JP2018075990A - 電動車両の制御装置 - Google Patents

電動車両の制御装置 Download PDF

Info

Publication number
JP2018075990A
JP2018075990A JP2016219441A JP2016219441A JP2018075990A JP 2018075990 A JP2018075990 A JP 2018075990A JP 2016219441 A JP2016219441 A JP 2016219441A JP 2016219441 A JP2016219441 A JP 2016219441A JP 2018075990 A JP2018075990 A JP 2018075990A
Authority
JP
Japan
Prior art keywords
storage device
power storage
power
ecu
soc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016219441A
Other languages
English (en)
Inventor
友希 小川
Yuki Ogawa
友希 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016219441A priority Critical patent/JP2018075990A/ja
Publication of JP2018075990A publication Critical patent/JP2018075990A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】下りSOC制御が実行可能に構成された電動車両において、下りSOC制御の実行による蓄電装置の温度上昇に起因する回生電力の取りこぼしを抑制し易くする。
【解決手段】車両は、蓄電装置と、蓄電装置の電力で駆動される第2MG(モータジェネレータ)と、蓄電装置を冷却するための冷却ファンと、下りSOC制御を実行可能に構成されたHV−ECUとを備える。HV−ECUは、下りSOC制御を実行していない場合よりも、冷却ファンによる蓄電装置の冷却能力を強める。
【選択図】図6

Description

本開示は、蓄電装置の電力で駆動される走行用のモータを備える電動車両の制御装置に関する。
従来より、ユーザによる電動車両の省エネルギ運転を支援するための制御の開発が進められている。その1つとして、たとえば特開2011−6047号公報(特許文献1)には、「下りSOC制御」(SOC:State Of Charge)を実行可能に構成された電動車両が開示されている。「下りSOC制御」は、蓄電装置の電力で駆動される走行用のモータを備える電動車両において、電動車両の走行予定経路に下り抽出条件を満たす対象下り区間がある場合に、対象下り区間への進入前から蓄電装置の電力を通常時(下りSOC制御の非実行時)よりも多く消費して蓄電装置のSOCを予め減少させる制御である。
対象下り区間の走行中には、モータの回生電力によってSOCが上昇するが、下りSOC制御によって対象下り区間への進入前にSOCが予め減少されているため、対象下り区間の走行中における回生電力の回収量を増やすことができる。
特開2011−6047号公報 特開2006−306231号公報
上述の下りSOC制御が実行されると、蓄電装置の温度上昇に起因して、対象下り区間の走行中あるいは通過後に回生電力の取りこぼし(車両の運動エネルギの一部が、回生電力として蓄電装置に回収されず、摩擦ブレーキの作動等により熱などに変換されて捨てられる状況)が発生することが懸念される。
具体的には、下りSOC制御は、上述のように、対象下り区間への進入前に蓄電装置の電力を多く消費しておくことによって、対象下り区間中における回生電力の回収量を増やす制御である。そのため、下りSOC制御が実行されると、対象下り区間中における連続充電時間が通常時(下りSOC制御の非実行時)よりも長くなり、蓄電装置の温度が通常時よりも上昇してしまう可能性がある。一般的に蓄電装置の温度が制限しきい値を超えた場合には蓄電装置の受入可能電力(単位:ワット)は通常値(蓄電装置の温度が制限しきい値未満である場合の値)よりも小さい値に絞られるところ、下りSOC制御の実行によって対象下り区間の走行中あるいは通過後に蓄電装置の温度が制限しきい値を超えてしまうと、蓄電装置の受入可能電力が通常値よりも小さい値に絞られ、回生電力の取りこぼしが発生することが懸念される。
本開示は、上述の課題を解決するためになされたものであって、その目的は、下りSOC制御が実行可能に構成された電動車両において、下りSOC制御の実行による蓄電装置の温度上昇に起因する回生電力の取りこぼしを抑制し易くすることである。
本開示による制御装置は、蓄電装置の電力で駆動される走行用のモータを備える電動車両の制御装置である。この制御装置は、蓄電装置を冷却可能に構成された冷却部と、電動車両の走行予定経路に対象下り区間がある場合に当該対象下り区間への進入前から蓄電装置の蓄電量を予め減少させる下りSOC制御を実行可能に構成された制御部とを備える。制御部は、下りSOC制御を実行している場合は、下りSOC制御を実行していない場合よりも、冷却部の作動量を大きくする。
上記構成によれば、下りSOC制御を実行している場合は、冷却部の作動量が大きくされる。これにより、冷却部による蓄電装置の冷却能力が強められるため、蓄電装置の温度上昇をより抑制することが可能となる。そのため、対象下り区間の走行中あるいは通過後において、蓄電装置の受入可能電力が制限され難くなる。その結果、下りSOC制御の実行による蓄電装置の温度上昇に起因する回生電力の取りこぼしを抑制し易くすることができる。
車両の全体構成図である。 HV−ECU、各種センサ及びナビゲーション装置の詳細な構成を示すブロック図である。 走行制御の処理手順の一例を示すフローチャートである。 充放電要求パワーPbの算出方法の一例を示した図である。 下りSOC制御を説明するための図である。 下りSOC制御の処理手順の一例を示すフローチャートである。
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。
図1は、本実施の形態による車両1の全体構成図である。車両1は、エンジン10と、第1モータジェネレータ(以下「第1MG」と称する。)20と、第2モータジェネレータ(以下「第2MG」と称する。)30と、動力分割装置40と、PCU(Power Control Unit)50と、蓄電装置60と、駆動輪80とを備える。
この車両1は、エンジン10の動力及び第2MG30の動力の少なくとも一方によって走行するハイブリッド車両である。なお、本開示では、車両1がハイブリッド車両である場合について代表的に説明されるが、本開示を適用可能な車両は、走行用のモータジェネレータを備える電動車両であればよく、ハイブリッド車両には限定されない。
エンジン10は、空気と燃料との混合気を燃焼させたときに生じる燃焼エネルギをピストンやロータなどの運動子の運動エネルギに変換することによって動力を出力する内燃機関である。動力分割装置40は、たとえば、サンギヤ、キャリア、リングギヤの3つの回転軸を有する遊星歯車機構を含む。動力分割装置40は、エンジン10から出力される動力を、第1MG20を駆動する動力と、駆動輪80を駆動する動力とに分割する。
第1MG20及び第2MG30は、交流回転電機であり、たとえば、ロータに永久磁石が埋設された三相交流同期電動機である。第1MG20は、主として、動力分割装置40を経由してエンジン10により駆動される発電機として用いられる。第1MG20が発電した電力は、PCU50を介して第2MG30又は蓄電装置60へ供給される。
第2MG30は、主として電動機として動作し、駆動輪80を駆動する。第2MG30は、蓄電装置60からの電力及び第1MG20の発電電力の少なくとも一方を受けて駆動され、第2MG30の駆動力は駆動輪80に伝達される。一方、車両1の制動時や下り坂での加速度低減時には、第2MG30は、発電機として動作して回生発電を行なう。第2MG30が発電した電力は、PCU50を介して蓄電装置60に回収される。
PCU50は、蓄電装置60から受ける直流電力を、第1MG20及び第2MG30を駆動するための交流電力に変換する。また、PCU50は、第1MG20及び第2MG30により発電された交流電力を、蓄電装置60を充電するための直流電力に変換する。PCU50は、たとえば、第1MG20及び第2MG30に対応して設けられる2つのインバータと、各インバータに供給される直流電圧を蓄電装置60の電圧以上に昇圧するコンバータとを含んで構成される。
蓄電装置60は、再充電可能な直流電源であり、たとえばリチウムイオン電池やニッケル水素電池等の二次電池を含んで構成される。蓄電装置60は、第1MG20及び第2MG30の少なくとも一方が発電した電力を受けて充電される。そして、蓄電装置60は、その蓄えられた電力をPCU50へ供給する。なお、蓄電装置60として電気二重層キャパシタ等も採用可能である。
蓄電装置60には、監視ユニット61が設けられる。監視ユニット61には、蓄電装置60の電圧、入出力電流及び温度をそれぞれ検出する電圧センサ、電流センサ及び温度センサ(いずれも図示せず)が含まれる。監視ユニット61は、各センサの検出値(蓄電装置60の電圧、入出力電流及び温度)をBAT−ECU110に出力する。
また、蓄電装置60には、冷却ファン62が設けられる。冷却ファン62は、HV−ECU100からの制御信号によって作動し、蓄電装置60に冷却風を供給する。冷却ファン62の作動量(冷却ファン62による蓄電装置60の冷却能力)は、HV−ECU100によって調整される。
車両1は、さらに、HV−ECU(Electronic Control Unit)100と、BAT−ECU110と、各種センサ120と、ナビゲーション装置130と、HMI(Human Machine Interface)装置140とを備える。
図2は、図1に示したHV−ECU100、各種センサ120及びナビゲーション装置130の詳細な構成を示すブロック図である。HV−ECU100、BAT−ECU110、ナビゲーション装置130、及びHMI装置140は、CAN(Controller Area Network)150を通じて互いに通信可能に構成されている。
各種センサ120は、たとえば、アクセルペダルセンサ122、車速センサ124、ブレーキペダルセンサ126を含む。アクセルペダルセンサ122は、ユーザによるアクセルペダル操作量(以下「アクセル開度」ともいう)ACCを検出する。車速センサ124は、車両1の車速VSを検出する。ブレーキペダルセンサ126は、ユーザによるブレーキペダル操作量BPを検出する。これらの各センサは、検出結果をHV−ECU100へ出力する。
HV−ECU100は、CPU(Central Processing Unit)、処理プログラム等を記憶するROM(Read Only Memory)、データを一時的に記憶するRAM(Random Access Memory)、各種信号を入出力するための入出力ポート(図示せず)等を含み、メモリ(ROM及びRAM)に記憶された情報、各種センサ120からの情報、BAT−ECU110からの情報に基づいて、所定の演算処理を実行する。そして、HV−ECU100は、演算処理の結果に基づいて、エンジン10、PCU50、HMI装置140、冷却ファン62等の各機器を制御する。
BAT−ECU110も、CPU、ROM、RAM、入出力ポート等を含み(いずれも図示せず)、監視ユニット61からの蓄電装置60の入出力電流及び/又は電圧の検出値に基づいて蓄電装置60のSOCを算出する。SOCは、たとえば、蓄電装置60の満充電容量に対する現在の蓄電量を百分率で表される。そして、BAT−ECU110は、算出されたSOCをHV−ECU100へ出力する。なお、HV−ECU100においてSOCを算出してもよい。
また、BAT−ECU110は、監視ユニット61による蓄電装置60の温度の検出値を、HV−ECU100に出力する。
HV−ECU100は、BAT−ECU110から受信した蓄電装置60のSOCおよび温度に基づいて、蓄電装置60の受入可能電力WIN(単位:ワット)を設定する。たとえば、HV−ECU100は、SOCが大きいほど受入可能電力WINを小さい値に設定する。また、HV−ECU100は、蓄電装置60の温度が制限しきい値を超える場合には、蓄電装置60の受入可能電力WINを通常値(蓄電装置60の温度が制限しきい値未満である場合の値)よりも小さい値に設定する。HV−ECU100は、蓄電装置60に入力される電力が受入可能電力WINを超えないように第1MG20および第2MG30が発電する電力を制御する。
HV−ECU100は、BAT−ECU110から受信した蓄電装置60の温度が所定温度を超える場合、冷却ファン62を作動させて蓄電装置60に冷却風を供給することによって、蓄電装置60を冷却する。HV−ECU100は、冷却ファン62を作動させる際、冷却ファン62の作動量(代表的には回転速度)を制御するすることによって、冷却ファン62による蓄電装置60の冷却能力を調整することができる。
HV−ECU100は、BAT−ECU110から受信した蓄電装置60のSOCおよび温度に基づいて蓄電装置60の出力可能電力WOUTを設定する。HV−ECU100は、蓄電装置60から出力される電力が出力可能電力WOUTを超えないように第1MG20および第2MG30が消費する電力を制御する。
ナビゲーション装置130は、ナビゲーションECU132と、地図情報データベース(DB)134と、GPS(Global Positioning System)受信部136と、交通情報受信部138とを含む。
地図情報DB134は、ハードディスクドライブ(HDD)等によって構成され、地図情報を記憶している。地図情報は、交差点や行き止まり等の「ノード」、ノード同士を接続する「リンク」、及びリンク沿いにある「施設」(建物や駐車場等)に関するデータを含む。また、地図情報は、各ノードの位置情報、各リンクの距離情報、各リンクに含まれる道路種別情報(トンネル、橋、高架道路、海沿い、山際などの道路など)、各リンクの勾配情報等を含む。
GPS受信部136は、GPS衛星(図示せず)からの信号(電波)に基づいて車両1の現在位置を取得し、車両1の現在位置を示す信号をナビゲーションECU132へ出力する。
交通情報受信部138は、FM多重放送等によって提供されている道路交通情報(たとえばVICS(登録商標)情報)を受信する。この道路交通情報は、少なくとも渋滞情報を含み、その他道路規制情報や駐車場情報等も含み得る。この道路交通情報は、たとえば5分おきに更新される。
ナビゲーションECU132は、CPU、ROM、RAM、入出力ポート(図示せず)等を含み、地図情報DB134、GPS受信部136及び交通情報受信部138から受ける各種情報や信号に基づいて、車両1の現在位置、並びにその周辺の地図情報及び渋滞情報等をHMI装置140及びHV−ECU100へ出力する。
また、ナビゲーションECU132は、HMI装置140においてユーザにより車両1の目的地が入力されると、車両1の現在位置から目的地までの経路(走行予定経路)を地図情報DB134に基づいて探索する。この走行予定経路は、車両1の現在位置から目的地までのノード及びリンクの集合によって構成される。そして、ナビゲーションECU132は、車両1の現在位置から目的地までの探索結果(ノード及びリンクの集合)をHMI装置140へ出力する。
また、ナビゲーションECU132は、HV−ECU100からの求めに応じて、走行予定経路における、現在位置から所定距離(たとえば10km程度)内の地点までの地図情報および道路交通情報(以下「先読み情報」とも称する。)をHV−ECU100へ出力する。なお、この先読み情報は、HV−ECU100における下りSOC制御に用いられる(後述)。
HMI装置140は、車両1の運転を支援するための情報をユーザに提供する装置である。HMI装置140は、代表的には、車両1の室内に設けられたディスプレイ(視覚情報表示装置)であり、スピーカ(聴覚情報出力装置)等も含む。HMI装置140は、視覚情報(図形情報、文字情報)や聴覚情報(音声情報、音情報)等を出力することによって様々な情報をユーザに提供する。
HMI装置140は、ナビゲーション装置130のディスプレイとして機能する。すなわち、HMI装置140は、車両1の現在位置、並びにその周辺の地図情報及び渋滞情報等をナビゲーション装置130からCAN150を通じて受信し、車両1の現在位置をその周辺の地図情報及び渋滞情報とともに表示する。
また、HMI装置140は、ユーザが操作可能なタッチパネルとしても作動し、ユーザは、タッチパネルに触れることによって、たとえば、表示されている地図の縮尺を変更したり、車両1の目的地を入力したりすることができる。HMI装置140において目的地が入力されると、その目的地の情報がCAN150を通じてナビゲーション装置130へ送信される。
上述のように、ナビゲーションECU132は、HV−ECU100からの求めに応じて、上述の先読み情報(走行予定経路における現在位置から所定距離内の地点までの地図情報および道路交通情報)をHV−ECU100へ出力する。
HV−ECU100は、ナビゲーションECU132から先読み情報を受信すると、受信した先読み情報を用いて走行予定経路に所定の下り抽出条件を満たす対象下り区間(制御対象区間)があるか否かを判定し、対象下り区間がある場合には、その区間への進入前に蓄電装置60のSOCを予め減少させる「下りSOC制御」を実行する。下りSOC制御は、車両1の省エネルギ運転を支援するための制御の1つである。下りSOC制御の詳細については、後程詳しく説明する。
<走行制御>
下りSOC制御の詳細な説明に先立ち、まず、HV−ECU100によって実行される車両1の走行制御について説明する。
図3は、HV−ECU100により実行される走行制御の処理手順の一例を示すフローチャートである。このフローチャートに示される一連の処理は、たとえば車両1のシステムスイッチがオンされている場合に所定時間毎に繰り返し実行される。
HV−ECU100は、アクセルペダルセンサ122及び車速センサ124からそれぞれアクセル開度ACC及び車速VSの検出値を取得するとともに、蓄電装置60のSOCをBAT−ECU110から取得する(ステップS10)。
次いで、HV−ECU100は、取得されたアクセル開度ACC及び車速VSの検出値に基づいて、車両1に対する要求トルクTrを算出する(ステップS15)。たとえば、アクセル開度ACCと、車速VSと、要求トルクTrとの関係を示すマップを事前に準備してHV−ECU100のROMにマップとして記憶しておき、そのマップを用いて、アクセル開度ACC及び車速VSの検出値に基づいて要求トルクTrを算出することができる。そして、HV−ECU100は、算出された要求トルクTrに車速VSを乗算することによって、車両1に対する走行パワーPd(要求値)を算出する(ステップS20)。
続いて、HV−ECU100は、蓄電装置60に対する充放電要求パワーPbを算出する(ステップS25)。この充放電要求パワーPbは、蓄電装置60のSOC(実績値)とその目標との差ΔSOCに基づいて算出され、充放電要求パワーPbが正の値であるときは、蓄電装置60に対して充電が要求されることを示し、充放電要求パワーPbが負の値であるときは、蓄電装置60に対して放電が要求されることを示す。
図4は、蓄電装置60に対する充放電要求パワーPbの算出方法の一例を示した図である。蓄電装置60のSOC(実績値)と、SOCの制御目標を示す目標SOCとの差ΔSOCが正の値であるとき(SOC>目標SOC)、充放電要求パワーPbは負の値となり(放電要求)、ΔSOCの絶対値が大きいほど充放電要求パワーPbの絶対値も大きくなる。一方、ΔSOCが負の値であるとき(SOC<目標SOC)、充放電要求パワーPbは正の値となり(充電要求)、ΔSOCの絶対値が大きいほど充放電要求パワーPbの絶対値も大きくなる。なお、この例では、ΔSOCの絶対値が小さい場合には、充放電要求パワーPbを0とする不感帯が設けられている。
図3に戻って、HV−ECU100は、次式(1)に示されるように、ステップS20において算出された走行パワーPdと、ステップS25において算出された充放電要求パワーPbと、システム損失Plossとの合計値を、エンジン10に対して要求されるエンジン要求パワーPeを算出する(ステップS30)。
Pe=Pd+Pb+Ploss …(1)
次いで、HV−ECU100は、算出されたエンジン要求パワーPeが所定のエンジン始動しきい値Pethよりも大きいか否かを判定する(ステップS35)。なお、しきい値Pethは、エンジン10が所定の運転効率よりも高い運転効率で運転され得る値に設定される。
ステップS35においてエンジン要求パワーPeがしきい値Pethよりも大きいと判定されると(ステップS35においてYES)、HV−ECU100は、エンジン10を始動するようにエンジン10を制御する(ステップS40)。なお、エンジン10が既に運転中であれば、このステップはスキップされる。そして、HV−ECU100は、エンジン10及び第2MG30の双方からの出力を用いて車両1が走行するようにエンジン10及びPCU50を制御する。すなわち、車両1は、エンジン10及び第2MG30の出力を用いたハイブリッド走行(HV走行)を行なう(ステップS45)。
一方、ステップS35においてエンジン要求パワーPeがしきい値Peth以下であると判定されると(ステップS35においてNO)、HV−ECU100は、エンジン10を停止するようにエンジン10を制御する(ステップS50)。なお、エンジン10が既に停止中であれば、このステップはスキップされる。そして、HV−ECU100は、第2MG30の出力のみを用いて車両1が走行するようにPCU50を制御する。すなわち、車両1は、第2MG30の出力のみを用いた電動機走行(EV走行)を行なう(ステップS55)。
なお、上記において、実際のSOCが目標SOCよりも高いときは(ΔSOC>0)、充放電要求パワーPbは負の値となるので、SOCが目標SOCに制御されている場合に比べて、エンジン要求パワーPeが小さくなることによりエンジン10は始動されにくい状態となることが理解される。その結果、蓄電装置60の放電が促進され、SOCは低下傾向を示す。
一方、実際のSOCが目標SOCよりも低いときは(ΔSOC<0)、充放電要求パワーPbは正の値となるので、SOCが目標SOCに制御されている場合に比べて、エンジン要求パワーPeが大きくなることによりエンジン10は始動され易い状態となることが理解される。その結果、蓄電装置60の充電が促進され、SOCは上昇傾向を示す。
<下りSOC制御の詳細>
次に、HV−ECU100により実行される下りSOC制御の詳細について説明する。
上述のように、HV−ECU100は、車両1の省エネルギ運転を支援するための制御として、「下りSOC制御」を実行する。本実施の形態において、下りSOC制御は、車両1の走行予定経路に所定の下り抽出条件を満たす対象下り区間があるか否かをナビゲーション装置130からの先読み情報(地図情報の勾配情報等)を用いて判定し、対象下り区間がある場合には、その区間への進入前に蓄電装置60のSOCを予め減少させる制御である。
車両1が対象下り区間を走行する際には、第2MG30の回生電力の増加によって蓄電装置60のSOCが上昇する。しかしながら、下りSOC制御によって対象下り区間への進入前に蓄電装置60のSOCが予め減少されているため、対象下り区間の走行中にSOCが上限値SU(図5参照)に達すること(SOCのオーバーフロー)が抑制され、回収可能なエネルギを捨てることによる燃費低下や蓄電装置60の過充電による劣化が抑制される(後述の図5参照)。
図5は、下りSOC制御を説明するための図である。図5において、横軸は、車両1の走行予定経路の各地点を示す。図5に示される例では、走行予定経路に含まれる区間(リンク)1〜区間8が示されている。縦軸は、車両1の走行予定経路における道路の標高、及び蓄電装置60のSOCを示す。図中、線L21は、蓄電装置60の目標SOCを示す。また、線L22は、下りSOC制御が実行される場合のSOCの推移を示し、点線L23は、比較例として、下りSOC制御が実行されない場合のSOCの推移を示す。
HV−ECU100は、車両1の現在位置、走行予定経路およびそれらの地図情報をナビゲーション装置130から取得し、走行予定経路において車両1の現在位置から所定距離(たとえば10km)以内に、下り抽出条件を満たす対象下り区間(以下、単に「対象下り区間B」ともいう)が存在するか否かを判定する「制御対象探索処理」を行なう。
なお、本実施の形態において、下り抽出条件は、下り勾配の大きい下り坂の開始地点から次に一定距離以上の平坦が続く直前の地点までの区間であって、かつ一定以上の標高差および距離がある区間である、という条件に設定される。下り抽出条件を満たす区間が対象下り区間Bとして抽出される。
図5には、地点P20において、対象下り区間Bの探索が行なわれ、区間4〜区間6が対象下り区間Bであると特定された場合が例示されている。HV−ECU100は、通常走行時は、蓄電装置60の目標SOCを値Snに設定する(たとえば区間1)。仮に、蓄電装置60のSOCが値Snに制御されたままで車両1が下り坂区間(区間4〜区間6)に進入すると、下り坂区間では第2MG30により回生発電が行なわれることにより蓄電装置60が充電されるので、SOCは値Snから上昇する(点線L23)。そして、下り坂区間の走行中にSOCが上限値SUに達すると(地点P25a)、下り坂を走行しているにも拘わらず第2MG30により回生発電された電力を蓄電装置60に蓄えることができず(オーバーフロー発生)、回収可能なエネルギを捨てることになるとともに、蓄電装置60の劣化も促進され得る。
そこで、本実施の形態による車両1では、下り抽出条件を満たす対象下り区間B(区間4〜区間6)が特定され、その対象下り区間Bの開始地点P23より所定距離手前の地点P21aに車両1が到達すると、HV−ECU100は、目標SOCを値Snよりも低い値Sdに変更する(線L21)。そうすると、SOCが目標SOCよりも高い状態となり(ΔSOC>0)、上述のように、蓄電装置60の放電が促進され、SOCは低下する(線L22)。
図5では、対象下り区間Bの開始地点P23に車両1が到達するまでに、SOCが値Sdまで低下している。これにより、対象下り区間B(区間4〜区間6)の走行中にSOCが上限値SUに達するのを抑制し、回収可能なエネルギを捨てることによる燃費低下や蓄電装置60の過充電による劣化が抑制される。
対象下り区間Bの終了地点P26に車両1が到達すると、HV−ECU100は、下りSOC制御を終了し、目標SOCを値Snに復帰させる。
なお、以下では、目標SOCが値Snから値Sdに変更される地点P21a(下りSOC制御の開始地点)から対象下り区間Bの開始地点P23までの区間を「下り前区間A」とも記載する。また、下り前区間Aと対象下り区間Bとを合わせた区間(目標SOCが値Snから値Sdに変更されている区間)を「下りSOC制御区間」とも記載する。
このように、下りSOC制御が実行されることによって、対象下り区間Bへの進入前から目標SOCが値Snよりも低い値Sdに変更される。これにより、蓄電装置60の放電が促進され、蓄電装置60の電力が多く消費される。その結果、対象下り区間Bの走行中における回生電力の回収量を増やすことができる。
<蓄電装置の温度上昇に起因する回生電力の取りこぼしの抑制>
上述の下りSOC制御が実行されると、蓄電装置60の温度上昇に起因して、対象下り区間Bの走行中あるいは通過後に回生電力の取りこぼし(車両1の運動エネルギの一部が、回生電力として蓄電装置60に回収できず、図示しない摩擦ブレーキの作動等により熱などに変換されて捨てられる状況)が発生することが懸念される。
具体的には、下りSOC制御は、上述のように、対象下り区間Bへの進入前に蓄電装置60の電力を多く消費しておくことによって、対象下り区間Bの走行中における回生電力の回収量を増やす制御である。そのため、下りSOC制御が実行されると、対象下り区間B中における蓄電装置60の連続充電時間が通常時(下りSOC制御の非実行時)よりも長くなり、蓄電装置60の温度が通常時よりも上昇してしまう可能性がある。
本実施の形態においては、上述したように、蓄電装置60の温度が制限しきい値を超えた場合には蓄電装置60の受入可能電力WINが通常値(蓄電装置60の温度が制限しきい値未満である場合の値)よりも小さい値に絞られる。したがって、下りSOC制御の実行によって対象下り区間Bの走行中あるいは通過後に蓄電装置60の温度が制限しきい値を超えてしまうと、蓄電装置60の受入可能電力WINが通常値よりも小さい値に絞られ、回生電力の取りこぼしが発生することが懸念される。
そこで、本実施の形態によるHV−ECU100は、下りSOC制御を実行している場合は、下りSOC制御を実行していない場合よりも、冷却ファン62の作動量を通常値よりも大きい値にする。これにより、冷却ファン62による蓄電装置60の冷却能力が強められるため、蓄電装置60の温度上昇をより抑制することが可能となる。そのため、対象下り区間Bの走行中あるいは通過後において、蓄電装置60の受入可能電力WINが制限され難くなる。その結果、対象下り区間Bの走行中あるいは通過後において、下りSOC制御の実行による蓄電装置60の温度上昇に起因する回生電力の取りこぼしを抑制し易くすることができる。
<下りSOC制御の処理フロー>
図6は、HV−ECU100により実行される下りSOC制御の処理手順を示すフローチャートである。なお、このフローチャートに示される一連の処理は、たとえば車両1のシステムスイッチがオンされている場合に所定時間毎に繰り返し実行される。
HV−ECU100は、先読み情報の更新タイミングであるか否かを判定する(ステップS110)。先読み情報とは、上述したように、走行予定経路における、現在位置から所定距離(たとえば10km程度)内の地点までの地図情報および道路交通情報である。先読み情報の更新タイミングは、たとえば、車両1の走行経路が変更されたとき(走行予定経路から車両1が離脱したとき)、道路交通情報が更新されたとき、所定時間(たとえば1分)経過したとき、所定距離走行したとき、車両1が対象下り区間Bを通過したとき等である。
ステップS110において先読み情報の更新タイミングではないと判定されると(ステップS110においてNO)、HV−ECU100は、ステップS115の処理を実行することなくステップS120へ処理を移行する。
ステップS110において先読み情報の更新タイミングであると判定されると(ステップS110においてYES)、HV−ECU100は、ナビゲーション装置130から取得される走行予定経路の情報に基づいて、制御対象である対象下り区間Bの探索処理を実行する(ステップS115)。
対象下り区間Bの探索処理が終了すると、HV−ECU100は、走行予定経路に対象下り区間Bが存在するか否かを判定する(ステップS120)。ステップS120において走行予定経路に対象下り区間Bは無いと判定されると(ステップS120においてNO)、HV−ECU100は、以降の一連の処理を実行することなくリターンへと処理を移行する。
ステップS120において走行予定経路に対象下り区間Bが有ると判定されると(ステップS120においてYES)、HV−ECU100は、先読み情報に基づいて、車両1の現在位置から対象下り区間Bの開始地点までの距離dtagを算出する(ステップS125)。
次いで、HV−ECU100は、ステップS125において算出された距離dtagが所定距離Dsocよりも短いか否かを判定する(ステップS130)。
距離dtagが距離Dsoc以上である場合(ステップS130においてNO)、HV−ECU100は、以降の処理を実行することなくリターンへと処理を移行する。
ステップS130において距離dtagが距離Dsocよりも短いと判定されると(ステップS130においてYES)、HV−ECU100は、下りSOC制御を開始する(ステップS135)。具体的には、図5で説明したように、HV−ECU100は、蓄電装置60の目標SOCを値Snから値Snよりも低い値Sdに変更する。
次いで、HV−ECU100は、ステップS125において算出された距離dtagが所定距離Dbfanよりも短いか否かを判定する(ステップS136)。この判定は、冷却ファン62の冷却能力を強めるか否かを判定するための処理である。なお、所定距離Dbfanは、所定距離Dsocと同じ値、あるいは所定距離Dsocよりも小さい値に設定することができる。所定距離Dbfanが所定距離Dsocと同じ値に設定される場合には、下りSOC制御の開始と同時に冷却ファン62の冷却能力が強められることになる。
距離dtagが所定距離Dbfan以上である場合(ステップS136にてNO)、HV−ECU100は、冷却ファン62の作動量を通常値に設定する(ステップS137)。なお、冷却ファン62の作動量の「通常値」は、たとえば蓄電装置60の温度に応じた可変値とすることができる。これにより、冷却ファン62による蓄電装置60の冷却能力が通常値となる。
一方、ステップS136において距離dtagが所定距離Dbfanよりも短いと判定されると(ステップS136にてYES)、HV−ECU100は、冷却ファン62の作動量を通常値よりも大きい値に設定する(ステップS138)。なお、冷却ファン62の作動量の「通常値よりも大きい値」は、通常値と同様に蓄電装置60の温度に応じた可変値としてもよいし、冷却ファン62の最大出力としてもよい。いずれの場合であっても、下りSOC制御の実行中において、冷却ファン62の作動量を通常値よりも大きい値に設定することにより、冷却ファン62による蓄電装置60の冷却能力が通常値よりも大きい値となる。
次いで、HV−ECU100は、車両1が対象下り区間Bの終了地点を通過したか否かを判定する(ステップS140)。車両1が対象下り区間Bの終了地点を通過していない場合は(ステップS140においてNO)、HV−ECU100は、リターンへと処理を移行する。
ステップS140において車両1が対象下り区間Bの終了地点を通過したと判定されると(ステップS140においてYES)、HV−ECU100は、下りSOC制御を終了する(ステップS145)。具体的には、HV−ECU100は、蓄電装置60の目標SOCを値Sdから値Snに復帰させる。
以上のように、本実施の形態によるHV−ECU100は、下りSOC制御を実行している場合は、下りSOC制御を実行していない場合よりも、冷却ファン62の作動量を通常値よりも大きい値に設定することによって、冷却ファン62による蓄電装置60の冷却能力を強める。これにより、蓄電装置60の温度上昇をより抑制することが可能となるため、対象下り区間Bの走行中あるいは通過後において、蓄電装置60の受入可能電力WINが制限され難くなる。その結果、対象下り区間Bの走行中あるいは通過後において、回生電力の取りこぼしを抑制し易くすることができる。
[変形例]
なお、上述の実施の形態は、たとえば以下のように変更することができる。
(1) 上述の図6に示すフローチャートでは、HV−ECU100が、下りSOC制御の実行中において、距離dtagが所定距離Dbfanよりも短い場合(ステップS136)に冷却ファン62の冷却能力を強める例を示した。
しかしながら、冷却ファン62の冷却能力を強める条件はこれに限定されない。たとえば、下りSOC制御の実行中において、距離dtagが所定距離Dbfanよりも短い場合であって、かつ蓄電装置60の温度が一定値以上である場合に、冷却ファン62の冷却能力を強めるようにしてもよい。
また、たとえば、下りSOC制御の実行中においては、距離dtagが所定距離Dbfanよりも短いか否かに関わらず冷却ファン62の冷却能力を強める(すなわちステップS136の判定処理を行なうことなくステップS138の処理を行なう)ようにしてもよい。
(2) 上述の実施の形態においては、蓄電装置60の冷却装置として、空冷の冷却ファン62を用いる例を示した。
しかしながら、蓄電装置60の冷却装置は空冷であることに限定されない。たとえば、上述の冷却ファン62に代えてあるいは加えて、水冷式の冷却装置を設けるようにしてもよい。水冷式の冷却装置を設ける場合には、HV−ECU100が水冷式の冷却装置における冷却液の流量および温度を調整することによって水冷式の冷却装置の冷却能力を強めるようにすればよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 車両、10 エンジン、20 第1MG、30 第2MG、40 動力分割装置、50 PCU、60 蓄電装置、61 監視ユニット、62 冷却ファン、80 駆動輪、100 HV−ECU、110 BAT−ECU、120 各種センサ、122 アクセルペダルセンサ、124 車速センサ、126 ブレーキペダルセンサ、130 ナビゲーション装置、132 ナビゲーションECU、134 地図情報DB、136 GPS受信部、138 交通情報受信部、140 HMI装置、150 CAN。

Claims (1)

  1. 蓄電装置の電力で駆動される走行用のモータを備える電動車両の制御装置であって、
    前記蓄電装置を冷却可能に構成された冷却部と、
    前記電動車両の走行予定経路に対象下り区間がある場合に当該対象下り区間への進入前から前記蓄電装置の蓄電量を予め減少させる下りSOC制御を実行可能に構成された制御部とを備え、
    前記制御部は、前記下りSOC制御を実行している場合は、前記下りSOC制御を実行していない場合よりも、前記冷却部の作動量を大きくする、電動車両の制御装置。
JP2016219441A 2016-11-10 2016-11-10 電動車両の制御装置 Pending JP2018075990A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016219441A JP2018075990A (ja) 2016-11-10 2016-11-10 電動車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016219441A JP2018075990A (ja) 2016-11-10 2016-11-10 電動車両の制御装置

Publications (1)

Publication Number Publication Date
JP2018075990A true JP2018075990A (ja) 2018-05-17

Family

ID=62149524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016219441A Pending JP2018075990A (ja) 2016-11-10 2016-11-10 電動車両の制御装置

Country Status (1)

Country Link
JP (1) JP2018075990A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011062014A (ja) * 2009-09-11 2011-03-24 Denso Corp 車載充放電制御装置およびそれに含まれる部分制御装置
JP2016115609A (ja) * 2014-12-17 2016-06-23 ダイムラー・アクチェンゲゼルシャフトDaimler AG バッテリ冷却装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011062014A (ja) * 2009-09-11 2011-03-24 Denso Corp 車載充放電制御装置およびそれに含まれる部分制御装置
JP2016115609A (ja) * 2014-12-17 2016-06-23 ダイムラー・アクチェンゲゼルシャフトDaimler AG バッテリ冷却装置

Similar Documents

Publication Publication Date Title
US10913442B2 (en) Hybrid vehicle
US10266065B2 (en) Electric vehicle and control method for electric vehicle
JP6344429B2 (ja) ハイブリッド車両の制御装置
JP6812903B2 (ja) ハイブリッド車両
US20170021821A1 (en) Hybrid vehicle control apparatus
JP5765194B2 (ja) 車両および車両の制御方法
JP2014148225A (ja) ハイブリッド車両用制御装置
JP6790744B2 (ja) 電動車両の制御装置
JP6753206B2 (ja) ハイブリッド車両
JP2018029409A (ja) 電動車両
JP6753207B2 (ja) 電動車両
JP6822083B2 (ja) 電動車両の制御装置
JP2018075990A (ja) 電動車両の制御装置
JP2015116871A (ja) ハイブリッド電気自動車の制御装置
JP6772796B2 (ja) 電動車両
JP6702102B2 (ja) ハイブリッド車両
JP6702101B2 (ja) ハイブリッド車両
JP6753208B2 (ja) 電動車両
JP6776851B2 (ja) 電動車両
JP2018090051A (ja) 電動車両
JP2022085238A (ja) ハイブリッド車両の制御装置
JP2018040773A (ja) 車両
JP2021123290A (ja) ハイブリッド車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210518