメートレンズ17aに入射して所定のコリメート光に変換されるように、発光素子21とコリメートレンズ17aとがほぼ同じ光軸上に配置されていることに相当する。また、集光レンズ18aに入射したコリメート光が受光素子22の受光径の中心部に集光されるように、集光レンズ18aと受光素子22とがほぼ同じ光軸上に配置されていることに相当する。同様に、集光レンズ25aに入射したコリメート光が受光素子23の受光径の中心部に集光されるように、集光レンズ25aと受光素子23とがほぼ同じ光軸上に配置されていることに相当する。
次に、発光素子21及び受光素子22と、ブロック10と、MTコネクタ2に内蔵された光ファイバ3との間における光結合について説明する。
図1に示されるように、発光素子21及び受光素子22は、基板20の実装面上に実装され、上部(上面13側)をブロック10の収容部16に覆われている。発光素子21からは、基板20の実装面の垂直方向(法線方向)に光信号が出射する。前述したように、ブロック10の表面にはレンズアレイ17のコリメートレンズ17aが一体成形されているので、発光素子21からの光はコリメートレンズ17aを介してブロック10に入射する。コリメートレンズ17aに入射した発光素子21から放射された光は、コリメートレンズ17aによってコリメート光Lに変換される。
ブロック10は、コリメートレンズ17aによって変換されたコリメート光Lを2つの光に分岐する分岐部30と、分岐部30に屈折されて分岐された一方の光L2が入射するミラー40と、ミラー40によって反射された光L2を屈折する屈折部50と、を更に備える。分岐部30に反射されて分岐された他方の光L1は、前述したレンズアレイ14の集光レンズ14aに導かれ、集光レンズ14aによってMTコネクタ2の光ファイバ3に集光され入射される。
分岐部30を透過して分岐された一方の光L2は、ミラー40に導かれ、ミラー40において反射された光L2は屈折部50に入射する。屈折部50からの光L2は、レンズアレイ18の集光レンズ18aに到達し、集光レンズ18aによって受光素子22に集光され入射される。分岐部30及び屈折部50については後に詳述する。
図4は、ブロック10の分岐部30を拡大した図である。図4に示されるように、分岐部30は、コリメート光Lに含まれる光L1,L2の光路に対して45°の角度を成す面31(第3の面)と、光L1,L2の光路に対して45°よりも大きい角度を成す面32(第4の面)とを有する。コリメートレンズ17aから来て面31に入射した光L1は、面31において全反射し、集光レンズ14aを介して光ファイバ3に集光される。一方、コリメートレンズ17aから来て面32に入射した光L2は、分岐部30を透過してミラー40に導かれる。
図5は、分岐部30を示す平面図である。図5に示されるように、分岐部30において、前述した面31,32のそれぞれは直線状に延びている。分岐部30には、複数の面31と、複数の面32とが交互に形成されている。図5の平面図は、面31の法線方向から見た様子を示している。分岐部30では、例えば、複数の面32同士の間隔を狭くして多くの面32を配置するか、又は、一つの面32の幅を広くすることにより、ミラー40に導かれる光L2の割合を増やすことができる。また、面32同士の間隔を広くして面32の数を減らすか、又は、一つの面32の幅を狭くすることにより、ミラー40に導かれる光L2の割合を減らすことができる。すなわち、発光素子21から放射された光のうち、通信のために分岐部30によって反射され光ファイバ3に入射される光(光信号)の強度と、モニタのため分岐部30を透過して受光素子22に入射される光(モニタ光)の強度を面31と面32のそれぞれの幅と間隔によって任意に設定することができる。例えば、モニタ光の強度が光ファイバに入射される送信光の強度よりも小さい場合に、面31の幅よりも面32の幅は小さく設定される。
図6は、更に拡大した分岐部30を示している。ところで、本実施形態では、ブロック10の屈折率が1.64であり空気の屈折率は1.00であるため、分岐部30に対する臨界角は、37.57°である。図6に示されるように、コリメートレンズ17aから来て面31に入射する光L1は、分岐部30と空気との界面に対し入射角θ1にて入射する。入射角θ1は、例えば45°であり、上記臨界角よりも大きいため、光L1は角度θ2を成して全反射する。角度θ2は例えば45°である。一方、コリメートレンズ17aから来て面32に入射する光L2は、分岐部30と空気との界面に対し入射角θ3で入射する。入射角θ3は、例えば25°であり、上記臨界角よりも小さいため、光L2は屈折角θ4を成して上記界面を透過する。ここで、入射角θ1、θ3、角度θ2、屈折角θ4は、それぞれの光が入射する面の法線を基準(0°)としている。たとえば、ある面に垂直に入射する場合、入射角は0°となる。
図7は、分岐部30を透過してミラー40において反射され、屈折部50を通る光L3,L4の光路を示している。図8は、屈折部50を拡大した図を示している。光L3は発光素子21からの本来の光路を通る光を示しており、光L4は発光素子21からの本来の光路からずれた光を示している。例えば、光L3は、発光素子21とコリメートレンズ17aとがほぼ誤差のない状態で位置合わせがされているときの光であり、光L4は発光素子21がコリメートレンズ17aに対して前側(光ファイバ3側)に誤差を生じて位置合わせされたときの光である。図7及び図8に示されるように、ミラー40において反射された光L3,L4は、屈折部50に入射する。屈折部50は、光L3を集光レンズ18aに導く面51(第1の面)と、光L4を集光レンズ18aから逸らす方向に導く面52(第2の面)とを有する。
屈折部50の面52は、屈折部50の面51よりも上側(ミラー40側)に設けられている。面52に入射する光L4の入射位置は、面51に入射する光L3の入射位置よりも、上側且つ前側(光ファイバ3側)に位置している。また、面52は光ファイバ3に対して平行に延びており、面51は前側に向かうにつれて下側に傾斜するように斜めに延びている。
前述した2つの面51,52を備えることにより、面51に入射する光L3の入射角度と面52に入射する光L4の入射角度とは互いに異なっており、面52に入射した光L4は、面51に入射した光L3よりも前側に導かれる。以上のように、面52には本来の光路からずれた光L4が入り込み、面52は、ずれた光L4を集光レンズ18aから逸らす方向(集光レンズ18aが並ぶ方向に交差する方向、例えば光ファイバ3に向かう方向)に導いて、光L4を集光レンズ18aに入射させないようにするために設けられる。一方、面51は、本来の光路を通る光L3が入射し、光L3を集光レンズ18aに導いて光L3を受光素子22に集光させるために設けられる。
図9及び図10は、発光素子21、屈折部50及び集光レンズ18aを光ファイバ3側から見た図である。図9及び図10に示されるように、屈折部50の面52は、面51からミラー40側に突出する突起部55の頂面である。突起部55は、例えば、矩形状に突出しており、集光レンズ18aの数より1つ多く(例えば5個)設けられる。複数の集光レンズ18aが並ぶ横方向において、突起部55及び集光レンズ18aは交互に並ぶように発光素子21の配置に合わせて設けられている。
前述したように、突起部55の頂面である面52に当たった光L4は、屈折して集光レンズ18aから逸らされる。また、図10に示されるように、突起部55の側面に当たった光L5は集光レンズ18aの方向に進行することがありうる。そこで、本実施形態では、上記の光L5を考慮して、集光レンズ18aの直径を、突起部55に当たった光L5が入射しない程度に小さい値としている。例えば、光L5を考慮した集光レンズ18aの直径の値は、光L5を考慮しない集光レンズの直径の値よりも10%以上且つ20%以下小さい。すなわち、光L5を考慮しない場合の集光レンズの直径が250μmである場合、光L5を考慮した集光レンズ18aの直径は200μm以上且つ225μm以下である。集光レンズ18aの直径をそこに入射するコリメート光のビーム径よりも小さくするとロスが増えるので、集光レンズ18aの直径の最小値はロスを考慮して設定される。
以上のように構成された光モジュール1から得られる作用効果について説明する。
光モジュール1では、発光素子21から放射された光は、コリメートレンズ17aによってコリメート光Lに変換され、コリメート光Lは、分岐部30において2つの光に分岐される。分岐された一方の光L1は、集光レンズ14aを介して光ファイバ3に集光される。光L1は信号の伝送に使用される。また、分岐部30において分岐された他方の光L2は、ミラー40に到達して反射され、屈折部50及び集光レンズ18aを介して受光素子22に入射する。光L2はモニタ光として発光素子21から放出される光の強度の自動制御に使用される。
屈折部50は、ミラー40によって反射された光L3を集光レンズ18aに導く面51と、ミラー40によって反射された光L4を集光レンズ18aから逸らす面52と、を有する。従って、面51に入射した光L3は、屈折部50によって集光レンズ18aに導かれる。よって、面51に入射した光L3を集光レンズ18aを介して確実に対応する受光素子22に集光して入射させることができる。
一方、面52に入射した光L4は、屈折部50によって集光レンズ18aから逸らされる。従って、面51に入射した光L3を確実に対応する受光素子22に受光させることができると共に、面52に入射した光L4を確実に受光素子22から逸らすことができる。よって、隣接する受光素子22に光L4が入り込む事態を回避することができるので、迷光を抑制することができる。
また、屈折部50は、面52が形成された突起部55を含んでおり、集光レンズ18aの直径は、突起部55に当たった光L5が入射しない程度に小さい値とされている。よって、本来の光路からずれて突起部55に当たった光L5が集光レンズ18aに入射しないようにすることができる。従って、隣接する受光素子22への光L5の入り込みを一層確実に回避できるので、迷光を一層確実に抑制できる。
また、分岐部30は、コリメート光である光L1の入射角θ1が臨界角以上となり光L1を全反射させて光L1を集光レンズ14aに導く面31と、コリメート光である光L2の入射角θ3が臨界角未満となり光L2を屈折させて光L2をミラー40に導く面32と、を有する。従って、分岐部30が面31及び面32を有することにより、反射フィルタ及びハーフミラーを不要とすることができ、樹脂製のブロック10によって確実にコリメート光Lを分岐することができる。また、発光素子21から放出される光のうち、光モジュールの外部に送信して通信に使用される光(光信号)の強度とモニタ光として発光素子21から放出される光の強度の自動制御に使用される光(モニタ光)の強度とを、面31と面32のそれぞれの幅と間隔によって設定することができる。
以上、本発明に係る実施形態について説明したが、本発明は前述した実施形態に限定されない。すなわち、本発明が特許請求の範囲に記載された要旨の範囲内において種々の変形及び変更が可能であることは、当業者によって容易に認識される。例えば、前述の実施形態では、ブロック10の屈折率が1.64であり臨界角が37.57°である例について説明したが、これらの屈折率及び臨界角の値は、ブロックの材料等に応じて適宜変更される。
1…光モジュール、10…ブロック、11…前面、11a…光学ポート、11b…段差、12…底面、13…上面、14,17,18…レンズアレイ、14a…集光レンズ(第1の集光レンズ)、15…ガイドピン、16…収容部、17a…コリメートレンズ、18a…集光レンズ(第2の集光レンズ)、19…ガイドピン、20…基板、21…発光素子、22…受光素子、30…分岐部、31…面(第3の面)、32…面(第4の面)、40…ミラー、50…屈折部、51…面(第1の面)、52…面(第2の面)、55…突起部、L…コリメート光、L1,L2,L3,L4,L5…光、θ1,θ3…入射角、θ2…角度、θ4…屈折角。

Claims (3)

  1. 基板と、
    前記基板の表面に実装される発光素子と、
    前記基板の前記表面に実装される受光素子と、
    前記基板上に搭載され、前記発光素子から放出される光の一部を前記受光素子に導くブロックと、を備え、
    前記ブロックは、
    前記発光素子から放射された光をコリメート光に変換するコリメートレンズと、
    前記コリメートレンズによって変換されたコリメート光を2つの光に分岐する分岐部と、
    前記分岐部において分岐された一方の光を光導波部材に集光する第1の集光レンズと、
    前記分岐部において分岐された他方の光を反射するミラーと、
    前記ミラーによって反射された光を屈折させる屈折部と、
    前記屈折部によって屈折された光を前記受光素子に集光する第2の集光レンズと、
    を有し、
    前記屈折部は、前記ミラーによって反射された光を前記第2の集光レンズに導く第1の面と、前記ミラーによって反射された光を前記第2の集光レンズから逸らす第2の面と、を有する、
    光モジュール。
  2. 前記屈折部は、前記第2の面を含む突起部を有し、
    前記第2の集光レンズの直径は、前記ミラーによって反射された光のうち前記突起部に当たった光が前記第2の集光レンズに入射しない程度に小さい値とされている、
    請求項1に記載の光モジュール。
  3. 前記分岐部は、前記コリメート光の入射角が前記ブロックの有する臨界角以上となり前記コリメート光を全反射させて前記コリメート光を前記第1の集光レンズに導く第3の面と、前記コリメート光の入射角が前記ブロックの有する臨界角未満となり前記コリメート光を透過させて前記コリメート光を前記ミラーに導く第4の面と、を有する、
    請求項1又は2に記載の光モジュール。
JP2016256126A 2016-12-28 2016-12-28 光モジュール Active JP6880733B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016256126A JP6880733B2 (ja) 2016-12-28 2016-12-28 光モジュール
CN201711392231.1A CN108254838A (zh) 2016-12-28 2017-12-21 光模块
US15/852,457 US10048458B2 (en) 2016-12-28 2017-12-22 Optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016256126A JP6880733B2 (ja) 2016-12-28 2016-12-28 光モジュール

Publications (2)

Publication Number Publication Date
JP2018109656A true JP2018109656A (ja) 2018-07-12
JP6880733B2 JP6880733B2 (ja) 2021-06-02

Family

ID=62629627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016256126A Active JP6880733B2 (ja) 2016-12-28 2016-12-28 光モジュール

Country Status (3)

Country Link
US (1) US10048458B2 (ja)
JP (1) JP6880733B2 (ja)
CN (1) CN108254838A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7441698B2 (ja) 2020-03-27 2024-03-01 株式会社エンプラス 光レセプタクルおよび光モジュール

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3438928A1 (en) 2017-08-02 2019-02-06 Koninklijke Philips N.V. Detection of regions with low information content in digital x-ray images
CN113260890B (zh) * 2018-12-13 2024-06-11 索尼集团公司 光学连接器、光缆和电子设备
WO2021003664A1 (en) * 2019-07-09 2021-01-14 Source Photonics (Chengdu) Company Limited Optical transceiver and methods of making and using the same
DE102021127031B3 (de) * 2021-10-19 2022-12-22 Md Elektronik Gmbh Platinensteckverbinder für lichtwellenleiter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226701A (ja) * 1985-03-29 1986-10-08 Sharp Corp レンズアレイ
JP2003114481A (ja) * 2001-10-05 2003-04-18 Mitsubishi Electric Corp 透過型スクリーンおよび投写型表示装置
US20150331211A1 (en) * 2013-07-09 2015-11-19 Hon Hai Precision Industry Co., Ltd. Optical coupler and photoelectric conversion device having same
JP2016004265A (ja) * 2014-06-13 2016-01-12 住友電気工業株式会社 光モジュール及び光トランシーバ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2518550B1 (en) 2009-12-22 2019-05-08 Enplas Corporation Lens array and optical module provided therewith
JP5485686B2 (ja) 2009-12-25 2014-05-07 株式会社エンプラス レンズアレイおよびこれを備えた光モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226701A (ja) * 1985-03-29 1986-10-08 Sharp Corp レンズアレイ
JP2003114481A (ja) * 2001-10-05 2003-04-18 Mitsubishi Electric Corp 透過型スクリーンおよび投写型表示装置
US20150331211A1 (en) * 2013-07-09 2015-11-19 Hon Hai Precision Industry Co., Ltd. Optical coupler and photoelectric conversion device having same
JP2016004265A (ja) * 2014-06-13 2016-01-12 住友電気工業株式会社 光モジュール及び光トランシーバ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7441698B2 (ja) 2020-03-27 2024-03-01 株式会社エンプラス 光レセプタクルおよび光モジュール

Also Published As

Publication number Publication date
US10048458B2 (en) 2018-08-14
JP6880733B2 (ja) 2021-06-02
US20180180830A1 (en) 2018-06-28
CN108254838A (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
JP5025695B2 (ja) 光モジュール
JP6880733B2 (ja) 光モジュール
US7128477B2 (en) Optical transmitter and receiver module
US8676006B2 (en) Lens array and optical module including lens array
JP5238651B2 (ja) 光路変更部材、光接続方法
JP6011958B2 (ja) 光レセプタクルおよびこれを備えた光モジュール
JP6205194B2 (ja) 光レセプタクルおよび光モジュール
JP5505424B2 (ja) 光通信モジュール
US9488790B2 (en) Lens array and optical module including the same
US10416397B2 (en) Optical receptacle, optical module, and method for manufacturing optical module
JP2013235243A (ja) 光路変更部材
US10976510B2 (en) Optical receptacle and optical module
US9971106B2 (en) Optical receptacle and optical module
JP2004212847A (ja) 光結合器
US9726835B2 (en) Optical receptacle and optical module
CN108490556B (zh) 光模块
JP2007127796A (ja) 光モジュール
US20210302672A1 (en) Optical receptacle and optical module
US10591686B2 (en) Optical receptacle and optical module
JP6011908B2 (ja) 光レセプタクルおよびこれを備えた光モジュール
KR100504224B1 (ko) 광송수신장치
JP2015068997A (ja) 光電気変換装置およびそれを用いた光モジュール
WO2017072914A1 (ja) 光伝送モジュール及びこれを備えたアクティブ光ケーブル
TW201802510A (zh) 光學連接模組
JP2015197643A (ja) 光通信モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R150 Certificate of patent or registration of utility model

Ref document number: 6880733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250