JP2018098122A - Discharge failure suppression method for graphite electrode in plasma heating device - Google Patents

Discharge failure suppression method for graphite electrode in plasma heating device Download PDF

Info

Publication number
JP2018098122A
JP2018098122A JP2016244175A JP2016244175A JP2018098122A JP 2018098122 A JP2018098122 A JP 2018098122A JP 2016244175 A JP2016244175 A JP 2016244175A JP 2016244175 A JP2016244175 A JP 2016244175A JP 2018098122 A JP2018098122 A JP 2018098122A
Authority
JP
Japan
Prior art keywords
tundish
electrode
graphite electrode
plasma heating
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016244175A
Other languages
Japanese (ja)
Other versions
JP6760036B2 (en
Inventor
真士 飯田
Shinji Iida
真士 飯田
亮 西岡
Akira Nishioka
亮 西岡
顕 津山
Akira Tsuyama
顕 津山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016244175A priority Critical patent/JP6760036B2/en
Publication of JP2018098122A publication Critical patent/JP2018098122A/en
Application granted granted Critical
Publication of JP6760036B2 publication Critical patent/JP6760036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve stable ignition onto molten steel in a tundish at continuous casting of steel when a graphite electrode is used for an electrode of a plasma heating device.SOLUTION: When molten steel passing through the inside of a tundish is heated by a plasma heating device using a graphite electrode 11, a power value in igniting onto molten steel 7 in the tundish 6 should be less than 1.6 MW.SELECTED DRAWING: Figure 4

Description

本発明は、例えば、プラズマ加熱装置を用いてタンディッシュ内を通過する溶鋼を加熱する際の黒鉛電極の異常放電を抑制して、安定的な着火を可能にする方法に関するものである。   The present invention relates to a method for enabling stable ignition by suppressing abnormal discharge of a graphite electrode when, for example, a molten steel passing through a tundish is heated using a plasma heating apparatus.

鋼の連続鋳造時にタンディッシュ内を通過する溶鋼の温度が低下した場合、溶鋼温度の低下に伴い鋳型内のメニスカス近傍で溶鋼表面が凝固し(ディッケル生成)、最終製品にラミネーション欠陥(二枚割れ)が発生する場合がある。また、操業トラブルが発生する可能性もある。   If the temperature of the molten steel that passes through the tundish decreases during continuous casting of steel, the molten steel surface solidifies near the meniscus in the mold (dickel formation) as the molten steel temperature decreases, resulting in a lamination defect (breaking into two pieces). ) May occur. In addition, operational troubles may occur.

従って、鋼の連続鋳造時は、プラズマ加熱装置を用いてタンディッシュ内を通過する溶鋼を加熱している。このプラズマ加熱装置の電極として、従来は金属電極を使用することが多かった(例えば特許文献1,2)。その理由は、図3に示すような2重管構造の金属電極1の先端の、外管1aと内管1bの間で高周波2を発生しているので、安定した着火が行えるためである。   Therefore, during continuous casting of steel, the molten steel passing through the tundish is heated using a plasma heating device. Conventionally, a metal electrode has often been used as an electrode of this plasma heating device (for example, Patent Documents 1 and 2). The reason is that the high frequency 2 is generated between the outer tube 1a and the inner tube 1b at the tip of the metal electrode 1 having a double tube structure as shown in FIG. 3, so that stable ignition can be performed.

しかしながら、金属電極1は、図3に示すように、電極保護のため内管1bに冷却水3を供給している。そのため、加熱時に投入する電力の約30%の熱ロスが発生し、溶鋼への着熱効率は45%程度となっていた。また、電源出力を増加すると金属電極が消耗して寿命が大幅に低下するのみならず、水漏れの懸念があるため、電源出力を制限しているものが多い。   However, as shown in FIG. 3, the metal electrode 1 supplies cooling water 3 to the inner tube 1b for electrode protection. Therefore, a heat loss of about 30% of the electric power input at the time of heating occurred, and the heat receiving efficiency to the molten steel was about 45%. Further, when the power output is increased, not only the metal electrode is consumed and the life is significantly reduced, but also there is a fear of water leakage, so that the power output is often limited.

なお、図3中の4は冷却水3を内管1bに送り込むポンプ、5は高周波回路を示す。また、6はタンディッシュ、7はタンディッシュ内の溶鋼を示し、紙面右側の金属電極1がカソード電極、紙面左側の金属電極1がアノード電極を示す。   In addition, 4 in FIG. 3 is a pump for sending the cooling water 3 to the inner pipe 1b, and 5 is a high-frequency circuit. In addition, 6 indicates a tundish, 7 indicates molten steel in the tundish, the metal electrode 1 on the right side of the paper indicates a cathode electrode, and the metal electrode 1 on the left side of the paper indicates an anode electrode.

そこで、近年、金属電極にかわって冷却が不要な黒鉛電極が開発され、使用されるようになってきている。この黒鉛電極は冷却が不要であるため、冷却による溶鋼への着熱効率の低下が改善されて着熱効率が大幅に向上する。また、冷却水が漏れる懸念がないので電源出力の制限も改善できる。   Therefore, in recent years, graphite electrodes that do not require cooling have been developed and used instead of metal electrodes. Since this graphite electrode does not need to be cooled, the decrease in heat receiving efficiency to the molten steel due to cooling is improved, and the heat receiving efficiency is greatly improved. In addition, since there is no fear of leakage of cooling water, the limitation on power output can be improved.

しかしながら、図4に示すように、黒鉛電極11は中実の単体構造であり、金属電極のように高周波を使用した着火ができない。   However, as shown in FIG. 4, the graphite electrode 11 has a solid unit structure and cannot be ignited using a high frequency like a metal electrode.

また、黒鉛電極の場合、電極と溶鋼間の着火可能距離は、金属電極の着火可能範囲の1/3程度となって短くなる。さらに、黒鉛電極は消耗型電極であるため、使用毎に電極と溶鋼間の距離が変化する。   In the case of a graphite electrode, the ignitable distance between the electrode and the molten steel becomes about 1/3 of the ignitable range of the metal electrode and becomes shorter. Furthermore, since the graphite electrode is a consumable electrode, the distance between the electrode and the molten steel changes with each use.

なお、黒鉛電極を使用した場合の上記問題は、セラミックなどでコーティングされている金属電極では発生しない現象であり、黒鉛電極特有の現象である。   Note that the above problem in the case of using a graphite electrode is a phenomenon that does not occur in a metal electrode coated with ceramic or the like, and is a phenomenon peculiar to a graphite electrode.

また、図3や図4に示すツイン電極方式のプラズマ加熱装置の場合、タンディッシュの整備が不要で、金属電極の先端と溶鋼湯面間の間隔を確保できるので高電圧化が可能で、加熱面積が広いが、シングル電極方式に比べてプラズマの生成が不安定である。   In addition, in the case of the twin electrode type plasma heating apparatus shown in FIGS. 3 and 4, no tundish is required, and the space between the tip of the metal electrode and the molten steel surface can be secured, so that a high voltage can be achieved. Although the area is wide, the generation of plasma is unstable compared to the single electrode method.

従って、シングル電極方式の場合に比べてプラズマの生成が不安定なツイン電極方式のプラズマ加熱装置を使用する場合、黒鉛電極をタンディッシュ内に挿入した際に、黒鉛電極とタンディッシュの蓋の間で異常放電が生じる懸念がある。   Therefore, when using a twin-electrode type plasma heating device, in which plasma generation is unstable compared to the single-electrode type, when the graphite electrode is inserted into the tundish, the graphite electrode is placed between the tundish lid. There is a concern that abnormal discharge may occur.

特許第2969731号公報Japanese Patent No. 2996931 特許第3385156号公報Japanese Patent No. 3385156

本発明が解決しようとする問題点は、ツイン電極方式のプラズマ加熱装置の電極に黒鉛電極を使用する場合、タンディッシュ内の溶鋼への着火を安定して行うには、黒鉛電極とタンディッシュの蓋の間で発生する異常放電を抑制する必要があるという点である。   The problem to be solved by the present invention is that when a graphite electrode is used as an electrode of a twin electrode type plasma heating apparatus, in order to stably ignite molten steel in the tundish, the graphite electrode and the tundish It is a point that it is necessary to suppress abnormal discharge generated between the lids.

本発明の目的は、プラズマ加熱装置の電極に黒鉛電極を使用する場合に、タンディッシュ内の溶鋼への着火を安定して行えるようにすることである。   An object of the present invention is to enable stable ignition of molten steel in a tundish when a graphite electrode is used as an electrode of a plasma heating apparatus.

すなわち、本発明のプラズマ加熱装置における黒鉛電極の異常放電抑制方法は、
黒鉛電極を使用したプラズマ加熱装置によりタンディッシュ内を通過する溶鋼を加熱する際、タンディッシュ内の溶鋼への着火時の電力値を、1.6MW未満とすることを最も主要な特徴としている。
That is, the method for suppressing abnormal discharge of the graphite electrode in the plasma heating apparatus of the present invention is as follows.
When the molten steel passing through the tundish is heated by a plasma heating apparatus using a graphite electrode, the most important feature is that the power value at the time of ignition of the molten steel in the tundish is less than 1.6 MW.

本発明は、黒鉛電極を使用したプラズマ加熱装置によりタンディッシュ内を通過する溶鋼を加熱する際、タンディッシュ内の溶鋼への着火時の電力値を最適範囲に規定するので、黒鉛電極とタンディッシュの蓋の間で発生する異常放電を効果的に抑制することができる。   In the present invention, when the molten steel passing through the tundish is heated by the plasma heating apparatus using the graphite electrode, the power value at the time of ignition of the molten steel in the tundish is regulated within the optimum range. The abnormal discharge generated between the lids can be effectively suppressed.

本発明方法は、シングル電極方式に比べてプラズマの生成が不安定なツイン電極方式のプラズマ加熱装置を使用して行う場合により効果を有する。その際、使用毎に黒鉛電極と溶鋼間の距離が変化し、かつ、カソード電極とアノード電極の消耗量の相違に対応するため、両電極の高さ制御を独立に行える装置を使用することが望ましい。   The method of the present invention is more effective when performed using a twin electrode type plasma heating apparatus in which plasma generation is unstable compared to the single electrode type. At that time, the distance between the graphite electrode and the molten steel changes with each use, and in order to cope with the difference in consumption of the cathode electrode and the anode electrode, it is necessary to use a device that can control the height of both electrodes independently. desirable.

本発明によれば、黒鉛電極とタンディッシュの蓋の間で発生する異常放電を効果的に抑制できて、タンディッシュ内の溶鋼への着火を安定して行え、黒鉛電極のメリットである高着熱効率を享受することができる。   According to the present invention, abnormal discharge generated between the graphite electrode and the tundish lid can be effectively suppressed, and the molten steel in the tundish can be stably ignited. Thermal efficiency can be enjoyed.

タンディッシュ内の溶鋼への着火試験をプラズマ加熱装置に供給する電圧値と電流値を変化させて行った場合の結果を示した図である。It is the figure which showed the result at the time of performing the ignition test to the molten steel in a tundish by changing the voltage value and electric current value which are supplied to a plasma heating apparatus. 黒鉛電極と、タンディッシュの蓋に設けた黒鉛電極の挿入孔の間で発生する異常放電を説明する模式図である。It is a schematic diagram explaining the abnormal discharge which generate | occur | produces between the graphite electrode and the insertion hole of the graphite electrode provided in the lid of the tundish. 金属電極を用いたプラズマ加熱装置の概略説明図である。It is a schematic explanatory drawing of the plasma heating apparatus using a metal electrode. 黒鉛電極を用いたプラズマ加熱装置の概略説明図である。It is a schematic explanatory drawing of the plasma heating apparatus using a graphite electrode.

本発明は、プラズマ加熱装置の電極に黒鉛電極を使用する場合に、タンディッシュ内の溶鋼への着火を安定して行えるようにするという目的を、着火時の電力値を最適範囲に規定することで実現した。   The present invention specifies the power value at the time of ignition within an optimum range for the purpose of enabling stable ignition of molten steel in a tundish when a graphite electrode is used as an electrode of a plasma heating device. Realized.

以下、黒鉛電極を用いたツイン電極方式のプラズマ加熱装置を用い、各種条件を変更して黒鉛電極の先端とタンディッシュ内の溶鋼間にプラズマを発生させた際の結果を説明し、その試験結果に基づいて発明者らが成立させた本発明方法について説明する。   Below, we explain the results when plasma was generated between the tip of the graphite electrode and the molten steel in the tundish by changing various conditions using a twin electrode type plasma heating device using graphite electrodes, and the test results The method of the present invention established by the inventors based on the above will be described.

発明者らは、定電流電源であるプラズマ加熱装置の電源の電流値を100A、500A、1000A、2000A、3000A、4000A、5000Aと変化させて前記プラズマ発生時の影響を調査した。この試験のその他の条件を下記表1に示す。   The inventors changed the current value of the power source of the plasma heating apparatus, which is a constant current power source, to 100 A, 500 A, 1000 A, 2000 A, 3000 A, 4000 A, and 5000 A, and investigated the influence at the time of the plasma generation. Other conditions of this test are shown in Table 1 below.

Figure 2018098122
Figure 2018098122

表1に示した条件で行った試験の結果を図1に示す。
タンディッシュ内をArガスでシールしたとき、電流値が100Aの場合の電圧値は190V、500Aの場合は230V、1000Aの場合は230V、2000Aの場合は250V、3000Aの場合は200Vと230V、4000Aの場合は250Vと290V、5000Aの場合は250Vと275Vであった。そして、これら何れの場合も、タンディッシュ内の溶鋼への着火時、黒鉛電極と、タンディッシュの蓋に設けた黒鉛電極の挿入孔との間で異常放電は見られなかった。
The result of the test conducted under the conditions shown in Table 1 is shown in FIG.
When the inside of the tundish is sealed with Ar gas, the voltage value when the current value is 100A is 190V, 230A for 500A, 230V for 1000A, 250V for 2000A, 250V for 3000A, 200V and 230V for 4000A, 4000A In the case of 250V and 290V, in the case of 5000A, it was 250V and 275V. In either case, when the molten steel in the tundish was ignited, no abnormal discharge was observed between the graphite electrode and the insertion hole of the graphite electrode provided in the lid of the tundish.

一方、タンディッシュ内をN2ガスでシールしたとき、電流値が100A、500A、2000A、5000Aの場合の電圧値は395V、1000Aの場合は390V、3000Aの場合は370Vと390V、4000Aの場合は410Vで、タンディッシュ内をArガスでシールしたときに比べて同一電流で電圧値が150V〜200V程度上昇することが確認された。これは、Arガスに対して2原子分子であるN2ガスの電離電圧が高く、プラズマ媒体のArガス濃度がタンディッシュ内のシールガス(N2ガス)によって低下するためと考えられる。 On the other hand, when the inside of the tundish is sealed with N 2 gas, the voltage value when the current value is 100A, 500A, 2000A, 5000A is 395V, 390V when 1000A, 370V and 390V when 3000A, 4000A At 410 V, it was confirmed that the voltage value increased by about 150 V to 200 V at the same current compared to when the inside of the tundish was sealed with Ar gas. This is presumably because the ionization voltage of N 2 gas, which is a diatomic molecule, is higher than that of Ar gas, and the Ar gas concentration of the plasma medium is lowered by the seal gas (N 2 gas) in the tundish.

また、タンディッシュ内のシールガスがArガス、N2ガスの何れの場合も、電流増加に伴う電圧上昇は見られなかった。これは、電流の増加に伴い、電子衝突等のエネルギー増加によって電極温度が上昇し、プラズマ媒体のArガスが高温化したことで、電離が促進されたためと考えられる。また、同時に、着熱量の増加によって金属蒸気が増加するため、顕著な電圧上昇がなかったと考えられる。 Further, when the seal gas in the tundish was either Ar gas or N 2 gas, no voltage increase was observed as the current increased. This is presumably because ionization was promoted by increasing the temperature of the electrode due to an increase in energy such as electron collision as the current increased, and the Ar gas in the plasma medium was raised in temperature. At the same time, the metal vapor increases due to an increase in the amount of heat received, so it is considered that there was no significant voltage increase.

しかしながら、タンディッシュ内をN2ガスでシールしたことによって電圧値が上昇した場合、電流値を4000A(電圧値は400V)とした際は、タンディッシュ内の溶鋼への着火時、図2に示したように、黒鉛電極11と、タンディッシュ6の蓋6aに設けた黒鉛電極11の挿入孔6aaとの間で異常放電Aが発生した。電流値を5000A(電圧値は392V)とした場合も、タンディッシュ内の溶鋼への着火時、黒鉛電極11とタンディッシュ6の蓋6aに設けた挿入孔6aaの間で異常放電Aが発生した。なお、図2中の6bは前記蓋6aの挿入孔6aaの上部に設けたシール蓋である。 However, when the voltage value is increased by sealing the inside of the tundish with N 2 gas, when the current value is 4000 A (voltage value is 400 V), the ignition of the molten steel in the tundish is shown in FIG. As described above, abnormal discharge A occurred between the graphite electrode 11 and the insertion hole 6aa of the graphite electrode 11 provided in the lid 6a of the tundish 6. Even when the current value is 5000 A (voltage value is 392 V), abnormal discharge A occurs between the graphite electrode 11 and the insertion hole 6 aa provided in the lid 6 a of the tundish 6 when the molten steel in the tundish is ignited. . In addition, 6b in FIG. 2 is a seal lid provided at the upper part of the insertion hole 6aa of the lid 6a.

これに対して、タンディッシュ内のシールをArガスで行った場合は、何れの電流値の場合も、タンディッシュ内の溶鋼への着火時、黒鉛電極とタンディッシュの蓋に設けた挿入孔の間で異常放電が発生しなかった。このことから、タンディッシュ内のシールをN2ガスとしたことによる電圧上昇に伴う電力上昇によるものと考えられる。 On the other hand, when sealing in the tundish is performed with Ar gas, at any current value, when the molten steel in the tundish is ignited, the insertion hole provided in the lid of the graphite electrode and the tundish is used. No abnormal discharge occurred between the two. From this, it is considered that this is due to an increase in electric power accompanying an increase in voltage due to the N 2 gas being used as the seal in the tundish.

本発明は、上記の試験結果に基づいてなされたものであり、黒鉛電極を使用したプラズマ加熱装置によりタンディッシュ内を通過する溶鋼を加熱する際、タンディッシュ内の溶鋼への着火時の電力値を、1.6MW未満とすることを特徴とするプラズマ加熱装置における黒鉛電極の異常放電抑制方法である。   The present invention was made on the basis of the above test results, and when the molten steel passing through the tundish is heated by the plasma heating apparatus using the graphite electrode, the power value at the time of ignition of the molten steel in the tundish Is a method for suppressing abnormal discharge of a graphite electrode in a plasma heating apparatus, characterized by being less than 1.6 MW.

本発明において、タンディッシュ内の溶鋼への着火時の電力値を、1.6MW未満(図1中でハッチングを付さない領域)とするのは、発明者らによる上記試験の結果に基づくものである。   In the present invention, the power value at the time of ignition of the molten steel in the tundish is set to less than 1.6 MW (the region not hatched in FIG. 1) based on the results of the above-mentioned test by the inventors. It is.

すなわち、上記試験で黒鉛電極とタンディッシュの蓋の挿入孔間で異常放電が発生した最小の電力値は、タンディッシュ内をN2ガスでシールし、電流値4000A、電圧値400Vで溶鋼に着火したときであったことから、着火時の電力値を1.6MW未満とした。 That is, the minimum power value at which abnormal discharge occurred between the graphite electrode and the tundish lid insertion hole in the above test was sealed with N 2 gas inside the tundish, and the molten steel was ignited at a current value of 4000 A and a voltage value of 400 V. Therefore, the power value at the time of ignition was set to less than 1.6 MW.

なお、上記試験で黒鉛電極とタンディッシュの蓋の挿入孔間で異常放電が見られなかった最小の電力値は、タンディッシュ内をArガスでシールし、電流値100A、電圧値190Vで溶鋼に着火したときであった(電力値は0.019MW)。   In the above test, the minimum power value at which no abnormal discharge was observed between the graphite electrode and the tundish lid insertion hole was sealed with Ar gas in the tundish, and the molten steel with a current value of 100 A and a voltage value of 190 V was obtained. It was time to ignite (electric power value is 0.019 MW).

上記本発明の構成は、ツイン電極方式のプラズマ加熱装置を使用した試験結果により得たものであるが、ツイン電極方式に比べてプラズマの生成が安定するシングル電極方式に適用が可能なことは言うまでもない。   The above-described configuration of the present invention is obtained by a test result using a twin electrode type plasma heating apparatus. Needless to say, the present invention can be applied to a single electrode type in which plasma generation is stable as compared with the twin electrode type. Yes.

また、黒鉛電極は使用毎に溶鋼との間の距離が変化し、かつ、カソード電極(図4の紙面右側の電極)とアノード電極(図4の紙面左側の電極)の消耗量が相違する。従って、上記本発明を、ツイン電極方式のプラズマ加熱装置を使用して実施する場合、両電極の高さ制御を独立に行う装置を使用することが望ましい。その際、発明者らの上記試験によれば、カソード電極の上昇が完了した後にアノード電極を上昇させることで、より発生するプラズマが安定することが確認できた。   Also, the distance between the graphite electrode and the molten steel changes with each use, and the consumption of the cathode electrode (the electrode on the right side of the paper in FIG. 4) and the anode electrode (the electrode on the left side of the paper in FIG. 4) are different. Therefore, when the present invention is carried out using a twin electrode type plasma heating apparatus, it is desirable to use an apparatus that independently controls the heights of both electrodes. At that time, according to the above-described test by the inventors, it was confirmed that the plasma generated more was stabilized by raising the anode electrode after the rise of the cathode electrode was completed.

本発明は上記した例に限らないことは勿論であり、請求項に記載の技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。   Needless to say, the present invention is not limited to the above-described examples, and the embodiments may be appropriately changed within the scope of the technical idea described in the claims.

例えばプラズマ媒体とするArガス流量やタンディッシュ内のシールガス流量は上記した試験時の流量に限らない。   For example, the Ar gas flow rate used as the plasma medium and the seal gas flow rate in the tundish are not limited to the flow rates during the test.

上記した試験はArガスとN2ガスによりタンディッシュ内をシールしたものであるが、他の不活性ガスを用いてタンディッシュ内をシールしてもよい。 In the above test, the inside of the tundish is sealed with Ar gas and N 2 gas, but the inside of the tundish may be sealed with other inert gas.

6 タンディッシュ
7 溶鋼
11 黒鉛電極
6 Tundish 7 Molten steel 11 Graphite electrode

Claims (4)

黒鉛電極を使用したプラズマ加熱装置によりタンディッシュ内を通過する溶鋼を加熱する際、タンディッシュ内の溶鋼への着火時の電力値を、1.6MW未満とすることを特徴とするプラズマ加熱装置における黒鉛電極の異常放電抑制方法。   In the plasma heating apparatus, wherein when the molten steel passing through the tundish is heated by the plasma heating apparatus using the graphite electrode, the power value at the time of ignition of the molten steel in the tundish is less than 1.6 MW Method for suppressing abnormal discharge of graphite electrode. 前記プラズマ加熱装置はツイン電極方式であることを特徴とする請求項1に記載のプラズマ加熱装置における黒鉛電極の異常放電抑制方法。   The said plasma heating apparatus is a twin electrode system, The abnormal discharge suppression method of the graphite electrode in the plasma heating apparatus of Claim 1 characterized by the above-mentioned. 前記黒鉛電極はアノード電極及びカソード電極がそれぞれ独立して昇降が可能であることを特徴とする請求項2に記載のプラズマ加熱装置における黒鉛電極の異常放電抑制方法。   3. The method for suppressing abnormal discharge of a graphite electrode in a plasma heating apparatus according to claim 2, wherein the graphite electrode can be moved up and down independently of the anode electrode and the cathode electrode. 前記タンディッシュ内の雰囲気がArガス又はN2ガスであることを特徴とする請求項1〜3の何れかに記載のプラズマ加熱装置における黒鉛電極の異常放電抑制方法。 The method for suppressing abnormal discharge of a graphite electrode in a plasma heating apparatus according to claim 1, wherein the atmosphere in the tundish is Ar gas or N 2 gas.
JP2016244175A 2016-12-16 2016-12-16 Method for suppressing abnormal discharge of graphite electrodes in a plasma heating device Active JP6760036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016244175A JP6760036B2 (en) 2016-12-16 2016-12-16 Method for suppressing abnormal discharge of graphite electrodes in a plasma heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016244175A JP6760036B2 (en) 2016-12-16 2016-12-16 Method for suppressing abnormal discharge of graphite electrodes in a plasma heating device

Publications (2)

Publication Number Publication Date
JP2018098122A true JP2018098122A (en) 2018-06-21
JP6760036B2 JP6760036B2 (en) 2020-09-23

Family

ID=62632404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016244175A Active JP6760036B2 (en) 2016-12-16 2016-12-16 Method for suppressing abnormal discharge of graphite electrodes in a plasma heating device

Country Status (1)

Country Link
JP (1) JP6760036B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111136253A (en) * 2020-01-13 2020-05-12 北京科技大学 Plasma heating method and plasma heating system for tundish molten steel
JP7469613B2 (en) 2020-03-02 2024-04-17 日本製鉄株式会社 Plasma heating device and plasma heating method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110741A (en) * 1982-12-17 1984-06-26 Nippon Steel Corp Ignition method in plasma arc heating
JPH03126270U (en) * 1990-04-03 1991-12-19
JPH05305422A (en) * 1990-04-19 1993-11-19 Boc Group Plc:The Heating method and its device
JP2002254144A (en) * 2001-02-27 2002-09-10 Nippon Steel Corp Method for heating molten steel using plasma torch
JP2005238206A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Discharge decomposing device for organohalogen compound and method of the same
JP2015199083A (en) * 2014-04-07 2015-11-12 新日鐵住金株式会社 Tundish plasma heating device, and heating method for molten steel in tundish
JP2016198787A (en) * 2015-04-08 2016-12-01 新日鐵住金株式会社 Molten steel continuous casting method and continuous casting piece

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110741A (en) * 1982-12-17 1984-06-26 Nippon Steel Corp Ignition method in plasma arc heating
JPH03126270U (en) * 1990-04-03 1991-12-19
JPH05305422A (en) * 1990-04-19 1993-11-19 Boc Group Plc:The Heating method and its device
JP2002254144A (en) * 2001-02-27 2002-09-10 Nippon Steel Corp Method for heating molten steel using plasma torch
JP2005238206A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Discharge decomposing device for organohalogen compound and method of the same
JP2015199083A (en) * 2014-04-07 2015-11-12 新日鐵住金株式会社 Tundish plasma heating device, and heating method for molten steel in tundish
JP2016198787A (en) * 2015-04-08 2016-12-01 新日鐵住金株式会社 Molten steel continuous casting method and continuous casting piece

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111136253A (en) * 2020-01-13 2020-05-12 北京科技大学 Plasma heating method and plasma heating system for tundish molten steel
JP7469613B2 (en) 2020-03-02 2024-04-17 日本製鉄株式会社 Plasma heating device and plasma heating method

Also Published As

Publication number Publication date
JP6760036B2 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
JP6760036B2 (en) Method for suppressing abnormal discharge of graphite electrodes in a plasma heating device
JPH03149797A (en) Transition type plasma torch
CN105202908A (en) Vacuum consumable electrode arc furnace
CN108817670B (en) High-power laser-arc hybrid welding energy modulation welding method
US9192041B2 (en) Plasma torch nozzle
JP6772677B2 (en) Tandish internal molten steel heating method and tundish plasma heating device
US10709005B2 (en) Plasma torch electrode with integrated heat pipes
CN206337297U (en) Titan alloy casting ingot consumable electrode vacuum furnace
JP2018034179A (en) Tundish plasma heating device and in-tundish molten steel heating method
CN108581197B (en) Laser energy modulation welding method
JP5512941B2 (en) Silicon purification apparatus and purification method
WO2016002377A1 (en) Metal production method and production method for high-melting-point metal
JP2002143991A (en) Method of heating molten steel in tundish
JP5091801B2 (en) Composite torch type plasma generator
JP6834554B2 (en) How to heat molten steel in tundish
CN205102586U (en) Consumable vacuum arc furnace
EP2038911A2 (en) Device and method for thin film deposition using a vacuum arc in an enclosed cathode-anode assembly
JP6544087B2 (en) Method of manufacturing heat shield parts
JP3984504B2 (en) Twin torch type plasma heating device
FI65933C (en) REFERENCE TO A FRAMEWORK FOR ENTRY IN TERMS AND CONDITIONS
JPH06302398A (en) Electrode structure for plasma torch
KR20110109186A (en) Heating furnace
JP2004156819A (en) Plasma arc melting furnace
JP2001167899A (en) Anode torch for heating plasma
JP2001033172A (en) Method for refining molten metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R151 Written notification of patent or utility model registration

Ref document number: 6760036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151