JP2018090855A - Raw material for chemical vapor deposition, production method thereof, and production method of oxide film containing indium formed by using raw material for chemical vapor deposition - Google Patents

Raw material for chemical vapor deposition, production method thereof, and production method of oxide film containing indium formed by using raw material for chemical vapor deposition Download PDF

Info

Publication number
JP2018090855A
JP2018090855A JP2016234819A JP2016234819A JP2018090855A JP 2018090855 A JP2018090855 A JP 2018090855A JP 2016234819 A JP2016234819 A JP 2016234819A JP 2016234819 A JP2016234819 A JP 2016234819A JP 2018090855 A JP2018090855 A JP 2018090855A
Authority
JP
Japan
Prior art keywords
vapor deposition
raw material
chemical vapor
indium
production method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016234819A
Other languages
Japanese (ja)
Other versions
JP6777933B2 (en
Inventor
水谷 文一
Bunichi Mizutani
文一 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojundo Kagaku Kenkyusho KK
Original Assignee
Kojundo Kagaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojundo Kagaku Kenkyusho KK filed Critical Kojundo Kagaku Kenkyusho KK
Priority to JP2016234819A priority Critical patent/JP6777933B2/en
Publication of JP2018090855A publication Critical patent/JP2018090855A/en
Application granted granted Critical
Publication of JP6777933B2 publication Critical patent/JP6777933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a raw material for chemical vapor deposition (CVD), preservable for a long term, and easily handleable when performing CVD, which is a raw material for producing an indium oxide thin film by CVD; and to provide a production method thereof.SOLUTION: A raw material for chemical vapor deposition contains a compound expressed as following formula (1), and has an absorption peak in a region of 500 nm or higher and 700 nm or lower in a visible light region (in the formula (1), R shows an alkyl group having the number of carbon atoms of 1-4).SELECTED DRAWING: None

Description

本発明は、化学蒸着(CVD:chemical vapor deposition)により、インジウムを含有する酸化物の膜を形成するための化学蒸着用原料に関する。   The present invention relates to a raw material for chemical vapor deposition for forming an oxide film containing indium by chemical vapor deposition (CVD).

透明導電膜は、導電性、及び可視光線に対する優れた光線透過性を有することから、太陽電池、液晶表示素子、その他各種受光素子の電極等に利用され、さらに、近赤外線領域での反射吸収特性を生かして、自動車や建築物の窓ガラス等に用いられる反射膜や各種の帯電防止膜等にも利用されている。   The transparent conductive film has conductivity and excellent light transmittance with respect to visible light. Therefore, the transparent conductive film is used for electrodes of solar cells, liquid crystal display elements, and other various light receiving elements, and also has a reflection absorption characteristic in the near infrared region. Taking advantage of this, it is also used for reflective films used for window glass of automobiles and buildings, and various antistatic films.

上記透明導電膜には、一般に、アルミニウム、ガリウム、インジウム又はスズをドーパントとして含む酸化亜鉛(ZnO)や、スズ、タングステン又はチタンをドーパントとして含む酸化インジウム(In23)等が利用されている。特に、スズをドーパントとして含む酸化インジウム膜はITO膜といわれ、低抵抗の透明導電膜として工業的に広く利用されている。 In general, zinc oxide (ZnO) containing aluminum, gallium, indium or tin as a dopant, indium oxide (In 2 O 3 ) containing tin, tungsten or titanium as a dopant is used for the transparent conductive film. . In particular, an indium oxide film containing tin as a dopant is called an ITO film and is widely used industrially as a low-resistance transparent conductive film.

このような透明導電膜の製造方法には、物理蒸着(PVD:physical vapor deposition)や化学蒸着(CVD)が挙げられるが、化学蒸着(CVD)の一種である、原子層堆積(ALD:atomic layer deposition)によれば、原子レベルで均一な厚さの被膜を凹凸のある表面に形成することができる。   Such a transparent conductive film manufacturing method includes physical vapor deposition (PVD) and chemical vapor deposition (CVD). Atomic layer deposition (ALD), which is a type of chemical vapor deposition (CVD), is used. According to deposition, a film having a uniform thickness at the atomic level can be formed on an uneven surface.

例えば、非特許文献1では、シクロペンタジエニルインジウム(CpIn)と、酸素源として水(H2O)及び酸素(O2)の2種類を用いて、ALDにより、シクロペンタジエニルインジウム(CpIn)、水(H2O)及び酸素(O2)の順に暴露を行うことにより、均一な透明導電性In23酸化物を形成している。 For example, in Non-Patent Document 1, cyclopentadienyl indium (CpIn) and two types of water (H 2 O) and oxygen (O 2 ) are used as an oxygen source, and cyclopentadienyl indium (CpIn) is obtained by ALD. ), Water (H 2 O) and oxygen (O 2 ) in this order to form a uniform transparent conductive In 2 O 3 oxide.

特許文献2では、常温で液体であるインジウム化合物を用いて、ALDにより、インジウムを含有する酸化膜を形成しており、シクロペンタジエニルインジウム(CpIn)は固体であるため、大面積の透明基材には適さないとしている。   In Patent Document 2, an indium-containing oxide film is formed by ALD using an indium compound that is liquid at room temperature. Since cyclopentadienyl indium (CpIn) is a solid, a transparent substrate having a large area is used. It is not suitable for materials.

このように、シクロペンタジエニルインジウム(I)をインジウムの前駆体として用いると、良好なインジウムを含有する酸化物の膜が形成できるが、シクロペンタジエニルインジウム(I)は、熱、光、大気に極度に敏感であり、安定的な保存や取り扱いが容易ではないという問題があった。また、大面積の基材に適用するには、前駆体は常温で液体であることが好ましい。   As described above, when cyclopentadienyl indium (I) is used as a precursor of indium, a good oxide film containing indium can be formed. However, cyclopentadienyl indium (I) There was a problem that it was extremely sensitive to the atmosphere and stable storage and handling were not easy. Moreover, in order to apply to a large area base material, it is preferable that a precursor is a liquid at normal temperature.

特許文献1では、シクロペンタジエニルインジウム(I)又はアルキルシクロペンタジエニルインジウム(I)をインジウムの前駆体として用いて、有機金属気相成長(MOVPE:metalorganic vapor phase epitaxy)法により、基材上にエピタキシャルInP層を形成しており、常温で液体であるエチルシクロペンタジエニルインジウム(I)を例示しているが、熱、光、大気に敏感という課題は残されている。   In Patent Document 1, cyclopentadienyl indium (I) or alkylcyclopentadienyl indium (I) is used as a precursor of indium, and a substrate is formed by a metal organic vapor phase epitaxy (MOVPE) method. An epitaxial InP layer is formed thereon, and ethylcyclopentadienyl indium (I), which is liquid at room temperature, is exemplified, but the problem of being sensitive to heat, light, and air remains.

米国特許第4965222号明細書U.S. Pat. No. 4,965,222 特表2015−506416号公報JP-T-2015-506416

ECS Transactions, 41 (2) 147-155 (2011)ECS Transactions, 41 (2) 147-155 (2011)

本発明は、原子層堆積(ALD)等の化学蒸着(CVD)により、インジウムを含有する酸化物の膜を製造するための原料であって、安定的に保存でき、化学蒸着(CVD)を行うに際して、取り扱いが容易な原料及びその製造方法を提供することを課題とする。   The present invention is a raw material for producing an oxide film containing indium by chemical vapor deposition (CVD) such as atomic layer deposition (ALD), which can be stably stored and performs chemical vapor deposition (CVD). At this time, it is an object to provide a raw material that is easy to handle and a method for manufacturing the same.

本発明者は、上記した従来技術における問題を解消しうるインジウム化合物について検討した結果、下記式(1)で表される化合物が、熱、光、大気に対して極めて敏感ではあるが、酸素と接触させて、可視光領域において500nm以上700nm以下の領域に吸収ピークを有する状態にすれば、安定化させることができることを見出し、本発明を完成させた。

Figure 2018090855
式(1)中、Rは炭素原子数1〜4のアルキル基を表す。 As a result of studying an indium compound that can solve the above-described problems in the prior art, the present inventor has found that the compound represented by the following formula (1) is extremely sensitive to heat, light, and air, but oxygen and It has been found that the contact can be stabilized by having an absorption peak in the region of 500 nm to 700 nm in the visible light region, and the present invention has been completed.
Figure 2018090855
In formula (1), R represents an alkyl group having 1 to 4 carbon atoms.

本発明は以下の事項からなる。
本発明の化学蒸着用原料は、化学蒸着法によりインジウムを含有する酸化物の膜を製造するための原料であって、下記式(1)で表される化合物を主成分として含有し、可視光領域において500nm以上700nm以下の領域に吸収ピークを有することを特徴とする。

Figure 2018090855
The present invention comprises the following items.
The raw material for chemical vapor deposition of the present invention is a raw material for producing an oxide film containing indium by a chemical vapor deposition method, and contains a compound represented by the following formula (1) as a main component, and visible light. It has an absorption peak in a region of 500 nm to 700 nm in the region.
Figure 2018090855

ただし、式(1)中、Rは炭素原子数1〜4のアルキル基を表す。
前記化学蒸着用原料は、微量の酸素をさらに含有することが好ましい。
前記化学蒸着用原料は、蒸留可能な液体であることが好ましく、特に23℃において液体であることが好ましい。
However, in Formula (1), R represents a C1-C4 alkyl group.
The chemical vapor deposition material preferably further contains a trace amount of oxygen.
The chemical vapor deposition material is preferably a distillable liquid, and particularly preferably a liquid at 23 ° C.

本発明の化学蒸着用原料の製造方法は、前記式(1)で表される化合物と酸素とを接触させて、前記式(1)で表される化合物を安定化させる工程を含むことを特徴とする。   The method for producing a raw material for chemical vapor deposition of the present invention includes a step of bringing the compound represented by the formula (1) into contact with oxygen and stabilizing the compound represented by the formula (1). And

本発明のインジウムを含有する酸化物の膜の製造方法は、前記化学蒸着用原料を用いて、化学蒸着法によって形成することを特徴とする。   The method for producing an indium-containing oxide film according to the present invention is characterized in that the oxide film is formed by chemical vapor deposition using the chemical vapor deposition material.

本発明によれば、アルキルシクロペンタジエニルインジウムを合成した後、シリンダー等の大気を遮断した密封容器に充填する前に、微量の酸素に接触させることで、該アルキルシクロペンタジエニルインジウムが安定化し、長期に渡る保存が可能となる。ガラスアンプル中で保存する場合も、遮光すればシリンダーと同様に長期保存が可能となる。
本発明の化学蒸着用原料は、蒸留可能な液体であり、また、熱、光に対する反応性が抑制されて、安定化しているため、化学蒸着(CVD)により、インジウムを含有する酸化物の膜を形成するのに、取り扱いが容易である。
According to the present invention, after synthesizing the alkylcyclopentadienyl indium, the alkylcyclopentadienyl indium is stabilized by contacting with a small amount of oxygen before filling into a sealed container such as a cylinder that shuts off the atmosphere. Can be stored for a long time. When stored in a glass ampoule, it can be stored for a long time like a cylinder if it is shielded from light.
The raw material for chemical vapor deposition of the present invention is a distillable liquid, and has a stable property with suppressed reactivity to heat and light. Therefore, an oxide film containing indium is formed by chemical vapor deposition (CVD). Is easy to handle.

以下、本発明の化学蒸着用原料について詳細に説明する。
本発明の化学蒸着用液体原料は、化学蒸着法により、インジウムを含有する酸化物の膜を製造するための原料であって、下記式(1)で表される化合物を主成分とし、可視光領域において500nm以上700nm以下の領域に吸収ピークを有する。
Hereinafter, the raw material for chemical vapor deposition of the present invention will be described in detail.
The liquid raw material for chemical vapor deposition of the present invention is a raw material for producing an oxide film containing indium by a chemical vapor deposition method, comprising a compound represented by the following formula (1) as a main component, and visible light. The region has an absorption peak in the region of 500 nm to 700 nm.

Figure 2018090855
式(1)中、Rは炭素原子数1〜4のアルキル基を表す。
Figure 2018090855
In formula (1), R represents an alkyl group having 1 to 4 carbon atoms.

Rが水素であるとき、すなわち式(1)で表される化合物がシクロペンタジエニルインジウムであるとき、融点は約170℃となり、蒸溜は困難である。このため、本発明の化学蒸着用原料は、式(1)中のRが炭素原子数1〜4であることが好ましい。   When R is hydrogen, that is, when the compound represented by the formula (1) is cyclopentadienyl indium, the melting point is about 170 ° C., and distillation is difficult. For this reason, as for the raw material for chemical vapor deposition of this invention, it is preferable that R in Formula (1) is C1-C4.

さらに、Rが炭素原子数1〜4のアルキル基は、エチル基、n−プロピル基、n−ブチル基であることが好ましく、エチル基であることが特に好ましい。   Furthermore, R is preferably an alkyl group having 1 to 4 carbon atoms, which is preferably an ethyl group, an n-propyl group, or an n-butyl group, and particularly preferably an ethyl group.

上記式(1)で表される化合物は、公知の方法を参考にして合成することができる。例えば、Rがエチル基である場合には、不活性ガス雰囲気下に、ブチルリチウムと等モル量のエチルシクロペンタジエンとを反応させて、エチルシクロペンタジエニルリチウムを合成した後、ジエチルエーテル中で等モル量の一塩化インジウム粉末を添加して反応させることにより、エチルシクロペンタジエニルインジウムを合成する。なお、エチルシクロペンタジエニルインジウムは光に極めて敏感であるため、一塩化インジウム添加後は反応系を遮光する。その後、このエチルシクロペンタジエニルインジウムの粗生成物は減圧下に蒸留精製する。
上記式(1)で表される化合物は、上記方法に限られることなく、公知の種々の方法を組み合わせて合成することができる。
The compound represented by the above formula (1) can be synthesized with reference to a known method. For example, when R is an ethyl group, butyl lithium is reacted with an equimolar amount of ethyl cyclopentadiene in an inert gas atmosphere to synthesize ethyl cyclopentadienyl lithium, and then in diethyl ether. Ethylcyclopentadienyl indium is synthesized by adding an equimolar amount of indium monochloride powder and reacting them. Since ethylcyclopentadienyl indium is extremely sensitive to light, the reaction system is shielded from light after indium monochloride is added. Thereafter, this crude product of ethylcyclopentadienylindium is purified by distillation under reduced pressure.
The compound represented by the above formula (1) is not limited to the above method, and can be synthesized by combining various known methods.

上記式(1)で表される化合物は、可視光領域において500nm以下の領域に吸収ピークを有し、熱、大気、光に極めて敏感である。シリンダーのような大気遮断密封容器に充填する場合でも、充填時のわずかな光、あるいは充填時や充填後の熱によって、金属インジウムと見られる物質が析出しやすい。本発明では、上記式(1)で表される化合物を蒸留精製する際に、低温で捕集し、充填までに微量の酸素と接触させることで、500nm以上700nm以下の領域に吸収ピークをもつ状態に変化させ、安定化させる。この吸収ピークは550nm以上600nm以下であることが特に好ましい。酸素と上記式(1)で表される化合物との接触は、捕集後、温度が常温まで上がるまでが好ましい。また、酸素源は、純酸素ガスでも、窒素やアルゴンなどの不活性ガスと酸素を混合したガスでもよい。乾燥空気も好適に使用できる。
このようにして得られる本発明の化学蒸着用原料は、蒸留可能な液体であることが好ましく、80℃において液体であり、融点は、好ましくは60℃以下、特に好ましくは23℃以下である。
The compound represented by the above formula (1) has an absorption peak in a region of 500 nm or less in the visible light region, and is extremely sensitive to heat, air, and light. Even when filling an airtight sealed container such as a cylinder, a material that appears to be metallic indium is likely to precipitate due to slight light during filling or heat during filling or after filling. In the present invention, when the compound represented by the above formula (1) is purified by distillation, it is collected at a low temperature and brought into contact with a trace amount of oxygen before filling, thereby having an absorption peak in a region of 500 nm to 700 nm. Change to a state and stabilize. This absorption peak is particularly preferably from 550 nm to 600 nm. The contact between oxygen and the compound represented by the above formula (1) is preferably until the temperature rises to room temperature after collection. The oxygen source may be pure oxygen gas or a gas obtained by mixing an inert gas such as nitrogen or argon and oxygen. Dry air can also be suitably used.
The raw material for chemical vapor deposition of the present invention thus obtained is preferably a distillable liquid, is liquid at 80 ° C., and has a melting point of preferably 60 ° C. or less, particularly preferably 23 ° C. or less.

上記のとおり、本発明では、上記式(1)で表される化合物を酸素に接触させて安定化させる。このメカニズムとしては、接触させた酸素の少なくとも一部が、インジウム原子と配位結合し、以下に示すような構造になっているものと考えられ、Inと酸素の配位結合は比較的弱いので、CVDの際の障害とはならない。   As described above, in the present invention, the compound represented by the above formula (1) is stabilized by contacting with oxygen. As this mechanism, it is considered that at least a part of the contacted oxygen is coordinated with an indium atom and has a structure as shown below, and the coordinate bond between In and oxygen is relatively weak. This is not an obstacle during CVD.

Figure 2018090855
Figure 2018090855

次に、本発明のインジウムを含有する酸化物について説明する。
本発明のインジウムを含有する酸化物の膜は、上記化学蒸着用原料を用いて、CVDによって形成されることを特徴とする。
Next, the oxide containing indium according to the present invention will be described.
The oxide film containing indium according to the present invention is formed by CVD using the chemical vapor deposition material.

本発明の化学蒸着用原料は、熱分解やプラズマを用いて連続的に堆積させるCVDにも好適に使用できるが、Inとアルキルシクロペンタジエニル配位子との結合が水によって、極めて切れやすい性質を利用して、特にALDに好適に使用できる。   The raw material for chemical vapor deposition of the present invention can be suitably used for CVD which is continuously deposited using thermal decomposition or plasma, but the bond between In and the alkylcyclopentadienyl ligand is very easily broken by water. Utilizing the properties, it can be suitably used particularly for ALD.

ALDにおいては、まず基板表面に存在する酸素原子に、本発明の化学蒸着用原料、すなわち、式(1)で表される化合物中のInが単層吸着する。このとき酸素原子が水酸基の酸素であった場合は、アルキルシクロペンタジエニル配位子が外れることによって、Inが単層吸着する。次に、ALDのもう一つの原料である水を供給することによって、酸素原子に吸着した本発明の化学蒸着用原料からアルキルシクロペンタジエニル配位子が外れて水酸基が生成する。   In ALD, first, a single layer of In in the compound represented by the formula (1) is adsorbed on the chemical vapor deposition raw material of the present invention, that is, the oxygen atoms present on the substrate surface. At this time, when the oxygen atom is oxygen of a hydroxyl group, In is adsorbed as a single layer by removing the alkylcyclopentadienyl ligand. Next, by supplying water which is another raw material of ALD, the alkylcyclopentadienyl ligand is detached from the chemical vapor deposition raw material of the present invention adsorbed on oxygen atoms to generate a hydroxyl group.

本発明の化学蒸着用原料のアルキルシクロペンタジエニル配位子は水に極めて敏感に反応して外れるため、この成膜の際にアルキルシクロペンタジエニル配位子は残留しにくく、炭素混入のほとんどない膜の形成が可能となる。   Since the alkylcyclopentadienyl ligand of the raw material for chemical vapor deposition of the present invention reacts with water very sensitively and is removed, the alkylcyclopentadienyl ligand hardly remains during the film formation, It is possible to form almost no film.

これまで用いられてきたトリメチルインジウムなどの原料では、その反応機構から考えて、ALDの際にメチル基由来の炭素混入が起こりやすくなる。一方で、本発明の化学蒸着用原料のALDにおいて、もう一つの原料として、水だけを用いた場合は、アルキルシクロペンタジエニル配位子は速やかに外れるものの、In原子の酸化が不十分になりやすいが、非特許文献1のように、さらに酸素も原料として用いることによって、炭素混入のないIn23を主成分とする酸化膜が形成できる。 In the raw materials such as trimethylindium that have been used so far, in view of the reaction mechanism, carbon contamination due to methyl groups is likely to occur during ALD. On the other hand, in the ALD of the chemical vapor deposition raw material of the present invention, when only water is used as another raw material, the alkylcyclopentadienyl ligand is rapidly removed, but the oxidation of In atoms is insufficient. However, as in Non-Patent Document 1, by using oxygen as a raw material, an oxide film containing In 2 O 3 without carbon contamination as a main component can be formed.

組み合わせて用いる水と酸素は、通常のALD方法にならって、本発明の化学蒸着用原料と交互に供給するが、水と酸素を同時に供給しても良いし、原料、水、酸素の順番に供給しても、原料、酸素、水の順番に供給しても良い。上記のいずれかのサイクルを重ねることで、単原子層ずつのIn23膜が形成でき、サイクル数によって膜厚が制御できる。 The water and oxygen used in combination are supplied alternately with the raw material for chemical vapor deposition according to the present invention according to the normal ALD method. However, water and oxygen may be supplied simultaneously, or in the order of the raw material, water and oxygen. Even if it supplies, you may supply in order of a raw material, oxygen, and water. By repeating any of the above cycles, a single atomic layer In 2 O 3 film can be formed, and the film thickness can be controlled by the number of cycles.

水または酸素を供給する際は、プラズマを用いてもよいし、酸素源としてオゾンを用いてもよい。   When supplying water or oxygen, plasma may be used, or ozone may be used as an oxygen source.

また、本発明の化学蒸着用原料は、式(1)で表される化合物を酸素によりさらに安定化させた場合、原料の供給方法等、通常のALDで用いられる方法が広く利用でき、基板に原料を供給するまでの間の分解が抑制されているので、式(1)で表される化合物より適用範囲は広い。   In addition, the chemical vapor deposition raw material of the present invention can be widely used in ordinary ALD methods such as a raw material supply method when the compound represented by the formula (1) is further stabilized by oxygen. Since decomposition until the raw material is supplied is suppressed, the application range is wider than the compound represented by the formula (1).

以上のとおり、本発明では、式(1)で表される化合物に対して、もう一つの原料として、水と酸素との両方を用いることで、炭素混入の無いALD成膜が可能であるが、該式(1)で表される化合物は、光、大気、熱に敏感である。そこで、この化合物を大気遮断密封容器に入れる際に、微量の酸素と接触させることで、安定化し、長期保存可能となるため、取り扱いが容易となる。   As described above, in the present invention, by using both water and oxygen as another raw material for the compound represented by the formula (1), ALD film formation without carbon contamination is possible. The compound represented by the formula (1) is sensitive to light, air and heat. Therefore, when this compound is placed in an airtight sealed container, it can be stabilized and stored for a long period of time by being brought into contact with a small amount of oxygen, so that it can be handled easily.

以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は下記実施例により制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not restrict | limited by the following Example.

[実施例1]
ヘキサン中で、ブチルリチウムと等モル量のエチルシクロペンタジエンとを反応させて、エチルシクロペンタジエニルリチウムを合成した。反応後、溶媒のヘキサンを減圧留去し、固体のエチルシクロペンタジエニルリチウムを得た。次に、ジエチルエーテルを添加して懸濁液とし、そこに1.2倍モル量の細かく粉砕した一塩化インジウム粉末を添加して反応させ、エチルシクロペンタジエニルインジウムを合成した。一塩化インジウム添加後は、工程チェック時以外は遮光して反応を行った。得られた懸濁液から、ジエチルエーテルを減圧留去した後、減圧蒸留することによって、黄色液体の単体を得た。
なお、エチルシクロペンタジエニルインジウムは光と熱に極めて敏感と予想されたため、上記の合成は不活性ガス中で行った。
[Example 1]
Ethylcyclopentadienyllithium was synthesized by reacting butyllithium with an equimolar amount of ethylcyclopentadiene in hexane. After the reaction, the solvent hexane was distilled off under reduced pressure to obtain solid ethylcyclopentadienyllithium. Next, diethyl ether was added to form a suspension, and 1.2 times mole amount of finely pulverized indium monochloride powder was added and reacted to synthesize ethylcyclopentadienyl indium. After the addition of indium monochloride, the reaction was carried out with light shielding except during the process check. From the resulting suspension, diethyl ether was distilled off under reduced pressure, followed by distillation under reduced pressure to obtain a simple yellow liquid.
Since ethylcyclopentadienyl indium was expected to be extremely sensitive to light and heat, the above synthesis was performed in an inert gas.

さらに、安定化させるため、黄色液体を微量の酸素に接触させたところ、赤褐色に変化した。この液体をアンプルにつめ遮光保存して、1日後に確認したところ、析出物などの変化は見られなかった。   Further, when the yellow liquid was brought into contact with a small amount of oxygen for stabilization, it turned reddish brown. When this liquid was put into an ampule and stored in the dark and confirmed after 1 day, no changes such as precipitates were observed.

別途、この液体の1H-NMRを測定したところ、1.06ppm t 3H、2.39ppm q 2H、5.72ppm t 2H、5.86ppm t 2H の信号が得られ、想定するエチルシクロペンタジエニルインジウムの構造を支持していた。 Separately, when 1 H-NMR of this liquid was measured, signals of 1.06 ppm t 3H, 2.39 ppm q 2H, 5.72 ppm t 2H, 5.86 ppm t 2H were obtained, and the assumed structure of ethylcyclopentadienyl indium was obtained. I supported it.

さらにこの赤褐色の液体の吸光度を500nmから700nmの範囲で測定したところ、この化合物の吸収と見られる500nm以下の大きなピークのテーリングに加えて、550nmから600nmの間にショルダー状の吸収ピークが観察された。   Further, when the absorbance of this reddish brown liquid was measured in the range of 500 nm to 700 nm, a shoulder-like absorption peak was observed between 550 nm and 600 nm in addition to the tailing of a large peak of 500 nm or less that is considered to be absorption of this compound. It was.

[比較例1]
極微量の大気と反応させなかった以外は、実施例1と同様にして、エチルシクロペンタジエニルインジウムを合成し、アンプル中で遮光保管した。アンプル充填時は黄色であったが、すぐに金属のような析出が見られ、1日後に確認したところ、析出物が増え、色が濃くなっていた。
[Comparative Example 1]
Ethylcyclopentadienylindium was synthesized in the same manner as in Example 1 except that it was not reacted with a very small amount of air, and was stored in an ampoule in the dark. Although it was yellow at the time of ampule filling, precipitation like a metal was immediately observed, and when confirmed one day later, the deposit increased and the color became darker.

この黄色の液体の吸光度を500nmから700nmの範囲で測定したところ、この化合物の吸収と見られる500nm以下の大きなピークのテーリングは観察されたが、550nmから600nmの間のショルダー状の吸収ピークは観察されなかった。   When the absorbance of this yellow liquid was measured in the range of 500 nm to 700 nm, a large peak tailing of 500 nm or less, which is considered to be absorption of this compound, was observed, but a shoulder-like absorption peak between 550 nm and 600 nm was observed. Was not.

Claims (5)

下記式(1)で表される化合物を主成分として含有し、
可視光領域において500nm以上700nm以下の領域に吸収ピークを有する化学蒸着用原料。
Figure 2018090855
(式(1)中、Rは炭素原子数1〜4のアルキル基を表す。)
Containing a compound represented by the following formula (1) as a main component,
A raw material for chemical vapor deposition having an absorption peak in a region of 500 nm to 700 nm in the visible light region.
Figure 2018090855
(In formula (1), R represents an alkyl group having 1 to 4 carbon atoms.)
微量の酸素をさらに含有する請求項1に記載の化学蒸着用原料。   The raw material for chemical vapor deposition according to claim 1, further comprising a trace amount of oxygen. 23℃において液体である、請求項1または2に記載の化学蒸着用原料。   The raw material for chemical vapor deposition according to claim 1 or 2, which is liquid at 23 ° C. 前記式(1)で表される化合物と酸素とを接触させて、前記式(1)で表される化合物を安定化させる工程を含む化学蒸着用原料の製造方法。   The manufacturing method of the raw material for chemical vapor deposition including the process which makes the compound represented by the said Formula (1) and oxygen contact, and stabilizes the compound represented by the said Formula (1). 請求項1〜3のいずれか一項に記載の化学蒸着用原料を用いて、化学蒸着法によって形成する、インジウムを含有する酸化物の膜の製造方法。   The manufacturing method of the film | membrane of the oxide containing an indium formed by the chemical vapor deposition method using the raw material for chemical vapor deposition as described in any one of Claims 1-3.
JP2016234819A 2016-12-02 2016-12-02 A raw material for chemical vapor deposition and a method for producing the same, and a method for producing an indium-containing oxide film formed by using the raw material for chemical vapor deposition. Active JP6777933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016234819A JP6777933B2 (en) 2016-12-02 2016-12-02 A raw material for chemical vapor deposition and a method for producing the same, and a method for producing an indium-containing oxide film formed by using the raw material for chemical vapor deposition.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016234819A JP6777933B2 (en) 2016-12-02 2016-12-02 A raw material for chemical vapor deposition and a method for producing the same, and a method for producing an indium-containing oxide film formed by using the raw material for chemical vapor deposition.

Publications (2)

Publication Number Publication Date
JP2018090855A true JP2018090855A (en) 2018-06-14
JP6777933B2 JP6777933B2 (en) 2020-10-28

Family

ID=62564377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016234819A Active JP6777933B2 (en) 2016-12-02 2016-12-02 A raw material for chemical vapor deposition and a method for producing the same, and a method for producing an indium-containing oxide film formed by using the raw material for chemical vapor deposition.

Country Status (1)

Country Link
JP (1) JP6777933B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179748A1 (en) 2019-03-05 2020-09-10 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Indium compound and method for forming indium-containing film using said indium compound
WO2021106652A1 (en) 2019-11-27 2021-06-03 株式会社Adeka Compound, thin film-forming material, and method for producing thin film
JP2021529435A (en) * 2018-06-30 2021-10-28 ラム リサーチ コーポレーションLam Research Corporation Metal liner zincate treatment and doping for liner passivation and adhesion improvement
WO2022026582A1 (en) * 2020-07-28 2022-02-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Heteroalkylcyclopentadienyl indium-containing precursors and processes of using the same for deposition of indium-containing layers
KR20230108319A (en) 2020-12-04 2023-07-18 가부시키가이샤 고준도가가쿠 겐큐쇼 A vapor deposition source for producing a film containing indium and one or more other metals and a method for producing a film containing indium and one or more other metals
JP7503121B2 (en) 2021-12-30 2024-06-19 ディーエヌエフ カンパニー リミテッド Indium compound, its method of manufacture, composition for vapor deposition of indium-containing thin film, and method of manufacture of indium-containing thin film

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163930A (en) * 1988-10-07 1990-06-25 Philips Gloeilampenfab:Nv Manufacture of epitaxial
JPH0388324A (en) * 1989-08-31 1991-04-12 Nippon Telegr & Teleph Corp <Ntt> Method for forming compound semiconductor thin film
JPH08316233A (en) * 1994-06-21 1996-11-29 Toshiba Corp Manufacture of semiconductor device
JPH09227573A (en) * 1996-02-23 1997-09-02 Kojundo Chem Lab Co Ltd Production of organocopper complex
JP2007084522A (en) * 2005-02-02 2007-04-05 Tosoh Corp Tantalum compound, method for producing the same, tantalum-containing thin film and method of forming the same
JP2010515940A (en) * 2007-01-12 2010-05-13 コヒラス アクティーゼルスカブ MICROSTRUCTURE OPTICAL FIBER, OPTICAL SYSTEM, LIGHT SOURCE, AND OPTICAL FIBER MANUFACTURING METHOD WITH IMPROVED LIFETIME AND PERFORMANCE BY LOADING AT HIGH TEMPERATURE
JP2011513260A (en) * 2008-02-27 2011-04-28 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for forming a titanium-containing layer on a substrate using atomic layer deposition (ALD)
JP2015506416A (en) * 2012-01-27 2015-03-02 ユーピー ケミカル カンパニー リミテッド Oxide film containing indium and method for producing the same
JP2015145326A (en) * 2014-02-04 2015-08-13 貴志 惠原 Membrane product and producing method of membrane product, sol-gel process composition and producing method of sol-gel process composition, aluminum sol-gel process composition and producing method of aluminum sol-gel process composition, copper sol-gel process composition and producing method of copper sol-gel process composition, and producing method of structure
JP2016511936A (en) * 2013-01-25 2016-04-21 クゥアルコム・メムス・テクノロジーズ・インコーポレイテッドQUALCOMM MEMS Technologies, Inc. Composition control of metal oxide layers by atomic layer deposition for thin film transistors

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163930A (en) * 1988-10-07 1990-06-25 Philips Gloeilampenfab:Nv Manufacture of epitaxial
JPH0388324A (en) * 1989-08-31 1991-04-12 Nippon Telegr & Teleph Corp <Ntt> Method for forming compound semiconductor thin film
JPH08316233A (en) * 1994-06-21 1996-11-29 Toshiba Corp Manufacture of semiconductor device
JPH09227573A (en) * 1996-02-23 1997-09-02 Kojundo Chem Lab Co Ltd Production of organocopper complex
JP2007084522A (en) * 2005-02-02 2007-04-05 Tosoh Corp Tantalum compound, method for producing the same, tantalum-containing thin film and method of forming the same
JP2010515940A (en) * 2007-01-12 2010-05-13 コヒラス アクティーゼルスカブ MICROSTRUCTURE OPTICAL FIBER, OPTICAL SYSTEM, LIGHT SOURCE, AND OPTICAL FIBER MANUFACTURING METHOD WITH IMPROVED LIFETIME AND PERFORMANCE BY LOADING AT HIGH TEMPERATURE
JP2011513260A (en) * 2008-02-27 2011-04-28 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for forming a titanium-containing layer on a substrate using atomic layer deposition (ALD)
JP2015506416A (en) * 2012-01-27 2015-03-02 ユーピー ケミカル カンパニー リミテッド Oxide film containing indium and method for producing the same
JP2016511936A (en) * 2013-01-25 2016-04-21 クゥアルコム・メムス・テクノロジーズ・インコーポレイテッドQUALCOMM MEMS Technologies, Inc. Composition control of metal oxide layers by atomic layer deposition for thin film transistors
JP2015145326A (en) * 2014-02-04 2015-08-13 貴志 惠原 Membrane product and producing method of membrane product, sol-gel process composition and producing method of sol-gel process composition, aluminum sol-gel process composition and producing method of aluminum sol-gel process composition, copper sol-gel process composition and producing method of copper sol-gel process composition, and producing method of structure

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7368394B2 (en) 2018-06-30 2023-10-24 ラム リサーチ コーポレーション Zincating and doping of metal liners for liner passivation and improved adhesion
JP2021529435A (en) * 2018-06-30 2021-10-28 ラム リサーチ コーポレーションLam Research Corporation Metal liner zincate treatment and doping for liner passivation and adhesion improvement
WO2020179748A1 (en) 2019-03-05 2020-09-10 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Indium compound and method for forming indium-containing film using said indium compound
CN113544309A (en) * 2019-03-05 2021-10-22 乔治洛德方法研究和开发液化空气有限公司 Indium compound and method for forming indium-containing film using same
KR20210134017A (en) 2019-03-05 2021-11-08 레르 리키드 쏘시에떼 아노님 뿌르 레뜌드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Indium compound and method of forming an indium-containing film using the indium compound
KR20220104180A (en) 2019-11-27 2022-07-26 가부시키가이샤 아데카 Compound, raw material for thin film formation, and thin film manufacturing method
WO2021106652A1 (en) 2019-11-27 2021-06-03 株式会社Adeka Compound, thin film-forming material, and method for producing thin film
WO2022026582A1 (en) * 2020-07-28 2022-02-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Heteroalkylcyclopentadienyl indium-containing precursors and processes of using the same for deposition of indium-containing layers
US11859283B2 (en) 2020-07-28 2024-01-02 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Heteroalkylcyclopentadienyl indium-containing precursors and processes of using the same for deposition of indium-containing layers
JP7426538B2 (en) 2020-07-28 2024-02-01 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Heteroalkylcyclopentadienyl indium-containing precursors and methods of use thereof for the deposition of indium-containing layers
TWI836244B (en) * 2020-07-28 2024-03-21 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 Heteroalkylcyclopentadienyl indium-containing precursors and processes of using the same for deposition of indium-containing layers
KR20230108319A (en) 2020-12-04 2023-07-18 가부시키가이샤 고준도가가쿠 겐큐쇼 A vapor deposition source for producing a film containing indium and one or more other metals and a method for producing a film containing indium and one or more other metals
JP7503121B2 (en) 2021-12-30 2024-06-19 ディーエヌエフ カンパニー リミテッド Indium compound, its method of manufacture, composition for vapor deposition of indium-containing thin film, and method of manufacture of indium-containing thin film

Also Published As

Publication number Publication date
JP6777933B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
JP6777933B2 (en) A raw material for chemical vapor deposition and a method for producing the same, and a method for producing an indium-containing oxide film formed by using the raw material for chemical vapor deposition.
Ahmet et al. Polymorph-selective deposition of high purity SnS thin films from a single source precursor
KR102367495B1 (en) Raw material for chemical vapor deposition, light-shielding container containing raw material for chemical vapor deposition, and method for manufacturing the same
Basova et al. Chemistry of gold (I, III) complexes with organic ligands as potential MOCVD precursors for fabrication of thin metallic films and nanoparticles
Boysen et al. An N‐Heterocyclic Carbene Based Silver Precursor for Plasma‐Enhanced Spatial Atomic Layer Deposition of Silver Thin Films at Atmospheric Pressure
KR20180089420A (en) METHOD FOR GENERATING METAL FILM
Ihanus et al. Atomic layer deposition of SrS and BaS thin films using cyclopentadienyl precursors
US20220251706A1 (en) Bis(ethylcyclopentadienyl)tin, precursor for chemical vapor deposition, method of producing tin-containing thin film, and method of producing tin oxide thin film
JP2023100705A (en) Raw material for chemical phase vapor deposition, raw material for atomic layer deposition, and manufacturing method of thin film containing tin
Sullivan et al. Aerosol-assisted chemical vapor deposition of ZnS from thioureide single source precursors
Verchère et al. Heteroleptic tin (IV) aminoalkoxides and aminofluoroalkoxides as MOCVD precursors for undoped and F-doped SnO2 thin films
KR101629696B1 (en) Novel indium derivatives, its preparation method and the thin film using the same
US10570514B2 (en) Process for the generation of metallic films
Lai et al. Synthesis and characterization of ruthenium complexes with two fluorinated amino alkoxide chelates. The quest to design suitable MOCVD source reagents
Johnson et al. Inorganic and organozinc fluorocarboxylates: Synthesis, structure and materials chemistry
Mears et al. Structural and dynamic properties of gallium alkoxides
US9528182B2 (en) Chemical vapor deposition using N,O polydentate ligand complexes of metals
KR102355133B1 (en) Precursor For Forming A Thin Film, Method For Preparing Thereof, Method For Preparing The Thin Film, and The Thin Film
Su et al. Bis (β-ketoiminate) dioxo tungsten (VI) complexes as precursors for growth of WOx by aerosol-assisted chemical vapor deposition
KR102548031B1 (en) Novel Organo-Indium Compounds and Method for forming thin film using the same
TWI788126B (en) Raw material for vapor deposition for producing film containing indium and one or more other metals and method for producing film containing indium and one or more other metals
KR101366630B1 (en) Precursor for depositing zinc oxide-based thin film, method of fabicating thereof and method of depositing zinc oxide-based thin film using the same
JP2022089772A (en) Vapor deposition raw material for manufacturing film including indium and one or more kind of other metal and method for manufacturing film including indium and one or more kind of other metal
JP2021024846A (en) Bis(ethylcyclopentadienyl)tin
JP2020090712A (en) Bis(alkyl tetramethylcyclopentadienyl) zinc, raw material for chemical vapor deposition, and manufacturing method of thin film containing zinc

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201002

R150 Certificate of patent or registration of utility model

Ref document number: 6777933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250