JP2018107053A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2018107053A
JP2018107053A JP2016254648A JP2016254648A JP2018107053A JP 2018107053 A JP2018107053 A JP 2018107053A JP 2016254648 A JP2016254648 A JP 2016254648A JP 2016254648 A JP2016254648 A JP 2016254648A JP 2018107053 A JP2018107053 A JP 2018107053A
Authority
JP
Japan
Prior art keywords
voltage
positive electrode
active material
electrode active
battery system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016254648A
Other languages
Japanese (ja)
Inventor
尚貴 木村
Naotaka Kimura
尚貴 木村
栄二 關
Eiji Seki
栄二 關
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2016254648A priority Critical patent/JP2018107053A/en
Publication of JP2018107053A publication Critical patent/JP2018107053A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery capable of greatly suppressing initial high DCR in a high potential region and an increase in a cycle DCR.SOLUTION: In a battery system according to the present invention including a lithium ion secondary battery having a positive electrode active material represented by a general formula LiaNibCocAdBeO2 (a, b, c, d, and e and A and B satisfy 1.0≤a≤1.1, 0.80≤b≤0.90, 0.094≤c+d≤0.20, 0≤e≤0.006, and A and B is composed of a metal element) and a control unit that controls charging and discharging of the lithium ion secondary battery, the positive electrode active material undergoes a phase change within a range of 4.0 V to 4.3 V as a battery voltage, and the control unit sets a voltage lower than the voltage at which the phase change is completed as an upper limit SOC.SELECTED DRAWING: Figure 2

Description

本発明は、リチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery.

近年、地球温暖化や化石燃料枯渇の問題から、エネルギー消費の少ない電気自動車(EV)が各自動車メーカーにより開発されている。電気自動車の電源としては、エネルギー密度が高いリチウムイオン二次電池が求められているが、現状では十分なエネルギー密度を有するリチウムイオン二次電池は得られていない。   In recent years, electric vehicles (EV) with low energy consumption have been developed by automobile manufacturers due to the problems of global warming and fossil fuel depletion. As a power source for an electric vehicle, a lithium ion secondary battery having a high energy density is required. However, at present, a lithium ion secondary battery having a sufficient energy density has not been obtained.

高いエネルギー密度のリチウムイオン二次電池を実現する正極活物質として、Li Nix Coy MzO2(M=Mn、Alなど、x>y、z)などのNi系正極活物質が期待されている。 As a positive electrode active material for realizing a high energy density lithium ion secondary battery, a Ni-based positive electrode active material such as Li Nix Coy MzO 2 (M = Mn, Al, etc., x> y, z) is expected.

しかしながら、Ni系正極活物質はサイクル特性に課題があることがわかっている。   However, it is known that the Ni-based positive electrode active material has a problem in cycle characteristics.

サイクル特性を悪化させる要因の一つとして、合成時に残留するアルカリ分の影響が挙げられている。特許文献1には、活物質を水洗するなどし、アルカリ分を除去し、的確なLi組成のNi系正極活物質を合成することで、表面の結晶構造破壊を抑制し、サイクル特性を向上させたことが報告されている。   As one of the factors that deteriorate the cycle characteristics, there is an influence of an alkali content remaining at the time of synthesis. In Patent Document 1, the active material is washed with water, the alkali content is removed, and a Ni-based positive electrode active material having an accurate Li composition is synthesized, thereby suppressing surface crystal structure destruction and improving cycle characteristics. It has been reported.

また、特許文献2には、メカニズムなど明確な理由は記載されていないが、酸化物を正極活物質や負極活物質に被覆することで、サイクル特性を向上させたことが報告されている。   Patent Document 2 does not describe a clear reason such as a mechanism, but it is reported that cycle characteristics are improved by coating an oxide with a positive electrode active material or a negative electrode active material.

特開平8-138669号公報JP-A-8-138669 特開平7-288127号公報JP-A-7-288127

我々は、鋭意検討の結果、高Ni系正極の最大の課題は、高電位領域を利用するサイクルDCR上昇と、高電位領域における初期DCRであることを見出し、そのメカニズムについても解明した。   As a result of intensive studies, we have found that the biggest problem of the high Ni-based positive electrode is the cycle DCR rise using the high potential region and the initial DCR in the high potential region, and elucidated the mechanism.

本発明の高Ni系正極活物質の場合、従来の結晶構造Aが、高電位領域で結晶構造不安定となり、ある構造Bとなることで、初期DCRが高くなる。さらに、その構造Bは可逆的であり、放電することで構造Aに戻り、これを繰り返すことで、構造Bの最表面が不活性なNiO層成長とSEI層成長を引き起こし、著しいサイクルDCR上昇を生じるものと考えている。   In the case of the high Ni-based positive electrode active material of the present invention, the conventional crystal structure A becomes unstable in the high potential region and becomes a certain structure B, so that the initial DCR is increased. Furthermore, the structure B is reversible, and by discharging, it returns to the structure A. By repeating this, the outermost surface of the structure B causes inactive NiO layer growth and SEI layer growth, and a significant cycle DCR rise occurs. I think it will happen.

以上、課題は、上記要因で生じる高電位領域における初期の高DCR化と、サイクルDCR上昇の抑制である。   As described above, the problems are the initial high DCR in the high potential region caused by the above factors and the suppression of the cycle DCR rise.

課題を解決するための手段は、高Ni系正極を用いた電池を充電する際に、相変化に起因する挙動(dQ/dV vs Vの場合はピーク箇所)を確認し、相変化が完了する電圧未満の電圧を100%SOCの上限電圧として電池を制御する方法であり、望ましくは4.0Vから4.3V間のピーク最大値、さらに望ましくは最大値に0.05Vを足した値を100%SOCとして電池を利用する電池制御方法である。   The means for solving the problem is that when charging a battery using a high Ni-based positive electrode, the behavior due to the phase change (peak location in the case of dQ / dV vs V) is confirmed, and the phase change is completed. This is a method of controlling a battery using a voltage lower than the voltage as an upper limit voltage of 100% SOC, preferably a peak maximum value between 4.0 V and 4.3 V, and more preferably a value obtained by adding 0.05 V to the maximum value. This is a battery control method using a battery as% SOC.

具体的には、一般式LiaNibCocAdBeO2(式中a,b,c,d,e,及びA,Bは、1.0≦a≦1.1, 0.80≦b≦0.90, 0.094≦c+d≦0.20, 0≦e≦0.006を満たし、A及びBは金属元素で構成される)で表された正極活物質を有するリチウムイオン二次電池と、
前記リチウムイオン二次電池の充放電を制御する制御部を備えた電池システムであって、
前記正極活物質は、電池電圧として4.0V以上4.3V以内で相変化をする正極活物質であり、前記制御部は、前記相変化が完了する電圧未満の電圧を上限SOCとして制御することを特徴とする電池システム。
Specifically, the general formula LiaNibCocAdBeO2 (where a, b, c, d, e, and A, B are 1.0 ≦ a ≦ 1.1, 0.80 ≦ b ≦ 0.90, 0.094). ≦ c + d ≦ 0.20, 0 ≦ e ≦ 0.006, and A and B are composed of metal elements), and a lithium ion secondary battery having a positive electrode active material
A battery system including a control unit that controls charging and discharging of the lithium ion secondary battery,
The positive electrode active material is a positive electrode active material that changes phase between 4.0V and 4.3V as a battery voltage, and the control unit controls a voltage lower than a voltage at which the phase change is completed as an upper limit SOC. A battery system characterized by.

本発明によれば、高電位領域における初期の高DCR化と、サイクルDCR上昇を大幅に抑制できるリチウムイオン二次電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the lithium ion secondary battery which can suppress initially high DCR in a high electric potential area | region and a cycle DCR raise can be provided.

本発明における実施例1〜17および比較例1〜19の電池仕様である。It is a battery specification of Examples 1-17 in this invention, and Comparative Examples 1-19. リチウムイオン二次電池の捲回電極群の断面図である。It is sectional drawing of the winding electrode group of a lithium ion secondary battery. 本発明における実施例1、5、11および比較例5のdQ/dV充放電曲線である。It is a dQ / dV charging / discharging curve of Examples 1, 5, 11 and Comparative Example 5 in the present invention. 本発明における実施例と比較例の評価結果である。It is an evaluation result of the Example and comparative example in this invention.

本発明に係るリチウムイオン二次電池の実施の形態について説明する。   An embodiment of a lithium ion secondary battery according to the present invention will be described.

<正極活物質の作製>
図1に実施例1〜17、比較例1〜19の電池仕様を示す。本発明に係るリチウムイオン二次電池に用いる正極活物質は、一般式LiaNibCocAdBeO2(式中a,b,c,d,e,及びA,Bは、1.0≦a≦1.1, 0.80≦b≦0.90, 0.094≦c+d≦0.20, 0≦e≦0.006を満たし、A及びBは金属元素で構成される)を満たすものである。
<Preparation of positive electrode active material>
The battery specification of Examples 1-17 and Comparative Examples 1-19 is shown in FIG. The positive electrode active material used for the lithium ion secondary battery according to the present invention has a general formula of LiaNibCocAdBeO2 (where a, b, c, d, e, and A, B are 1.0 ≦ a ≦ 1.1, 0.00). 80 ≦ b ≦ 0.90, 0.094 ≦ c + d ≦ 0.20, 0 ≦ e ≦ 0.006, and A and B are composed of metal elements).

原料として、酸化ニッケル,酸化コバルト,(二酸化マンガン,酸化アルミニウム,酸化マグネシウム,酸化モリブテン,酸化タングステン、酸化チタン、酸化ジルコニウム)を使用し、所定の原子比となるように秤量した後に、純水を加えスラリーとした。   Use nickel oxide, cobalt oxide (manganese dioxide, aluminum oxide, magnesium oxide, molybdenum oxide, tungsten oxide, titanium oxide, zirconium oxide) as raw materials, weigh it to a predetermined atomic ratio, and then add pure water In addition, a slurry was obtained.

このスラリーを平均粒径が0.2μmとなるまでビーズミルで粉砕した。   This slurry was pulverized by a bead mill until the average particle size became 0.2 μm.

このスラリーにポリビニルアルコール(PVA)溶液を固形分比に換算して1wt.%添加し、更に1時間混合し、スプレードライヤ−により造粒および乾燥させた。   A polyvinyl alcohol (PVA) solution was added to this slurry in an amount of 1 wt.% In terms of the solid content ratio, further mixed for 1 hour, and granulated and dried by a spray dryer.

この造粒粒子に対し、Li:(NiCoAB)比が1.0および1.1となるように、1.0以上1.15未満の水酸化リチウムおよび炭酸リチウムを加え、Li量を調整した。   Lithium hydroxide and lithium carbonate of 1.0 or more and less than 1.15 were added to the granulated particles so that the Li: (NiCoAB) ratio was 1.0 and 1.1, and the amount of Li was adjusted.

次に、この粉末を850℃で10時間焼成することにより層状構造の結晶を有し、その後、解砕して正極活物質を得た。   Next, this powder was fired at 850 ° C. for 10 hours to have a layered crystal, and then pulverized to obtain a positive electrode active material.

さらに、分級により粒径30μm以上の粗大粒子を除去した後、電極作製に用いた。   Further, coarse particles having a particle size of 30 μm or more were removed by classification, and then used for electrode production.

また、本実施例に関する正極活物質の作製方法は、上記の方法に限定されず、共沈法など、他の方法を用いてもよい。   Further, the method for producing the positive electrode active material in this example is not limited to the above method, and other methods such as a coprecipitation method may be used.

正極活物質を作製する際に、前記それぞれの原料の混合比率を変化させて、異なる組成の正極活物質を作製した。なお、Bは、他の遷移金属に対して、均等に置換されているものと考えているが、微少量であるため、詳細は不明である。   When producing the positive electrode active material, the mixing ratio of the respective raw materials was changed to produce positive electrode active materials having different compositions. In addition, although B is considered that it is substituted equally with respect to other transition metals, since it is a very small amount, details are unknown.

<正極の作製>
正極は、正極集電体としてのアルミニウム箔の両面に、正極活物質を含む正極活物質合剤の塗工層が形成されて構成される。正極活物質合剤の塗工層を形成するには、正極活物質とバインダ(結着材)と導電助剤とを溶媒中に分散させた正極活物質合剤を作製し、これを正極集電体の表面に塗工する。バインダとしてはポリフッ化ビニリデン(以下、PVDFと記載する)を用い、導電助剤としては炭素材料を用いた。正極活物質、バインダ、および導電材の質量比は90:5:5とした。また、溶媒としてはN−メチルピロリドン(以下、NMPと略記する)を用い、その量により粘度調整を行った。正極集電体への正極活物質合剤の塗工量は片面180g/m2とした。正極活物質合剤を塗工した正極集電体は、正極活物質合剤の塗工層を乾燥させた後、ロールプレス装置により正極活物質合剤層の密度が3.2g/cm3となるようにロールプレスした。以上説明した工程により正極を作製した。
<Preparation of positive electrode>
The positive electrode is configured by forming a coating layer of a positive electrode active material mixture containing a positive electrode active material on both surfaces of an aluminum foil as a positive electrode current collector. In order to form a coating layer of a positive electrode active material mixture, a positive electrode active material mixture in which a positive electrode active material, a binder (binder), and a conductive additive are dispersed in a solvent is prepared. Apply to the surface of the electrical body. Polyvinylidene fluoride (hereinafter referred to as PVDF) was used as the binder, and a carbon material was used as the conductive assistant. The mass ratio of the positive electrode active material, the binder, and the conductive material was 90: 5: 5. Further, N-methylpyrrolidone (hereinafter abbreviated as NMP) was used as a solvent, and the viscosity was adjusted according to the amount. The coating amount of the positive electrode active material mixture to the positive electrode current collector was 180 g / m 2 on one side. In the positive electrode current collector coated with the positive electrode active material mixture, after the coating layer of the positive electrode active material mixture was dried, the density of the positive electrode active material mixture layer was 3.2 g / cm 3 by a roll press device. A roll press was performed. A positive electrode was produced by the process described above.

<負極活物質および負極の作製>
本発明に係るリチウムイオン二次電池に用いる負極活物質は、上限電圧到達時の負極電位が0V以上0.2V以下であれば、何を用いてもかまわないが、今回、天然黒鉛および、Si合金混合黒鉛、SiO混合黒鉛を用いた。
<Preparation of negative electrode active material and negative electrode>
The negative electrode active material used in the lithium ion secondary battery according to the present invention may be any material as long as the negative electrode potential when reaching the upper limit voltage is 0 V or more and 0.2 V or less. Alloy mixed graphite and SiO mixed graphite were used.

他、黒鉛には人造黒鉛、非晶質炭素などの炭素材料であっても構わない。Si合金は、通常、金属ケイ素(Si)の微細な粒子が他の金属元素の各粒子中に分散された状態となっている、または他の金属元素がSiの各粒子中に分散された状態となっている。他の金属元素は、Al、Ni、Cu、Fe、Ti、Mnのいずれか1種類以上を含むものであれば、構わない。今回はSi70Ti30を用いた。SiOは、SiOx(0.5≦x≦1.5)の範囲であればかまわないし、SiO、Si合金はともにカーボンコートしてあっても構わない。今回はいずれのSiO,Si合金ともに10nm程度の厚みでカーボンコートしたものを用いた。 In addition, the graphite may be a carbon material such as artificial graphite or amorphous carbon. The Si alloy is usually in a state where fine particles of metal silicon (Si) are dispersed in each particle of other metal elements, or a state in which other metal elements are dispersed in each particle of Si. It has become. Other metal elements may be used as long as they contain at least one of Al, Ni, Cu, Fe, Ti, and Mn. This time, Si 70 Ti 30 was used. SiO may be in the range of SiOx (0.5 ≦ x ≦ 1.5), and both SiO and Si alloys may be carbon coated. This time, both SiO and Si alloys were carbon coated with a thickness of about 10 nm.

負極活物質合剤には、負極活物質以外に、バインダを用いた。なお、黒鉛にはSBRを用い、増粘材としてCMCを用いた。その重量比率は順に98:1:1で作製した。また、Si合金混合黒鉛およびSiO混合黒鉛のバインダにはポリアミドイミドを用い、その重量比率は活物質95wt%:バインダ5wt%とした。なお、塗工量は図1記載の容量比となるように調整した。密度は黒鉛負極が1.5g/cm3、Si合金混合黒鉛およびSiO混合黒鉛が2.0 g/cm3で作製した。なお、Si合金混合黒鉛およびSiO混合黒鉛負極は塗工後にポリアミドイミドを熱硬化させるため、真空下、300℃1時間加熱し、電極とした。   In addition to the negative electrode active material, a binder was used for the negative electrode active material mixture. Note that SBR was used for graphite and CMC was used as a thickener. The weight ratio was prepared in order 98: 1: 1. Polyamideimide was used as a binder for the Si alloy mixed graphite and the SiO mixed graphite, and the weight ratio was 95 wt% active material: 5 wt% binder. The coating amount was adjusted so as to have the capacity ratio shown in FIG. The density of the graphite negative electrode was 1.5 g / cm 3, and the Si alloy mixed graphite and SiO mixed graphite were 2.0 g / cm 3. The Si alloy-mixed graphite and the SiO-mixed graphite negative electrode were heated at 300 ° C. for 1 hour under vacuum in order to thermally cure the polyamideimide after coating, and used as electrodes.

<リチウムイオン二次電池の作製> <Production of lithium ion secondary battery>

上記説明の工程により作製した正極と負極を用いて、リチウムイオン二次電池を作製する手順について説明する。図2に今回用いた1Ah級リチウムイオン二次電池の捲回電極群の断面図を示す。まず、正極板と負極板とをセパレータを介して捲回し、電池缶に挿入した。負極集電リード片6はニッケルの負極集電リード部8に集めて超音波溶接し、集電リード部を缶底溶接した。一方、正極集電リード片5はアルミニウムの集電リード部7に超音波溶接した後、アルミニウムのリード部を蓋9に抵抗溶接した。電解液(1MLiPF6/EC:EMC=1:3)を注入後、缶4のカシメにより蓋を封口し、電池を得た。なお、缶の上端と蓋の間にはガスケット12を挿入した。このようにして1Ah級の電池を製造した。 A procedure for manufacturing a lithium ion secondary battery using the positive electrode and the negative electrode manufactured by the process described above will be described. FIG. 2 shows a cross-sectional view of the wound electrode group of the 1 Ah class lithium ion secondary battery used this time. First, the positive electrode plate and the negative electrode plate were wound through a separator and inserted into a battery can. The negative electrode current collecting lead piece 6 was collected on the nickel negative electrode current collecting lead portion 8 and ultrasonically welded, and the current collecting lead portion was welded to the bottom of the can. On the other hand, the positive electrode current collector lead piece 5 was ultrasonically welded to the aluminum current collector lead portion 7 and then the aluminum lead portion was resistance welded to the lid 9. After injecting the electrolytic solution (1M LiPF 6 / EC: EMC = 1: 3), the lid was sealed with caulking of the can 4 to obtain a battery. A gasket 12 was inserted between the upper end of the can and the lid. In this way, a 1 Ah class battery was manufactured.

セパレータとしては、リチウムイオン二次電池が何らかの原因により発熱した際に、熱収縮によりリチウムイオンの移動を遮断する材料であればよい。例えば、ポリオレフィンを用いることができる。ポリオレフィンは、ポリエチレンやポリプロピレンを代表とする鎖状の高分子材料である。今回用いたセパレータは、ポリエチレンとポリプロピレンの複合材である。なお、他にセパレータの材料としては、ポリオレフィンに、ポリアミド、ポリアミドイミド、ポリイミド、ポリスルホン、ポリエーテルスルホン、ポリフェニルスルホン、ポリアクリロニトリル等の耐熱性樹脂を含有させたものも用いることができる。さらに、セパレータの片面もしくは両面に無機フィラー層を形成してもよい。無機フィラー層は、SiO2、Al23、モンモリロナイト、雲母、ZnO、TiO2、BaTiO3、ZrO2のうちの少なくとも1種類を含む材料により構成されたものでよい。コストや性能の観点からは、SiO2またはAl23が好ましい。 The separator may be any material that blocks the movement of lithium ions due to thermal contraction when the lithium ion secondary battery generates heat for some reason. For example, polyolefin can be used. Polyolefin is a chain polymer material represented by polyethylene and polypropylene. The separator used this time is a composite material of polyethylene and polypropylene. In addition, as a material for the separator, a material in which a heat-resistant resin such as polyamide, polyamideimide, polyimide, polysulfone, polyethersulfone, polyphenylsulfone, or polyacrylonitrile is contained in polyolefin can be used. Furthermore, you may form an inorganic filler layer in the single side | surface or both surfaces of a separator. The inorganic filler layer may be made of a material containing at least one of SiO 2 , Al 2 O 3 , montmorillonite, mica, ZnO, TiO 2 , BaTiO 3 , and ZrO 2 . From the viewpoint of cost and performance, SiO 2 or Al 2 O 3 is preferable.

電解液としては有機電解液を用いた。この有機電解液は、電解質として1mol/dm-3のLiPF6を、エチレンカーボネート(EC):エチルメチルカーボネート(EMC)=1:3(vol%)の有機溶媒に溶解させたものである。電解液としては上記の他に、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、γ−バレロラクトン、メチルアセテート、エチルアセテート、メチルプロピオネート、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,2−ジメトキシエタン、1−エトキシ−2−メトキシエタン、3−メチルテトラヒドロフラン、1,2−ジオキサン、1,3−ジオキサン、1,4−ジオキサン、1,3−ジオキソラン、2−メチル−1,3−ジオキソラン、4−メチル−1,3−ジオキソラン等のうちの少なくとも1種以上で構成された非水溶媒に、例えば、LiPF6、LiBF4、LiN(C25SO22等のうち少なくとも1種以上のリチウム塩を溶解させた有機電解液、あるいは、リチウムイオンの伝導性を有する固体電解質、あるいは、ゲル状電解質、あるいは、溶融塩等、既知のものを用いることができる。
本発明では、フッ素が含まれる電解質がもっとも効果が得られ、特に、LiPP6が効果が大きい。
An organic electrolytic solution was used as the electrolytic solution. This organic electrolytic solution is obtained by dissolving 1 mol / dm −3 LiPF 6 as an electrolyte in an organic solvent of ethylene carbonate (EC): ethyl methyl carbonate (EMC) = 1: 3 (vol%). In addition to the above as the electrolytic solution, for example, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, γ-butyrolactone, γ-valerolactone, methyl acetate, ethyl acetate, methyl propionate, Tetrahydrofuran, 2-methyltetrahydrofuran, 1,2-dimethoxyethane, 1-ethoxy-2-methoxyethane, 3-methyltetrahydrofuran, 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, 1,3- Non-aqueous solvents composed of at least one of dioxolane, 2-methyl-1,3-dioxolane, 4-methyl-1,3-dioxolane and the like include, for example, LiPF 6 , LiBF 4 , LiN (C 2 F 5 SO 2) 2 The organic electrolytic solution prepared by dissolving at least one kind of lithium salt of, or a solid electrolyte having lithium ion conductivity, or a gel electrolyte, or may be used molten salt, known ones.
In the present invention, an electrolyte containing fluorine is most effective, and LiPP6 is particularly effective.

<dQ/dV充放電曲線の測定>
上記のリチウムイオン二次電池に対して、上限電圧4.2Vで、電流30mAの定電圧定電流で5時間充電を行った後、電圧2.0V、電流20mAの定電流放電を行った。このときの初期のdQ/dV充放電曲線から、4.0Vから4.3Vにおけるピーク位置をそれぞれ算出した。その一例として、本発明における実施例1、5、11および比較例5のdQ/dV充放電曲線を示す。これらを見て分かるように、実施例1、5、11には4.1V程度に相変化に由来するピークが見られ、一方、実施例15はNi量が少ないため、結晶構造が安定であり、ピークは観察されず、相変化は生じていないものと考えられる。他のセルについても測定し、図3に示した。今回の正極活物質において、Ni量が80%のものはいずれも4.1V程度に相変化に由来するピークが見られた。また、実施例3、比較例4は、Ni量90%であり、充電時に引き抜かれるLi量が多いことから、相変化が早く生じていることも確認できる。
<Measurement of dQ / dV charge / discharge curve>
The lithium ion secondary battery was charged at a constant voltage and constant current of 30 mA at an upper limit voltage of 4.2 V for 5 hours, and then was discharged at a constant voltage of 2.0 V and a current of 20 mA. From the initial dQ / dV charge / discharge curve at this time, peak positions from 4.0 V to 4.3 V were calculated. As an example, dQ / dV charge / discharge curves of Examples 1, 5, 11 and Comparative Example 5 in the present invention are shown. As can be seen from these, Examples 1, 5, and 11 show a peak derived from a phase change at about 4.1 V, whereas Example 15 has a small amount of Ni, so the crystal structure is stable. No peak is observed and no phase change is considered to have occurred. The other cells were also measured and shown in FIG. In the current positive electrode active material, a peak derived from a phase change was observed at about 4.1 V in any of the Ni contents of 80%. Further, in Example 3 and Comparative Example 4, the amount of Ni is 90%, and since the amount of Li extracted during charging is large, it can also be confirmed that the phase change occurs quickly.

<c軸格子定数の測定>
上記と同じセルを作製し、図1記載の上限電圧Vで、電流30mAの定電圧定電流で5時間充電を行った後、セルを解体し、正極を取り出し、XRDを測定し、ブラックの式から、最少二乗法でc軸格子定数を算出した。結果を図3に示す。セル上限電圧とピーク最大電圧との差が+0.05超過の比較例の場合、c軸格子定数が1.43未満となっていることがわかる。
<Measurement of c-axis lattice constant>
The same cell as described above was prepared and charged for 5 hours with the constant voltage and constant current of 30 mA at the upper limit voltage V shown in FIG. 1, the cell was disassembled, the positive electrode was taken out, XRD was measured, and the black formula From the above, the c-axis lattice constant was calculated by the least square method. The results are shown in FIG. In the comparative example in which the difference between the cell upper limit voltage and the peak maximum voltage exceeds +0.05, it can be seen that the c-axis lattice constant is less than 1.43.

<初期容量、初期DCR、サイクルDCR上昇率の測定>
また、上記と同じセルを作製し、初期容量、初期DCR、サイクルDCR上昇率を測定した。放電容量は、各上限電圧で、電流300mAの定電圧定電流で5時間充電を行った後、電圧2.0V、電流300mAの定電流放電を行った。このときの初期の放電容量をそれぞれのリチウムイオン二次電池の初期容量とした。リチウムイオン二次電池の初期直流抵抗は、各上限電圧、電流300mAの定電圧定電流で5時間充電を行った後、その上限電圧から電流1Aで10秒放電し、このときの電圧変化ΔVと電流1Aの商から算出した。
<Measurement of initial capacity, initial DCR, cycle DCR increase rate>
Moreover, the same cell as the above was produced, and the initial capacity, initial DCR, and cycle DCR increase rate were measured. The discharge capacity was charged at a constant voltage and constant current of 300 mA at each upper limit voltage for 5 hours, and then was discharged at a constant voltage of 2.0 V and a current of 300 mA. The initial discharge capacity at this time was used as the initial capacity of each lithium ion secondary battery. The initial DC resistance of the lithium ion secondary battery is determined by charging the upper limit voltage at a constant voltage and constant current of 300 mA for 5 hours and then discharging from the upper limit voltage at a current of 1 A for 10 seconds. It was calculated from the quotient of current 1A.

上記測定が終わったセルを用いて、サイクル試験した。サイクル条件として、充電は、各上限電圧、電流300mAの定電流定電圧で、終止条件は6mAの充電電流になるまで行い、放電は、電圧3.2V、電流300mAの定電流放電を400サイクル行い、400サイクル後に、電圧3.7V、電流300mAの定電圧定電流で5時間充電を行った後、電圧3.7Vから電流1Aで10秒放電し、このときの電圧変化ΔVと電流1Aの商から400サイクル時のDCRを算出し、400サイクル時のDCR上昇率は、400サイクル時のDCR÷初期DCR×100で算出した。   A cycle test was performed using the cell after the above measurement. As a cycle condition, charging is performed at a constant current and a constant voltage of each upper limit voltage and a current of 300 mA, a termination condition is performed until a charging current of 6 mA, and discharging is performed by 400 cycles of a constant current discharge of voltage 3.2 V and a current of 300 mA. After 400 cycles, the battery was charged for 5 hours with a constant voltage and a constant current of 3.7 V and a current of 300 mA, and then discharged for 10 seconds from a voltage of 3.7 V with a current of 1 A. The quotient of the voltage change ΔV and the current of 1 A From the above, the DCR at 400 cycles was calculated, and the DCR increase rate at 400 cycles was calculated by DCR at 400 cycles ÷ initial DCR × 100.

初期容量、初期DCR、サイクルDCR上昇率を図3に示す。実施例1〜17のリチウムイオン二次電池は、黒鉛負極の場合、初期容量が0.6Ah程度、Si系負極の場合、それに応じて、高容量化した。初期DCRについても同様で、いずれも0.09〜0.14Ω程度と良好であった。なお、Mn以外の元素置換により、若干の低抵抗化が見られた。これはLiイオンの出し入れが生じる(00C)面の結晶子サイズの影響と考えており、実施例1〜4、12〜17の正極活物質は結晶子サイズが80以上100nm未満であり、一方、実施例5〜11は、100以上140nm以下となっている。つまり、初期の低DCR化には100以上140nm以下の結晶子サイズが望ましい。なお、140nm超過の場合、結晶構造が不安定となり、サイクル特性悪化を引き起こすものと推察される。本発明における(00C)面の結晶子サイズは、Scherrer法を用いて算出した。 (00C)の結晶子径Dは、以下(数1)式を用いた。   The initial capacity, initial DCR, and cycle DCR increase rate are shown in FIG. In the lithium ion secondary batteries of Examples 1 to 17, the initial capacity was about 0.6 Ah in the case of the graphite negative electrode, and the capacity was increased accordingly in the case of the Si-based negative electrode. The same was true for the initial DCR, and all of them were as good as about 0.09 to 0.14Ω. Note that a slight reduction in resistance was observed due to substitution of elements other than Mn. This is considered to be the influence of the crystallite size of the (00C) plane where Li ions are taken in and out, and the positive electrode active materials of Examples 1 to 4 and 12 to 17 have a crystallite size of 80 to less than 100 nm, Examples 5-11 are 100-140 nm. That is, a crystallite size of 100 to 140 nm is desirable for the initial low DCR. In addition, when exceeding 140 nm, it is guessed that a crystal structure will become unstable and will cause cycling characteristics deterioration. The crystallite size of the (00C) plane in the present invention was calculated using the Scherrer method. For the crystallite diameter D of (00C), the following equation (1) was used.

D(nm) = k × λ / ( β × cos θ ) …(数1)
(k : Scherrer定数 (=0.9)、λ : X線の波長 (=15.4nm)、β : 半値幅 (rad)、θ : 回折角)
なお、βとθは (003)、(006)、(009)、(0012)のピークを用い、各結晶子径Dを算出したのち、平均値を(00c)の結晶子径とした。
さらに、実施例1〜4、12〜17の正極活物質は1次粒子の平均粒径をdとしたときに、前記結晶子径Dとの関係は1≧d/D≧10であった。また、実施例1〜4、12〜17の正極活物質の二次粒子のBET比表面積は0.5g/m2以上0.8g/m2であった。
D (nm) = k × λ / (β × cos θ) (Equation 1)
(k: Scherrer constant (= 0.9), λ: wavelength of X-ray (= 15.4 nm), β: full width at half maximum (rad), θ: diffraction angle)
Β and θ use the peaks of (003), (006), (009), and (0012), and after calculating each crystallite diameter D, the average value was taken as the crystallite diameter of (00c).
Furthermore, the positive electrode active materials of Examples 1 to 4 and 12 to 17 had a relationship with the crystallite diameter D of 1 ≧ d / D ≧ 10 when the average particle diameter of primary particles was d. Moreover, the BET specific surface area of the secondary particle of the positive electrode active material of Examples 1-4 and 12-17 was 0.5 g / m <2> or more and 0.8 g / m <2>.

また、Si系負極の場合、Si系材料のバルク抵抗の影響で、若干の高抵抗化が見られたが、支障のないレベルと考えている。また、サイクル特性に関してはいずれも良好であり、400サイクル時のDCR上昇率はいずれも105%程度となった。   In the case of the Si-based negative electrode, although a slight increase in resistance was observed due to the bulk resistance of the Si-based material, it is considered that there is no problem. Further, the cycle characteristics were all good, and the DCR increase rate at 400 cycles was about 105%.

<比較例>
比較例1〜4および6〜18を見て分かるように、初期DCRおよびサイクルDCR上昇率はセル上限電圧とピーク最大電圧との差が+0.05超過の比較例の場合、高電位領域で結晶構造が不安定化し、初期DCRが高くなったものと考えられる。さらに、この領域でサイクルされることで、最表面が不活性なNiO層成長とSEI層成長を引き起こし、著しいサイクルDCR上昇を生じたと考えている。また、比較例5,19は容量が少ないため、高エネルギー化できない。
<Comparative example>
As can be seen from Comparative Examples 1 to 4 and 6 to 18, the initial DCR and cycle DCR increase rates are higher in the high potential region than in the comparative example in which the difference between the cell upper limit voltage and the peak maximum voltage exceeds +0.05. It is considered that the structure has become unstable and the initial DCR has increased. Furthermore, it is believed that cycling in this region caused NiO layer growth and SEI layer growth on the outermost surface, resulting in a significant cycle DCR increase. Moreover, since Comparative Examples 5 and 19 have a small capacity, the energy cannot be increased.

以上説明した通り、本発明の電池制御システムの適用により、高エネルギーかつ、高電圧における低DCR化、サイクル特性に優れたリチウムイオン二次電池を提供できる。   As described above, the application of the battery control system of the present invention can provide a lithium ion secondary battery having high energy, low DCR at high voltage, and excellent cycle characteristics.

また、サイクルや保存試験において、一般的なSEI被膜成長により、正負極作動電位が高くなる現象も考慮すると、本電池システムの制御部は、上限電圧(上限SOC)以下で相変化の完了を検出した場合に、異常信号を出力できるものを想定している。さらに、異常信号に伴い、充放電を一時的に止め、新たに上限SOCを設定することで、劣化を加速させることなく、長寿命化が可能となる。つまり、最終寿命年数を考慮した条件で運転させることも可能である。 Also, in consideration of the phenomenon that the positive and negative electrode operating potentials increase due to general SEI film growth in cycles and storage tests, the control unit of this battery system detects the completion of phase change below the upper limit voltage (upper limit SOC). In this case, it is assumed that an abnormal signal can be output. Furthermore, it is possible to extend the service life without accelerating deterioration by temporarily stopping charging and discharging in accordance with an abnormal signal and newly setting an upper limit SOC. That is, it is also possible to operate under conditions that take into account the final life years.

また、実施例では、リチウムイオン二次電池として円筒形セルの形態としたが、本発明は、それ以外の構成のリチウムイン二次電池にも適用できることは言うまでもない。例えば、積層構造のものやラミネートに封入されたものに対しても適用可能である。   In the examples, the lithium ion secondary battery is in the form of a cylindrical cell, but it goes without saying that the present invention can also be applied to lithium-in secondary batteries having other configurations. For example, the present invention can be applied to a laminated structure or a product enclosed in a laminate.

上記の通り、種々の実施の形態について説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。   Although various embodiments have been described as described above, the present invention is not limited to these contents. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.

1.正極
2.負極
3.セパレータ
4.電池缶
5.正極集電リード片
6.負極集電リード片
7.正極集電リード部
8.負極集電リード部
9.電池蓋
10.破裂弁
11.正極端子部
12.ガスケット
1. Positive electrode
2. Negative electrode
3. Separator 4. Battery can 5. Positive electrode current collector lead piece
6. Negative electrode current collecting lead piece 7. Positive electrode current collecting lead part 8. Negative electrode current collecting lead part 9. Battery cover 10. Rupture valve 11. Positive terminal portion 12. gasket

Claims (15)

一般式LiaNibCocAdBeO2(式中a,b,c,d,e,及びA,Bは、1.0≦a≦1.1, 0.80≦b≦0.90, 0.094≦c+d≦0.20, 0≦e≦0.006を満たし、A及びBはそれぞれ異なる金属元素で構成される)で表された正極活物質を有するリチウムイオン二次電池と、
前記リチウムイオン二次電池の充放電を制御する制御部を備えた電池システムであって、
前記正極活物質は、電池電圧として4.0V以上4.3V以内で相変化をする正極活物質であり、前記制御部は、前記相変化が完了する電圧未満の電圧を上限SOCとして制御することを特徴とする電池システム。
General formula LiaNibCocAdBeO2 (where a, b, c, d, e, and A, B are 1.0 ≦ a ≦ 1.1, 0.80 ≦ b ≦ 0.90, 0.094 ≦ c + d ≦ A lithium ion secondary battery having a positive electrode active material represented by the following formula: 0.20, 0 ≦ e ≦ 0.006, and A and B are each composed of different metal elements:
A battery system including a control unit that controls charging and discharging of the lithium ion secondary battery,
The positive electrode active material is a positive electrode active material that changes phase between 4.0V and 4.3V as a battery voltage, and the control unit controls a voltage lower than a voltage at which the phase change is completed as an upper limit SOC. A battery system characterized by.
請求項1に記載の電池システムにおいて、
前記一般式LiaNibCocAdBeO2で表される正極活物質は、AがMn又はAlを1種類以上、BがMg,Mo,W,Zrから1種類以上それぞれ含むことを特徴とする電池システム。
The battery system according to claim 1,
The positive electrode active material represented by the general formula LiaNibCocAdBeOO 2 is characterized in that A contains one or more of Mn or Al and B contains one or more of Mg, Mo, W, and Zr.
請求項1又は2に記載のリチウムイオン二次電池の制御方法において、
前記制御部は、充電時にdQ/dVと電圧との関係を取得し、4.0V以上4.3V以内におけるdQ/dVが最大値となる電圧に所定の電圧を足した電圧を前記相変化が完了する電圧未満として、上限SOCとして制御することを特徴とする電池システム。
In the control method of the lithium ion secondary battery according to claim 1 or 2,
The control unit obtains a relationship between dQ / dV and voltage during charging, and the phase change is obtained by adding a predetermined voltage to a voltage at which dQ / dV is a maximum value between 4.0V and 4.3V. A battery system that is controlled as an upper limit SOC when the voltage is less than a completed voltage.
請求項3に記載の所定の電圧は0.05Vであることを特徴とする電池システム。   The battery system according to claim 3, wherein the predetermined voltage is 0.05V. 請求項1又は2に記載の電池システムにおいて、
前記制御部は、充電時にdQ/dVと電圧との関係を取得し、4.0V以上4.3V以内におけるdQ/dVが最大値となる電圧を前記相変化が完了する電圧未満として、上限SOCとして制御することを特徴とする電池システム。
The battery system according to claim 1 or 2,
The controller obtains the relationship between dQ / dV and voltage during charging, sets the voltage at which dQ / dV is the maximum value between 4.0 V and 4.3 V as the maximum value, and is less than the voltage at which the phase change is completed, and sets the upper limit SOC. A battery system characterized by being controlled as follows.
請求項5に記載の電池システムにおいて、
前記正極活物質は相変化するとc軸格子定数が1.43nm未満となることを特徴とする電池システム。
The battery system according to claim 5, wherein
The battery system according to claim 1, wherein when the positive electrode active material undergoes a phase change, the c-axis lattice constant becomes less than 1.43 nm.
請求項3乃至6のいずれかに記載の電池システムにおいて、
前記制御部は、前記上限SOC以下で前記相変化の完了を検出した場合に、異常信号を出力することを特徴とする電池システム。
The battery system according to any one of claims 3 to 6,
The control unit outputs an abnormal signal when the completion of the phase change is detected below the upper limit SOC.
請求項7に記載の電池システムにおいて、
前記制御部は、前記上限SOC以下で前記相変化の完了を検出した場合に、前記相変化が完了する電圧未満の電圧を上限SOCと再設定することを特徴とする電池システム。
The battery system according to claim 7,
The control unit resets a voltage lower than a voltage at which the phase change is completed as the upper limit SOC when detecting the completion of the phase change below the upper limit SOC.
請求項1乃至8のいずれかに記載の電池システムにおいて、
前記正極活物質は、X線回折による(003)面のピークの半値幅から得られる1次粒子径の結晶子径Dは100nm以上140nm以下であることを特徴とする電池システム。
The battery system according to any one of claims 1 to 8,
In the battery system, the positive electrode active material has a crystallite diameter D of a primary particle diameter obtained from a half width of a peak of a (003) plane by X-ray diffraction of 100 nm or more and 140 nm or less.
請求項9の電池システムにおいて、
前記1次粒子の平均粒径をdとしたときに、前記結晶子径Dとの関係は1≧d/D≧10であることを特徴とする電池システム。
The battery system of claim 9,
The battery system according to claim 1, wherein the relationship between the primary particle size d and the crystallite size D is 1 ≧ d / D ≧ 10.
請求項9または10に記載の電池システムにおいて、
前記正極活物質の二次粒子のBET比表面積は0.5g/m2以上0.8g/m2であることを特徴とする電池システム。
The battery system according to claim 9 or 10,
The battery system, wherein the secondary particles of the positive electrode active material have a BET specific surface area of 0.5 g / m 2 or more and 0.8 g / m 2.
一般式LiaNibCocAdBeO2(式中a,b,c,d,e,及びA,Bは、1.0≦a≦1.1, 0.80≦b≦0.90, 0.094≦c+d≦0.20, 0≦e≦0.006を満たし、A及びBはそれぞれ異なる金属元素で構成される)で表された正極活物質を有するリチウムイオン二次電池と、
前記リチウムイオン二次電池の充放電を制御する制御部を備えた電池システムであって、
前記正極活物質は、電池電圧の高電圧領域で相変化をする正極活物質であり、前記制御部は、前記相変化が完了する電圧未満の電圧を上限SOCとして制御することを特徴とする電池システム。
General formula LiaNibCocAdBeO2 (where a, b, c, d, e, and A, B are 1.0 ≦ a ≦ 1.1, 0.80 ≦ b ≦ 0.90, 0.094 ≦ c + d ≦ A lithium ion secondary battery having a positive electrode active material represented by the following formula: 0.20, 0 ≦ e ≦ 0.006, and A and B are each composed of different metal elements:
A battery system including a control unit that controls charging and discharging of the lithium ion secondary battery,
The positive electrode active material is a positive electrode active material that undergoes a phase change in a high voltage range of a battery voltage, and the control unit controls a voltage lower than a voltage at which the phase change is completed as an upper limit SOC. system.
一般式LiaNibCocAdBeO2(式中a,b,c,d,e,及びA,Bは、1.0≦a≦1.1, 0.80≦b≦0.90, 0.094≦c+d≦0.20, 0≦e≦0.006を満たし、A及びBはそれぞれ異なる金属元素で構成される)で表され、4.0V以上4.3V以内で相変化をする正極活物質を有するリチウムイオン二次電池の制御方法において、
前記相変化が完了する電圧未満の電圧を上限SOCとして制御することを特徴とするリチウムイオン二次電池の制御方法。
General formula LiaNibCocAdBeO2 (where a, b, c, d, e, and A, B are 1.0 ≦ a ≦ 1.1, 0.80 ≦ b ≦ 0.90, 0.094 ≦ c + d ≦ Lithium having a positive electrode active material that satisfies the following conditions: 0.20, 0 ≦ e ≦ 0.006, and A and B are composed of different metal elements. In the control method of the ion secondary battery,
A method for controlling a lithium ion secondary battery, wherein a voltage lower than a voltage at which the phase change is completed is controlled as an upper limit SOC.
一般式LiaNibCocAdBeO2(式中a,b,c,d,e,及びA,Bは、1.0≦a≦1.1, 0.80≦b≦0.90, 0.094≦c+d≦0.20, 0≦e≦0.006を満たし、A及びBはそれぞれ異なる金属元素で構成される)で表され、電池電圧の高電圧領域で相変化をする正極活物質を有するリチウムイオン二次電池の制御方法において、
前記相変化が完了する電圧未満の電圧を上限SOCとして制御することを特徴とするリチウムイオン二次電池の制御方法。
General formula LiaNibCocAdBeO2 (where a, b, c, d, e, and A, B are 1.0 ≦ a ≦ 1.1, 0.80 ≦ b ≦ 0.90, 0.094 ≦ c + d ≦ 0.20, 0 ≦ e ≦ 0.006, and A and B are composed of different metal elements), and has a positive electrode active material that undergoes a phase change in the high voltage region of the battery voltage. In the secondary battery control method,
A method for controlling a lithium ion secondary battery, wherein a voltage lower than a voltage at which the phase change is completed is controlled as an upper limit SOC.
請求項1、12〜14における負極は、上限SOCにおける負極電位は0V以上0.2V以下であることを特徴とするリチウムイオン二次電池の制御方法。 15. The method for controlling a lithium ion secondary battery according to claim 1, wherein the negative electrode potential at the upper limit SOC is 0 V or more and 0.2 V or less.
JP2016254648A 2016-12-28 2016-12-28 Lithium ion secondary battery Pending JP2018107053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016254648A JP2018107053A (en) 2016-12-28 2016-12-28 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016254648A JP2018107053A (en) 2016-12-28 2016-12-28 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2018107053A true JP2018107053A (en) 2018-07-05

Family

ID=62788147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016254648A Pending JP2018107053A (en) 2016-12-28 2016-12-28 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2018107053A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582695A (en) * 2019-09-29 2021-03-30 宁德新能源科技有限公司 Charging method, electronic device, and storage medium
WO2021149960A1 (en) * 2020-01-20 2021-07-29 주식회사 엘지에너지솔루션 Method for diagnosing degradation of electrode active material for lithium secondary battery
WO2022265016A1 (en) * 2021-06-16 2022-12-22 住友化学株式会社 Lithium-metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2023031721A1 (en) * 2021-08-31 2023-03-09 株式会社半導体エネルギー研究所 Secondary battery management system
WO2023206241A1 (en) * 2022-04-28 2023-11-02 宁德新能源科技有限公司 Positive electrode material and electrochemical apparatus comprising same, and electronic apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582695A (en) * 2019-09-29 2021-03-30 宁德新能源科技有限公司 Charging method, electronic device, and storage medium
WO2021056688A1 (en) * 2019-09-29 2021-04-01 宁德新能源科技有限公司 Charging method, electronic device, and storage medium
CN112582695B (en) * 2019-09-29 2021-10-01 宁德新能源科技有限公司 Charging method, electronic device, and storage medium
US11742531B2 (en) 2019-09-29 2023-08-29 Ningde Amperex Technology Limited Charging method, electronic apparatus, and storage medium
WO2021149960A1 (en) * 2020-01-20 2021-07-29 주식회사 엘지에너지솔루션 Method for diagnosing degradation of electrode active material for lithium secondary battery
WO2022265016A1 (en) * 2021-06-16 2022-12-22 住友化学株式会社 Lithium-metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2023031721A1 (en) * 2021-08-31 2023-03-09 株式会社半導体エネルギー研究所 Secondary battery management system
WO2023206241A1 (en) * 2022-04-28 2023-11-02 宁德新能源科技有限公司 Positive electrode material and electrochemical apparatus comprising same, and electronic apparatus

Similar Documents

Publication Publication Date Title
KR102633418B1 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and negative electrode material for non-aqueous electrolyte secondary battery
JP6239476B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2018107053A (en) Lithium ion secondary battery
JP2016076487A (en) Composite negative electrode active material, method of manufacturing the same, negative electrode containing composite negative electrode active material, and lithium secondary battery including negative electrode
JP6535581B2 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery
JP2006032321A (en) Active material, its manufacturing method, and nonaqueous electrolyte secondary battery containing it
JP6422742B2 (en) Lithium ion secondary battery and battery system
TW201733190A (en) Negative electrode active material, mixed negative electrode active material, negative electrode for nonaqueous electrolyte secondary batteries, lithium ion secondary battery, and method for producing negative electrode active material
JP6448462B2 (en) Anode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing anode active material for nonaqueous electrolyte secondary battery
TW201731146A (en) Negative electrode active material and producing method, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery and producing method
WO2015132856A1 (en) Lithium ion secondary battery
JP2016081626A (en) Cathode active material for nonaqueous secondary battery, manufacturing method thereof, cathode for nonaqueous secondary battery, nonaqueous secondary battery and on-vehicle nonaqueous secondary battery module
JP6443416B2 (en) Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery
JP6934453B2 (en) Method for manufacturing negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode active material for non-aqueous electrolyte secondary battery
JP2016054101A (en) Lithium ion secondary battery
JP6394193B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
JP6639889B2 (en) Rechargeable battery
JP6067844B2 (en) Lithium ion secondary battery
JP2018206619A (en) Lithium ion secondary battery
JP5013508B2 (en) Non-aqueous electrolyte secondary battery
WO2014103558A1 (en) Nonaqueous electrolyte secondary cell electrode and method for manufacturing same
WO2021020290A1 (en) Non-aqueous electrolyte power storage element, manufacturing method thereof, and power storage device
WO2018061478A1 (en) Lithium ion secondary battery
JP2020004523A (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery
JP2018206615A (en) Negative electrode and nonaqueous electrolyte power storage element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190306