JP2018077324A - Wavelength conversion member and light emitting device - Google Patents

Wavelength conversion member and light emitting device Download PDF

Info

Publication number
JP2018077324A
JP2018077324A JP2016218593A JP2016218593A JP2018077324A JP 2018077324 A JP2018077324 A JP 2018077324A JP 2016218593 A JP2016218593 A JP 2016218593A JP 2016218593 A JP2016218593 A JP 2016218593A JP 2018077324 A JP2018077324 A JP 2018077324A
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion member
antireflection layer
main body
hollow particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016218593A
Other languages
Japanese (ja)
Inventor
寛之 清水
Hiroyuki Shimizu
寛之 清水
浅野 秀樹
Hideki Asano
秀樹 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2016218593A priority Critical patent/JP2018077324A/en
Publication of JP2018077324A publication Critical patent/JP2018077324A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To propose a wavelength conversion member having excellent light extraction efficiency and excellent emission intensity, and a light emitting device prepared therewith.SOLUTION: A wavelength conversion member 10 has a wavelength conversion member body 1 having phosphors 4, and an antireflection layer 2 that is formed on the surface of the wavelength conversion member body 1 and has hollow particles 6.SELECTED DRAWING: Figure 1

Description

本発明は、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)等の発する光の波長を別の波長に変換する波長変換部材及びそれを用いた発光装置に関するものである。   The present invention relates to a wavelength conversion member that converts a wavelength of light emitted from a light emitting diode (LED) or a laser diode (LD) to another wavelength, and a light emitting device using the same.

近年、蛍光ランプや白熱灯に変わる次世代の光源として、LEDやLDを用いた発光装置等に対する注目が高まってきている。そのような次世代光源の一例として、青色光を出射するLEDと、LEDからの光の一部を吸収して黄色光に変換する波長変換部材とを組み合わせた発光装置が開示されている。この発光装置は、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。特許文献1には、波長変換部材の一例として、ガラスマトリクス中に無機蛍光体粉末を分散させた波長変換部材が提案されている。   In recent years, attention has been focused on light emitting devices using LEDs and LDs as next-generation light sources that replace fluorescent lamps and incandescent lamps. As an example of such a next-generation light source, a light-emitting device that combines an LED that emits blue light and a wavelength conversion member that absorbs part of the light from the LED and converts it into yellow light is disclosed. This light emitting device emits white light that is a combined light of blue light emitted from the LED and yellow light emitted from the wavelength conversion member. Patent Document 1 proposes a wavelength conversion member in which an inorganic phosphor powder is dispersed in a glass matrix as an example of a wavelength conversion member.

特開2003−258308号公報JP 2003-258308 A

上記の発光装置に使用される波長変換部材は、表面における光の散乱や反射によるロスが大きく、光取出し効率が低いため、発光強度に劣るという問題がある。   The wavelength conversion member used in the light emitting device has a problem that the loss due to light scattering and reflection on the surface is large and the light extraction efficiency is low, so that the light emission intensity is inferior.

従って、本発明は、光取出し効率に優れ、発光強度に優れた波長変換部材と、それを用いた発光装置を提案することを目的とする。   Accordingly, an object of the present invention is to propose a wavelength conversion member having excellent light extraction efficiency and excellent light emission intensity, and a light emitting device using the same.

本発明の波長変換部材は、蛍光体を含む波長変換部材本体と、波長変換部材本体の表面に形成されてなり、中空粒子を含む反射防止層と、を備えていることを特徴とする。波長変換部材に含まれる蛍光体や、蛍光体を分散させるためのマトリクス部の屈折率は、一般的に外部の空気(屈折率nd=1.0)と比べて高いため、波長変換部材と外部の空気との屈折率差が大きくなる。(例えばYAG蛍光体の屈折率はnd=1.8、マトリクス部としてガラスの屈折率はnd=1.5〜2.0程度、樹脂の屈折率はnd=1.4〜1.6程度である。)この屈折率差が原因となって、波長変換部材表面での光散乱や反射ロスが発生しやすく、光取出し効率低下の原因になっていると考えられる。そこで、本発明の波長変換部材においては、波長変換部材本体表面に中空粒子を含む反射防止層を形成することにより、上記課題の解決を図っている。具体的には、中空粒子は内部に気孔を有するため、同じ材質の中実粒子と比較して屈折率が低いという特徴を有する。つまり、波長変換部材本体と、外部の空気層との間に、比較的低い屈折率の中空粒子を含む反射防止層を形成することにより、波長変換部材本体→反射防止層→空気層と屈折率が漸減する構成となる。これにより、各層の屈折率差が小さくなり、各層の界面における光の散乱や反射のロスが低減でき、光取出し効率を向上させることが可能となる。なお、波長変換部材本体に含まれる蛍光体の濃度が高い場合、波長変換部材本体表面における蛍光体濃度も高くなる(場合によっては、波長変換部材本体表面に蛍光体が露出する)ため、本発明の構成を採用することによる効果を享受しやすくなる。   The wavelength conversion member of the present invention includes a wavelength conversion member main body containing a phosphor and an antireflection layer formed on the surface of the wavelength conversion member main body and containing hollow particles. Since the refractive index of the phosphor contained in the wavelength conversion member and the matrix portion for dispersing the phosphor is generally higher than that of external air (refractive index nd = 1.0), the wavelength conversion member and the external The difference in refractive index from the air increases. (For example, the refractive index of the YAG phosphor is nd = 1.8, the refractive index of the glass as the matrix portion is about nd = 1.5 to 2.0, and the refractive index of the resin is about nd = 1.4 to 1.6. This difference in refractive index is likely to cause light scattering and reflection loss on the surface of the wavelength conversion member, which is considered to cause a decrease in light extraction efficiency. Therefore, in the wavelength conversion member of the present invention, the above problem is solved by forming an antireflection layer containing hollow particles on the surface of the wavelength conversion member main body. Specifically, since hollow particles have pores inside, they have a characteristic that the refractive index is lower than solid particles of the same material. That is, by forming an antireflection layer containing hollow particles having a relatively low refractive index between the wavelength conversion member main body and the external air layer, the wavelength conversion member main body → antireflection layer → air layer and refractive index. Is gradually reduced. As a result, the difference in refractive index between the layers is reduced, the loss of light scattering and reflection at the interface between the layers can be reduced, and the light extraction efficiency can be improved. In addition, when the density | concentration of the fluorescent substance contained in the wavelength conversion member main body is high, since the fluorescent substance density | concentration in the wavelength conversion member main body surface also becomes high (in some cases, fluorescent substance is exposed to the wavelength conversion member main body surface), this invention It becomes easy to enjoy the effect by adopting the configuration.

本発明の波長変換部材において、中空粒子の屈折率(nd)が1.1〜1.45であることが好ましい。このようにすれば、反射防止層の反射防止機能が得やすくなる。   In the wavelength conversion member of the present invention, the refractive index (nd) of the hollow particles is preferably 1.1 to 1.45. This makes it easy to obtain the antireflection function of the antireflection layer.

本発明の波長変換部材において、中空粒子がシリカからなることが好ましい。シリカは比較的屈折率が低いため、反射防止層の反射防止機能が得やすくなる。   In the wavelength conversion member of the present invention, the hollow particles are preferably made of silica. Since silica has a relatively low refractive index, it is easy to obtain the antireflection function of the antireflection layer.

本発明の波長変換部材において、中空粒子の平均粒子径が0.005〜5μmであることが好ましい。   In the wavelength conversion member of the present invention, the average particle diameter of the hollow particles is preferably 0.005 to 5 μm.

本発明の波長変換部材において、反射防止層が、バインダと、バインダ中に分散された中空粒子から構成されていることが好ましい。   In the wavelength conversion member of the present invention, the antireflection layer is preferably composed of a binder and hollow particles dispersed in the binder.

本発明の波長変換部材において、反射防止層の厚みが0.005〜20μmであることが好ましい。   In the wavelength conversion member of the present invention, the antireflection layer preferably has a thickness of 0.005 to 20 μm.

本発明の波長変換部材において、中空粒子の屈折率が、波長変換部材本体側から反射防止層表面側に向けて漸減していることが好ましい。このようにすれば、反射防止層の反射防止機能をさらに向上させることが可能となる。   In the wavelength conversion member of the present invention, it is preferable that the refractive index of the hollow particles gradually decreases from the wavelength conversion member main body side toward the antireflection layer surface side. In this way, the antireflection function of the antireflection layer can be further improved.

本発明の波長変換部材において、波長変換部材本体が、ガラスマトリクス中に蛍光体粉末が分散してなることが好ましい。このようにすれば、耐熱性に優れた波長変換部材を得ることが可能となる。   In the wavelength conversion member of the present invention, it is preferable that the wavelength conversion member main body has phosphor powder dispersed in a glass matrix. If it does in this way, it will become possible to obtain the wavelength conversion member excellent in heat resistance.

本発明の発光装置は、上記の波長変換部材と、波長変換部材に励起光を照射する光源と、を備えていることを特徴とする。   A light-emitting device of the present invention includes the above-described wavelength conversion member and a light source that irradiates the wavelength conversion member with excitation light.

本発明によれば、光取出し効率に優れ、発光強度に優れた波長変換部材と、それを用いた発光装置を提案することができる。   According to the present invention, it is possible to propose a wavelength conversion member having excellent light extraction efficiency and excellent light emission intensity, and a light emitting device using the wavelength conversion member.

本発明の第1の実施形態に係る波長変換部材の模式的断面図である。It is a typical sectional view of the wavelength conversion member concerning a 1st embodiment of the present invention. 本発明の第2の実施形態に係る波長変換部材の模式的断面図である。It is a typical sectional view of a wavelength conversion member concerning a 2nd embodiment of the present invention.

以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。   Hereinafter, preferred embodiments will be described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. Moreover, in each drawing, the member which has the substantially the same function may be referred with the same code | symbol.

(1)第1の実施形態に係る波長変換部材
図1は本発明の第1の実施形態に係る波長変換部材10を示す模式的断面図である。本実施形態に係る波長変換部材10は、波長変換部材本体1とその表面に形成された反射防止層2を備えている。波長変換部材本体1はマトリクス3中に蛍光体4を含んでなる構造を有している。一方、反射防止層2はバインダ5中に中空粒子6を含んでなる構造を有している。このように、波長変換部材本体1の表面に反射防止層2を形成することにより、波長変換部材本体1表面における光の散乱や反射のロスが低減でき、光取出し効率を向上させることが可能となる。
(1) Wavelength conversion member according to the first embodiment FIG. 1 is a schematic cross-sectional view showing a wavelength conversion member 10 according to the first embodiment of the present invention. A wavelength conversion member 10 according to this embodiment includes a wavelength conversion member main body 1 and an antireflection layer 2 formed on the surface thereof. The wavelength conversion member main body 1 has a structure including a phosphor 4 in a matrix 3. On the other hand, the antireflection layer 2 has a structure including hollow particles 6 in a binder 5. Thus, by forming the antireflection layer 2 on the surface of the wavelength conversion member main body 1, light scattering and reflection loss on the surface of the wavelength conversion member main body 1 can be reduced, and the light extraction efficiency can be improved. Become.

(波長変換部材本体1)
波長変換部材本体1は、例えばガラスマトリクスと蛍光体粉末とを含む蛍光体ガラスからなる。蛍光体粉末はガラスマトリクス中に分散されている。波長変換部材本体1の形状は発光素子3の形状に応じて適宜選択すれば良いが、通常は矩形の板状、具体的には正方形の板状である。
(Wavelength conversion member body 1)
The wavelength conversion member main body 1 is made of phosphor glass containing, for example, a glass matrix and phosphor powder. The phosphor powder is dispersed in a glass matrix. The shape of the wavelength conversion member main body 1 may be appropriately selected according to the shape of the light emitting element 3, but is usually a rectangular plate, specifically a square plate.

ガラスマトリクスは、無機蛍光体等の蛍光体粉末の分散媒として用いることができるものであれば特に限定されない。例えば、ホウ珪酸塩系ガラス、リン酸塩系ガラス、スズリン酸塩系ガラス、ビスマス酸塩系ガラス、テルライト系ガラスなどを用いることができる。ホウ珪酸塩系ガラスとしては、質量%で、SiO 30〜85%、Al 0〜30%、B 0〜50%、LiO+NaO+KO 0〜10%、及び、MgO+CaO+SrO+BaO 0〜50%を含有するものが挙げられる。スズリン酸塩系ガラスとしては、モル%で、SnO 30〜90%、P 1〜70%を含有するものが挙げられる。テルライト系ガラスとしては、モル%で、TeO 50%以上、ZnO 0〜45%、RO(RはCa、Sr及びBaから選択される少なくとも1種)0〜50%、及び、La+Gd+Y 0〜50%を含有するものが挙げられる。 A glass matrix will not be specifically limited if it can be used as a dispersion medium of fluorescent substance powders, such as an inorganic fluorescent substance. For example, borosilicate glass, phosphate glass, tin phosphate glass, bismuthate glass, tellurite glass, and the like can be used. The borosilicate-based glass, in mass%, SiO 2 30~85%, Al 2 O 3 0~30%, B 2 O 3 0~50%, Li 2 O + Na 2 O + K 2 O 0~10%, and , MgO + CaO + SrO + BaO containing 0 to 50%. Examples of the tin phosphate glass include those containing, in mol%, SnO 30 to 90% and P 2 O 5 1 to 70%. As the tellurite-based glass, TeO 2 50% or more, ZnO 0 to 45%, RO (R is at least one selected from Ca, Sr and Ba) 0 to 50%, and La 2 O 3 in mol%. Examples include + Gd 2 O 3 + Y 2 O 3 0 to 50%.

ガラスマトリクスの軟化点は、250℃〜1000℃であることが好ましく、300℃〜950℃であることがより好ましく、500℃〜900℃の範囲内であることがさらに好ましい。ガラスマトリクスの軟化点が低すぎると、波長変換部材本体の機械的強度や化学的耐久性が低下する場合がある。また、ガラスマトリクス自体の耐熱性が低いため、無機蛍光体から発生する熱により軟化変形するおそれがある。一方、ガラスマトリクスの軟化点が高すぎると、製造時に焼成工程が含まれる場合、蛍光体粉末が劣化して、波長変換部材本体1の発光強度が低下する場合がある。なお、波長変換部材本体1の化学的安定性及び機械的強度を高める観点からはガラスマトリクスの軟化点は500℃以上、600℃以上、700℃以上、800℃以上、特に850℃以上であることが好ましい。そのようなガラスとしては、ホウ珪酸塩系ガラスが挙げられる。ただし、ガラスマトリクスの軟化点が高くなると、焼成温度も高くなり、結果として製造コストが高くなる傾向がある。よって、波長変換部材10を安価に製造する観点からは、ガラスマトリクスの軟化点は550℃以下、530℃以下、500℃以下、480℃以下、特に460℃以下であることが好ましい。そのようなガラスとしては、スズリン酸塩系ガラス、ビスマス酸塩系ガラス、テルライト系ガラスが挙げられる。   The softening point of the glass matrix is preferably 250 ° C to 1000 ° C, more preferably 300 ° C to 950 ° C, and further preferably in the range of 500 ° C to 900 ° C. If the softening point of the glass matrix is too low, the mechanical strength and chemical durability of the wavelength conversion member body may be lowered. Further, since the heat resistance of the glass matrix itself is low, there is a possibility that the glass matrix is softened and deformed by heat generated from the inorganic phosphor. On the other hand, if the softening point of the glass matrix is too high, the phosphor powder may be deteriorated and the light emission intensity of the wavelength conversion member main body 1 may be reduced when a firing step is included during production. From the viewpoint of increasing the chemical stability and mechanical strength of the wavelength conversion member body 1, the softening point of the glass matrix is 500 ° C. or higher, 600 ° C. or higher, 700 ° C. or higher, 800 ° C. or higher, particularly 850 ° C. or higher. Is preferred. Examples of such glass include borosilicate glass. However, when the softening point of the glass matrix increases, the firing temperature also increases, and as a result, the manufacturing cost tends to increase. Therefore, from the viewpoint of manufacturing the wavelength conversion member 10 at a low cost, the softening point of the glass matrix is preferably 550 ° C. or lower, 530 ° C. or lower, 500 ° C. or lower, 480 ° C. or lower, particularly 460 ° C. or lower. Examples of such glass include tin phosphate glass, bismuthate glass, and tellurite glass.

蛍光体粉末は、励起光の入射により蛍光を出射するものであれば、特に限定されるものではない。蛍光体粉末の具体例としては、例えば、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体及びガーネット系化合物蛍光体から選ばれた1種以上等が挙げられる。励起光として青色光を用いる場合、例えば、緑色光、黄色光または赤色光を蛍光として出射する蛍光体を用いることができる。   The phosphor powder is not particularly limited as long as it emits fluorescence upon incidence of excitation light. Specific examples of the phosphor powder include oxide phosphor, nitride phosphor, oxynitride phosphor, chloride phosphor, acid chloride phosphor, sulfide phosphor, oxysulfide phosphor, halogen And one or more selected from a phosphor, a chalcogenide phosphor, an aluminate phosphor, a halophosphate phosphor, and a garnet compound phosphor. When blue light is used as the excitation light, for example, a phosphor that emits green light, yellow light, or red light as fluorescence can be used.

蛍光体粉末の平均粒子径は1μm〜50μmであることが好ましく、5μm〜25μmであることがより好ましい。蛍光体粉末の平均粒子径が小さすぎると、発光強度が低下する場合がある。一方、蛍光体粉末の平均粒子径が大きすぎると、発光色が不均一になる場合がある。   The average particle size of the phosphor powder is preferably 1 μm to 50 μm, and more preferably 5 μm to 25 μm. If the average particle size of the phosphor powder is too small, the emission intensity may be reduced. On the other hand, if the average particle size of the phosphor powder is too large, the emission color may be non-uniform.

波長変換部材本体1中での蛍光体粉末の含有量は、1体積%以上、1.5体積%以上、特に2体積%であることが好ましく、70体積%以下、50体積%以下、30体積%以下であることが好ましい。蛍光体粉末の含有量が少なすぎると、所望の発光色を得るために波長変換部材本体1の厚みを厚くする必要があり、その結果、波長変換部材本体1の内部散乱が増加することで、光取り出し効率が低下する場合がある。一方、蛍光体粉末の含有量が多すぎると、所望の発光色を得るために波長変換部材本体1の厚みを薄くする必要があるため、波長変換部材本体1の機械的強度が低下する場合がある。   The content of the phosphor powder in the wavelength conversion member body 1 is preferably 1% by volume or more, 1.5% by volume or more, and particularly preferably 2% by volume, 70% by volume or less, 50% by volume or less, and 30% by volume. % Or less is preferable. If the content of the phosphor powder is too small, it is necessary to increase the thickness of the wavelength conversion member main body 1 in order to obtain a desired emission color, and as a result, the internal scattering of the wavelength conversion member main body 1 increases. The light extraction efficiency may be reduced. On the other hand, if the content of the phosphor powder is too large, the thickness of the wavelength conversion member main body 1 needs to be reduced in order to obtain a desired emission color, and therefore the mechanical strength of the wavelength conversion member main body 1 may decrease. is there.

波長変換部材本体1の厚みは、0.01mm以上、0.03mm以上、0.05mm以上、0.075mm以上、0.1mm以上であることが好ましく、1mm以下、0.5mm以下、0.35mm以下、0.3mm以下、0.25mm以下であることが好ましい。波長変換部材本体1の厚みが厚すぎると、波長変換部材本体1における光の散乱や吸収が大きくなりすぎ、蛍光の出射効率が低くなってしまう場合がある。波長変換部材本体1の厚みが薄すぎると、十分な発光強度が得られにくくなる場合がある。また、波長変換部材本体1の機械的強度が不十分になる場合がある。   The thickness of the wavelength conversion member main body 1 is preferably 0.01 mm or more, 0.03 mm or more, 0.05 mm or more, 0.075 mm or more, 0.1 mm or more, preferably 1 mm or less, 0.5 mm or less, 0.35 mm. Hereinafter, it is preferably 0.3 mm or less and 0.25 mm or less. If the wavelength conversion member main body 1 is too thick, light scattering and absorption in the wavelength conversion member main body 1 become too large, and the fluorescence emission efficiency may be lowered. If the thickness of the wavelength conversion member main body 1 is too thin, it may be difficult to obtain sufficient light emission intensity. Moreover, the mechanical strength of the wavelength conversion member main body 1 may become insufficient.

なお、波長変換部材本体1は蛍光体ガラスからなるもの以外にも、YAGセラミックス等のセラミックスからなるものや、樹脂中に蛍光体粉末が分散したものであってもよい。   The wavelength conversion member main body 1 may be made of ceramics such as YAG ceramics, or may be made of phosphor powder dispersed in a resin other than those made of phosphor glass.

(反射防止層2)
反射防止層2はバインダ5中に中空粒子6を含んでなる構造を有している。
(Antireflection layer 2)
The antireflection layer 2 has a structure including hollow particles 6 in a binder 5.

バインダ5としては、シリコーン樹脂、アクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、ポリエステル樹脂、エポキシ樹脂、メラミン樹脂、フッ素樹脂、ブチラール樹脂、フェノール樹脂、酢酸ビニル樹脂等の有機樹脂や、アルコキシシラン等の加水分解性有機ケイ素化合物が挙げられる。   Examples of the binder 5 include organic resins such as silicone resin, acrylic resin, urethane resin, vinyl chloride resin, polyester resin, epoxy resin, melamine resin, fluororesin, butyral resin, phenol resin, vinyl acetate resin, and water such as alkoxysilane. Examples include decomposable organosilicon compounds.

中空粒子6の屈折率(nd)は1.1〜1.45、特に1.2〜1.4であることが好ましい。中空粒子6の屈折率が低すぎるまたは高すぎると、反射防止層2の反射防止機能が得にくくなる。なお、中空粒子6は無機粒子または有機粒子のいずれも使用可能であるが、耐熱性に優れ比較的屈折率が低いシリカからなるものであることが好ましい。このようにすれば、反射防止層2の反射防止機能が得やすくなる。なお、中空粒子6の屈折率は以下のようにして測定することができる。屈折率が既知の標準屈折率液と中空粒子6を混合する。この操作を種々の標準屈折率液で行い、混合液が透明になったときの標準屈折率液の屈折率を中空粒子6の屈折率とする。   The refractive index (nd) of the hollow particles 6 is preferably 1.1 to 1.45, particularly preferably 1.2 to 1.4. If the refractive index of the hollow particles 6 is too low or too high, it is difficult to obtain the antireflection function of the antireflection layer 2. The hollow particles 6 may be either inorganic particles or organic particles, but are preferably made of silica having excellent heat resistance and a relatively low refractive index. This makes it easy to obtain the antireflection function of the antireflection layer 2. The refractive index of the hollow particles 6 can be measured as follows. A standard refractive index liquid having a known refractive index and the hollow particles 6 are mixed. This operation is performed with various standard refractive index liquids, and the refractive index of the standard refractive index liquid when the mixed liquid becomes transparent is set as the refractive index of the hollow particles 6.

中空粒子の平均粒子径は0.005〜5μm、0.01〜3μm、特に0.1〜1μmであることが好ましい。中空粒子の平均粒子径が小さすぎるまたは大きすぎると、反射防止層2の反射防止機能が得にくくなる。   The average particle diameter of the hollow particles is preferably 0.005 to 5 μm, 0.01 to 3 μm, and particularly preferably 0.1 to 1 μm. If the average particle diameter of the hollow particles is too small or too large, it is difficult to obtain the antireflection function of the antireflection layer 2.

反射防止層2の厚みは0.005〜20μm、特に0.05〜1μmであることが好ましい。反射防止層2の厚みが小さすぎると、所望の反射防止機能が得にくくなる。一方、反射防止層2の厚みが大きすぎると、クラックが発生しやすくなる。
なお、本実施形態では反射防止層2はバインダ5中に中空粒子6を含んでなる構造を有しているが、それに限定されない。例えば、反射防止層2が中空粒子6のみから構成されていてもよい。具体的には、中空粒子6が波長変換部材本体1表面に融着等により直接結着することにより反射防止層2を構成していてもよい。
The thickness of the antireflection layer 2 is preferably 0.005 to 20 μm, particularly preferably 0.05 to 1 μm. If the thickness of the antireflection layer 2 is too small, it becomes difficult to obtain a desired antireflection function. On the other hand, if the thickness of the antireflection layer 2 is too large, cracks are likely to occur.
In the present embodiment, the antireflection layer 2 has a structure including the hollow particles 6 in the binder 5, but is not limited thereto. For example, the antireflection layer 2 may be composed only of the hollow particles 6. Specifically, the antireflection layer 2 may be configured by directly bonding the hollow particles 6 to the surface of the wavelength conversion member main body 1 by fusion or the like.

(2)第2の実施形態に係る波長変換部材
図2は本発明の第2の実施形態に係る波長変換部材20を示す模式的断面図である。本実施形態に係る波長変換部材20は、反射防止層2の構造が第1の実施形態に係る波長変換部材10と異なる。具体的には、反射防止層2が反射防止層2aと反射防止層2bの2層からなる。ここで、反射防止層2bに含まれる中空粒子6bは、反射防止層2aに含まれる中空粒子6aよりも屈折率が低い。つまり、本実施形態に係る波長変換部材20は、反射防止層2に含まれる中空粒子6の屈折率が、波長変換部材本体1側から反射防止層2表面側に向けて漸減(段階的に低減)している構造を有する。このようにすれば、反射防止層2の反射防止機能をさらに向上させることが可能となる。
(2) Wavelength conversion member according to second embodiment FIG. 2 is a schematic cross-sectional view showing a wavelength conversion member 20 according to the second embodiment of the present invention. The wavelength conversion member 20 according to the present embodiment is different from the wavelength conversion member 10 according to the first embodiment in the structure of the antireflection layer 2. Specifically, the antireflection layer 2 includes two layers, an antireflection layer 2a and an antireflection layer 2b. Here, the hollow particles 6b included in the antireflection layer 2b have a lower refractive index than the hollow particles 6a included in the antireflection layer 2a. That is, in the wavelength conversion member 20 according to the present embodiment, the refractive index of the hollow particles 6 included in the antireflection layer 2 is gradually decreased from the wavelength conversion member main body 1 side to the surface side of the antireflection layer 2 (reduction stepwise). ). In this way, the antireflection function of the antireflection layer 2 can be further improved.

本実施形態に係る波長変換部材20では反射防止層2が2層からなるが、これに限定されず、反射防止層2が3層以上で構成されていてもよい。その場合も、反射防止層2に含まれる中空粒子6の屈折率が、波長変換部材本体1側から反射防止層2表面側に向けて漸減する構造とすれば、反射防止機能をさらに向上させることが可能となる。   In the wavelength conversion member 20 according to the present embodiment, the antireflection layer 2 is composed of two layers, but is not limited thereto, and the antireflection layer 2 may be composed of three or more layers. Even in such a case, the antireflection function can be further improved if the refractive index of the hollow particles 6 contained in the antireflection layer 2 is gradually reduced from the wavelength conversion member main body 1 side toward the antireflection layer 2 surface side. Is possible.

また、反射防止層2は波長変換部材本体1の両面に設けても構わない。このようにすれば、波長変換部材10を透過型の波長変換部材として使用した場合、励起光の波長変換部材本体1への入射効率を高めることができるとともに、蛍光の波長変換部材本体1からの出射効率を高めることができる。   The antireflection layer 2 may be provided on both surfaces of the wavelength conversion member main body 1. In this way, when the wavelength conversion member 10 is used as a transmission-type wavelength conversion member, the incident efficiency of the excitation light to the wavelength conversion member body 1 can be increased, and the fluorescence from the wavelength conversion member body 1 can be increased. The emission efficiency can be increased.

(3)波長変換部材の製造方法
次に、本発明の波長変換部材10の製造方法の一例について説明する。
まず、以下のようにして、波長変換部材本体1を作製する。ガラスマトリクスとなるガラス粉末と蛍光体粉末とを含むスラリーを用意する。上記スラリーには、バインダ樹脂や溶剤等の有機成分が含まれている。用意したスラリーを支持基材上に塗布し、基材と所定間隔を空けて設置されたドクターブレードをスラリーに対して相対的に移動させることにより、グリーンシートを形成する。上記支持基材としては、例えば、ポリエチレンテレフタレート等の樹脂フィルムを用いることができる。続いてグリーンシートを焼成することにより、波長変換部材本体1を得る。なお所望の厚みの波長変換部材本体1を得るため、グリーンシートは複数枚積層した状態で焼成一体化してもよい。焼成温度はガラス粉末の軟化点±150℃以内であることが好ましく、ガラス粉末の軟化点±100℃以内であることがより好ましい。焼成温度が低すぎると、ガラス粉末が軟化流動せず、緻密な焼結体が得られない場合がある。一方、焼成温度が高すぎると、蛍光体粉末がガラス中に溶出して発光強度が低下したり、蛍光体成分がガラス中に拡散してガラスが着色して発光強度が低下したりする場合がある。
(3) Manufacturing method of wavelength conversion member Next, an example of the manufacturing method of the wavelength conversion member 10 of this invention is demonstrated.
First, the wavelength conversion member main body 1 is produced as follows. A slurry containing glass powder that becomes a glass matrix and phosphor powder is prepared. The slurry contains organic components such as a binder resin and a solvent. The prepared slurry is applied onto a supporting substrate, and a doctor blade installed at a predetermined interval from the substrate is moved relative to the slurry to form a green sheet. As said support base material, resin films, such as a polyethylene terephthalate, can be used, for example. Subsequently, the wavelength conversion member main body 1 is obtained by firing the green sheet. In addition, in order to obtain the wavelength conversion member main body 1 having a desired thickness, a plurality of green sheets may be baked and integrated in a state of being laminated. The firing temperature is preferably within the softening point of the glass powder ± 150 ° C., and more preferably within the softening point of the glass powder ± 100 ° C. If the firing temperature is too low, the glass powder may not soften and flow, and a dense sintered body may not be obtained. On the other hand, if the firing temperature is too high, the phosphor powder may elute into the glass and the emission intensity may decrease, or the phosphor component may diffuse into the glass and the glass may be colored to reduce the emission intensity. is there.

次に、波長変換部材本体1の表面に中空粒子分散液を塗布する。この中空粒子分散液は、乾燥硬化後バインダ5をなすバインダ成分と中空粒子6をアルコールやエーテルなどの有機溶媒中に分散させたオルガノゾルである。塗膜中の分散媒を乾燥させゲル化させることにより、バインダ5と、バインダ5中に分散された中空粒子6から構成される反射防止層2が形成される。このようにして波長変換部材10を得る。   Next, a hollow particle dispersion is applied to the surface of the wavelength conversion member body 1. This hollow particle dispersion is an organosol in which the binder component that forms the binder 5 after drying and curing and the hollow particles 6 are dispersed in an organic solvent such as alcohol or ether. The antireflection layer 2 composed of the binder 5 and the hollow particles 6 dispersed in the binder 5 is formed by drying and gelling the dispersion medium in the coating film. In this way, the wavelength conversion member 10 is obtained.

塗膜の形成方法は、例えばスピンコート、バーコート、スプレーコート、ディップコートなどが挙げられる。   Examples of the method for forming the coating film include spin coating, bar coating, spray coating, and dip coating.

(4)発光装置
本発明の発光装置は、波長変換部材10と、波長変換部材10に励起光を照射する光源と、を備えてなる。光源としてはLEDやLD等を使用することができる。光源から出射された励起光は波長変換部材10における波長変換部材本体1で波長変換されて蛍光を発し、励起光とともに出射される。
(4) Light-emitting device The light-emitting device of this invention is equipped with the wavelength conversion member 10 and the light source which irradiates the wavelength conversion member 10 with excitation light. As the light source, an LED, an LD, or the like can be used. The excitation light emitted from the light source is converted in wavelength by the wavelength conversion member body 1 in the wavelength conversion member 10 to emit fluorescence, and is emitted together with the excitation light.

以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。   Hereinafter, the present invention will be described in more detail on the basis of specific examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented without departing from the scope of the present invention. Is possible.

ホウ珪酸ガラス粉末(軟化点850℃)に対し、平均粒径が15μmであるYAG蛍光体粒子を、波長変換部材本体中に10体積%含有されるように調合し、バインダ樹脂(共栄社化学株式会社製、オリコックス)と可塑剤(互応化学工業株式会社製、DOA)、分散剤(共栄社化学株式会社製、フローレンG−700)、有機溶剤(関東化学株式会社製、2−ブタノール、)を添加して混練することによりスラリー状の混合物を得た。得られたスラリー状混合物をドクターブレード法によりシート状に成形し、室温で乾燥させることによりグリーンシートを得た。グリーンシートを所定のサイズに裁断した後、電気炉にて脱脂処理を施し、真空ガス置換炉にて、真空焼成を実施した。得られた板状の波長変換部材本体を、ラップ研磨、ポリッシュ研磨することで、厚み0.18mmの板状の波長変換部材本体を得た。   A BAG resin (Kyoeisha Chemical Co., Ltd.) was prepared by adding 10% by volume of YAG phosphor particles having an average particle size of 15 μm to the borosilicate glass powder (softening point 850 ° C.). Manufactured by Oricox) and plasticizer (manufactured by Kyoyo Chemical Industry Co., Ltd., DOA), dispersant (manufactured by Kyoeisha Chemical Co., Ltd., Floren G-700), organic solvent (manufactured by Kanto Chemical Co., Ltd., 2-butanol) And kneaded to obtain a slurry-like mixture. The obtained slurry mixture was formed into a sheet by a doctor blade method and dried at room temperature to obtain a green sheet. The green sheet was cut into a predetermined size, then degreased in an electric furnace, and vacuum fired in a vacuum gas replacement furnace. The obtained plate-shaped wavelength conversion member main body was lapped and polished to obtain a plate-shaped wavelength conversion member main body having a thickness of 0.18 mm.

波長変換部材本体の一方の表面に、中空シリカ粒子分散液(日揮触媒化成株式会社製、ELCOM P−5103、中空シリカ粒子の平均粒子径0.05μm、中空シリカ粒子の屈折率nd=1.37)を200μL滴下し、スピンコーターを使用し塗膜を形成した。その後、塗膜を150℃に予熱したホットプレート上で30分間乾燥させた。このようにして波長変換部材本体の表面に、中空シリカ粒子を含む反射防止層(厚み0.01μm)を形成し、波長変換部材を得た。   On one surface of the wavelength conversion member main body, a hollow silica particle dispersion (manufactured by JGC Catalysts & Chemicals, ELCOM P-5103, average particle diameter of hollow silica particles 0.05 μm, refractive index nd = 1.37 of hollow silica particles). 200 μL was dropped, and a coating film was formed using a spin coater. Then, the coating film was dried for 30 minutes on a hot plate preheated to 150 ° C. In this way, an antireflection layer (thickness: 0.01 μm) containing hollow silica particles was formed on the surface of the wavelength conversion member main body to obtain a wavelength conversion member.

得られた波長変換部材について、以下のようにして発光強度(全光束値)を測定した。励起波長450nmの光源下に波長変換部材を、反射防止層が形成されていない側の表面が光源に接するように設置し、波長変換部材下面から発せられる光を積分球内部に取り込んだ後、標準光源によって校正された分光器へ導光し、光のエネルギー分布スペクトルを測定した。得られたスペクトルに標準比視感度を掛け合わせることにより、全光束値を算出した。なお、比較用として反射防止層を形成していない波長変換部材(波長変換部材本体のみ)についても同様にして発光強度を測定した。その結果、反射防止層を形成しなかった比較用の波長変換部材の発光強度を100a.u.(arbitrary unit;任意単位)とした場合、反射防止層を形成した本発明に係る波長変換部材は105a.u.であり、5%の発光強度の向上が確認された。   With respect to the obtained wavelength conversion member, the light emission intensity (total luminous flux value) was measured as follows. A wavelength conversion member is placed under a light source with an excitation wavelength of 450 nm so that the surface on which the antireflection layer is not formed is in contact with the light source, and the light emitted from the lower surface of the wavelength conversion member is taken into the integrating sphere, and then the standard The light was guided to a spectroscope calibrated by a light source, and the energy distribution spectrum of light was measured. The total luminous flux value was calculated by multiplying the obtained spectrum by the standard relative luminous sensitivity. In addition, the emission intensity was measured in the same manner for a wavelength conversion member (only the wavelength conversion member main body) in which the antireflection layer was not formed for comparison. As a result, the emission intensity of the comparative wavelength conversion member in which the antireflection layer was not formed was 100a. u. (Arbitrary unit; arbitrary unit), the wavelength conversion member according to the present invention in which the antireflection layer is formed is 105a. u. It was confirmed that the emission intensity was improved by 5%.

1 波長変換部材本体
2 反射防止層
3 マトリクス
4 蛍光体
5 バインダ
6 中空粒子
10、20 波長変換部材
DESCRIPTION OF SYMBOLS 1 Wavelength conversion member main body 2 Antireflection layer 3 Matrix 4 Phosphor 5 Binder 6 Hollow particle 10, 20 Wavelength conversion member

Claims (9)

蛍光体を含む波長変換部材本体と、
波長変換部材本体の表面に形成されてなり、中空粒子を含む反射防止層と、
を備えていることを特徴とする波長変換部材。
A wavelength conversion member main body containing a phosphor;
Formed on the surface of the wavelength conversion member body, an antireflection layer containing hollow particles, and
A wavelength conversion member comprising:
中空粒子の屈折率が1.1〜1.45であることを特徴とする請求項1に記載の波長変換部材。   The wavelength conversion member according to claim 1, wherein the hollow particles have a refractive index of 1.1 to 1.45. 中空粒子がシリカからなることを特徴とする請求項1または2に記載の波長変換部材。   The wavelength conversion member according to claim 1 or 2, wherein the hollow particles are made of silica. 中空粒子の平均粒子径が0.005〜5μmであることを特徴とする請求項1〜3のいずれかに記載の波長変換部材。   The wavelength conversion member according to claim 1, wherein the hollow particles have an average particle diameter of 0.005 to 5 μm. 反射防止層が、バインダと、バインダ中に分散された中空粒子から構成されていることを特徴とする請求項1〜4のいずれかに記載の波長変換部材。   The wavelength conversion member according to claim 1, wherein the antireflection layer is composed of a binder and hollow particles dispersed in the binder. 反射防止層の厚みが0.005〜20μmであることを特徴とする請求項1〜5のいずれかに記載の波長変換部材。   The wavelength conversion member according to claim 1, wherein the antireflection layer has a thickness of 0.005 to 20 μm. 中空粒子の屈折率が、波長変換部材本体側から反射防止層表面側に向けて漸減していることを特徴とする請求項1〜6のいずれかに記載の波長変換部材。   The wavelength conversion member according to any one of claims 1 to 6, wherein the refractive index of the hollow particles is gradually decreased from the wavelength conversion member main body side toward the antireflection layer surface side. 波長変換部材本体が、ガラスマトリクス中に蛍光体粉末が分散してなることを特徴とする請求項1〜7のいずれかに記載の波長変換部材。   The wavelength conversion member according to claim 1, wherein the wavelength conversion member main body is formed by dispersing phosphor powder in a glass matrix. 請求項1〜8のいずれか一項に記載の波長変換部材と、
波長変換部材に励起光を照射する光源と、
を備えていることを特徴とする発光装置。
The wavelength conversion member according to any one of claims 1 to 8,
A light source for irradiating the wavelength conversion member with excitation light;
A light emitting device comprising:
JP2016218593A 2016-11-09 2016-11-09 Wavelength conversion member and light emitting device Pending JP2018077324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016218593A JP2018077324A (en) 2016-11-09 2016-11-09 Wavelength conversion member and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016218593A JP2018077324A (en) 2016-11-09 2016-11-09 Wavelength conversion member and light emitting device

Publications (1)

Publication Number Publication Date
JP2018077324A true JP2018077324A (en) 2018-05-17

Family

ID=62150325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016218593A Pending JP2018077324A (en) 2016-11-09 2016-11-09 Wavelength conversion member and light emitting device

Country Status (1)

Country Link
JP (1) JP2018077324A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153144A1 (en) * 2019-01-25 2020-07-30 パナソニックIpマネジメント株式会社 Color conversion element
JP2020118946A (en) * 2019-01-25 2020-08-06 パナソニックIpマネジメント株式会社 Color conversion element
US11355678B2 (en) 2018-01-31 2022-06-07 Nichia Corporation Light-emitting device and method of manufacturing the same
US11355681B2 (en) 2018-01-31 2022-06-07 Nichia Corporation Light emitting device and method of manufacturing same
WO2023277579A1 (en) * 2021-06-29 2023-01-05 대주전자재료 주식회사 Wavelength conversion member and light-emitting device comprising same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355678B2 (en) 2018-01-31 2022-06-07 Nichia Corporation Light-emitting device and method of manufacturing the same
US11355681B2 (en) 2018-01-31 2022-06-07 Nichia Corporation Light emitting device and method of manufacturing same
US11990573B2 (en) 2018-01-31 2024-05-21 Nichia Corporation Method of manufacturing light emitting device having hollow particles
WO2020153144A1 (en) * 2019-01-25 2020-07-30 パナソニックIpマネジメント株式会社 Color conversion element
JP2020118946A (en) * 2019-01-25 2020-08-06 パナソニックIpマネジメント株式会社 Color conversion element
CN113272687A (en) * 2019-01-25 2021-08-17 松下知识产权经营株式会社 Color conversion element
JP7308475B2 (en) 2019-01-25 2023-07-14 パナソニックIpマネジメント株式会社 color conversion element
CN113272687B (en) * 2019-01-25 2023-11-17 松下知识产权经营株式会社 color conversion element
WO2023277579A1 (en) * 2021-06-29 2023-01-05 대주전자재료 주식회사 Wavelength conversion member and light-emitting device comprising same

Similar Documents

Publication Publication Date Title
US10580944B2 (en) Wavelength conversion member, light-emitting device, and method for manufacturing wavelength conversion member
JP2018077324A (en) Wavelength conversion member and light emitting device
JP7212319B2 (en) Wavelength conversion member and light emitting device
CN109564308B (en) Wavelength conversion member and method for manufacturing same
WO2018037856A1 (en) Method for manufacturing wavelength conversion member
WO2018012273A1 (en) Method for manufacturing wavelength conversion member and wavelength conversion member group
TWI757521B (en) Wavelength conversion member and light-emitting device
KR102621944B1 (en) Wavelength conversion member and light emitting device
KR102318187B1 (en) Wavelength conversion member and manufacturing method thereof
KR102318702B1 (en) Wavelength conversion member and manufacturing method thereof
KR102576253B1 (en) Wavelength conversion member and light emitting device comprising same
JP2018013681A (en) Wavelength conversion member and light emitting device
JP2018049185A (en) Wavelength conversion member and light-emitting device
TW202046521A (en) Wavelength conversion member and method for manufacturing same, and light emission device