JP2018084414A - Pore wall shape measurement device - Google Patents

Pore wall shape measurement device Download PDF

Info

Publication number
JP2018084414A
JP2018084414A JP2016225654A JP2016225654A JP2018084414A JP 2018084414 A JP2018084414 A JP 2018084414A JP 2016225654 A JP2016225654 A JP 2016225654A JP 2016225654 A JP2016225654 A JP 2016225654A JP 2018084414 A JP2018084414 A JP 2018084414A
Authority
JP
Japan
Prior art keywords
pore
unit
hole wall
wall surface
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016225654A
Other languages
Japanese (ja)
Other versions
JP6778087B2 (en
Inventor
小林 薫
Kaoru Kobayashi
薫 小林
尚美 佐々木
Naomi Sasaki
尚美 佐々木
昌弘 川村
Masahiro Kawamura
昌弘 川村
庸生 大中
Tsuneo Onaka
庸生 大中
祥輝 田先
Yoshiteru Tasaki
祥輝 田先
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2016225654A priority Critical patent/JP6778087B2/en
Publication of JP2018084414A publication Critical patent/JP2018084414A/en
Application granted granted Critical
Publication of JP6778087B2 publication Critical patent/JP6778087B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a pore wall surface shape measurement device that can optimally measure an inner surface shape of a pore wall regardless of a straight pore or irregular pore.SOLUTION: A pore wall surface measurement device 100 is configured to: image, by an imaging unit 20, a pore wall inner surface of a pore H illuminated with ring-like light by an illumination unit 30; enable detection of position information in the pore H in the imaging process by an acceleration sensor 10; associate image information imaged by the imaging unit 20 with the position information detected by the acceleration sensor 10; and enable a preparation of the image information on a pore wall surface shape of the pore H. Specifically, since the acceleration sensor 10 is attached to a tip end of a support part 1 having flexibility, the illumination unit 30 or imaging unit 20 is not damaged even when the pore wall surface shape measurement device 100 hits the support part 1 inserted in the pore H against a depth of the pore H, and thus, an inner shape of the pore wall is enabled to be optimally measured.SELECTED DRAWING: Figure 1

Description

本発明は、孔壁の内面形状を計測する孔壁面形状計測装置に関する。   The present invention relates to a hole wall surface shape measuring apparatus that measures the inner surface shape of a hole wall.

従来、コンクリート建造物や配管等の劣化状況を把握するために、コンクリートを削孔して形成した細孔内や、細い通水管や通気管などの配管内にプローブ式の形状計測装置を挿入して、孔壁の内面形状を計測することがある。
こうした孔壁の内面形状を計測可能な計測装置として、プローブの先端に、環状ビームをリング状に反射させる円錐ミラーを備え、円錐ミラーによるリング状の反射光を孔壁の内面に照射してカメラで撮像し、孔壁面の画像を解析する計測装置が知られている(例えば、特許文献1参照。)。
Conventionally, in order to grasp the deterioration status of concrete buildings and pipes, a probe-type shape measuring device has been inserted into pores formed by drilling concrete or pipes such as thin water pipes and vent pipes. Thus, the inner shape of the hole wall may be measured.
As a measuring device that can measure the shape of the inner surface of the hole wall, the tip of the probe is equipped with a conical mirror that reflects the annular beam in a ring shape, and the inner surface of the hole wall is irradiated with ring-shaped reflected light from the conical mirror. A measuring device that captures an image and analyzes an image of a hole wall surface is known (for example, see Patent Document 1).

特開2014−173912号公報JP 2014-173912 A

しかしながら、上記特許文献1の計測装置の場合、プローブの先端に円錐ミラーが取り付けられているので、プローブを細孔内に挿入する際に、プローブ先端の円錐ミラーが細孔の壁面に接触したり、細孔の奥に強く突き当たったりしてしまうことがある。それによって円錐ミラーが損傷して計測不能になる虞があるという課題を本発明者らは見出した。
また、プローブが細孔の形状に応じて変形できれば、壁面に凹凸や湾曲がある不整形な細孔であってもプローブを細孔の奥に挿入可能になるので、本発明者らはその改良に取り組んだ。
However, in the case of the measurement device of Patent Document 1, since the conical mirror is attached to the tip of the probe, when the probe is inserted into the pore, the conical mirror at the tip of the probe contacts the wall surface of the pore. , It may hit the back of the pores. The present inventors have found that the conical mirror may be damaged thereby making measurement impossible.
In addition, if the probe can be deformed according to the shape of the pore, the probe can be inserted into the back of the pore even if the wall has irregular shapes or curvatures. Worked on.

本発明の目的は、真っ直ぐな細孔であっても不整形な細孔であっても好適に孔壁の内面形状を計測することができる孔壁面形状計測装置を提供することである。   An object of the present invention is to provide a hole wall surface shape measuring apparatus capable of suitably measuring the inner surface shape of a hole wall, whether it is a straight pore or an irregular pore.

上記目的を達成するため、この発明は、孔壁面形状計測装置であって、
細孔内に挿入可能な可撓性を有する支持部と、
前記支持部の先端に取り付けられた加速度センサーと、
前記加速度センサー側を撮像可能な向きに前記支持部に取り付けられた撮像部と、
前記加速度センサーと前記撮像部の間に位置するように前記支持部に取り付けられ、前記細孔の孔壁内面を照らすリング状の光を照射する照射部と、
前記リング状の光で照らされた前記孔壁内面を前記撮像部が撮像した画像情報と、その撮像時に前記加速度センサーが検出した前記細孔内の位置情報とを対応付け、前記細孔の孔壁面形状の画像情報を作成する孔壁面画像情報作成手段と、
を備えるようにした。
In order to achieve the above object, the present invention is a hole wall surface shape measuring device,
A flexible support that can be inserted into the pores;
An acceleration sensor attached to the tip of the support;
An imaging unit attached to the support unit in a direction capable of imaging the acceleration sensor side;
An irradiation unit that is attached to the support unit so as to be positioned between the acceleration sensor and the imaging unit, and irradiates ring-shaped light that illuminates the inner surface of the pore wall of the pore;
The image information obtained by the imaging unit imaging the inner surface of the hole wall illuminated with the ring-shaped light is associated with the positional information in the pore detected by the acceleration sensor at the time of imaging, and the pore of the pore Hole wall surface image information creating means for creating wall surface shape image information;
I was prepared to.

かかる構成の孔壁面形状計測装置であれば、照射部がリング状の光で照らした細孔の孔壁内面を撮像部によって撮像するとともに、その撮像過程での細孔内の位置情報を加速度センサーが検出することができ、撮像部が撮像した画像情報と加速度センサーが検出した位置情報とを対応付けて、細孔の孔壁面形状の画像情報を取得することができる。
そして、この孔壁面形状計測装置の支持部は可撓性を有しており、撮像部や照射部を細孔に挿入した際、支持部が細孔の形状に応じて弾性変形するので、真っ直ぐな細孔であっても不整形な細孔であっても好適に孔壁の内面形状を計測することができる。
また、この孔壁面形状計測装置は、支持部の先端に加速度センサーが取り付けられているので、細孔内に挿入した支持部の先端が細孔の壁面に接触したり、細孔の奥に突き当たったりしても、照射部や撮像部が損傷することはないので、孔壁の内面形状の計測を好適に行うことができる。
With the hole wall shape measuring apparatus having such a configuration, the inner surface of the pore wall illuminated by the ring-shaped light of the irradiation unit is imaged by the imaging unit, and the position information in the pores during the imaging process is detected by the acceleration sensor. The image information captured by the imaging unit and the position information detected by the acceleration sensor are associated with each other, and the image information of the pore wall surface shape of the pores can be acquired.
And the support part of this hole wall surface shape measuring apparatus has flexibility, and when an imaging part or an irradiation part is inserted in a pore, since a support part elastically deforms according to the shape of a pore, it is straight. The inner surface shape of the pore wall can be suitably measured regardless of whether it is a fine pore or an irregular pore.
In addition, since the acceleration sensor is attached to the tip of the support portion in this hole wall surface shape measuring device, the tip of the support portion inserted into the pore contacts the wall surface of the pore or hits the back of the pore. Even if it irradiates, since an irradiation part and an imaging part are not damaged, the inner surface shape of a hole wall can be measured suitably.

また、望ましくは、
前記照射部は、前記加速度センサーと前記撮像部の間での配置を切り替え可能に取り付けられているようにする。
Also, preferably
The irradiation unit is attached so that the arrangement between the acceleration sensor and the imaging unit can be switched.

照射部の配置が切り替え可能であれば、撮像部に対する照射部の距離を調整して、照射部がリング状の光で細孔の孔壁内面を照らした箇所に、撮像部の焦点を合わせる調整を行うことができる。   If the position of the irradiation unit can be switched, adjust the distance of the irradiation unit to the imaging unit, and adjust the focus of the imaging unit to the point where the irradiation unit illuminates the pore wall inner surface with ring-shaped light It can be performed.

また、望ましくは、
前記照射部は、円錐ミラーと、前記円錐ミラーの頂点に向けて光を出射する光源部とを有するようにする。
Also, preferably
The irradiation unit includes a conical mirror and a light source unit that emits light toward the apex of the conical mirror.

かかる構成の照射部であれば、光源部が出射した光を円錐ミラーの頂点を含む反射面で反射させ、リング状の光となった反射光で細孔の孔壁内面を照らすことができる。
また、光源部が出射する光の直径を調整することで、リング状の光の幅を切り替えて、細孔の孔壁内面を照らす範囲を調整することができる。例えば、光源部が出射する光の直径を太くするほど、リング状の光の幅を太くし、細孔の孔壁内面を照らす範囲を広くすることができる。
With the irradiating unit having such a configuration, the light emitted from the light source unit can be reflected by the reflecting surface including the apex of the conical mirror, and the inner surface of the pore wall of the pore can be illuminated with the reflected light that has become ring-shaped light.
Further, by adjusting the diameter of the light emitted from the light source unit, it is possible to adjust the range in which the width of the ring-shaped light is switched and the inner surface of the pore wall is illuminated. For example, as the diameter of the light emitted from the light source section is increased, the width of the ring-shaped light can be increased, and the range in which the inner surface of the pore wall is illuminated can be increased.

また、望ましくは、
前記円錐ミラーは前記撮像部寄りの位置にあり、前記光源部は前記加速度センサー寄りの位置にあり、前記光源部が出射した光の一部が前記撮像部側を照らすようにする。
Also, preferably
The conical mirror is located near the imaging unit, the light source unit is located near the acceleration sensor, and part of the light emitted from the light source unit illuminates the imaging unit side.

光源部が出射した光の一部が撮像部側を照らしていれば、その光が当たった円錐ミラーを撮像部で撮像することができる。
例えば、撮像部が撮像した画像を解析するなどすれば、画角内の円錐ミラーのサイズに基づいて撮像部と円錐ミラー(照射部)との距離を算出することができる。
If a part of the light emitted from the light source unit illuminates the imaging unit side, the imaging unit can capture an image of the conical mirror on which the light hits.
For example, if an image captured by the imaging unit is analyzed, the distance between the imaging unit and the conical mirror (irradiation unit) can be calculated based on the size of the conical mirror within the angle of view.

本発明によれば、真っ直ぐな細孔であっても不整形な細孔であっても好適に孔壁の内面形状を計測することができる。   According to the present invention, it is possible to suitably measure the inner surface shape of the pore wall, whether it is a straight pore or an irregular pore.

本実施形態の孔壁面形状計測装置のプローブを示す斜視図(a)(b)である。It is a perspective view (a) (b) which shows the probe of the hole wall surface shape measuring device of this embodiment. 本実施形態の孔壁面形状計測装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the hole wall surface shape measuring apparatus of this embodiment. 孔壁面形状計測装置の照射部による光照射に関する説明図(a)と、図3(a)のIII−III線での断面図(b)である。It is explanatory drawing (a) regarding the light irradiation by the irradiation part of a hole wall surface shape measuring apparatus, and sectional drawing (b) in the III-III line of Fig.3 (a). 孔壁面形状計測装置のプローブの変形例を示す説明図である。It is explanatory drawing which shows the modification of the probe of a hole wall surface shape measuring apparatus.

以下、図面を参照して、本発明に係る孔壁面形状計測装置の実施形態について詳細に説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、本発明の範囲を以下の実施形態及び図示例に限定するものではない。   Hereinafter, an embodiment of a hole wall surface shape measuring apparatus according to the present invention will be described in detail with reference to the drawings. However, the embodiments described below are given various technically preferable limitations for carrying out the present invention, but the scope of the present invention is not limited to the following embodiments and illustrated examples.

本実施形態の孔壁面形状計測装置100は、例えば、図1(a)(b)に示すように、長尺な細孔H内に挿入可能な支持部1と、支持部1の先端に取り付けられた加速度センサー10と、加速度センサー10側を撮像可能な向きに支持部1に取り付けられた撮像部20と、加速度センサー10と撮像部20の間に位置するように支持部1に取り付けられ、細孔Hの孔壁内面を照らすリング状の光を照射する照射部30と、を備えたプローブ100aを備えている。
照射部30は、円錐ミラー31と、円錐ミラー31の頂点に向けて光を出射する光源部32を有している。
また、孔壁面形状計測装置100は、例えば、図2に示すように、加速度センサー10と、撮像部20と、照射部30の光源部32と、操作部40と、記憶部50と、表示部60と、上記各部を統括制御する制御部70を備えている。
なお、加速度センサー10と撮像部20と照射部30の光源部32は、プローブ100aに備えられ、操作部40と記憶部50と表示部60と制御部70は、ケーブルを介してプローブ100aに繋がれているパソコン(PC)に備えられている。
The hole wall surface shape measuring apparatus 100 of this embodiment is attached to the support part 1 which can be inserted in the elongate pore H, and the front-end | tip of the support part 1, for example, as shown to Fig.1 (a) (b). Attached to the support unit 1 so as to be positioned between the acceleration sensor 10 and the imaging unit 20, the imaging unit 20 attached to the support unit 1 in a direction capable of imaging the acceleration sensor 10 side, The probe 100a provided with the irradiation part 30 which irradiates the ring-shaped light which illuminates the hole wall inner surface of the pore H is provided.
The irradiation unit 30 includes a conical mirror 31 and a light source unit 32 that emits light toward the apex of the conical mirror 31.
In addition, as shown in FIG. 2, for example, the hole wall surface shape measuring apparatus 100 includes an acceleration sensor 10, an imaging unit 20, a light source unit 32 of an irradiation unit 30, an operation unit 40, a storage unit 50, and a display unit. 60 and a control unit 70 that controls the above-described units in an integrated manner.
The acceleration sensor 10, the imaging unit 20, and the light source unit 32 of the irradiation unit 30 are provided in the probe 100a, and the operation unit 40, the storage unit 50, the display unit 60, and the control unit 70 are connected to the probe 100a via a cable. It is provided in a personal computer (PC).

支持部1は、例えば、3本の板バネで構成されており、可撓性を有している。
この支持部1は、4つの略円管状のホルダー1aを支持しており、各ホルダー1aの管内に、加速度センサー10、光源部32、円錐ミラー31、撮像部20が、それぞれネジ止めされて固定されている。各ホルダー1aには、例えば、3方向からネジNが管内に向けて螺入されており、3つのネジNによって各部がホルダー1aに固定されている。
この支持部1が可撓性を有しているので、真っ直ぐな細孔H内にも、不整形な細孔H内にもプローブ100aを挿入することができる。
The support part 1 is composed of, for example, three leaf springs and has flexibility.
The support unit 1 supports four substantially circular tubular holders 1a, and the acceleration sensor 10, the light source unit 32, the conical mirror 31, and the imaging unit 20 are fixed by screws in the tubes of the holders 1a. Has been. For example, a screw N is screwed into each holder 1a from three directions into the pipe, and each part is fixed to the holder 1a by three screws N.
Since the support portion 1 has flexibility, the probe 100a can be inserted into the straight pore H or the irregular pore H.

加速度センサー10は、例えば、上下、左右、前後の三軸方向に対する速度を検知することで、細孔H内に挿入したプローブ100aの位置情報を検出することができる。   The acceleration sensor 10 can detect the position information of the probe 100a inserted into the pore H by detecting the speed in the three axial directions of up and down, left and right, and front and rear, for example.

撮像部20は、例えば、CCDカメラであり、照射部30によって照らされた細孔Hの孔壁内面を撮像する。   The imaging unit 20 is a CCD camera, for example, and images the inner surface of the hole wall of the pore H illuminated by the irradiation unit 30.

照射部30の光源部32は、例えば、半導体レーザー素子であり、例えば直径2mmのレーザー光を出射する。
照射部30の円錐ミラー31は、円錐状の反射面を有している反射部材である。
プローブ100aにおいて、円錐ミラー31は撮像部20寄りの位置にあり、光源部32は加速度センサー10寄りの位置にあるように取り付けられている。
そして、円錐ミラー31の頂点を含む反射面に、光源部32が出射した直径2mmのレーザー光を当てると、図1(b)、図3(a)に示すように、円錐ミラー31は約1mm幅のリング状の光を反射して、細孔Hの孔壁内面を照らすことができる。
つまり、光源部32が出射する光の直径を調整することで、円錐ミラー31が反射するリング状の光の幅を切り替えて、細孔Hの孔壁内面を照らす範囲を調整することができる。
The light source unit 32 of the irradiation unit 30 is, for example, a semiconductor laser element and emits laser light having a diameter of 2 mm, for example.
The conical mirror 31 of the irradiation unit 30 is a reflecting member having a conical reflecting surface.
In the probe 100a, the conical mirror 31 is mounted at a position near the imaging unit 20, and the light source unit 32 is mounted at a position near the acceleration sensor 10.
When the 2 mm diameter laser beam emitted from the light source unit 32 is applied to the reflecting surface including the apex of the conical mirror 31, the conical mirror 31 is about 1 mm as shown in FIGS. 1 (b) and 3 (a). A ring-shaped light having a width can be reflected to illuminate the inner surface of the pore wall of the pore H.
That is, by adjusting the diameter of the light emitted from the light source unit 32, the range of the ring-shaped light reflected by the conical mirror 31 can be switched to adjust the range in which the inner surface of the pore wall H is illuminated.

また、円錐ミラー31と光源部32は、それぞれのホルダー1aを支持部1に沿ってスライド移動させるようにして、加速度センサー10と撮像部20の間での配置を切り替えることができる。つまり、撮像部20と円錐ミラー31の距離、撮像部20と光源部32の距離、円錐ミラー31と光源部32の距離を調整することが可能になっている。
そして、撮像部20に対する円錐ミラー31と光源部32の距離を調整することで、撮像部20の焦点を、照射部30(円錐ミラー31及び光源部32)がリング状の光で細孔Hの孔壁内面を照らした箇所に合わせる調整を行うことができる。
Further, the conical mirror 31 and the light source unit 32 can switch the arrangement between the acceleration sensor 10 and the imaging unit 20 by sliding the holders 1 a along the support unit 1. That is, the distance between the imaging unit 20 and the conical mirror 31, the distance between the imaging unit 20 and the light source unit 32, and the distance between the conical mirror 31 and the light source unit 32 can be adjusted.
Then, by adjusting the distance between the conical mirror 31 and the light source unit 32 with respect to the imaging unit 20, the irradiation unit 30 (the conical mirror 31 and the light source unit 32) has a ring-shaped light and the pores H are focused on the imaging unit 20. Adjustment can be made to match the location of the inner surface of the hole wall illuminated.

また、図3(b)に示すように、ホルダー1aの管内に突き出た3つのネジNで固定されている円錐ミラー31とホルダー1aの間には隙間があり、光源部32が出射した光の一部がこの隙間を抜けて撮像部20側を照らすことができる。なお、隙間を抜けて撮像部20側に漏れ出る光には、細孔Hの孔壁で乱反射した光が含まれている。
そして、撮像部20が、その隙間から漏れた光を画像として取り込むようにすれば、撮像部20の光軸のずれに関する判断基準として、その光の画像を画像処理に用いることができる。例えば、隙間から漏れた光の画像が正円状であれば、撮像部20の光軸は円錐ミラー31に対しずれのない適正な向きであると判断でき、隙間から漏れた光の画像が楕円状であれば、撮像部20の光軸は円錐ミラー31に対し斜めにずれていると判断できる。
また、撮像部20が、その隙間から漏れた光が当たった照射部30(円錐ミラー31)を撮像して画像として取り込むようにすれば、画角内の照射部30(円錐ミラー31)のサイズに基づき、撮像部20と照射部30(円錐ミラー31)との距離を算出する基準にすることができる。
Further, as shown in FIG. 3B, there is a gap between the conical mirror 31 fixed by the three screws N protruding into the tube of the holder 1a and the holder 1a, and the light emitted from the light source unit 32 A part can pass through this gap and illuminate the imaging unit 20 side. Note that light leaking through the gap and leaking to the imaging unit 20 side includes light irregularly reflected by the hole wall of the pore H.
If the imaging unit 20 captures light leaking from the gap as an image, the image of the light can be used for image processing as a determination criterion regarding the optical axis shift of the imaging unit 20. For example, if the image of the light leaking from the gap is a perfect circle, it can be determined that the optical axis of the imaging unit 20 is in an appropriate direction with no deviation from the conical mirror 31, and the image of the light leaking from the gap is an ellipse. If so, it can be determined that the optical axis of the imaging unit 20 is obliquely shifted with respect to the conical mirror 31.
In addition, if the imaging unit 20 captures an image of the irradiation unit 30 (conical mirror 31) irradiated with light leaked from the gap and captures it as an image, the size of the irradiation unit 30 (conical mirror 31) within the angle of view. Can be used as a reference for calculating the distance between the imaging unit 20 and the irradiation unit 30 (conical mirror 31).

操作部40は、例えば、キーボード、マウス、タッチパネルであり、この操作部40によって各種操作指示の入力や、各種データの入力や変更を行うことができる。
記憶部50は、例えば、半導体メモリーであり、撮像部20が撮像した細孔Hの孔壁内面の画像情報のデータや、後述する制御部70(孔壁面画像情報作成手段)が作成した細孔Hの孔壁面形状の画像情報のデータを記憶する。
表示部60は、例えば、LCD(Liquid Crystal Display)、有機EL(Electro Luminescence)素子を用いたFPD(Flat Panel Display)などである。この表示部60には、細孔Hの孔壁内面の画像情報や、細孔Hの孔壁面形状の画像情報や、画像解析の結果などが表示される。
The operation unit 40 is, for example, a keyboard, a mouse, or a touch panel. With the operation unit 40, various operation instructions can be input, and various data can be input or changed.
The storage unit 50 is, for example, a semiconductor memory, and image information data of the inner surface of the pore wall of the pore H imaged by the imaging unit 20 or a pore created by the control unit 70 (hole wall surface image information creating unit) described later. The image information data of the hole wall shape of H is stored.
The display unit 60 is, for example, an LCD (Liquid Crystal Display), an FPD (Flat Panel Display) using an organic EL (Electro Luminescence) element, or the like. The display unit 60 displays image information of the inner surface of the pore wall of the pore H, image information of the shape of the pore wall surface of the pore H, the result of image analysis, and the like.

制御部70は、孔壁面形状計測装置100の動作を中央制御する。具体的には、制御部70は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを有しており、RAMの作業領域に展開されたROMに記憶されたプログラムデータとCPUとの協働により各部を統括制御する。
例えば、制御部70は、撮像部20が撮像した細孔Hの孔壁内面の画像情報と、加速度センサー10が検出した細孔H内の位置情報とを対応付け、細孔Hの孔壁面形状の画像情報を作成する。
具体的に、制御部70は、照射部30によるリング状の光で照らされた細孔Hの孔壁内面を撮像部20が撮像した画像情報と、その撮像時に加速度センサー10が検出した細孔H内の位置情報とを対応付け、細孔Hの孔壁面形状の画像情報を作成する孔壁面画像情報作成手段として機能する。
The controller 70 centrally controls the operation of the hole wall surface shape measuring apparatus 100. Specifically, the control unit 70 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and is stored in the ROM expanded in the RAM work area. Centralized control of each unit is performed in cooperation with the program data and the CPU.
For example, the control unit 70 associates the image information of the inner surface of the pore wall of the pore H imaged by the imaging unit 20 with the position information in the pore H detected by the acceleration sensor 10, and the pore wall surface shape of the pore H Create image information for.
Specifically, the control unit 70 includes image information obtained by the imaging unit 20 imaging the inner surface of the pore wall of the pore H illuminated by the ring-shaped light from the irradiation unit 30, and the pore detected by the acceleration sensor 10 at the time of imaging. It functions as a hole wall surface image information creation unit that associates position information in H and creates image information of the hole wall shape of the pore H.

この孔壁面形状計測装置100を用いて、孔壁の内面形状を計測する場合、孔壁面形状計測装置100のプローブ100aを細孔H内に挿入し、照射部30(円錐ミラー31及び光源部32)がリング状の光で照らした細孔Hの孔壁内面を撮像部20によって撮像する。
また、この撮像過程でのプローブ100aの動きを加速度センサー10が検知することで、細孔H内に挿入したプローブ100aの位置情報を検出する。
そして、孔壁面画像情報作成手段として機能する制御部70が、撮像部20が撮像した細孔Hの孔壁内面の画像情報と、加速度センサー10が検出した細孔H内の位置情報とを対応付け、細孔Hの孔壁面形状の画像情報を作成し、記憶部50に記憶する。
When measuring the inner surface shape of the hole wall using the hole wall shape measuring apparatus 100, the probe 100a of the hole wall shape measuring apparatus 100 is inserted into the hole H, and the irradiation unit 30 (the conical mirror 31 and the light source unit 32). ) Is imaged by the imaging unit 20 on the inner surface of the pore wall illuminated by the ring-shaped light.
Further, when the acceleration sensor 10 detects the movement of the probe 100a during the imaging process, position information of the probe 100a inserted into the pore H is detected.
And the control part 70 which functions as a hole wall surface image information preparation means respond | corresponds the image information of the hole wall inner surface of the pore H which the imaging part 20 imaged, and the positional information in the pore H which the acceleration sensor 10 detected. The image information of the hole wall surface shape of the pore H is created and stored in the storage unit 50.

こうして取得した細孔Hの孔壁面形状の画像情報に、周知の画像解析を施すことで、細孔Hの孔壁面の3次元画像を作成することができる。例えば、ユーザは、2値化した3次元画像から孔壁面の空隙面積の割合を算出するなどして、所望する計測データを取得することができる。
なお、プローブ100aを細孔H内に挿入する計測を複数回行って、複数の画像情報を取得し、その複数の画像情報に画像解析を施すなどして、各画像情報を補うようにすることが好ましい。
By performing well-known image analysis on the image information of the pore wall surface shape of the pore H thus obtained, a three-dimensional image of the pore wall surface of the pore H can be created. For example, the user can acquire desired measurement data by calculating the ratio of the void area of the hole wall surface from the binarized three-dimensional image.
It should be noted that the measurement of inserting the probe 100a into the pore H is performed a plurality of times, a plurality of image information is acquired, and image analysis is performed on the plurality of image information, thereby supplementing each image information. Is preferred.

このように、本実施形態の孔壁面形状計測装置100を使って、孔壁の内面形状を計測することができる。
そして、この孔壁面形状計測装置100の支持部1は可撓性を有しており、撮像部20や照射部30を細孔Hに挿入した際、支持部1が細孔Hの形状に応じて弾性変形するので、真っ直ぐな細孔Hであっても、凹凸があったり湾曲したりするような不整形な細孔Hであっても好適に孔壁の内面形状を計測することができる。
また、この孔壁面形状計測装置100のプローブ100aの先端には加速度センサー10が取り付けられているので、プローブ100aを細孔Hの壁面に接触させたり、細孔Hの奥に突き当てたりしてしまっても、照射部30(円錐ミラー31及び光源部32)や撮像部20が損傷することはないので、孔壁の内面形状の計測を好適に行うことができる。
また、この孔壁面形状計測装置100では、支持部1に取り付けた円錐ミラー31と光源部32の位置を調整することが可能であり、撮像部20の焦点を、照射部30(円錐ミラー31及び光源部32)がリング状の光で細孔Hの孔壁内面を照らした箇所に合わせる調整を行うことができるので、孔壁の内面形状の計測を精度よく行うことができる。
Thus, the inner surface shape of a hole wall can be measured using the hole wall surface shape measuring apparatus 100 of this embodiment.
And the support part 1 of this hole wall surface shape measuring apparatus 100 has flexibility, and when the imaging part 20 or the irradiation part 30 is inserted in the pore H, the support part 1 respond | corresponds to the shape of the pore H. Therefore, even if it is a straight pore H or an irregular pore H that is uneven or curved, the inner shape of the pore wall can be measured suitably.
In addition, since the acceleration sensor 10 is attached to the tip of the probe 100a of the hole wall surface shape measuring apparatus 100, the probe 100a is brought into contact with the wall surface of the pore H or abutted on the back of the pore H. Even then, since the irradiation unit 30 (the conical mirror 31 and the light source unit 32) and the imaging unit 20 are not damaged, the inner surface shape of the hole wall can be suitably measured.
Moreover, in this hole wall surface shape measuring apparatus 100, it is possible to adjust the position of the conical mirror 31 attached to the support part 1, and the light source part 32, and the focus of the imaging part 20 is made into the irradiation part 30 (the conical mirror 31 and the conical mirror 31). Since the light source unit 32) can be adjusted to match the location where the inner surface of the pore wall H is illuminated with ring-shaped light, the inner surface shape of the pore wall can be accurately measured.

なお、本発明は上記実施形態に限られるものではない。
例えば、図4に示すように、孔壁面形状計測装置100のプローブ100aにおいて、加速度センサー10と撮像部20の間に取り付けられる照射部30用の略円管状のホルダー1aとして、周方向の全周に亘って内周面から外周面に通じるスリットSが形成されたものを用い、そのホルダー1aの管内にLEDなどの光源部を配設した照射部30を備えた構成の装置であってもよい。
このような照射部30を備えた孔壁面形状計測装置100であっても、照射部30が出射したリング状の光で照らした細孔Hの孔壁内面を撮像部20で撮像することができ、細孔Hの孔壁面形状の画像情報を取得できる。
The present invention is not limited to the above embodiment.
For example, as shown in FIG. 4, in the probe 100 a of the hole wall surface shape measuring apparatus 100, as a substantially circular tubular holder 1 a for the irradiation unit 30 attached between the acceleration sensor 10 and the imaging unit 20, It may be an apparatus having a configuration including an irradiation unit 30 in which a slit S leading from the inner peripheral surface to the outer peripheral surface is formed and a light source unit such as an LED is disposed in the tube of the holder 1a. .
Even in the hole wall surface shape measuring apparatus 100 including such an irradiation unit 30, the inner surface of the hole wall of the pore H illuminated by the ring-shaped light emitted from the irradiation unit 30 can be imaged by the imaging unit 20. The image information of the hole wall shape of the pore H can be acquired.

なお、以上の実施の形態においては、孔壁面形状計測装置100(制御部70)が作成した細孔Hの孔壁面形状の画像情報に、周知の画像解析を施して2値化した3次元画像を作成して細孔Hの孔壁面形状を調査することを例に挙げて説明したが、本発明はこれに限定されるものではなく、例えば、光切断法による3次元画像解析を行って細孔Hの孔壁面形状を調査するなどしてもよい。   In the above embodiment, a three-dimensional image obtained by performing well-known image analysis on the image information of the hole wall shape of the pore H created by the hole wall shape measuring apparatus 100 (control unit 70) and binarizing the image information. However, the present invention is not limited to this, and for example, a three-dimensional image analysis by a light cutting method is performed to perform detailed analysis. The shape of the hole wall surface of the hole H may be investigated.

また、プローブ100a先端の加速度センサー10の端部にゴム製のクッション材を貼り付けるなどして、加速度センサー10の保護を図るようにしてもよい。
また、細孔H内にプローブ100aをスムーズに挿入することを可能にするように、ホルダー1aの周面にガイド部材を取り付けるようにしてもよい。
Further, the acceleration sensor 10 may be protected by attaching a rubber cushion material to the end of the acceleration sensor 10 at the tip of the probe 100a.
Further, a guide member may be attached to the peripheral surface of the holder 1a so that the probe 100a can be smoothly inserted into the pore H.

また、その他、具体的な細部構造等についても適宜に変更可能であることは勿論である。   In addition, it is needless to say that other specific detailed structures can be appropriately changed.

1 支持部
1a ホルダー
10 加速度センサー
20 撮像部
30 照射部
31 円錐ミラー
32 光源部
40 操作部
50 記憶部
60 表示部
70 制御部(孔壁面画像情報作成手段)
100 孔壁面形状計測装置
100a プローブ
H 細孔
N ネジ
S スリット
DESCRIPTION OF SYMBOLS 1 Support part 1a Holder 10 Accelerometer 20 Imaging part 30 Irradiation part 31 Conical mirror 32 Light source part 40 Operation part 50 Memory | storage part 60 Display part 70 Control part (hole wall surface image information preparation means)
100 hole wall shape measuring device 100a probe H pore N screw S slit

Claims (4)

細孔内に挿入可能な可撓性を有する支持部と、
前記支持部の先端に取り付けられた加速度センサーと、
前記加速度センサー側を撮像可能な向きに前記支持部に取り付けられた撮像部と、
前記加速度センサーと前記撮像部の間に位置するように前記支持部に取り付けられ、前記細孔の孔壁内面を照らすリング状の光を照射する照射部と、
前記リング状の光で照らされた前記孔壁内面を前記撮像部が撮像した画像情報と、その撮像時に前記加速度センサーが検出した前記細孔内の位置情報とを対応付け、前記細孔の孔壁面形状の画像情報を作成する孔壁面画像情報作成手段と、
を備えたことを特徴とする孔壁面形状計測装置。
A flexible support that can be inserted into the pores;
An acceleration sensor attached to the tip of the support;
An imaging unit attached to the support unit in a direction capable of imaging the acceleration sensor side;
An irradiation unit that is attached to the support unit so as to be positioned between the acceleration sensor and the imaging unit, and irradiates ring-shaped light that illuminates the inner surface of the pore wall of the pore;
The image information obtained by the imaging unit imaging the inner surface of the hole wall illuminated with the ring-shaped light is associated with the positional information in the pore detected by the acceleration sensor at the time of imaging, and the pore of the pore Hole wall surface image information creating means for creating wall surface shape image information;
A hole wall surface shape measuring apparatus comprising:
前記照射部は、前記加速度センサーと前記撮像部の間での配置を切り替え可能に取り付けられていることを特徴とする請求項1に記載の孔壁面形状計測装置。   2. The hole wall surface shape measuring apparatus according to claim 1, wherein the irradiation unit is attached so that the arrangement between the acceleration sensor and the imaging unit can be switched. 前記照射部は、円錐ミラーと、前記円錐ミラーに向けて光を出射する光源部とを有することを特徴とする請求項1又は2に記載の孔壁面形状計測装置。   The hole wall surface shape measuring apparatus according to claim 1, wherein the irradiation unit includes a conical mirror and a light source unit that emits light toward the conical mirror. 前記円錐ミラーは前記撮像部寄りの位置にあり、前記光源部は前記加速度センサー寄りの位置にあり、
前記光源部が出射した光の一部が前記撮像部側を照らすことを特徴とする請求項3に記孔壁面形状計測装置。
The conical mirror is at a position near the imaging unit, and the light source unit is at a position near the acceleration sensor,
The hole wall surface shape measuring apparatus according to claim 3, wherein a part of the light emitted from the light source unit illuminates the imaging unit side.
JP2016225654A 2016-11-21 2016-11-21 Hole wall shape measuring device Expired - Fee Related JP6778087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016225654A JP6778087B2 (en) 2016-11-21 2016-11-21 Hole wall shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016225654A JP6778087B2 (en) 2016-11-21 2016-11-21 Hole wall shape measuring device

Publications (2)

Publication Number Publication Date
JP2018084414A true JP2018084414A (en) 2018-05-31
JP6778087B2 JP6778087B2 (en) 2020-10-28

Family

ID=62237069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016225654A Expired - Fee Related JP6778087B2 (en) 2016-11-21 2016-11-21 Hole wall shape measuring device

Country Status (1)

Country Link
JP (1) JP6778087B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112504159A (en) * 2020-10-27 2021-03-16 成都飞机工业(集团)有限责任公司 Device and method for measuring three-dimensional shape of inner cavity of variable-section cylindrical part
WO2022259390A1 (en) * 2021-06-08 2022-12-15 オリンパス株式会社 Imaging unit and endoscope

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729405U (en) * 1993-11-01 1995-06-02 三菱重工業株式会社 Pipe inner surface inspection device
JPH1114356A (en) * 1997-06-23 1999-01-22 Raito Kogyo Co Ltd Three-dimensional position detecting method
JPH11281897A (en) * 1998-03-27 1999-10-15 Olympus Optical Co Ltd Endoscope
JP2014149164A (en) * 2013-01-31 2014-08-21 Olympus Corp Inside surface shape measurement instrument
JP2014191242A (en) * 2013-03-28 2014-10-06 Kubota Corp Inner surface inspection device
JP2015230301A (en) * 2014-06-07 2015-12-21 前田建設工業株式会社 Measurement device and measurement method of space inner surface shape

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729405U (en) * 1993-11-01 1995-06-02 三菱重工業株式会社 Pipe inner surface inspection device
JPH1114356A (en) * 1997-06-23 1999-01-22 Raito Kogyo Co Ltd Three-dimensional position detecting method
JPH11281897A (en) * 1998-03-27 1999-10-15 Olympus Optical Co Ltd Endoscope
JP2014149164A (en) * 2013-01-31 2014-08-21 Olympus Corp Inside surface shape measurement instrument
JP2014191242A (en) * 2013-03-28 2014-10-06 Kubota Corp Inner surface inspection device
JP2015230301A (en) * 2014-06-07 2015-12-21 前田建設工業株式会社 Measurement device and measurement method of space inner surface shape

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112504159A (en) * 2020-10-27 2021-03-16 成都飞机工业(集团)有限责任公司 Device and method for measuring three-dimensional shape of inner cavity of variable-section cylindrical part
CN112504159B (en) * 2020-10-27 2022-04-08 成都飞机工业(集团)有限责任公司 Device and method for measuring three-dimensional shape of inner cavity of variable-section cylindrical part
WO2022259390A1 (en) * 2021-06-08 2022-12-15 オリンパス株式会社 Imaging unit and endoscope

Also Published As

Publication number Publication date
JP6778087B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
US10254404B2 (en) 3D measuring machine
US20110035952A1 (en) Display of results of a measurement of workpieces as a function of the detection of the gesture of a user
JP2009160190A5 (en)
JP6663807B2 (en) Image measuring device
EP2402740A1 (en) Tool wear quantification system and method
JPWO2013118912A1 (en) Inner diameter measuring device
JP2015059825A (en) Three-dimensional measuring apparatus
JP5776282B2 (en) Shape measuring apparatus, shape measuring method, and program thereof
JP6778087B2 (en) Hole wall shape measuring device
JP6363907B2 (en) ID detector
KR20150137035A (en) Method for determining a closed trajectory by means of a laser and a laser light sensor and apparatus for determining a closed trajectory
JP2012220341A5 (en)
JP6934811B2 (en) Three-dimensional measuring device
JP2007024646A (en) Optical measuring instrument
JP6797638B2 (en) Image measuring device
JP6252178B2 (en) Shape measuring device, posture control device, structure manufacturing system, and shape measuring method
ES2936797T3 (en) Spectacle frame shape measuring device and lens processing device
JP5223478B2 (en) Scattering characteristic evaluation equipment
JP2016080361A (en) Method of matching measurement center positions when measuring thickness of liquid with optical interference measurement means and ultrasonic measurement means, and method of measuring liquid thickness using the same
JP7172029B2 (en) Alignment device
JP5315429B2 (en) Dynamic contact angle meter and method for measuring dynamic contact angle
KR101808218B1 (en) Image generating apparatus and bio-image analysis apparatus using the same
JP6397297B2 (en) Alignment offset calculation method for shape measuring apparatus and control method for shape measuring apparatus
JP6358040B2 (en) Method for detecting optimum measurement position of inner diameter measuring device
JP5638195B2 (en) Inspection head of surface inspection equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201009

R150 Certificate of patent or registration of utility model

Ref document number: 6778087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees