JP2018095691A - Thermal conductive sheet and heat dissipation device using the thermal conductive sheet - Google Patents

Thermal conductive sheet and heat dissipation device using the thermal conductive sheet Download PDF

Info

Publication number
JP2018095691A
JP2018095691A JP2016239337A JP2016239337A JP2018095691A JP 2018095691 A JP2018095691 A JP 2018095691A JP 2016239337 A JP2016239337 A JP 2016239337A JP 2016239337 A JP2016239337 A JP 2016239337A JP 2018095691 A JP2018095691 A JP 2018095691A
Authority
JP
Japan
Prior art keywords
conductive sheet
heat conductive
particles
carboxyl group
polymer compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016239337A
Other languages
Japanese (ja)
Other versions
JP6981001B2 (en
Inventor
美香 小舩
Mika Kofune
美香 小舩
倫明 矢嶋
Tomoaki Yajima
倫明 矢嶋
藤田 淳
Atsushi Fujita
藤田  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016239337A priority Critical patent/JP6981001B2/en
Publication of JP2018095691A publication Critical patent/JP2018095691A/en
Application granted granted Critical
Publication of JP6981001B2 publication Critical patent/JP6981001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Abstract

PROBLEM TO BE SOLVED: To provide a thermal conductive sheet which can keep a shape and suppresses occurrence of pump-out even used under high temperature and high pressure, and to provide a heat dissipation device using the same.SOLUTION: There are provided a thermal conductive sheet which contains a reactant of an organic polymer compound (A) having a carboxyl group and an epoxy resin (B), and at least one graphite particles (C) selected from the group consisting of scale-like particles, ellipsoidal particles and rod-like particles, where in the case of the scale-like particles, a surface direction is orientated in a thickness direction of the thermal conductive sheet, in the case of the ellipsoidal particle, a major axis direction is orientated in the thickness direction, or in the case of the rod-like particles, the major axis direction is orientated in the thickness direction, and the thermal conductive sheet has a compression fracture strength at 120°C of 5-16 MPa; and a heat dissipation device using the same.SELECTED DRAWING: Figure 3

Description

本発明は、熱伝導シート、及び熱伝導シートを用いた放熱装置に関する。   The present invention relates to a heat conductive sheet and a heat dissipation device using the heat conductive sheet.

近年、多層配線板や半導体パッケージに対する配線の高密度化や、電子部品の搭載密度の増大により、また、半導体素子自身も高集積化して単位面積あたりの発熱量が大きくなったため、半導体パッケージからの放熱性を良くすることが望まれるようになっている。   In recent years, due to the higher wiring density for multilayer wiring boards and semiconductor packages and the increased mounting density of electronic components, the semiconductor elements themselves have become highly integrated and the amount of heat generated per unit area has increased. It is desired to improve heat dissipation.

一般的に使用されている放熱装置は、半導体パッケージのような発熱体と、アルミニウム及び銅等の放熱体との間に、熱伝導シート又はグリースを挟んで密着させることによって放熱させる仕組みである。放熱性を良くするために、熱伝導シートには高い熱伝導性、被着体に密着できる柔軟性、高温時や高圧時でも物性が変化しない耐熱性及び強度が求められる。   A commonly used heat dissipating device has a mechanism for dissipating heat by adhering a heat conductive sheet or grease between a heat generating member such as a semiconductor package and a heat dissipating member such as aluminum and copper. In order to improve heat dissipation, the thermal conductive sheet is required to have high thermal conductivity, flexibility to adhere to the adherend, and heat resistance and strength that do not change physical properties even at high temperatures and high pressures.

熱伝導シートの熱伝導性を向上させる目的で、ある一方向に熱伝導性の大きな黒鉛粉末をマトリックス材料中に配合した、様々な熱伝導性複合材料組成物及びその成形加工品が提案されている。   In order to improve the thermal conductivity of the thermal conductive sheet, various thermal conductive composite compositions and molded products thereof, in which graphite powder having a large thermal conductivity in one direction is blended in a matrix material, have been proposed. Yes.

例えば、特許文献1には、粒径が1〜20μmの人造黒鉛を配合したゴム組成物が、特許文献2には、結晶面間隔が0.33〜0.34nmの球状黒鉛を充填したシリコーンゴム組成物が開示されている。   For example, Patent Document 1 includes a rubber composition containing artificial graphite having a particle size of 1 to 20 μm, and Patent Document 2 includes a silicone rubber filled with spherical graphite having a crystal plane spacing of 0.33 to 0.34 nm. A composition is disclosed.

更に、特許文献3には、異方性黒鉛粉をバインダ成分中に一定方向に配向させることで、放熱性に優れ、被着体に密着できるタック性、耐熱性、柔軟性に優れるシートが開示されている。また、特許文献4には、黒鉛粒子を熱伝導シートの厚み方向に配向させ、マトリックス材料として特定の有機高分子化合物と硬化剤を用いて、有機高分子化合物を架橋させることにより、強度が向上した熱伝導シートを開示している。   Further, Patent Document 3 discloses a sheet that has excellent heat dissipation and can be adhered to an adherend by aligning anisotropic graphite powder in a certain direction in the binder component, and has excellent tackiness, heat resistance, and flexibility. Has been. In Patent Document 4, the strength is improved by orienting graphite particles in the thickness direction of the heat conductive sheet and crosslinking the organic polymer compound using a specific organic polymer compound and a curing agent as a matrix material. A heat conductive sheet is disclosed.

特開平05−247268号公報JP 05-247268 A 特開平10−298433号公報JP-A-10-298433 特許第4743344号Japanese Patent No. 4743344 特許第5316254号Patent No. 5316254

一方で、電力制御に使用されるMOSFETやIGBT等のパワーデバイス用途では、これまでの一般的な半導体用途に比べて、熱伝導シート又はグリースにかかる温度及び圧力が高くなる傾向にある。
このような高温高圧下で熱伝導シートを用いた場合、使用時に形状を維持できないほど潰れてしまい、パッケージの外に押し出されてしまう「ポンプアウト」という現象が生じることがある。
On the other hand, in power device applications such as MOSFETs and IGBTs used for power control, the temperature and pressure applied to the heat conductive sheet or grease tend to be higher than conventional general semiconductor applications.
When the heat conductive sheet is used under such a high temperature and high pressure, a phenomenon called “pump-out” may occur in which the shape is not maintained at the time of use and is crushed and pushed out of the package.

本発明は上記問題に鑑みてなされたものであり、高温高圧下で使用した場合であっても、形状を維持できポンプアウトの発生が抑制される熱伝導シート及びこれを用いた放熱装置を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a heat conductive sheet that can maintain its shape and suppress the occurrence of pump-out even when used under high temperature and high pressure, and a heat dissipation device using the same. The purpose is to do.

上記課題を解決するための具体的手段は、以下の態様を含む。   Specific means for solving the above problems includes the following aspects.

(1)カルボキシル基を有する有機高分子化合物(A)とエポキシ樹脂(B)と、の反応物と、鱗片状粒子、楕球状粒子及び棒状粒子からなる群より選択される少なくとも1種の黒鉛粒子(C)と、を含有し、前記鱗片状粒子の場合には面方向、前記楕球状粒子の場合には長軸方向又は前記棒状粒子の場合には長軸方向が熱伝導シートの厚み方向に配向している、圧縮破壊強度が120℃で5〜16MPaである熱伝導シート。
(2)前記エポキシ樹脂(B)のエポキシ当量が、300以上である(1)に記載の熱伝導シート。
(3)前記エポキシ樹脂(B)の25℃における粘度が10000mPa・s以上である(1)又は(2)に記載の熱伝導シート。
(4)前記エポキシ樹脂(B)の含有量が、前記カルボキシル基を有する有機高分子化合物(A)の量に対して、体積比で0.3〜2.5である(1)〜(3)のいずれか一つに記載の熱伝導シート。
(5)前記カルボキシル基を有する有機高分子化合物(A)のカルボキシル基量が0.1〜1mmol/gである(1)〜(4)のいずれか一つに記載の熱伝導シート。
(6)前記カルボキシル基を有する有機高分子化合物(A)の重量平均分子量が、250000〜1000000である(1)〜(5)のいずれか一つに記載の熱伝導シート。
(7)前記カルボキシル基を有する有機高分子化合物(A)のガラス転移温度(Tg)が、−20℃以下である(1)〜(6)のいずれか一つに記載の熱伝導シート。
(8)前記カルボキシル基を有する有機高分子化合物(A)が、ポリ(メタ)アクリル酸エステル系高分子化合物である(1)〜(7)のいずれか一つに記載の熱伝導シート。
(9)(1)〜(8)のいずれか一つに記載の熱伝導シートを、発熱体と放熱体の間に介在させてなる放熱装置。
(1) At least one graphite particle selected from the group consisting of a reaction product of an organic polymer compound (A) having a carboxyl group and an epoxy resin (B), scaly particles, oval particles, and rod-like particles (C), and in the case of the scale-like particles, the surface direction, in the case of the elliptical particles, the long axis direction or in the case of the rod-like particles, the long axis direction is in the thickness direction of the heat conductive sheet. An oriented thermal conductive sheet having a compressive fracture strength of 5 to 16 MPa at 120 ° C.
(2) The heat conductive sheet according to (1), wherein an epoxy equivalent of the epoxy resin (B) is 300 or more.
(3) The heat conductive sheet according to (1) or (2), wherein the epoxy resin (B) has a viscosity at 25 ° C. of 10,000 mPa · s or more.
(4) Content of the said epoxy resin (B) is 0.3-2.5 by volume ratio with respect to the quantity of the organic polymer compound (A) which has the said carboxyl group (1)-(3 The heat conductive sheet according to any one of (1).
(5) The heat conductive sheet according to any one of (1) to (4), wherein the amount of carboxyl group of the organic polymer compound (A) having a carboxyl group is 0.1 to 1 mmol / g.
(6) The heat conductive sheet as described in any one of (1)-(5) whose weight average molecular weights of the organic polymer compound (A) which has the said carboxyl group are 250,000-1000000.
(7) The heat conductive sheet as described in any one of (1)-(6) whose glass transition temperature (Tg) of the organic polymer compound (A) which has the said carboxyl group is -20 degrees C or less.
(8) The heat conductive sheet according to any one of (1) to (7), wherein the organic polymer compound (A) having a carboxyl group is a poly (meth) acrylate polymer compound.
(9) A heat dissipation device comprising the heat conductive sheet according to any one of (1) to (8) interposed between a heating element and a heat dissipation element.

本発明によれば、高温高圧下で使用した場合であっても、形状を維持できポンプアウトの発生が抑制される熱伝導シート及びこれを用いた放熱装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even when it is a case where it uses at high temperature and high pressure, the heat conductive sheet which can maintain a shape and can suppress generation | occurrence | production of pump-out, and a heat radiator using the same can be provided.

歪み-圧縮応力曲線における圧縮破壊点を示す図である。It is a figure which shows the compressive failure point in a strain-compressive stress curve. 本発明の放熱装置の一例を示す図である。It is a figure which shows an example of the thermal radiation apparatus of this invention. 本発明の放熱装置の一例を示す図である。It is a figure which shows an example of the thermal radiation apparatus of this invention.

以下に、本発明を詳細に説明する。   The present invention is described in detail below.

<熱伝導シート>
本発明の熱伝導シートは、カルボキシル基を有する有機高分子化合物(A)とエポキシ樹脂(B)との反応物と、鱗片状粒子、楕球状粒子又は棒状粒子からなる群より選択される少なくとも1種の黒鉛粒子(C)(以下、単に「黒鉛粒子(C)」と呼ぶことがある)と、を含有し、前記鱗片状粒子の場合には面方向、前記楕球状粒子の場合には長軸方向又は前記棒状粒子の場合には長軸方向が熱伝導シートの厚み方向に配向している、圧縮破壊強度が120℃で5〜16MPaである。
以下、本発明の熱伝導シートに用いられる材料を説明する。
<Heat conduction sheet>
The heat conductive sheet of the present invention is at least one selected from the group consisting of a reaction product of an organic polymer compound (A) having a carboxyl group and an epoxy resin (B), scaly particles, oval particles or rod-like particles. Seed graphite particles (C) (hereinafter sometimes simply referred to as “graphite particles (C)”), and in the case of the scale-like particles, the surface direction, and in the case of the elliptical particles, the length is long. In the case of the axial direction or the rod-like particles, the major axis direction is oriented in the thickness direction of the heat conductive sheet, and the compressive fracture strength is 5 to 16 MPa at 120 ° C.
Hereinafter, the material used for the heat conductive sheet of this invention is demonstrated.

<有機高分子化合物(A)>
本発明に用いられるカルボキシル基を有する有機高分子化合物(A)(以下、単に「有機高分子化合物(A)」と呼ぶことや「(A)成分」と呼ぶことがある)は、1g中に、0.1〜1mmol、好ましくは0.3〜0.8mmol、より好ましくは0.4〜0.7mmolのカルボキシル基を有する。カルボキシル基の量が、0.1mmol以上であると膜強度及び圧縮復元性に優れ、1mmol以下であると柔軟性に優れる。
<Organic polymer compound (A)>
The organic polymer compound (A) having a carboxyl group used in the present invention (hereinafter simply referred to as “organic polymer compound (A)” or “(A) component”) is contained in 1 g. 0.1 to 1 mmol, preferably 0.3 to 0.8 mmol, more preferably 0.4 to 0.7 mmol. When the amount of the carboxyl group is 0.1 mmol or more, the film strength and the compression recovery property are excellent, and when it is 1 mmol or less, the flexibility is excellent.

本発明に用いられる有機高分子化合物(A)は、重量平均分子量が250000〜1000000であることが好ましく、より好ましくは300000〜700000、更に好ましくは400000〜600000である。重量平均分子量が、250000以上であると膜強度に優れ、1000000以下であると柔軟性に優れる。
重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより、標準ポリスチレンの検量線を用いて測定することができる。
The organic polymer compound (A) used in the present invention preferably has a weight average molecular weight of 250,000 to 1,000,000, more preferably 300,000 to 700,000, still more preferably 400,000 to 600,000. When the weight average molecular weight is 250,000 or more, the film strength is excellent, and when it is 1000000 or less, the flexibility is excellent.
The weight average molecular weight can be measured by gel permeation chromatography using a standard polystyrene calibration curve.

本発明に用いられる有機高分子化合物(A)は、ガラス転移温度(Tg)が、−20℃以下であることが好ましく、より好ましくは−70〜−20℃、更に好ましくは−50〜−30℃である。ガラス転移温度が、−20℃以下であると、柔軟性に優れる。
ガラス転移温度(Tg)は、動的粘弾性測定(引張)を行い、それによって導き出されるtanδより算出できる。
The organic polymer compound (A) used in the present invention preferably has a glass transition temperature (Tg) of −20 ° C. or lower, more preferably −70 to −20 ° C., still more preferably −50 to −30. ° C. When the glass transition temperature is −20 ° C. or lower, the flexibility is excellent.
The glass transition temperature (Tg) can be calculated from tan δ derived by performing dynamic viscoelasticity measurement (tensile).

本発明に用いられる有機高分子化合物(A)としては、1g中に0.1〜1mmolのカルボキシル基を有するものであれば特に制限はない。例えば、カルボキシル基を有する、アクリル酸ブチル、アクリロニトリル、及びアクリル酸との共重合で得られるアクリルゴムや、アクリロニトリル、ブタジエン、及びメタクリル酸との共重合体であるNBR等が挙げられる。   The organic polymer compound (A) used in the present invention is not particularly limited as long as it has 0.1 to 1 mmol of carboxyl groups in 1 g. Examples thereof include acrylic rubber obtained by copolymerization with butyl acrylate, acrylonitrile, and acrylic acid having a carboxyl group, and NBR that is a copolymer of acrylonitrile, butadiene, and methacrylic acid.

有機高分子化合物(A)のカルボキシル基は、アクリル酸由来であることが好ましい。有機高分子化合物(A)のカルボキシル基がアクリル酸由来である場合、カルボキシル基の量は、次式で求められる。
(樹脂1g中に含まれるアクリル酸の量[g])/(アクリル酸の分子量)
The carboxyl group of the organic polymer compound (A) is preferably derived from acrylic acid. When the carboxyl group of the organic polymer compound (A) is derived from acrylic acid, the amount of the carboxyl group is determined by the following formula.
(Amount of acrylic acid contained in 1 g of resin [g]) / (Molecular weight of acrylic acid)

本発明に用いられる有機高分子化合物(A)としては、カルボキシル基含有アクリル酸エステル共重合樹脂(アクリル酸ブチル/アクリル酸エチル/アクリロニトリル/アクリル酸共重合体、ナガセケムテックス株式会社製、商品名:HTR−280改2DR、又はHTR−811A改7DR)、カルボキシル基変性NBR(日本ゼオン株式会社製、商品名:Nippol 1072、又は、Nippol DN601)等が入手可能である。
有機高分子化合物(A)は1種を単独で用いても2種以上を併用してもよい。
As the organic polymer compound (A) used in the present invention, a carboxyl group-containing acrylic ester copolymer resin (butyl acrylate / ethyl acrylate / acrylonitrile / acrylic acid copolymer, manufactured by Nagase ChemteX Corporation, trade name) : HTR-280 modified 2DR or HTR-811A modified 7DR), carboxyl group-modified NBR (manufactured by Nippon Zeon Co., Ltd., trade name: Nippol 1072, or Nippol DN601) and the like are available.
The organic polymer compound (A) may be used alone or in combination of two or more.

有機高分子化合物(A)の含有量は、組成物全体積の20〜50体積%であることが好ましく、より好ましくは25〜40体積%、更に好ましくは25〜30体積%である。有機高分子化合物(A)の含有量が、25体積%以上であると柔軟性に優れ、50体積%以下であると熱伝導性に優れる。   The content of the organic polymer compound (A) is preferably 20 to 50% by volume of the total composition volume, more preferably 25 to 40% by volume, and further preferably 25 to 30% by volume. When the content of the organic polymer compound (A) is 25% by volume or more, the flexibility is excellent, and when the content is 50% by volume or less, the thermal conductivity is excellent.

<エポキシ樹脂(B)>
本発明に用いられるエポキシ樹脂(B)(以下、(B)成分と呼ぶことがある)は、エポキシ当量が300以上であることが好ましく、より好ましくは300〜10000、更に好ましくは400〜700である。エポキシ当量が300以上であると柔軟性、靭性に優れ、熱伝導シートの柔軟性と強度の両立が図れる。
また、1分子中の末端エポキシ基が2〜5個であることが好ましく、より好ましくは2〜4個、更に好ましくは2〜3個である。1分子中の末端エポキシ基が2個以上であると圧縮強度に優れ、5個以下であると柔軟性に優れる。
<Epoxy resin (B)>
The epoxy resin (B) used in the present invention (hereinafter sometimes referred to as the component (B)) preferably has an epoxy equivalent of 300 or more, more preferably 300 to 10,000, still more preferably 400 to 700. is there. When the epoxy equivalent is 300 or more, the flexibility and toughness are excellent, and both the flexibility and strength of the heat conductive sheet can be achieved.
Moreover, it is preferable that the terminal epoxy group in 1 molecule is 2-5 pieces, More preferably, it is 2-4 pieces, More preferably, it is 2-3 pieces. When the number of terminal epoxy groups in one molecule is 2 or more, the compression strength is excellent, and when the number is 5 or less, the flexibility is excellent.

エポキシ樹脂(B)としては、例えば、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、及びナフタレン型エポキシ樹脂等が挙げられる。エポキシ樹脂(B)としては、例えば、以下の一般式(1)〜(12)に示されるエポキシ樹脂を用いることが好ましい。   Examples of the epoxy resin (B) include bisphenol type epoxy resins, biphenyl type epoxy resins, stilbene type epoxy resins, and naphthalene type epoxy resins. As the epoxy resin (B), for example, it is preferable to use epoxy resins represented by the following general formulas (1) to (12).

Figure 2018095691
Figure 2018095691

一般式(1)〜(12)中のkは、1以上の整理数1以上50以下の整数であり、好ましくは1以上5以下の整数である。   K in the general formulas (1) to (12) is an integer of 1 or more and 1 or more and 50 or less, preferably 1 or more and 5 or less.

エポキシ樹脂(B)としては、例えば、高耐久性・柔軟強靭エポキシ樹脂(DIC株式会社製、商品名:EPICLON EXA−4816)、柔軟強靭性液状エポキシ樹脂(DIC株式会社製、商品名:EPICLON EXA−4850−150又はEPICLON EXA−4850−1000)、ダイマー酸変性エポキシ樹脂(新日鉄住金化学株式会社製、商品名:YD−172又はYD−173)、BPF型エポキシ樹脂(新日鉄住金化学株式会社製、商品名:YDF−2001又はYDF−2004)、可とう性タイプエポキシ樹脂(三菱化学株式会社製、商品名:JER 872)等が入手可能である。   Examples of the epoxy resin (B) include a high durability / flexible tough epoxy resin (manufactured by DIC Corporation, trade name: EPICLON EXA-4816), a flexible tough liquid epoxy resin (manufactured by DIC Corporation, trade name: EPICLON EXA). -4850-150 or EPICLON EXA-4850-1000), dimer acid-modified epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YD-172 or YD-173), BPF type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., A brand name: YDF-2001 or YDF-2004), a flexible type epoxy resin (Mitsubishi Chemical Corporation make, brand name: JER 872) etc. are available.

エポキシ樹脂(B)の含有量は、熱伝導シートの全体積の15〜45体積%であることが好ましく、より好ましくは20〜40体積%、更に好ましくは30〜40体積%である。エポキシ樹脂(B)の含有量が、15体積%以上であると圧縮強度に優れ、45体積%以下であると熱伝導性に優れる。   It is preferable that content of an epoxy resin (B) is 15 to 45 volume% of the whole volume of a heat conductive sheet, More preferably, it is 20 to 40 volume%, More preferably, it is 30 to 40 volume%. When the content of the epoxy resin (B) is 15% by volume or more, the compressive strength is excellent, and when it is 45% by volume or less, the thermal conductivity is excellent.

エポキシ樹脂(B)の含有量は、カルボキシル基を有する有機高分子化合物(A)の量に対して、体積比で0.3〜2.5であることが好ましく、より好ましくは0.4〜2.0、更に好ましくは、0.5〜1.5である。エポキシ樹脂(B)の含有量が、有機高分子化合物(A)に対して0.3以上であると圧縮強度に優れ、2.5以下であると柔軟性に優れ、良好な熱伝導性が得られる傾向にある。 The content of the epoxy resin (B) is preferably 0.3 to 2.5, more preferably 0.4 to the volume ratio of the organic polymer compound (A) having a carboxyl group. 2.0, more preferably 0.5 to 1.5. When the content of the epoxy resin (B) is 0.3 or more with respect to the organic polymer compound (A), the compression strength is excellent, and when it is 2.5 or less, the flexibility is excellent and the good thermal conductivity is obtained. It tends to be obtained.

本発明に用いられるエポキシ樹脂(B)は可とう性を有しているエポキシ樹脂が好ましい。本発明で得られる熱伝導シートは、エポキシ樹脂(B)が有するエポキシ基と有機高分子化合物(A)のカルボキシル基が架橋することで、圧縮強度に優れる熱伝導シートを得ることができる。エポキシ樹脂(B)が可とう性を有していると、熱伝導シートに良好な柔軟性が付与され、熱伝導性が向上する傾向にある。
また、エポキシ樹脂(B)のエポキシ基が有機高分子化合物(A)のカルボキシル基より過剰に存在している場合、未反応のエポキシ樹脂が熱伝導シート中に存在してもよい。
The epoxy resin (B) used in the present invention is preferably an epoxy resin having flexibility. The heat conductive sheet obtained by this invention can obtain the heat conductive sheet which is excellent in compressive strength because the epoxy group which an epoxy resin (B) has, and the carboxyl group of an organic polymer compound (A) bridge | crosslink. When the epoxy resin (B) has flexibility, good flexibility is imparted to the heat conductive sheet, and the heat conductivity tends to be improved.
Moreover, when the epoxy group of an epoxy resin (B) exists excessively more than the carboxyl group of an organic polymer compound (A), an unreacted epoxy resin may exist in a heat conductive sheet.

エポキシ樹脂(B)の25℃における粘度は10000mPa・s以上であることが好ましく、より好ましくは20000〜5000000mPa・s、更に好ましくは100000〜2000000mPa・sである。また、エポキシ樹脂(B)は25℃で固体であってもよい。エポキシ樹脂(B)の25℃における粘度が10000mPa・s以上であると、高温高圧時に熱伝導シート中の未反応のエポキシ樹脂(B)が流動して熱伝導シートから染み出すことが抑制される傾向にある。エポキシ樹脂(B)は25℃で固体であってもよいが、熱伝導シートを作成する際の混練工程で溶融できることが好ましいため、融点は80℃以下であることが好ましい。   The viscosity at 25 ° C. of the epoxy resin (B) is preferably 10,000 mPa · s or more, more preferably 20,000 to 5,000,000 mPa · s, and still more preferably 100,000 to 2,000,000 mPa · s. The epoxy resin (B) may be solid at 25 ° C. When the viscosity of the epoxy resin (B) at 25 ° C. is 10000 mPa · s or more, it is suppressed that the unreacted epoxy resin (B) in the heat conductive sheet flows and exudes from the heat conductive sheet at high temperature and high pressure. There is a tendency. The epoxy resin (B) may be solid at 25 ° C., but it is preferable that the epoxy resin (B) can be melted in the kneading step when preparing the heat conductive sheet, and therefore the melting point is preferably 80 ° C. or less.

<黒鉛粒子(C)>
本発明に用いられる黒鉛粒子(C)は、鱗片状粒子、楕球状粒子及び棒状粒子からなる群より選択される少なくとも1種である。熱伝導性の観点から、黒鉛粒子(C)は鱗片状粒子であることが好ましい。
黒鉛粒子(C)の結晶中の6員環面の配向方向は、鱗片状粒子の場合には面方向、楕球状粒子の場合には長軸方向又は棒状粒子の場合には長軸方向であることが好ましい。結晶中の6員環面の配向方向は、X線回折測定によって確認することができる。
<Graphite particles (C)>
The graphite particles (C) used in the present invention are at least one selected from the group consisting of scaly particles, oval particles and rod-like particles. From the viewpoint of thermal conductivity, the graphite particles (C) are preferably scaly particles.
The orientation direction of the 6-membered ring plane in the crystal of the graphite particles (C) is the plane direction in the case of scaly particles, the long axis direction in the case of elliptical particles, or the long axis direction in the case of rod-like particles. It is preferable. The orientation direction of the 6-membered ring surface in the crystal can be confirmed by X-ray diffraction measurement.

黒鉛粒子(C)の結晶中の6員環面の配向方向は、具体的には以下の方法で確認する。先ず、黒鉛粒子の鱗片状粒子の面方向、楕球状粒子の長軸方向又は棒状粒子の長軸方向が、シート又はフィルムの面方向に対して実質的に平行に配向した測定用サンプルシートを作製する。測定用サンプルシート調製の具体的な方法としては、10体積%以上の黒鉛粒子と樹脂との混合物をシート化する。ここで用いる「樹脂」とは、有機高分子化合物(A)及びエポキシ樹脂(B)を含む樹脂を使用できるが、非晶質樹脂のようなX線回折の妨げになるピークが現れない材料、また、形状を作ることが可能である材料であれば、樹脂でなくても用いることができる。この混合物のシートが、元の厚みの1/10以下となるようにプレスし、プレスしたシートを積層し、この積層体を更に1/10以下まで押しつぶす操作を3回以上繰り返す。この操作により、調製した測定用サンプルシート中では、黒鉛粒子が鱗片状粒子の場合には面方向、楕球状粒子の場合には長軸方向又は棒状粒子の場合には長軸方向が、測定用サンプルシートの面方向に対し実質的に平行に配向した状態になる。   The orientation direction of the 6-membered ring surface in the crystal of the graphite particles (C) is specifically confirmed by the following method. First, a measurement sample sheet is prepared in which the surface direction of the scaly particles of graphite particles, the long axis direction of the elliptical particles, or the long axis direction of the rod-like particles are oriented substantially parallel to the surface direction of the sheet or film. To do. As a specific method for preparing the measurement sample sheet, a mixture of 10% by volume or more of graphite particles and a resin is formed into a sheet. As the “resin” used here, a resin containing an organic polymer compound (A) and an epoxy resin (B) can be used, but a material that does not show a peak that hinders X-ray diffraction, such as an amorphous resin, In addition, any material that can be shaped can be used without using a resin. The operation of pressing the mixture sheet to 1/10 or less of the original thickness, laminating the pressed sheets, and further crushing the laminate to 1/10 or less is repeated three or more times. By this operation, in the prepared measurement sample sheet, the plane direction is used when the graphite particles are flaky particles, the long axis direction when the graphite particles are elliptical particles, or the long axis direction when the graphite particles are rod-like particles. The sample sheet is oriented substantially parallel to the surface direction of the sample sheet.

上記のように調製した測定用サンプルシートの表面に対し、X線回折測定を行うと、2θ=77°付近に現れる黒鉛の(110)面に対応するピークの高さを、2θ=27°付近に現れる黒鉛の(002)面に対応するピークの高さで割った値が0〜0.02となる。   When the X-ray diffraction measurement is performed on the surface of the measurement sample sheet prepared as described above, the peak height corresponding to the (110) plane of graphite appearing in the vicinity of 2θ = 77 ° is about 2θ = 27 °. The value divided by the height of the peak corresponding to the (002) plane of graphite appearing in is 0 to 0.02.

このことより、本発明において、「結晶中の6員環面が鱗片状粒子の面方向、楕球粒子の長軸方向又は棒状粒子の長軸方向に配向している」とは、黒鉛粒子(C)、有機高分子化合物(A)及びエポキシ樹脂(B)を含有した組成物をシート化したものの表面に対し、X線回折測定を行い、2θ=77°付近に現れる黒鉛の(110)面に対応するピークの高さを、2θ=27°付近に現れる黒鉛の(002)面に対応するピークの高さで割った値が0〜0.02となる状態をいう。   Therefore, in the present invention, “the 6-membered ring surface in the crystal is oriented in the plane direction of the scaly particles, the long axis direction of the elliptical particles, or the long axis direction of the rod-like particles” means that the graphite particles ( C) The X-ray diffraction measurement was performed on the surface of the sheet containing the composition containing the organic polymer compound (A) and the epoxy resin (B), and the (110) plane of graphite appearing near 2θ = 77 ° The value obtained by dividing the height of the peak corresponding to 1 by the height of the peak corresponding to the (002) plane of graphite appearing in the vicinity of 2θ = 27 ° is 0 to 0.02.

本発明に用いられる黒鉛粒子(C)は、例えば、鱗片黒鉛粉末、人造黒鉛粉末、薄片化黒鉛粉末、酸処理黒鉛粉末、膨張黒鉛粉末、及び炭素繊維フレーク等の鱗片状、楕球状又は棒状の黒鉛粒子を用いることができる。これらの中でも、有機高分子化合物(A)と混合した際に、鱗片状の黒鉛粒子になりやすいもの、具体的には、鱗片黒鉛粉末、薄片化黒鉛粉末、膨張黒鉛粉末の鱗片状黒鉛粒子が、配向させやすく、粒子間接触も保ちやすく、且つ高い熱伝導性を得やすいために好ましい。黒鉛粒子(C)は、1種を単独でもちいてもよく、2種以上を併用してもよい。   The graphite particles (C) used in the present invention are, for example, flaky graphite particles, artificial graphite powders, exfoliated graphite powders, acid-treated graphite powders, expanded graphite powders, and carbon fiber flakes. Graphite particles can be used. Among these, when mixed with the organic polymer compound (A), flaky graphite particles are easily formed, specifically, flaky graphite particles such as flaky graphite powder, exfoliated graphite powder, and expanded graphite powder. It is preferable because it can be easily oriented, can easily maintain contact between particles, and can easily obtain high thermal conductivity. The graphite particles (C) may be used alone or in combination of two or more.

黒鉛粒子(C)の長径の平均値は、特に制限されないが、熱伝導性の観点から、好ましくは0.1〜5mm、より好ましくは0.2〜2mm、更に好ましくは0.5〜1mmである。また、黒鉛粒子(C)の長径の平均値は、熱伝導シートの厚みに対して1〜5倍が好ましく、更には2〜4倍がより好ましい。   The average value of the major axis of the graphite particles (C) is not particularly limited, but is preferably 0.1 to 5 mm, more preferably 0.2 to 2 mm, and still more preferably 0.5 to 1 mm from the viewpoint of thermal conductivity. is there. Further, the average value of the major axis of the graphite particles (C) is preferably 1 to 5 times, more preferably 2 to 4 times the thickness of the heat conductive sheet.

尚、本発明において「長径の平均値」とは、熱伝導シートの厚み方向における断面を、SEM(走査型電子顕微鏡)を用いて観察し、任意の50個の黒鉛粒子について見えている方向から長径を測定し、平均値を求めた結果をいう。   In the present invention, the “average value of the major axis” means that the cross section in the thickness direction of the heat conductive sheet is observed using an SEM (scanning electron microscope) and viewed from any 50 graphite particles. The major axis is measured and the average value is obtained.

黒鉛粒子(C)の含有量は、特に制限されないが、好ましくは熱伝導シートの全体積の10〜50体積%、より好ましくは30〜45体積%である。黒鉛粒子(C)の含有量が、10体積%以上であると熱伝導性に優れ、50体積%以下であると柔軟性に優れる傾向にある。   The content of the graphite particles (C) is not particularly limited, but is preferably 10 to 50% by volume, more preferably 30 to 45% by volume, based on the total volume of the heat conductive sheet. When the content of the graphite particles (C) is 10% by volume or more, thermal conductivity is excellent, and when it is 50% by volume or less, flexibility tends to be excellent.

<熱伝導シートの物性>
本発明の熱伝導シートは、圧縮破壊強度が、120℃で5〜16MPaであることが好ましく、より好ましくは6〜12MPa、更に好ましくは7〜10MPaである。圧縮破壊強度が16MPa以下であると、良好な柔軟性が得られる傾向にあり、被着体との密着性が向上し、良好な熱伝導特性が得られる傾向にある。また、5MPa以上であると高温高圧条件になった際でも熱伝導シートの形状を維持できる傾向にある。
<Physical properties of heat conductive sheet>
The heat conductive sheet of the present invention preferably has a compressive fracture strength of 5 to 16 MPa at 120 ° C., more preferably 6 to 12 MPa, and still more preferably 7 to 10 MPa. When the compressive fracture strength is 16 MPa or less, good flexibility tends to be obtained, adhesion to an adherend is improved, and good heat conduction characteristics tend to be obtained. Further, when the pressure is 5 MPa or more, the shape of the heat conductive sheet tends to be maintained even under high temperature and high pressure conditions.

なお、本明細書において、「圧縮破壊強度と」とは、熱伝導シート表面での厚み方向の圧縮試験によって得られる、歪み-圧縮応力曲線の傾きの編曲点を圧縮破壊点とし、その応力を圧縮破壊強度と定義した(図1参照)。   In this specification, the term “compressive fracture strength” refers to an inflection point of a slope of a strain-compressive stress curve obtained by a compression test in the thickness direction on the surface of a heat conductive sheet as a compression fracture point. The compressive fracture strength was defined (see FIG. 1).

圧縮試験は以下のようにして行える。
恒温槽が付属している圧縮試験装置(INSTRON 5948 Micro Tester 、INSTRON社製)を用いて、直径6mmの円型に切り抜いた、面積28.26mmの熱伝導シートを1mm厚の銅板に挟み、恒温槽の温度120℃において、熱伝導シートの厚み方向、つまり黒鉛粒子(C)の配向方向に対して2mm/minの変位速度で最大圧力が16MPaになるまで荷重を加え、変位(mm)と荷重(N)を測定した。変位(mm)/厚み(mm)で求められる歪み(無次元)を横軸に、荷重(N)/面積(mm)で求められる応力(MPa)を縦軸に示した歪み−応力曲線傾きの変曲点を圧縮破壊点として、その応力を圧縮破壊強度(MPa)とした。
The compression test can be performed as follows.
Using a compression test apparatus (INSTRON 5948 Micro Tester, manufactured by INSTRON) with a thermostatic chamber, a heat conductive sheet with an area of 28.26 mm 2 cut into a circular shape with a diameter of 6 mm was sandwiched between 1 mm thick copper plates, At a constant temperature bath temperature of 120 ° C., a load was applied until the maximum pressure reached 16 MPa at a displacement speed of 2 mm / min with respect to the thickness direction of the heat conductive sheet, that is, the orientation direction of the graphite particles (C). The load (N) was measured. Strain-stress curve slope with strain (no dimension) determined by displacement (mm) / thickness (mm) on the horizontal axis and stress (MPa) determined by load (N) / area (mm 2 ) on the vertical axis The inflection point was defined as the compression failure point, and the stress was defined as the compression failure strength (MPa).

圧縮破壊強度は、有機高分子化合物(A)中のカルボキシル基の量を増やす、添加する有機高分子化合物(A)の量を増やす、又は添加するエポキシ樹脂(B)の量を増やすことにより上昇する傾向があり、有機高分子化合物(A)中のカルボキシル基の量を減らす、添加する有機高分子化合物(A)の量を減らす、又は、添加するエポキシ樹脂(B)の量を減らすことにより減少する傾向がある。   Compressive fracture strength increases by increasing the amount of carboxyl groups in the organic polymer compound (A), increasing the amount of added organic polymer compound (A), or increasing the amount of added epoxy resin (B). By reducing the amount of carboxyl groups in the organic polymer compound (A), reducing the amount of organic polymer compound (A) to be added, or reducing the amount of epoxy resin (B) to be added There is a tendency to decrease.

本発明の熱伝導シートの柔軟性が向上すると、被着体との密着性が向上し、熱伝導性が向上する。熱伝導特性は、熱伝導シートを被着体(発熱体及び放熱体)への圧着する際の圧力条件(圧力、温度、時間)によって大きく変わる物性である。本発明では熱伝導性の指標としては、25℃、2MPa条件下における熱抵抗を用いた。
熱抵抗は以下のようにして測定することができる。面積A1(cm)に切り抜いた熱伝導シートを、発熱体であるトランジスタ(2SC2233)と放熱体である銅ブロックとの間に挟み、トランジスタを2MPaの圧力で押し付けながら電流を通じた際のトランジスタの温度T1(℃)及び銅ブロックの温度T2(℃)を測定し、測定値と印加電力W1(W)、から、次式により熱抵抗値X(K・cm/W)を算出した。
X=(T1−T2)×A1/W1
When the flexibility of the heat conductive sheet of the present invention is improved, the adhesion with the adherend is improved and the heat conductivity is improved. The heat conduction characteristics are physical properties that vary greatly depending on the pressure conditions (pressure, temperature, time) when the heat conduction sheet is pressure-bonded to the adherend (heat generating body and heat radiating body). In the present invention, the thermal resistance under conditions of 25 ° C. and 2 MPa was used as an index of thermal conductivity.
The thermal resistance can be measured as follows. The heat conductive sheet cut out in area A1 (cm 2 ) is sandwiched between a heat generating transistor (2SC2233) and a heat dissipating copper block, and the current of the transistor is passed through while pressing the transistor at a pressure of 2 MPa. The temperature T1 (° C.) and the temperature T2 (° C.) of the copper block were measured, and the thermal resistance value X (K · cm 2 / W) was calculated from the measured value and the applied power W1 (W) by the following equation.
X = (T1-T2) × A1 / W1

熱伝導シートのポンプアウト評価試験としては、サーマルサイクル試験前後の熱伝導シートの変形量で判断した。熱伝導シートを、セラミック基板と銅板に挟んで、3MPaの荷重をかけながら、−40℃5分保持、25℃5分保持、125℃5分保持、25℃5分保持を1サイクルとして、2000サイクル試験した。試験前の一辺の長さの最大値をd0、試験後の一辺の長さの最大値をd1として、d1/d0×100で表される寸法変化率(%)で評価した。寸法変化率が120%以下ならポンプアウトなしと判断した。   As a pump-out evaluation test of the heat conductive sheet, it was judged by the deformation amount of the heat conductive sheet before and after the thermal cycle test. A thermal conductive sheet is sandwiched between a ceramic substrate and a copper plate, and while applying a load of 3 MPa, -40 ° C. for 5 minutes, 25 ° C. for 5 minutes, 125 ° C. for 5 minutes, and 25 ° C. for 5 minutes are one cycle. A cycle test was performed. The maximum value of the length of one side before the test was d0 and the maximum value of the length of the one side after the test was d1, and the dimensional change rate (%) represented by d1 / d0 × 100 was evaluated. If the dimensional change rate was 120% or less, it was judged that there was no pump-out.

<熱伝導シートの製造方法>
本発明における熱伝導シートの製造方法は、特に制限はないが、例えば、下記のように作製することができる。
(ア)混練工程
先ず、カルボキシル基を有する有機高分子化合物(A)と、エポキシ樹脂(B)と、黒鉛粒子(C)とを、混練し、組成物を得る。混練の際は加熱をしてもよく、例えば、80〜100℃で加熱することが好ましい。混練時間としても、特に限定されるものではなく、例えば、15〜45分とすることができる。
混練方法は特に制限されるものではないが、例えば、ニーダー混練機による混合方法、及びロール混練機による混合方法等が挙げられる。
<The manufacturing method of a heat conductive sheet>
Although the manufacturing method of the heat conductive sheet in this invention does not have a restriction | limiting in particular, For example, it can produce as follows.
(A) Kneading step First, the organic polymer compound (A) having a carboxyl group, the epoxy resin (B), and the graphite particles (C) are kneaded to obtain a composition. During kneading, heating may be performed, for example, heating at 80 to 100 ° C. is preferable. The kneading time is not particularly limited, and can be, for example, 15 to 45 minutes.
The kneading method is not particularly limited, and examples thereof include a mixing method using a kneader kneader and a mixing method using a roll kneader.

前記混練は、十分に混練され且つ有機高分子化合物(A)とエポキシ樹脂(B)がこの時点では反応しない条件で行うことが好ましい。具体的には、有機高分子化合物(A)及び反応性官能基がエポキシ基であるエポキシ樹脂(B)を用いる場合は、80〜85℃で15〜30分の条件で混練することが好ましい。   The kneading is preferably carried out under conditions that are sufficiently kneaded and the organic polymer compound (A) and the epoxy resin (B) do not react at this point. Specifically, when using the organic polymer compound (A) and the epoxy resin (B) whose reactive functional group is an epoxy group, kneading is preferably performed at 80 to 85 ° C. for 15 to 30 minutes.

(イ)1次シート作製工程
1次シート作製工程は、先の工程で得られた組成物をシート化できれば、いずれの方法であってもよく、特に限定されない。例えば、圧延成形、プレス成形、及び押し出し成形からなる群から選択される少なくとも1つの成形方法を用いて実施することが好ましい。これらの方法を選択することで、得られる1次シートの主たる面に対して、ほぼ平行な方向に黒鉛粒子(C)が鱗片状粒子の場合には面方向、楕球状粒子の場合には長軸方向又は棒状粒子の場合には長軸方向が配向する。黒鉛粒子(C)の配向性の観点からは、圧延成形又はプレス成形が好ましい。
例えば、前記組成物を5〜10MPaの圧力でプレスし、主たる面に関してほぼ平行な方向に黒鉛粒子(C)が鱗片状粒子の場合には面方向、楕球状粒子の場合には長軸方向又は棒状粒子の場合には長軸方向が配向した1次シートを得ることができる。
組成物を5〜10MPaの圧力で押し付けて作製された1次シートの厚みは、熱伝導性の観点から黒鉛粒子(C)の長径の平均値の1〜20倍が好ましい。1次シートの厚みは、押し付ける圧力により調整できる。
(I) Primary sheet production process The primary sheet production process may be any method as long as the composition obtained in the previous process can be formed into a sheet, and is not particularly limited. For example, it is preferable to carry out using at least one forming method selected from the group consisting of rolling forming, press forming, and extrusion forming. By selecting these methods, in the direction substantially parallel to the main surface of the obtained primary sheet, the graphite particles (C) are in the plane direction when they are scale-like particles, and long in the case of elliptical particles. In the case of an axial direction or a rod-like particle, the major axis direction is oriented. From the viewpoint of the orientation of the graphite particles (C), rolling molding or press molding is preferable.
For example, when the composition is pressed at a pressure of 5 to 10 MPa and the graphite particles (C) are scaly particles in a direction substantially parallel to the main surface, the surface direction is used. In the case of rod-like particles, a primary sheet with the major axis direction oriented can be obtained.
The thickness of the primary sheet produced by pressing the composition at a pressure of 5 to 10 MPa is preferably 1 to 20 times the average value of the major axis of the graphite particles (C) from the viewpoint of thermal conductivity. The thickness of the primary sheet can be adjusted by the pressing pressure.

1次シート面内での前記黒鉛粒子(C)の向きは、組成物を成形する際に組成物の流れる方向を調整することによって制御できる。つまり、組成物をプレスする方向、組成物を圧延ロールに通す方向、又は組成物を押し出す方向を調整することで、前記黒鉛粒子(C)の向きを制御できる。   The orientation of the graphite particles (C) in the primary sheet surface can be controlled by adjusting the direction in which the composition flows when the composition is molded. That is, the direction of the graphite particles (C) can be controlled by adjusting the direction in which the composition is pressed, the direction in which the composition is passed through a rolling roll, or the direction in which the composition is extruded.

また、1次シートを作製する際、有機高分子化合物(A)、エポキシ樹脂(B)及び黒鉛粒子(C)を含有する組成物の成形前の形状が塊状物である場合は、塊状物の厚み(d0)に対し、成形後の1次シートの厚み(dp)が、dp/d0<0.15になるようプレス成形、又は圧延成形するか、また、押し出し成形機の出口における1次シート断面形状に相当する形状調整によって、1次シートの横幅(W)に対し厚み(dp’)が、dp’/W<0.15となるように成形することが好ましい。dp/d0<0.15、又はdp’/W<0.15となるよう成形することにより、前記黒鉛粒子(C)が1次シートの主たる面に関して平行方向に配向させ易くなる。   Further, when the primary sheet is produced, when the shape of the composition containing the organic polymer compound (A), the epoxy resin (B), and the graphite particles (C) before molding is a lump, The primary sheet after molding is pressed or rolled so that the thickness (dp) of the primary sheet after molding is dp / d0 <0.15 with respect to the thickness (d0), or the primary sheet at the exit of the extrusion molding machine It is preferable that the thickness (dp ′) with respect to the lateral width (W) of the primary sheet is formed so as to satisfy dp ′ / W <0.15 by shape adjustment corresponding to the cross-sectional shape. By shaping so that dp / d0 <0.15 or dp ′ / W <0.15, the graphite particles (C) can be easily oriented in a parallel direction with respect to the main surface of the primary sheet.

(ウ)積層体作製工程
積層体作製工程は、先の工程で得られた1次シートの積層体を形成する。積層体は、例えば、独立した複数枚の1次シートを順に重ね合わせた形態に限らず、1枚の1次シートを切断せずに折り畳んだ形態であっても、又は1次シートの1枚を捲回させた形態であってもよい。
1次シートを重ねて積層する際は、1次シート面内での黒鉛粒子(C)の向きを揃えて積層する。積層する際の1次シートの形状は、特に制限はなく、例えば、矩形状の1次シートを積層した場合は、角柱状の成形体が得られ、円形状の一次シートを積層した場合は、円柱状の成形体が得られる。1次シートを積層後、積層方向に0.1〜0.5MPaの圧力で押し付けながら、120〜170℃で2〜8時間加熱し、積層体を得る。
1次シートを積層する際の圧力は、この後の工程において積層体の厚み方向に対し、0〜30度の角度でスライスする都合上、スライス面がつぶれて所要面積を下回らない程度に弱く、且つシート間がうまく接着する程度に強くなるよう調整される。好ましくは、0.1〜0.5MPaの圧力範囲で接着する。
(C) Laminate production step The laminate production step forms a laminate of the primary sheet obtained in the previous step. For example, the laminated body is not limited to a form in which a plurality of independent primary sheets are sequentially stacked, and may be a form in which a single primary sheet is folded without being cut, or one primary sheet. It may be in the form of winding.
When the primary sheets are stacked and laminated, the graphite particles (C) in the primary sheet are aligned in the same direction. The shape of the primary sheet when laminating is not particularly limited. For example, when a rectangular primary sheet is laminated, a prismatic shaped body is obtained, and when a circular primary sheet is laminated, A cylindrical shaped body is obtained. After laminating the primary sheet, it is heated at 120 to 170 ° C. for 2 to 8 hours while being pressed at a pressure of 0.1 to 0.5 MPa in the laminating direction to obtain a laminate.
For the convenience of slicing at an angle of 0 to 30 degrees with respect to the thickness direction of the laminate in the subsequent steps, the pressure when laminating the primary sheet is weak enough that the sliced surface does not collapse and falls below the required area, And it adjusts so that it may become strong to such an extent that a sheet | seat adhere | attaches well. Preferably, the bonding is performed in a pressure range of 0.1 to 0.5 MPa.

また、前記1次シートを、前記黒鉛粒子の配向方向を軸にして、0.1〜0.5MPaの圧力で押し付けながら捲回して、120〜170℃で2〜8時間加熱し、成形体を得てもよい。120〜170℃で2〜8時間加熱することにより、有機高分子化合物(A)とエポキシ樹脂(B)が反応し、硬化する。   Further, the primary sheet is wound while being pressed at a pressure of 0.1 to 0.5 MPa with the orientation direction of the graphite particles as an axis, and heated at 120 to 170 ° C. for 2 to 8 hours. May be obtained. By heating at 120 to 170 ° C. for 2 to 8 hours, the organic polymer compound (A) and the epoxy resin (B) react and cure.

加熱に関しては、前工程で反応させなかった前記有機高分子化合物(A)とエポキシ樹脂(B)を、確実に反応させる条件であることが必要である。具体的には、150〜170℃で、6〜8時間の条件で加熱することが好ましい。   Regarding heating, it is necessary that the organic polymer compound (A) and the epoxy resin (B), which were not reacted in the previous step, be in a condition for reliably reacting. Specifically, it is preferable to heat at 150 to 170 ° C. for 6 to 8 hours.

(エ)スライス工程
次いで、前記積層体の厚み方向とは垂直な方向に0.1〜0.5MPaの圧力で押し付けながら、積層体の厚み方向に対し0〜30度の角度で、−20〜20℃の温度範囲でスライスし、熱伝導シートを得る。
(D) Slicing Step Next, while pressing with a pressure of 0.1 to 0.5 MPa in a direction perpendicular to the thickness direction of the laminate, the angle is 0 to 30 degrees with respect to the thickness direction of the laminate, and −20 to 20 °. Slice in a temperature range of 20 ° C. to obtain a heat conductive sheet.

スライスする際の圧力及び角度は、熱伝導性の観点から積層体の厚み方向とは垂直な方向に0.1〜0.5MPaの圧力及び積層体の厚み方向に対し0〜30度の角度であることが好ましい。更に、円形状の1次シートを積層した円柱状の成形体の場合は、上記圧力及び角度の範囲内で、かつら剥きのようにスライスしてもよい。   The pressure and angle when slicing is 0.1 to 0.5 MPa in the direction perpendicular to the thickness direction of the laminate from the viewpoint of thermal conductivity, and an angle of 0 to 30 degrees with respect to the thickness direction of the laminate. Preferably there is. Furthermore, in the case of a columnar molded body in which circular primary sheets are laminated, they may be sliced like wigs within the range of the pressure and angle.

スライスする方法は、例えば、マルチブレード法、レーザー加工法、ウォータージェット法、ナイフ加工法等が挙げられるが、熱伝導シートの厚みの平行を保ちやすい点で、ナイフ加工法が好ましい。しかし、いずれにおいても、0.1〜0.5MPaの圧力をかけて押し付ける盤面を有する必要がある。   Examples of the slicing method include a multi-blade method, a laser processing method, a water jet method, a knife processing method, and the like, but the knife processing method is preferable because the thickness of the heat conductive sheet can be easily kept parallel. However, in any case, it is necessary to have a panel surface that is pressed by applying a pressure of 0.1 to 0.5 MPa.

スライスする際の切断具は特に制限はないが、スリットを有する平滑な盤面と、このスリット部より突出した刃部とを有するスライス部材であって、前記刃部が、熱伝導シートの所望の厚みに応じてスリット部からの突出長さが調節可能であるものを使用すると、得られる熱伝導シートの表面近傍の黒鉛粒子の配向を乱し難く、且つ所望の厚みが薄い熱伝導シートも作製し易いので好ましい。   The cutting tool for slicing is not particularly limited, but is a slicing member having a smooth board surface having a slit and a blade protruding from the slit, and the blade has a desired thickness of the heat conductive sheet. If the one that can adjust the protrusion length from the slit portion is used, it is difficult to disturb the orientation of the graphite particles in the vicinity of the surface of the resulting heat conductive sheet, and a heat conductive sheet with a desired thickness is also produced. It is preferable because it is easy.

具体的には、上記スライス部材は、鋭利な刃を備えたカンナ又はスライサーを用いることが好ましい。これらの刃は、熱伝導シートの所望の厚みに応じて前記スリット部からの突出長さを調節可能とすることで、容易に所望の厚みとすることが可能である。
スライスする際の積層体の温度範囲は、スライスのし易さの観点から、好ましくは−20〜20℃、より好ましく−10〜0℃である。
Specifically, it is preferable to use a plane or slicer with a sharp blade as the slice member. These blades can easily have a desired thickness by making it possible to adjust the protruding length from the slit portion in accordance with the desired thickness of the heat conductive sheet.
The temperature range of the laminate when slicing is preferably −20 to 20 ° C., more preferably −10 to 0 ° C. from the viewpoint of ease of slicing.

熱伝導シートの厚さは、用途等によって適宜設定されるが、好ましくは0.1〜3mm、より好ましくは0.2〜1mmである。熱伝導シートの厚さが、0.1mm以上であるとシートとして取り扱い易く、3mm以下であると放熱効果に優れる。また、前記成形体のスライス幅が熱伝導シートの厚さとなり、スライス面が熱伝導シートにおける発熱体や放熱体との当接面となる。   Although the thickness of a heat conductive sheet is suitably set by a use etc., Preferably it is 0.1-3 mm, More preferably, it is 0.2-1 mm. When the thickness of the heat conductive sheet is 0.1 mm or more, it is easy to handle as a sheet, and when it is 3 mm or less, the heat dissipation effect is excellent. In addition, the slice width of the molded body is the thickness of the heat conductive sheet, and the slice surface is a contact surface of the heat conductive sheet with the heat generating body or the heat radiating body.

<放熱装置>
本発明での放熱装置は、本発明の熱伝導シートを、発熱体と放熱体の間に介在させてなるものである。発熱体としては、例えば、半導体チップ、半導体パッケージ、パワーモジュール等が挙げられる。放熱体としては、例えば、ヒートスプレッダ、ヒートシンク、水冷パイプ等が挙げられる。
<Heat dissipation device>
The heat radiating device in the present invention is obtained by interposing the heat conductive sheet of the present invention between a heat generating body and a heat radiating body. Examples of the heating element include a semiconductor chip, a semiconductor package, and a power module. Examples of the heat radiator include a heat spreader, a heat sink, a water-cooled pipe, and the like.

放熱装置の一例を図2を用いてより具体的に説明する。熱伝導シート1を、基板2に設置された発熱体としての半導体チップ3に対しその一方の面を密着させ、他方の面を放熱体としてのヒートスプレッダ4に密着させている。
図2に示すように、熱伝導シート1はシート1枚に対し、発熱体及び放熱体が各々1個である必要はなく、1対複数でも複数対複数でもよい。なお、前記ヒートスプレッダ4は、シール材5により基板2に固着され、熱伝導シート1と半導体チップ3及びヒートスプレッダ4との密着性を、押しつけることで向上させている。
An example of the heat dissipation device will be described more specifically with reference to FIG. One surface of the heat conductive sheet 1 is brought into close contact with a semiconductor chip 3 as a heating element installed on the substrate 2, and the other surface is brought into close contact with a heat spreader 4 as a heat radiator.
As shown in FIG. 2, the heat conductive sheet 1 does not need to be one heating element and one heat dissipation element for each sheet, and may be one-to-many or plural-to-multiple. The heat spreader 4 is fixed to the substrate 2 by a sealing material 5 and improves the adhesion between the heat conductive sheet 1, the semiconductor chip 3, and the heat spreader 4 by pressing.

放熱装置の一例を図3を用いてより具体的に説明する。熱伝導シート6を、発熱体としてのパワーモジュール7のモジュール基板8に対しその一方の面を密着させ、他方の面を放熱体としてのヒートシンク9に密着させている。
図面に示すように、熱伝導シート6はシート1枚に対し、発熱体及び放熱体が各々1個である必要はなく、1対複数でも複数対複数でもよい。前期パワーモジュール7は、モジュール基板8、半導体チップ10、チップ基板11、接着材12、封止材13、等から構成される。パワーモジュール7とヒートシンク9はネジ等で固定されており、熱伝導シート6とパワーモジュール7及びヒートシンク9との密着性を、圧力をかけることで向上させている。
An example of the heat dissipation device will be described more specifically with reference to FIG. One surface of the heat conductive sheet 6 is brought into close contact with the module substrate 8 of the power module 7 as a heating element, and the other surface is brought into close contact with a heat sink 9 as a heat radiator.
As shown in the drawing, the heat conductive sheet 6 is not necessarily required to have one heat generating element and one heat dissipating element for each sheet, and may be one-to-many or plural-to-multiple. The first-stage power module 7 includes a module substrate 8, a semiconductor chip 10, a chip substrate 11, an adhesive material 12, a sealing material 13, and the like. The power module 7 and the heat sink 9 are fixed with screws or the like, and the adhesion between the heat conductive sheet 6 and the power module 7 and the heat sink 9 is improved by applying pressure.

熱伝導シートにかかる初期の圧力としては特に限定されないが、熱伝導シートの密着性を向上させるためには高い圧力が好ましい。一方で、発熱体や放熱体が破壊する圧力、又は熱伝導シートが潰れる圧力より小さい圧力である必要がある。例えば、0.5〜12MPaであることが好ましく、より好ましくは1〜7MPa、更に好ましくは2〜5MPaである。また、この放熱装置は使用している間に、熱の影響を受け、構成部材の熱膨張の差や、反り等の変形により、熱伝導シートにかかる圧力は変動し、上記の圧力の範囲よりもより高い圧力が熱伝導シートにかかる可能性がある。   The initial pressure applied to the heat conductive sheet is not particularly limited, but a high pressure is preferable in order to improve the adhesion of the heat conductive sheet. On the other hand, the pressure needs to be lower than the pressure at which the heating element or the heat radiating element breaks, or the pressure at which the heat conductive sheet is crushed. For example, it is preferably 0.5 to 12 MPa, more preferably 1 to 7 MPa, and still more preferably 2 to 5 MPa. In addition, this heat dissipation device is affected by heat during use, and the pressure applied to the heat conductive sheet fluctuates due to the difference in thermal expansion of components and deformation such as warpage. Higher pressure may be applied to the heat conductive sheet.

この際に用いられる発熱体としては、その表面温度が200℃を超えないものが好ましい。本発明の熱伝導シートが、特に好適に使用できる温度範囲は、−10〜120℃であり、半導体パッケージ、ディスプレイ、LED、及び電灯等が、好適な発熱体の例として挙げられる。   As the heating element used at this time, a heating element whose surface temperature does not exceed 200 ° C. is preferable. The temperature range in which the heat conductive sheet of the present invention can be used particularly preferably is −10 to 120 ° C., and examples of suitable heating elements include semiconductor packages, displays, LEDs, and electric lamps.

一方、放熱体としては、例えば、アルミニウム又は銅のフィン、板等を利用したヒートシンク、ヒートパイプに接続されているアルミニウム又は銅のブロック、内部に冷却液体をポンプで循環させているアルミニウム又は銅のブロック、ペルチェ素子、及びこれを備えたアルミニウム又は銅のブロックなどが使用できる。   On the other hand, as a heat radiator, for example, a heat sink using aluminum or copper fins, a plate or the like, an aluminum or copper block connected to a heat pipe, and an aluminum or copper circulated cooling liquid with a pump inside A block, a Peltier element, and an aluminum or copper block including the block can be used.

本発明の放熱装置は、発熱体と放熱体に、本発明の熱伝導シートを接触させることで得られる。発熱体、熱伝導シート及び放熱体を充分に密着させた状態で固定することが好ましい。発熱体と放熱体に熱伝導シートを接触させる方法に特に制限はないが、密着を持続させる観点から、ばねを介してねじ止めする方法、又はクリップで挟む方法等のように、押し付ける力が持続する接触方法が好ましい。   The heat radiating device of the present invention is obtained by bringing the heat conductive sheet of the present invention into contact with the heat generating body and the heat radiating body. It is preferable to fix the heating element, the heat conductive sheet, and the heat dissipation element in a sufficiently adhered state. There is no particular limitation on the method of bringing the heat conductive sheet into contact with the heat generator and the heat radiator, but from the viewpoint of maintaining the close contact, the pressing force is maintained as in the method of screwing through a spring or the method of sandwiching with a clip. The contact method is preferred.

以下、実施例により本発明を詳細に説明する。尚、各実施例において、圧縮破壊強度、熱抵抗、及びポンプアウト評価試験は以下の方法により求めた。   Hereinafter, the present invention will be described in detail by way of examples. In each example, the compressive fracture strength, thermal resistance, and pump-out evaluation test were determined by the following methods.

(圧縮破壊強度の測定)
恒温槽が付属している圧縮試験装置(INSTRON 5948 Micro Tester (INSTRON社製))を用いて、直径6mmの円型に切り抜いた、面積28.26mmの熱伝導シートを1mm厚の銅板に挟み、恒温槽の温度120℃において、熱伝導シートの厚み方向に対して2mm/minの変位速度で最大圧力が16MPaになるまで荷重を加え、変位(mm)と荷重(N)を測定した。変位(mm)/厚み(mm)で求められる歪み(無次元)を横軸に、荷重(N)/面積(mm)で求められる応力(MPa)を縦軸に示した歪み−応力曲線傾きの変曲点を圧縮破壊点として、その応力を圧縮破壊強度(MPa)とした。
(Measurement of compressive fracture strength)
Using a compression tester (INSTRON 5948 Micro Tester (manufactured by INSTRON)) with a thermostatic chamber, a heat conductive sheet with an area of 28.26 mm 2 cut out in a circular shape with a diameter of 6 mm is sandwiched between 1 mm thick copper plates At a temperature of 120 ° C. in the thermostatic chamber, a load was applied at a displacement speed of 2 mm / min with respect to the thickness direction of the heat conductive sheet until the maximum pressure reached 16 MPa, and the displacement (mm) and the load (N) were measured. Strain-stress curve slope with strain (no dimension) determined by displacement (mm) / thickness (mm) on the horizontal axis and stress (MPa) determined by load (N) / area (mm 2 ) on the vertical axis The inflection point was defined as the compression failure point, and the stress was defined as the compression failure strength (MPa).

(熱抵抗の測定)
熱伝導シートを、10mm角に切り抜き、発熱体であるトランジスタ(2SC2233)と放熱体である銅ブロックとの間に挟み、トランジスタを2MPaの圧力で押し付けながら電流を通じた際のトランジスタの温度T1(℃)及び銅ブロックの温度T2(℃)を測定し、測定値と印加電力W1(W)、から、熱抵抗値X(K・cm/W)を算出した。
X=(T1−T2)/W1
(Measurement of thermal resistance)
The heat conductive sheet is cut into a 10 mm square, and is sandwiched between a transistor (2SC2233) as a heating element and a copper block as a heat radiator, and the transistor temperature T1 (° C.) when a current is passed while pressing the transistor at a pressure of 2 MPa. ) And the temperature T2 (° C.) of the copper block, and the thermal resistance value X (K · cm 2 / W) was calculated from the measured value and the applied power W1 (W).
X = (T1-T2) / W1

(ポンプアウト評価試験)
熱伝導シートを、20mm角に切り抜き、厚み0.5mmのセラミック基板と厚み1mmの銅板に挟んで、バネで3MPaの荷重をかけ、冷熱衝撃装置(TSA−71H−W型、エスペック株式会社製)に投入し、−40℃5分保持、25℃5分保持、125℃5分保持、25℃5分保持を1サイクルとして、2000サイクル試験した。試験前後の一辺の長さは標準ABSデジマチックキャリパ(株式会社ミツトヨ製、CD−15CPX)で測定した。試験前の一辺の長さの最大値をd0、試験後の一辺の長さの最大値をd1として、寸法変化率(%)をd1/d0×100で算出した。寸法変化率が120%以下ならポンプアウトなしと判断した。
(Pump-out evaluation test)
A heat conduction sheet is cut into a 20 mm square, sandwiched between a 0.5 mm thick ceramic substrate and a 1 mm thick copper plate, a 3 MPa load is applied by a spring, and a thermal shock device (TSA-71H-W type, manufactured by Espec Corporation) 2,000 ° C. for 5 minutes, 25 ° C. for 5 minutes, 125 ° C. for 5 minutes, and 25 ° C. for 5 minutes. The length of one side before and after the test was measured with a standard ABS Digimatic caliper (manufactured by Mitutoyo Corporation, CD-15CPX). The maximum value of the length of one side before the test was d0, the maximum value of the length of the one side after the test was d1, and the dimensional change rate (%) was calculated by d1 / d0 × 100. If the dimensional change rate was 120% or less, it was judged that there was no pump-out.

(実施例1)
有機高分子化合物(A)としてカルボキシル基含有アクリル酸エステル共重合樹脂(アクリル酸ブチル/アクリル酸エチル/アクリロニトリル/アクリル酸共重合体、ナガセケムテックス株式会社製、商品名:HTR−280改2DR、カルボキシル基含有量:0.69mmol/g、重量平均分子量:53万、Tg=−39℃、比重1.06)432g、カルボキシル基変性NBR(日本ゼオン株式会社製、商品名:Nippol 1072、重量平均分子量:25万、カルボキシル基濃度:0.75KOHmg/g、比重0.98)224g、カルボキシル基変性NBR(日本ゼオン株式会社製、商品名:Nippol DN601、重量平均分子量:6.8万、カルボキシル基濃度:0.75KOHmg/g、比重0.98)224g、エポキシ樹脂(B)としてエポキシ樹脂(DIC株式会社製、商品名:EPICLON EXA−4816、2官能、エポキシ当量:403g/eq.、比重1.2)1391g、黒鉛粒子(C)として鱗片状の膨張黒鉛粉末(日立化成株式会社製、長径の平均値:500〜1000μm、比重2.1)2230gを、100℃で30分、ニーダー混練機(株式会社モリヤマ製、DS3−SGHM−E型加圧双腕型ニーダー)で混練し、組成物を得た。
Example 1
Carboxyl group-containing acrylic ester copolymer resin (butyl acrylate / ethyl acrylate / acrylonitrile / acrylic acid copolymer, manufactured by Nagase ChemteX Corporation, trade name: HTR-280 modified 2DR) as organic polymer compound (A) Carboxy group content: 0.69 mmol / g, weight average molecular weight: 530,000, Tg = −39 ° C., specific gravity 1.06) 432 g, carboxyl group-modified NBR (manufactured by Nippon Zeon Co., Ltd., trade name: Nippon 1072, weight average) Molecular weight: 250,000, carboxyl group concentration: 0.75 KOH mg / g, specific gravity: 0.98) 224 g, carboxyl group-modified NBR (manufactured by Nippon Zeon Co., Ltd., trade name: Nipol DN601, weight average molecular weight: 68,000, carboxyl group Concentration: 0.75 KOH mg / g, specific gravity 0.98) 224 g, Epoxy resin (manufactured by DIC Corporation, trade name: EPICLON EXA-4816, bifunctional, epoxy equivalent: 403 g / eq., Specific gravity 1.2) 1391 g as scale resin (B), and scaly expansion as graphite particles (C) Graphite powder (manufactured by Hitachi Chemical Co., Ltd., average length of major axis: 500 to 1000 μm, specific gravity 2.1) 2230 g at 100 ° C. for 30 minutes, kneader kneader (manufactured by Moriyama Co., Ltd., DS3-SGHM-E type pressure twin The mixture was kneaded with an arm-type kneader.

組成物全体積に対する各成分の配合比を、各成分の比重から計算したところ、カルボキシル基を有する有機高分子化合物(A)が28.0体積%、エポキシ樹脂(B)が37.6体積%、黒鉛粒子(C)が34.4体積%であった。また、エポキシ樹脂(B)の含有量は、カルボキシル基を有する有機高分子化合物(A)の含有量に対して、体積比で1.3であった。   When the blending ratio of each component with respect to the total volume of the composition was calculated from the specific gravity of each component, the organic polymer compound (A) having a carboxyl group was 28.0% by volume, and the epoxy resin (B) was 37.6% by volume. The graphite particles (C) were 34.4% by volume. Moreover, content of the epoxy resin (B) was 1.3 by volume ratio with respect to content of the organic polymer compound (A) which has a carboxyl group.

得られた組成物を50g程度の塊に分割し、押し出し成形機(株式会社パーカー製、商品名:HKS40−15型押し出し機)及びロール成形機(日立機械エンジニアリング株式会社製、商品名:V2S−SR型シーティング熱ロール機)を用い、厚さ2mmの1次シートを得た。   The obtained composition was divided into lumps of about 50 g, and an extrusion molding machine (manufactured by Parker Co., Ltd., trade name: HKS40-15 type extrusion machine) and a roll molding machine (trade name: V2S-, manufactured by Hitachi Machinery Engineering Co., Ltd.). SR-type sheeting hot roll machine) was used to obtain a primary sheet having a thickness of 2 mm.

得られた1次シートを、5cm角にカッターで切り出し、切り出したシートを150枚積層し、積層方向に0.3MPaの圧力をかけながら、170℃で、8時間加熱し、厚さ30cmの積層体を得た。   The obtained primary sheet was cut into a 5 cm square with a cutter, 150 sheets of the cut out sheets were laminated, heated at 170 ° C. for 8 hours while applying a pressure of 0.3 MPa in the lamination direction, and laminated with a thickness of 30 cm. Got the body.

次いで、この積層体をドライアイスで−10℃に冷却した後、5cm×30cmの積層断面を、0.3MPaの圧力で押し付けながら、木工用スライサー(株式会社丸仲鐵工所製、商品名:超仕上げかんな盤スーパーメカ、スリット部からの刀部の突出長さ:0.11mm)を用いてスライス(積層対の厚み方向に対して0度の角度でスライス)し、縦5cm×横30cm×厚さ0.15mmの熱伝導シート(I)を得た。   Next, the laminate was cooled to −10 ° C. with dry ice, and then a slicer for woodworking (manufactured by Marunaka Co., Ltd., trade name: Super-finished planer board Super mechanism, sword protrusion length from slit part (0.11mm) is sliced (sliced at an angle of 0 degrees with respect to the thickness direction of the laminated pair), 5cm in length × 30cm in width A heat conductive sheet (I) having a thickness of 0.15 mm was obtained.

この熱伝導シート(I)の物性値を求めたところ、圧縮破壊強度は5.2MPa、熱抵抗は0.07K・cm/Wであった。この熱伝導シート(I)の寸法変化率は112%であり、ポンプアウト評価試験結果は、変位量ポンプアウト「無」であった。 When the physical property values of the heat conductive sheet (I) were determined, the compressive fracture strength was 5.2 MPa, and the thermal resistance was 0.07 K · cm 2 / W. The dimensional change rate of the heat conductive sheet (I) was 112%, and the pump-out evaluation test result was “no” displacement pump-out.

(実施例2)
有機高分子化合物(A)としてカルボキシル基含有アクリル酸エステル共重合樹脂(アクリル酸ブチル/アクリル酸エチル/アクリロニトリル/アクリル酸共重合体、ナガセケムテックス株式会社製、商品名:HTR−280改2DR、カルボキシル基含有量:0.69mmol/g、重量平均分子量:53万、Tg=−39℃、比重1.06)404g、カルボキシル基変性NBR(日本ゼオン株式会社製、商品名:Nippol 1072、重量平均分子量:25万、カルボキシル基濃度:0.75KOHmg/g、比重0.98)210g、カルボキシル基変性NBR(日本ゼオン株式会社製、商品名:Nippol DN601、重量平均分子量:6.8万、カルボキシル基濃度:0.75KOHmg/g、比重0.98)210g、エポキシ樹脂(B)としてダイマー酸変性エポキシ樹脂(新日鉄住金化学株式会社製、商品名:YD−172、2官能、エポキシ当量:600g/eq.、比重1.2)1300g、黒鉛粒子(C)として鱗片状の膨張黒鉛粉末(日立化成株式会社製、長径の平均値:500〜1000μm、比重2.1)2377gを、100℃で30分、ニーダー混練機(株式会社モリヤマ製、DS3−SGHM−E型加圧双腕型ニーダー)で混練し、組成物を得た。
(Example 2)
Carboxyl group-containing acrylic ester copolymer resin (butyl acrylate / ethyl acrylate / acrylonitrile / acrylic acid copolymer, manufactured by Nagase ChemteX Corporation, trade name: HTR-280 modified 2DR) as organic polymer compound (A) Carboxyl group content: 0.69 mmol / g, weight average molecular weight: 530,000, Tg = −39 ° C., specific gravity 1.06) 404 g, carboxyl group-modified NBR (manufactured by Nippon Zeon Co., Ltd., trade name: Nippon 1072, weight average) Molecular weight: 250,000, carboxyl group concentration: 0.75 KOH mg / g, specific gravity: 0.98) 210 g, carboxyl group-modified NBR (manufactured by Nippon Zeon Co., Ltd., trade name: Nipol DN601, weight average molecular weight: 68,000, carboxyl group Concentration: 0.75 KOH mg / g, specific gravity 0.98) 210 g, 1300 g of dimer acid-modified epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: YD-172, bifunctional, epoxy equivalent: 600 g / eq., Specific gravity 1.2) as the poxy resin (B), as graphite particles (C) Scale-shaped expanded graphite powder (manufactured by Hitachi Chemical Co., Ltd., average value of major axis: 500 to 1000 μm, specific gravity 2.1) 2377 g at 100 ° C. for 30 minutes, kneader kneader (manufactured by Moriyama Co., Ltd., DS3-SGHM-E) Kneading with a mold pressurizing two-arm kneader) to obtain a composition.

組成物全体積に対する各成分の配合比を、各成分の比重から計算したところ、カルボキシル基を有する有機高分子化合物(A)が26.8体積%、エポキシ樹脂(B)が35.8体積%、黒鉛粒子(C)が37.4体積%であった。また、また、エポキシ樹脂(B)の含有量は、カルボキシル基を有する有機高分子化合物(A)の含有量に対して、体積比で1.3であった。
以下、実施例1と同様に操作し、縦5cm×横30cm×厚さ0.15mmの熱伝導シート(II)を得た。
When the compounding ratio of each component with respect to the total volume of the composition was calculated from the specific gravity of each component, the organic polymer compound (A) having a carboxyl group was 26.8% by volume, and the epoxy resin (B) was 35.8% by volume. The graphite particles (C) were 37.4% by volume. Moreover, content of the epoxy resin (B) was 1.3 by volume ratio with respect to content of the organic polymer compound (A) which has a carboxyl group.
Thereafter, the same operation as in Example 1 was performed to obtain a heat conductive sheet (II) having a length of 5 cm, a width of 30 cm, and a thickness of 0.15 mm.

この熱伝導シート(II)の物性値を求めたところ、圧縮破壊強度は5.6MPa、熱抵抗は0.08K・cm/Wであった。この熱伝導シート(II)の寸法変化率は111%であり、ポンプアウト評価試験結果は、ポンプアウト「無」であった。 When the physical property values of the heat conductive sheet (II) were determined, the compressive fracture strength was 5.6 MPa, and the thermal resistance was 0.08 K · cm 2 / W. The dimensional change rate of the heat conductive sheet (II) was 111%, and the pump-out evaluation test result was “no” pump-out.

(実施例3)
有機高分子化合物(A)としてカルボキシル基含有アクリル酸エステル共重合樹脂(アクリル酸ブチル/アクリル酸エチル/アクリロニトリル/アクリル酸共重合体、ナガセケムテックス株式会社製、商品名:HTR−280改2DR、カルボキシル基含有量:0.69mmol/g、重量平均分子量:53万、Tg=−39℃、比重1.06)404g、カルボキシル基変性NBR(日本ゼオン株式会社製、商品名:Nippol 1072、重量平均分子量:25万、カルボキシル基濃度:0.75(KOHmg/g)、比重0.98)210g、カルボキシル基変性NBR(日本ゼオン株式会社製、商品名:Nippol DN601、重量平均分子量:6.8万、カルボキシル基濃度:0.75(KOHmg/g)、比重0.98)210g、エポキシ樹脂(B)としてエポキシ樹脂(DIC株式会社製、商品名:EPICLON EXA−4816、2官能、エポキシ当量:403g/eq.、比重1.2)1300g、黒鉛粒子(C)として鱗片状の膨張黒鉛粉末(日立化成株式会社製、長径の平均値:500〜1000μm、比重2.1)2377gを、100℃で30分、ニーダー混練機(株式会社モリヤマ製、DS3−SGHM−E型加圧双腕型ニーダー)で混練し、組成物を得た。
(Example 3)
Carboxyl group-containing acrylic ester copolymer resin (butyl acrylate / ethyl acrylate / acrylonitrile / acrylic acid copolymer, manufactured by Nagase ChemteX Corporation, trade name: HTR-280 modified 2DR) as organic polymer compound (A) Carboxyl group content: 0.69 mmol / g, weight average molecular weight: 530,000, Tg = −39 ° C., specific gravity 1.06) 404 g, carboxyl group-modified NBR (manufactured by Nippon Zeon Co., Ltd., trade name: Nippon 1072, weight average) Molecular weight: 250,000, carboxyl group concentration: 0.75 (KOH mg / g), specific gravity 0.98) 210 g, carboxyl group-modified NBR (manufactured by Nippon Zeon Co., Ltd., trade name: Nippon DN601, weight average molecular weight: 68,000) , Carboxyl group concentration: 0.75 (KOHmg / g), specific gravity 0.98) 2 0 g, epoxy resin (B), epoxy resin (manufactured by DIC Corporation, trade name: EPICLON EXA-4816, bifunctional, epoxy equivalent: 403 g / eq., Specific gravity 1.2) 1300 g, scaly as graphite particles (C) 2377 g of expanded graphite powder (manufactured by Hitachi Chemical Co., Ltd., average length: 500 to 1000 μm, specific gravity 2.1) at 100 ° C. for 30 minutes, kneader kneader (manufactured by Moriyama Co., Ltd., DS3-SGHM-E type) Kneaded with a pressure double arm type kneader) to obtain a composition.

組成物全体積に対する各成分の配合比を、各成分の比重から計算したところ、カルボキシル基を有する有機高分子化合物(A)が26.8体積%、エポキシ樹脂(B)が35.8体積%、黒鉛粒子(C)が37.4体積%であった。また、また、エポキシ樹脂(B)の含有量は、カルボキシル基を有する有機高分子化合物(A)の含有量に対して、体積比で1.3であった。
以下、実施例1と同様に操作し、縦5cm×横30cm×厚さ0.15mmの熱伝導シート(III)を得た。
When the compounding ratio of each component with respect to the total volume of the composition was calculated from the specific gravity of each component, the organic polymer compound (A) having a carboxyl group was 26.8% by volume, and the epoxy resin (B) was 35.8% by volume. The graphite particles (C) were 37.4% by volume. Moreover, content of the epoxy resin (B) was 1.3 by volume ratio with respect to content of the organic polymer compound (A) which has a carboxyl group.
Thereafter, the same operation as in Example 1 was performed to obtain a heat conductive sheet (III) having a length of 5 cm, a width of 30 cm, and a thickness of 0.15 mm.

この熱伝導シート(III)の物性値を求めたところ、圧縮破壊強度は7.3MPa、熱抵抗は0.06K・cm/Wであった。この熱伝導シート(III)の寸法変化率は103%であり、ポンプアウト評価試験結果は、ポンプアウト「無」であった。 When the physical property values of the heat conductive sheet (III) were determined, the compressive fracture strength was 7.3 MPa, and the thermal resistance was 0.06 K · cm 2 / W. The dimensional change rate of the heat conductive sheet (III) was 103%, and the pump-out evaluation test result was “no” pump-out.

(実施例4)
有機高分子化合物(A)としてカルボキシル基含有アクリル酸エステル共重合樹脂(アクリル酸ブチル/アクリル酸エチル/アクリロニトリル/アクリル酸共重合体、ナガセケムテックス株式会社製、商品名:HTR−280改2DR、カルボキシル基含有量:0.69mmol/g、重量平均分子量:53万、Tg=−39℃、比重1.06)1305g、エポキシ樹脂(B)としてダイマー酸変性エポキシ樹脂(新日鉄住金化学株式会社製、商品名:YD−172、2官能、エポキシ当量:600g/eq.、比重1.2)817g、黒鉛粒子(C)として鱗片状の膨張黒鉛粉末(日立化成株式会社製、長径の平均値:500〜1000μm、比重2.1)2377gを、100℃で30分、ニーダー混練機(株式会社モリヤマ製、DS3−SGHM−E型加圧双腕型ニーダー)で混練し、組成物を得た。
Example 4
Carboxyl group-containing acrylic ester copolymer resin (butyl acrylate / ethyl acrylate / acrylonitrile / acrylic acid copolymer, manufactured by Nagase ChemteX Corporation, trade name: HTR-280 modified 2DR) as organic polymer compound (A) Carboxy group content: 0.69 mmol / g, weight average molecular weight: 530,000, Tg = −39 ° C., specific gravity 1.06) 1305 g, dimer acid modified epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) Product name: YD-172, bifunctional, epoxy equivalent: 600 g / eq., Specific gravity 1.2) 817 g, scaly expanded graphite powder as graphite particles (C) (manufactured by Hitachi Chemical Co., Ltd., average value of major axis: 500) ˜1000 μm, specific gravity 2.1) 2377 g at 100 ° C. for 30 minutes, kneader kneader (manufactured by Moriyama Co., Ltd., DS Kneaded at -SGHM-E type additive 圧双 arm type kneader), to obtain a composition.

組成物全体積に対する各成分の配合比を、各成分の比重から計算したところ、カルボキシル基を有する有機高分子化合物(A)が40.4体積%、エポキシ樹脂(B)が22.4体積%、黒鉛粒子(C)が37.2体積%であった。また、また、エポキシ樹脂(B)の含有量は、カルボキシル基を有する有機高分子化合物(A)の含有量に対して、体積比で0.6であった。
以下、実施例1と同様に操作し、縦5cm×横30cm×厚さ0.15mmの熱伝導シート(IV)を得た。
When the blending ratio of each component with respect to the total volume of the composition was calculated from the specific gravity of each component, the organic polymer compound (A) having a carboxyl group was 40.4% by volume, and the epoxy resin (B) was 22.4% by volume. The graphite particles (C) were 37.2% by volume. Moreover, content of the epoxy resin (B) was 0.6 by volume ratio with respect to content of the organic polymer compound (A) which has a carboxyl group.
Thereafter, the same operation as in Example 1 was performed to obtain a heat conductive sheet (IV) having a length of 5 cm, a width of 30 cm, and a thickness of 0.15 mm.

この熱伝導シート(IV)の物性値を求めたところ、圧縮破壊強度は9.3MPa、熱抵抗は0.12K・cm/Wであった。この熱伝導シート(IV)の寸法変化率は102%であり、ポンプアウト評価試験結果は、ポンプアウト「無」であった。 When the physical property values of the thermal conductive sheet (IV) were determined, the compressive fracture strength was 9.3 MPa, and the thermal resistance was 0.12 K · cm 2 / W. The dimensional change rate of this heat conductive sheet (IV) was 102%, and the pump-out evaluation test result was “no” pump-out.

実施例1〜実施例4は圧縮破壊強度が5〜16MPaであり、3MPaにおけるサーマルサイクル試験で評価したポンプアウト評価試験においていずれもポンプアウトしない、十分な強度を有していた。   Examples 1 to 4 had a compressive fracture strength of 5 to 16 MPa, and had sufficient strength that none was pumped out in the pump-out evaluation test evaluated in the thermal cycle test at 3 MPa.

(比較例1)
有機高分子化合物(A)としてカルボキシル基含有アクリル酸エステル共重合樹脂(アクリル酸ブチル/アクリル酸エチル/アクリロニトリル/アクリル酸共重合体、ナガセケムテックス株式会社製、商品名:HTR−280改2DR、カルボキシル基含有量:0.69mmol/g、重量平均分子量:53万、Tg=−39℃、比重1.06)404g、カルボキシル基変性NBR(日本ゼオン株式会社製、商品名:Nippol 1072、重量平均分子量:25万、カルボキシル基濃度:0.75KOHmg/g、比重0.98)210g、カルボキシル基変性NBR(日本ゼオン株式会社製、商品名:Nippol DN601、重量平均分子量:6.8万、カルボキシル基濃度:0.75KOHmg/g、比重0.98)210g、エポキシ樹脂(B)としてビスフェノールF型エポキシ(ナガセケムテックス株式会社製、商品名:EX−211、2官能、エポキシ当量:138g/eq.)75g、黒鉛粒子(C)として鱗片状の膨張黒鉛粉末(日立化成株式会社製、長径の平均値:500〜1000μm)2377g、カルボキシル基を含まない有機高分子化合物として、ポリブテン(日油株式会社製、商品名:ポリブテン 200N、比重0.91)1225gを、100℃で30分、ニーダー混練機(株式会社モリヤマ製、DS3−SGHM−E型加圧双腕型ニーダー)で混練し、組成物を得た。
(Comparative Example 1)
Carboxyl group-containing acrylic ester copolymer resin (butyl acrylate / ethyl acrylate / acrylonitrile / acrylic acid copolymer, manufactured by Nagase ChemteX Corporation, trade name: HTR-280 modified 2DR) as organic polymer compound (A) Carboxyl group content: 0.69 mmol / g, weight average molecular weight: 530,000, Tg = −39 ° C., specific gravity 1.06) 404 g, carboxyl group-modified NBR (manufactured by Nippon Zeon Co., Ltd., trade name: Nippon 1072, weight average) Molecular weight: 250,000, carboxyl group concentration: 0.75 KOH mg / g, specific gravity: 0.98) 210 g, carboxyl group-modified NBR (manufactured by Nippon Zeon Co., Ltd., trade name: Nipol DN601, weight average molecular weight: 68,000, carboxyl group Concentration: 0.75 KOH mg / g, specific gravity 0.98) 210 g, Bisphenol F type epoxy (manufactured by Nagase ChemteX Corp., trade name: EX-211,2 functional, epoxy equivalent: 138 g / eq.) 75 g as the poxy resin (B), and scaly expanded graphite powder as the graphite particles (C) (Manufactured by Hitachi Chemical Co., Ltd., average value of major axis: 500 to 1000 μm) 2377 g, 1225 g of polybutene (manufactured by NOF Corporation, trade name: Polybutene 200N, specific gravity 0.91) as an organic polymer compound not containing a carboxyl group The mixture was kneaded with a kneader kneader (manufactured by Moriyama Co., Ltd., DS3-SGHM-E type pressure double-arm kneader) at 100 ° C. for 30 minutes to obtain a composition.

組成物全体積に対する各成分の配合比を、各成分の比重から計算したところ、カルボキシル基を含む有機高分子化合物(A)が24.2体積%、エポキシ樹脂(B)が2.0体積%、黒鉛粒子(C)が33.7体積%であった。また、エポキシ樹脂(B)の含有量は、カルボキシル基を有する有機高分子化合物(A)の含有量に対して、体積比で0.1であった。
以下、実施例1と同様に操作し、縦5cm×横30cm×厚さ0.15mmの熱伝導シート(V)を得た。
When the compounding ratio of each component with respect to the total volume of the composition was calculated from the specific gravity of each component, the organic polymer compound (A) containing a carboxyl group was 24.2% by volume, and the epoxy resin (B) was 2.0% by volume. The graphite particles (C) were 33.7% by volume. Moreover, content of the epoxy resin (B) was 0.1 by volume ratio with respect to content of the organic polymer compound (A) which has a carboxyl group.
Thereafter, the same operation as in Example 1 was performed to obtain a heat conductive sheet (V) having a length of 5 cm × width of 30 cm × thickness of 0.15 mm.

この熱伝導シート(V)の物性値を求めたところ、圧縮破壊強度は3.7MPa、熱抵抗は0.06K・cm/Wであった。この熱伝導シート(V)の寸法変化率は125%であり、ポンプアウト評価試験結果は、ポンプアウト「有」であった。熱抵抗が低い値を示していることから、柔軟性が損なわれず、熱伝導性には優れているが、圧縮破壊強度が低いために、ポンプアウトの課題を解決できなかった。 When the physical property values of the heat conductive sheet (V) were determined, the compressive fracture strength was 3.7 MPa, and the thermal resistance was 0.06 K · cm 2 / W. The dimensional change rate of this heat conductive sheet (V) was 125%, and the pump-out evaluation test result was “Yes”. Since the thermal resistance shows a low value, the flexibility is not impaired and the thermal conductivity is excellent. However, the compression failure strength is low, so that the problem of pump-out cannot be solved.

(比較例2)
有機高分子化合物(A)としてカルボキシル基含有アクリル酸エステル共重合樹脂(アクリル酸ブチル/アクリル酸エチル/アクリロニトリル/アクリル酸共重合体、ナガセケムテックス株式会社製、商品名:HTR−280改2DR、カルボキシル基含有量:0.69mmol/g、重量平均分子量:53万、Tg=−39℃、比重1.06)404g、カルボキシル基変性NBR(日本ゼオン株式会社製、商品名:Nippol 1072、重量平均分子量:25万、カルボキシル基濃度:0.75(KOHmg/g)、比重0.98)210g、カルボキシル基変性NBR(日本ゼオン株式会社製、商品名:Nippol DN601、重量平均分子量:6.8万、カルボキシル基濃度:0.75(KOHmg/g)、比重0.98)210g、エポキシ樹脂(B)としてビスフェノールF型エポキシ(ナガセケムテックス株式会社製、商品名:EX−211、2官能、エポキシ当量:138g/eq.、比重1.1)1300g、黒鉛粒子(C)として鱗片状の膨張黒鉛粉末(日立化成株式会社製、長径の平均値:500〜1000μm、比重2.1)2377gを、100℃で30分、ニーダー混練機(株式会社モリヤマ製、DS3−SGHM−E型加圧双腕型ニーダー)で混練し、組成物を得た。
(Comparative Example 2)
Carboxyl group-containing acrylic ester copolymer resin (butyl acrylate / ethyl acrylate / acrylonitrile / acrylic acid copolymer, manufactured by Nagase ChemteX Corporation, trade name: HTR-280 modified 2DR) as organic polymer compound (A) Carboxyl group content: 0.69 mmol / g, weight average molecular weight: 530,000, Tg = −39 ° C., specific gravity 1.06) 404 g, carboxyl group-modified NBR (manufactured by Nippon Zeon Co., Ltd., trade name: Nippon 1072, weight average) Molecular weight: 250,000, carboxyl group concentration: 0.75 (KOH mg / g), specific gravity 0.98) 210 g, carboxyl group-modified NBR (manufactured by Nippon Zeon Co., Ltd., trade name: Nippon DN601, weight average molecular weight: 68,000) , Carboxyl group concentration: 0.75 (KOHmg / g), specific gravity 0.98) 2 0 g, bisphenol F type epoxy (manufactured by Nagase ChemteX Corporation, trade name: EX-211,2 functional, epoxy equivalent: 138 g / eq., Specific gravity 1.1) 1300 g as an epoxy resin (B), graphite particles (C) Scale-like expanded graphite powder (manufactured by Hitachi Chemical Co., Ltd., average length: 500-1000 μm, specific gravity 2.1) 2377 g at 100 ° C. for 30 minutes, kneader kneader (manufactured by Moriyama Co., Ltd., DS3-SGHM- The mixture was kneaded with an E-type pressure double-arm kneader) to obtain a composition.

組成物全体積に対する各成分の配合比を、各成分の比重から計算したところ、カルボキシル基を含む有機高分子化合物(A)が26.0体積%、エポキシ樹脂(B)が37.8体積%、黒鉛粒子(C)が36.2体積%であった。また、また、エポキシ樹脂(B)の含有量は、カルボキシル基を含む有機高分子化合物(A)の含有量に対して、体積比で1.5であった。
以下、実施例1と同様に操作し、縦5cm×横30cm×厚さ0.15mmの熱伝導シート(VI)を得た。
When the compounding ratio of each component with respect to the total volume of the composition was calculated from the specific gravity of each component, the organic polymer compound (A) containing a carboxyl group was 26.0% by volume, and the epoxy resin (B) was 37.8% by volume. The graphite particles (C) were 36.2% by volume. Moreover, content of the epoxy resin (B) was 1.5 by volume ratio with respect to content of the organic polymer compound (A) containing a carboxyl group.
Thereafter, the same operation as in Example 1 was performed to obtain a heat conductive sheet (VI) having a length of 5 cm × width of 30 cm × thickness of 0.15 mm.

この熱伝導シート(VI)の物性値を求めたところ、圧縮破壊強度は4.1MPa、熱抵抗は0.06K・cm/Wであった。この熱伝導シート(VI)の寸法変化率は123%であり、ポンプアウト評価試験結果は、ポンプアウト「有」であった。熱抵抗が低い値を示していることから、柔軟性が損なわれず、熱伝導性には優れているが、圧縮破壊強度が低いために、ポンプアウトの課題を解決できなかった。 When the physical property values of the heat conductive sheet (VI) were determined, the compressive fracture strength was 4.1 MPa, and the thermal resistance was 0.06 K · cm 2 / W. The dimensional change rate of this heat conductive sheet (VI) was 123%, and the pump-out evaluation test result was “Yes”. Since the thermal resistance shows a low value, the flexibility is not impaired and the thermal conductivity is excellent. However, the compression failure strength is low, so that the problem of pump-out cannot be solved.

1:熱伝導シート、2:基板、3:半導体チップ、4:ヒートスプレッダ、5:シール材、6:熱伝導シート、7:パワーモジュール、8:モジュール基板、9:ヒートシンク、10:半導体チップ、11:チップ基板、12:接着材、13:封止材 1: heat conduction sheet, 2: substrate, 3: semiconductor chip, 4: heat spreader, 5: sealing material, 6: heat conduction sheet, 7: power module, 8: module substrate, 9: heat sink, 10: semiconductor chip, 11 : Chip substrate, 12: Adhesive, 13: Sealing material

Claims (9)

カルボキシル基を有する有機高分子化合物(A)とエポキシ樹脂(B)と、の反応物と、鱗片状粒子、楕球状粒子及び棒状粒子からなる群より選択される少なくとも1種の黒鉛粒子(C)と、を含有し、前記鱗片状粒子の場合には面方向、前記楕球状粒子の場合には長軸方向又は前記棒状粒子の場合には長軸方向が熱伝導シートの厚み方向に配向している、圧縮破壊強度が120℃で5〜16MPaである熱伝導シート。   At least one graphite particle (C) selected from the group consisting of a reaction product of an organic polymer compound (A) having a carboxyl group and an epoxy resin (B), scaly particles, oval particles and rod-like particles In the case of the scale-like particles, the surface direction, in the case of the elliptical particles, the major axis direction or in the case of the rod-like particles, the major axis direction is oriented in the thickness direction of the heat conductive sheet. The heat conductive sheet whose compressive fracture strength is 5-16 MPa at 120 degreeC. 前記エポキシ樹脂(B)のエポキシ当量が、300以上である請求項1に記載の熱伝導シート。   The heat conductive sheet according to claim 1, wherein an epoxy equivalent of the epoxy resin (B) is 300 or more. 前記エポキシ樹脂(B)の25℃における粘度が10000mPa・s以上である請求項1又は2に記載の熱伝導シート。   The heat conductive sheet according to claim 1 or 2, wherein the viscosity of the epoxy resin (B) at 25 ° C is 10,000 mPa · s or more. 前記エポキシ樹脂(B)の含有量が、前記カルボキシル基を有する有機高分子化合物(A)の量に対して、体積比で0.3〜2.5である請求項1〜3のいずれか一項に記載の熱伝導シート。   The content of the epoxy resin (B) is 0.3 to 2.5 in a volume ratio with respect to the amount of the organic polymer compound (A) having the carboxyl group. The heat conductive sheet according to item. 前記カルボキシル基を有する有機高分子化合物(A)のカルボキシル基量が0.1〜1mmol/gである請求項1〜4のいずれか一項に記載の熱伝導シート。 The heat conductive sheet according to any one of claims 1 to 4, wherein the organic polymer compound (A) having a carboxyl group has a carboxyl group amount of 0.1 to 1 mmol / g. 前記カルボキシル基を有する有機高分子化合物(A)の重量平均分子量が、250000〜1000000である請求項1〜5のいずれか一項に記載の熱伝導シート。   The heat conductive sheet according to any one of claims 1 to 5, wherein the organic polymer compound (A) having a carboxyl group has a weight average molecular weight of 250,000 to 1,000,000. 前記カルボキシル基を有する有機高分子化合物(A)のガラス転移温度(Tg)が、−20℃以下である請求項1〜6のいずれか一項に記載の熱伝導シート。   The heat conductive sheet according to any one of claims 1 to 6, wherein the organic polymer compound (A) having a carboxyl group has a glass transition temperature (Tg) of -20 ° C or lower. 前記カルボキシル基を有する有機高分子化合物(A)が、ポリ(メタ)アクリル酸エステル系高分子化合物である請求項1〜7のいずれか一項に記載の熱伝導シート。   The heat conductive sheet according to any one of claims 1 to 7, wherein the organic polymer compound (A) having a carboxyl group is a poly (meth) acrylate polymer compound. 請求項1〜8のいずれか一項に記載の熱伝導シートを、発熱体と放熱体の間に介在させてなる放熱装置。   A heat dissipation device comprising the heat conductive sheet according to any one of claims 1 to 8 interposed between a heat generator and a heat radiator.
JP2016239337A 2016-12-09 2016-12-09 Heat-dissipating device using heat-conducting sheet and heat-conducting sheet Active JP6981001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016239337A JP6981001B2 (en) 2016-12-09 2016-12-09 Heat-dissipating device using heat-conducting sheet and heat-conducting sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016239337A JP6981001B2 (en) 2016-12-09 2016-12-09 Heat-dissipating device using heat-conducting sheet and heat-conducting sheet

Publications (2)

Publication Number Publication Date
JP2018095691A true JP2018095691A (en) 2018-06-21
JP6981001B2 JP6981001B2 (en) 2021-12-15

Family

ID=62634629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016239337A Active JP6981001B2 (en) 2016-12-09 2016-12-09 Heat-dissipating device using heat-conducting sheet and heat-conducting sheet

Country Status (1)

Country Link
JP (1) JP6981001B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189626A1 (en) * 2018-03-30 2019-10-03 バンドー化学株式会社 Thermally conductive sheet, method for manufacturing thermally conductive sheet, and method for using thermally conductive sheet
JP2020138991A (en) * 2019-02-26 2020-09-03 日本ゼオン株式会社 Thermoconductive sheet and method for producing the same
CN114865190A (en) * 2022-04-11 2022-08-05 北京机电工程研究所 Underwater device lithium battery system and underwater device
WO2022249339A1 (en) * 2021-05-26 2022-12-01 日産自動車株式会社 Heat conduction film and heat-dissipating structure using same
WO2022249338A1 (en) * 2021-05-26 2022-12-01 日産自動車株式会社 Thermally conductive film and heat dissipation structure using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254527A (en) * 2006-03-22 2007-10-04 Toray Ind Inc Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same
JP2010132856A (en) * 2008-10-28 2010-06-17 Hitachi Chem Co Ltd Thermoconductive sheet, method for producing the same, and heat-releasing device using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254527A (en) * 2006-03-22 2007-10-04 Toray Ind Inc Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same
JP2010132856A (en) * 2008-10-28 2010-06-17 Hitachi Chem Co Ltd Thermoconductive sheet, method for producing the same, and heat-releasing device using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189626A1 (en) * 2018-03-30 2019-10-03 バンドー化学株式会社 Thermally conductive sheet, method for manufacturing thermally conductive sheet, and method for using thermally conductive sheet
JPWO2019189626A1 (en) * 2018-03-30 2020-04-30 バンドー化学株式会社 Thermally conductive sheet, method for producing thermally conductive sheet, and method for using thermally conductive sheet
JP2020138991A (en) * 2019-02-26 2020-09-03 日本ゼオン株式会社 Thermoconductive sheet and method for producing the same
JP7363051B2 (en) 2019-02-26 2023-10-18 日本ゼオン株式会社 Thermal conductive sheet and its manufacturing method
WO2022249339A1 (en) * 2021-05-26 2022-12-01 日産自動車株式会社 Heat conduction film and heat-dissipating structure using same
WO2022249338A1 (en) * 2021-05-26 2022-12-01 日産自動車株式会社 Thermally conductive film and heat dissipation structure using same
CN114865190A (en) * 2022-04-11 2022-08-05 北京机电工程研究所 Underwater device lithium battery system and underwater device

Also Published As

Publication number Publication date
JP6981001B2 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
JP5316254B2 (en) HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
US10125237B2 (en) Heat radiation sheet and heat radiation device
JP2018095691A (en) Thermal conductive sheet and heat dissipation device using the thermal conductive sheet
JP5560630B2 (en) HEAT CONDUCTIVE SHEET, METHOD FOR PRODUCING THE HEAT CONDUCTIVE SHEET, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
TWI577959B (en) Thermal conductive sheet, method of producing thermal conductive sheet and radiator
JP5740864B2 (en) HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
TWI470010B (en) A heat-conductive sheet, a method for manufacturing the same, and a heat radiating device using a heat-conducting sheet
CN103827221B (en) Resin composition, resin sheet, resin sheet cured product, metal foil with resin, and heat dissipation member
JP2011162642A (en) Thermally conductive sheet, method for manufacturing the same and heat-dissipating device using thermally conductive sheet
JP5698932B2 (en) Thermally conductive sheet
JP2016108457A (en) Resin composition and method for producing the same
JP6527904B2 (en) Resin composition, article produced therefrom, and method of producing the same
JP2012015273A (en) Thermal conductive sheet, method of manufacturing thermal conductive sheet and heat radiation device using thermal conductive sheet
JP5678596B2 (en) Heat transfer sheet, heat transfer sheet manufacturing method, and heat dissipation device
JP5454300B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING SAME
JP2015061924A (en) Thermal conductive sheet, method of manufacturing thermal conductive sheet and heat radiation device using thermal conductive sheet
JP2020126972A (en) Thermally conductive sheet
US20240120254A1 (en) Thermally-conductive sheet and electronic device
JP5664293B2 (en) Thermal conductive sheet and heat dissipation device
JP2011184663A (en) Heat conductive sheet, method for producing the same, and heat radiation device using the same
WO2022176822A1 (en) Method for producing heat dissipation member
JP2021155737A (en) Resin composition, thermally conductive resin sheet, laminated heat radiation sheet, heat dissipating circuit board and power semiconductor device
JP2017204572A (en) Adhesive heat-conducting sheet, method for manufacturing adhesive heat-conducting sheet, and heat radiator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210908

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210908

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210929

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211101

R151 Written notification of patent or utility model registration

Ref document number: 6981001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350