JP2018074427A - Mems element and manufacturing method thereof - Google Patents

Mems element and manufacturing method thereof Download PDF

Info

Publication number
JP2018074427A
JP2018074427A JP2016213152A JP2016213152A JP2018074427A JP 2018074427 A JP2018074427 A JP 2018074427A JP 2016213152 A JP2016213152 A JP 2016213152A JP 2016213152 A JP2016213152 A JP 2016213152A JP 2018074427 A JP2018074427 A JP 2018074427A
Authority
JP
Japan
Prior art keywords
fixed electrode
electrode
trimming
mems element
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016213152A
Other languages
Japanese (ja)
Other versions
JP6708532B2 (en
Inventor
新一 荒木
Shinichi Araki
新一 荒木
孝英 臼井
Takahide Usui
孝英 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2016213152A priority Critical patent/JP6708532B2/en
Publication of JP2018074427A publication Critical patent/JP2018074427A/en
Application granted granted Critical
Publication of JP6708532B2 publication Critical patent/JP6708532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)
  • Pressure Sensors (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

PROBLEM TO BE SOLVED: To satisfactorily perform sensitivity adjustment without enlarging an ASIC and without enlarging a size or increasing cost even in a MEMS element.SOLUTION: The present invention relates to a MEMS element comprising a stationary electrode 3 and a movable electrode 2 that is disposed substantially in parallel with the stationary electrode 3 via an air gap G. Three (or one) stationary electrode rings 10A-10C for trimming are disposed in an outer periphery of the stationary electrode 3. The stationary electrode rings 10A-10C are connected to a connection line 9 via fuse parts 12 that are provided in both ends of the connection line 9, for example, a disconnection current is made flow from each of electrode pads 15A-15C to the fuse part 12 and selected one of the stationary electrode rings 10A-10C is disconnected from the stationary electrode 3, thereby adjusting sensitivity while maintaining a pull-in voltage at a desired fixed value.SELECTED DRAWING: Figure 1

Description

本発明はMEMS素子及びその製造方法、特にトランスデューサー等の各種センサとして用いられ、感度調整が行われるMEMS素子及びその製造方法に関する。   The present invention relates to a MEMS element and a manufacturing method thereof, and more particularly, to a MEMS element that is used as various sensors such as a transducer and performs sensitivity adjustment and a manufacturing method thereof.

従来から、トランスデューサー、マイクロフォン、センサ、アクチュエータ等に、MEMS(Micro Electro Mechanical System)素子が用いられる。
例えば、電子機器に使われるトランスデューサー(マイクロフォン装置)は、携帯電話やパーソナルコンピューター、また車載器等にも搭載され、近年、益々感度の高精度化が望まれている。
Conventionally, MEMS (Micro Electro Mechanical System) elements are used for transducers, microphones, sensors, actuators, and the like.
For example, a transducer (microphone device) used in an electronic device is mounted on a mobile phone, a personal computer, an on-vehicle device, and the like, and in recent years, higher sensitivity and higher accuracy are desired.

図4に、従来のトランスデューサーの構成が示されており、図4(B)は、図4(A)のB−B線(横中心線と固定電極パッド6から中心に向かう斜め線とを結ぶ線)での切断図(一部のみにハッチングをしたもの)である。図において、1は基板、2は可動電極、3は可動電極2に平行配置された固定電極、4は支持層(犠牲層の残り部分)、5は絶縁層、6は固定電極パッド、7は音孔、Gはエアーギャップである。   FIG. 4 shows a configuration of a conventional transducer. FIG. 4B shows a BB line (a horizontal center line and a diagonal line from the fixed electrode pad 6 toward the center) in FIG. It is a cutaway view (a part of the line is hatched). In the figure, 1 is a substrate, 2 is a movable electrode, 3 is a fixed electrode arranged in parallel with the movable electrode 2, 4 is a support layer (the rest of the sacrificial layer), 5 is an insulating layer, 6 is a fixed electrode pad, and 7 is a fixed electrode pad. Sound hole G is an air gap.

このようなトランスデューサーは、可動電極2と固定電極3が平行平板型コンデンサを形成し、音圧によって可動電極2が振動して生じる静電容量の変位を検出することにより、音声を電気信号に変換する。   In such a transducer, the movable electrode 2 and the fixed electrode 3 form a parallel plate type capacitor, and by detecting the displacement of the capacitance caused by the vibration of the movable electrode 2 due to sound pressure, the sound is converted into an electric signal. Convert.

特開2014−233059号公報JP, 2014-233059, A

ところで、トランスデューサーの感度は、製造中の幾つかのバラツキ因子により変化し、トランスデューサーそのものだけではその精度を高めるのは難しい。そこで、従来では、ASIC(Application Specific Integrated Circuit)側にて、抵抗やヒューズを用いて、或いはメモリトリミング、ダイオード等のザッピング等の回路構成により市場に受け入れられるレベルの感度に調整される。   By the way, the sensitivity of the transducer varies depending on some variation factors during manufacture, and it is difficult to increase the accuracy of the transducer itself. Therefore, conventionally, the sensitivity is adjusted to a level acceptable in the market on the ASIC (Application Specific Integrated Circuit) side by using a resistor, a fuse, or a circuit configuration such as memory trimming or zapping such as a diode.

しかしながら、上記トランスデューサー(MEMS素子)を内蔵する装置では、小型化の要求があり、素子の感度調整の際には、ASIC側の回路構成でASICが少しでも大きくならないようにし、またトランスデューサーにおいても、そのサイズやコストが変わらないようにする必要がある。   However, there is a demand for miniaturization of the device incorporating the transducer (MEMS element), and when adjusting the sensitivity of the element, the ASIC circuit configuration prevents the ASIC from increasing even a little. However, it is necessary to keep the size and cost unchanged.

本発明は上記問題点に鑑みてなされたものであり、その目的は、ASICを大きくすることなく、MEMS素子においてもサイズが大きくなったり、コストが増大したりすることなく、感度調整を良好に行うことのできるMEMS素子を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to improve sensitivity adjustment without increasing the size of the ASIC and without increasing the size and cost of the MEMS element. It is to provide a MEMS device that can be performed.

上記目的を達成するために、請求項1の発明に係るMEMS素子は、基板上に配置された固定電極と、この固定電極にエアーギャップを介して略平行に配置された可動電極とを備えるMEMS素子において、上記固定電極に対し切り離し可能に接続された1つ又は複数のトリミング用固定電極を設けたことを特徴とする。
請求項2の発明は、上記固定電極と上記トリミング用固定電極との間に、このトリミング用固定電極を切断するためのヒューズ部を形成し、かつこのヒューズ部に切断電流を流すための切断用電極を配線したことを特徴とする。
To achieve the above object, a MEMS element according to the invention of claim 1 includes a fixed electrode disposed on a substrate and a movable electrode disposed substantially parallel to the fixed electrode via an air gap. The element is characterized in that one or a plurality of trimming fixed electrodes detachably connected to the fixed electrode are provided.
According to a second aspect of the present invention, a fuse portion for cutting the trimming fixed electrode is formed between the fixed electrode and the trimming fixed electrode, and a cutting current for flowing a cutting current to the fuse portion is formed. The electrode is wired.

請求項3の発明に係るMEMS素子の製造方法は、基板上に配置された固定電極と、この固定電極にエアーギャップを介して略平行に配置された可動電極とを備えるMEMS素子の製造方法において、上記固定電極に対し切り離し可能な1つ又は複数のトリミング用固定電極を接続し、選択された上記トリミング用固定電極を切り離すことにより、所望のプルイン電圧に設定することを特徴とする。
請求項4の発明は、上記トリミング用固定電極と上記固定電極との間に、切断のためのヒューズ部を形成し、かつこのヒューズ部に切断用電極を配線し、この切断用電極から上記ヒューズ部に切断電流を流すことにより、選択された上記トリミング用固定電極を上記固定電極から切り離すことを特徴とする。
According to a third aspect of the present invention, there is provided a method for manufacturing a MEMS element, comprising: a fixed electrode disposed on a substrate; and a movable electrode disposed substantially parallel to the fixed electrode via an air gap. One or more detachable trimming fixed electrodes are connected to the fixed electrode, and the selected trimming fixed electrode is disconnected to set a desired pull-in voltage.
According to a fourth aspect of the present invention, a fuse portion for cutting is formed between the trimming fixed electrode and the fixed electrode, and a cutting electrode is wired to the fuse portion, and the fuse is cut from the cutting electrode. The selected trimming fixed electrode is separated from the fixed electrode by passing a cutting current through the part.

以上の構成によれば、例えば複数のリング状のトリミング用固定電極を固定電極の外周に形成し、素子形成の状況に応じて所定のトリミング用固定電極を切断する。この切断は、ヒューズ部に切断電流を流したり、レーザー照射したりすることで行われ、選択されたトリミング用固定電極の切断によって、固定電極の全体の面積が変わることで、MEMS素子側で感度を調整することができる。   According to the above configuration, for example, a plurality of ring-shaped trimming fixed electrodes are formed on the outer periphery of the fixed electrode, and predetermined trimming fixed electrodes are cut according to the state of element formation. This cutting is performed by supplying a cutting current to the fuse part or irradiating with a laser, and the entire area of the fixed electrode is changed by cutting the selected fixed electrode for trimming. Can be adjusted.

MEMS素子の感度は、固定電極−可動電極間の電圧と強い相関を持ち、プルイン(Pull In)電圧、つまり可動電極(メンブレン)のスティクションする電圧(両電極が貼り付く電圧)を読み取り、一定のプルイン電圧となるように、トリミング技術を使って固定電極をトリミングすることにより、感度を所望の値に調節することが可能となる。   The sensitivity of the MEMS element has a strong correlation with the voltage between the fixed electrode and the movable electrode, and reads the pull-in voltage, that is, the voltage at which the movable electrode (membrane) stings (the voltage at which both electrodes stick), and is constant. It is possible to adjust the sensitivity to a desired value by trimming the fixed electrode using a trimming technique so that the pull-in voltage becomes the same.

本発明によれば、ASICを大きくすることなく、MEMS素子においてもサイズが大きくなったり、コストが増大したりすることなく、固定電極のトリミングにより感度調整を良好に行うことが可能となる。
即ち、固定電極と可動電極で構成される空気型コンデンサは、電流が殆ど流れないことから電流密度は考慮する必要がなく、微細化技術によってトリミング用固定電極を使われるテクノロジーの最小線幅にまで細くすることができ、このトリミング用固定電極を複数形成して適宜選択することで、感度を微細に調整することが可能となる。
According to the present invention, it is possible to satisfactorily adjust the sensitivity by trimming the fixed electrode without increasing the size of the ASIC and without increasing the size and the cost of the MEMS element.
In other words, an air capacitor composed of a fixed electrode and a movable electrode has almost no current flow, so there is no need to consider the current density, and the minimum line width of the technology that uses the fixed electrode for trimming by miniaturization technology. The sensitivity can be finely adjusted by forming a plurality of trimming fixed electrodes and selecting them appropriately.

また、従来の固定電極の外周スペースを有効活用しながらMEMS素子側に感度調整機能を持たせ、製造工程の僅かな変更により、トリミング用固定電極やヒューズ部のパターンを製作することができ、マスク枚数を増やすこともなく、機能対コストが向上するという利点がある。   In addition, the sensitivity adjustment function is provided on the MEMS element side while effectively utilizing the outer peripheral space of the conventional fixed electrode, and the pattern of the fixed electrode for trimming and the fuse portion can be manufactured by a slight change in the manufacturing process. There is an advantage that the function versus cost is improved without increasing the number of sheets.

本発明の実施例のMEMS素子であるトランスデューサーの構成を示し、図(A)は上面図(表面の絶縁膜を透視状態とする)、図(B)は断面図(B−B線切断図で一部にハッチングしたもの)である。The structure of the transducer which is a MEMS element of the Example of this invention is shown, A figure (A) is a top view (it makes a surface insulating film transparent state), A figure (B) is sectional drawing (BB cutting drawing) And hatched in part). 図1のトランスデューサーの一部を拡大した図である。It is the figure which expanded a part of transducer of FIG. 実施例においてトリミング用固定電極の使い方とプルイン電圧の関係を示すグラフ図である。It is a graph which shows the usage of the fixed electrode for trimming in an Example, and the relationship between a pull-in voltage. 従来例のトランスデューサーの構成を示し、図(A)は上面図(表面の絶縁膜を透視状態とする)、図(B)は断面図(B−B線切断図で一部にハッチングしたもの)である。The structure of the transducer of a prior art example is shown, FIG. (A) is a top view (the insulating film on the surface is seen through), and FIG. ).

図1(A),(B)及び図2に、実施例のトランスデューサーの構成が示されており、図において、1はシリコン基板、2は変位可能な可動電極、3は可動電極2に平行配置された固定電極、4は支持層(エアーギャップGを形成するための犠牲層の残り部分)、5は絶縁膜、6は固定電極パッド、7は音孔(アコースティックホール)、Gは可動電極2と固定電極3の間のエアーギャップであり、固定電極3は連結ライン9で固定電極パッド6に接続される。   1A, 1B, and 2 show the configuration of the transducer of the embodiment. In the figure, 1 is a silicon substrate, 2 is a movable electrode that can be displaced, and 3 is parallel to the movable electrode 2. Arranged fixed electrode, 4 is a support layer (the remaining part of the sacrificial layer for forming the air gap G), 5 is an insulating film, 6 is a fixed electrode pad, 7 is a sound hole (acoustic hole), G is a movable electrode 2 and the fixed electrode 3, and the fixed electrode 3 is connected to the fixed electrode pad 6 by a connecting line 9.

実施例では、円形(その他の形状でもよい)の固定電極3の外周に3本の固定電極リング(トリミング用固定電極)10A,10B,10Cが配置され、この固定電極リング10A〜10Cは連結ライン9に接続される。この固定電極3及び固定電極リング10A〜10Cは、不純物がドープされたポリシリコンで形成されており、連結ライン9の短辺方向の両端に接続される固定電極リング10A〜10Cの部分には、リング線を連結ライン9へ向けて例えばテーパー状(弧状でもよい)に細くしたヒューズ部12が設けられる。   In the embodiment, three fixed electrode rings (trimming fixed electrodes) 10A, 10B, and 10C are arranged on the outer periphery of a circular (or other shape) fixed electrode 3, and these fixed electrode rings 10A to 10C are connected to the connection line. 9 is connected. The fixed electrode 3 and the fixed electrode rings 10A to 10C are formed of polysilicon doped with impurities, and the fixed electrode rings 10A to 10C connected to both ends in the short side direction of the connecting line 9 For example, a fuse portion 12 is provided in which the ring wire is tapered toward the connecting line 9 in a tapered shape (or an arc shape).

そして、固定電極リング10A〜10Cが接続される連結ライン9の両端部分に、1対のポリシリコン配線13及びメタル配線14を介して1対の電極パッド15A,15B,15Cが形成・接続される。なお、固定電極3の上には絶縁膜5が施され、この固定電極3及び絶縁膜5を貫通するように音孔7が形成されている。   A pair of electrode pads 15A, 15B, and 15C is formed and connected to both ends of the connecting line 9 to which the fixed electrode rings 10A to 10C are connected via a pair of polysilicon wiring 13 and metal wiring 14. . An insulating film 5 is provided on the fixed electrode 3, and a sound hole 7 is formed so as to penetrate the fixed electrode 3 and the insulating film 5.

以上の構成によれば、1対の電極パッド15Cから切断電流を流してヒューズ部12を焼き切ることにより、外側の固定電極リング10Cが固定電極3から切り離され、また1対の電極パッド15Bから切断電流を流してヒューズ部12を焼き切ることにより、中間の固定電極リング10Bが固定電極3から切り離され、更に1対の電極パッド15Aから切断電流を流してヒューズ部12を焼き切ることにより、内側の固定電極リング10Aが固定電極3から切り離される。このようにして、実施例では、いずれの固定電極リング10A〜10Cも切り離さない場合を含めて、固定電極の面積を変える以下の4つのパターンを選択することができる。
1.固定電極3のみ、
2.固定電極3+固定電極リング10A、
3.固定電極3+固定電極リング10A+10B、
4.固定電極3+固定電極リング10A+10B+10C。
According to the above configuration, by cutting current from the pair of electrode pads 15C to burn out the fuse portion 12, the outer fixed electrode ring 10C is disconnected from the fixed electrode 3 and disconnected from the pair of electrode pads 15B. When the fuse part 12 is burned off by passing an electric current, the intermediate fixed electrode ring 10B is separated from the fixed electrode 3, and further, the fuse part 12 is burned off by passing a cutting current from a pair of electrode pads 15A to fix the inner part. The electrode ring 10 </ b> A is separated from the fixed electrode 3. In this manner, in the embodiment, the following four patterns that change the area of the fixed electrode can be selected including the case where none of the fixed electrode rings 10A to 10C is cut off.
1. Only fixed electrode 3
2. Fixed electrode 3 + fixed electrode ring 10A,
3. Fixed electrode 3 + fixed electrode ring 10A + 10B,
4). Fixed electrode 3 + fixed electrode ring 10A + 10B + 10C.

図3には、上記固定電極リング10A〜10Cの使い方とプルイン電圧の関係が示されており、このグラフのように、固定電極3のみ(パターン1)の場合、プルイン電圧が0Vであるとすると、固定電極3+固定電極リング10A(パターン2)の場合は、−0.9Vの近傍、固定電極3+固定電極リング10A+10B(パターン3)の場合は、−1.9Vの近傍、固定電極3+固定電極リング10A+10B+10C(パターン4)の場合は、−2.8Vの近傍となり、固定電極リング10A〜10Cを順に追加すると、プルイン電圧はほぼリニアに変化することになる。従って、トリミング用の固定電極リング10A〜10Cの設計、選択によってプルイン電圧を自在にコントロールすることができ、この結果、感度の調整が可能となり、プルイン電圧を所望の一定値として製造時のバラツキも解消することができる。   FIG. 3 shows the relationship between how to use the fixed electrode rings 10A to 10C and the pull-in voltage. As shown in this graph, when only the fixed electrode 3 (pattern 1) is used, the pull-in voltage is assumed to be 0V. In the case of fixed electrode 3 + fixed electrode ring 10A (pattern 2), in the vicinity of −0.9V, in the case of fixed electrode 3 + fixed electrode ring 10A + 10B (pattern 3), in the vicinity of −1.9V, fixed electrode 3 + fixed electrode In the case of the rings 10A + 10B + 10C (pattern 4), it is in the vicinity of −2.8V, and when the fixed electrode rings 10A to 10C are added in order, the pull-in voltage changes almost linearly. Accordingly, the pull-in voltage can be freely controlled by designing and selecting the fixed electrode rings 10A to 10C for trimming. As a result, the sensitivity can be adjusted, and the pull-in voltage can be set to a desired constant value, resulting in variations in manufacturing. Can be resolved.

なお、固定電極リング10のトリミングでは、可動電極−固定電極間に、切断した固定電極リング10A〜10Cのバイアスがかかることのないように、連結ライン9の両端で確実に切断する必要があり、ヒューズ部12は連結ライン9の左右対称となる2箇所に配置される。
実施例では、トリミング用の固定電極リング10を3つ設けたが、この固定電極リング10は、1つでも、4つ以上でもよく、また固定電極3が例えば楕円形となる場合は、トリミング用固定電極もその楕円形に合せた楕円リングにすることができる。
In the trimming of the fixed electrode ring 10, it is necessary to reliably cut at both ends of the connection line 9 so that the fixed electrode rings 10 </ b> A to 10 </ b> C are not biased between the movable electrode and the fixed electrode. The fuse portions 12 are arranged at two positions that are symmetrical with respect to the connecting line 9.
In the embodiment, the three fixed electrode rings 10 for trimming are provided. However, the number of the fixed electrode rings 10 may be one or four or more. The fixed electrode can also be an elliptical ring adapted to the elliptical shape.

更に、実施例では、電極パッド15A〜15Cから切断電流を流すようにしたが、上記固定電極リング10A〜10Cをレーザー照射によって切断するようにしてもよい。この場合は、従来のレーザー加工の技術を応用することができる。   In the embodiment, the cutting current is supplied from the electrode pads 15A to 15C. However, the fixed electrode rings 10A to 10C may be cut by laser irradiation. In this case, conventional laser processing techniques can be applied.

1…シリコン基板、 2…可動電極、
3…固定電極、 4…支持層、
5…絶縁膜、 6…固定電極パッド、
7…音孔(アコーステックホール)、
9…連結ライン、
10A,10B,10C…固定電極リング(トリミング用)、
13,14…配線、 15A〜15C…電極パッド、
G…エアーギャップ。
1 ... silicon substrate, 2 ... movable electrode,
3 ... fixed electrode, 4 ... support layer,
5 ... Insulating film, 6 ... Fixed electrode pad,
7 ... Sound hole (Acoustic Hall),
9: Connecting line,
10A, 10B, 10C ... fixed electrode ring (for trimming),
13, 14 ... wiring, 15A-15C ... electrode pads,
G ... Air gap.

Claims (4)

基板上に配置された固定電極と、この固定電極にエアーギャップを介して略平行に配置された可動電極とを備えるMEMS素子において、
上記固定電極に対し切り離し可能に接続された1つ又は複数のトリミング用固定電極を設けたことを特徴とするMEMS素子。
In a MEMS element comprising a fixed electrode disposed on a substrate and a movable electrode disposed substantially parallel to the fixed electrode via an air gap,
A MEMS element comprising one or a plurality of trimming fixed electrodes detachably connected to the fixed electrode.
上記固定電極と上記トリミング用固定電極との間に、このトリミング用固定電極を切断するためのヒューズ部を形成し、かつこのヒューズ部に切断電流を流すための切断用電極を配線したことを特徴とする請求項1記載のMEMS素子。   A fuse portion for cutting the fixed electrode for trimming is formed between the fixed electrode and the fixed electrode for trimming, and a cutting electrode for passing a cutting current is wired in the fuse portion. The MEMS element according to claim 1. 基板上に配置された固定電極と、この固定電極にエアーギャップを介して略平行に配置された可動電極とを備えるMEMS素子の製造方法において、
上記固定電極に対し切り離し可能な1つ又は複数のトリミング用固定電極を接続し、選択された上記トリミング用固定電極を切り離すことにより、所望のプルイン電圧に設定することを特徴とするMEMS素子の製造方法。
In a manufacturing method of a MEMS element comprising a fixed electrode disposed on a substrate and a movable electrode disposed substantially parallel to the fixed electrode via an air gap,
One or a plurality of detachable trimming fixed electrodes are connected to the fixed electrode, and the selected trimming fixed electrode is disconnected to set a desired pull-in voltage. Method.
上記トリミング用固定電極と上記固定電極との間に、切断のためのヒューズ部を形成し、かつこのヒューズ部に切断用電極を配線し、
この切断用電極から上記ヒューズ部に切断電流を流すことにより、選択された上記トリミング用固定電極を上記固定電極から切り離すことを特徴とする請求項3記載のMEMS素子の製造方法。
Forming a fuse portion for cutting between the fixed electrode for trimming and the fixed electrode, and wiring the cutting electrode to the fuse portion;
4. The method of manufacturing a MEMS element according to claim 3, wherein the selected trimming fixed electrode is separated from the fixed electrode by causing a cutting current to flow from the cutting electrode to the fuse portion.
JP2016213152A 2016-10-31 2016-10-31 MEMS device and manufacturing method thereof Active JP6708532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016213152A JP6708532B2 (en) 2016-10-31 2016-10-31 MEMS device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016213152A JP6708532B2 (en) 2016-10-31 2016-10-31 MEMS device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2018074427A true JP2018074427A (en) 2018-05-10
JP6708532B2 JP6708532B2 (en) 2020-06-10

Family

ID=62114269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016213152A Active JP6708532B2 (en) 2016-10-31 2016-10-31 MEMS device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6708532B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022048743A (en) * 2020-09-15 2022-03-28 株式会社東芝 MEMS element and electric circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207516A (en) * 2002-01-15 2003-07-25 Matsushita Electric Works Ltd Semiconductor acceleration sensor and method of manufacturing the same
JP2006200920A (en) * 2005-01-18 2006-08-03 Matsushita Electric Works Ltd Capacitance type semiconductor physical quantity sensor and its manufacturing method
JP2014017565A (en) * 2012-07-06 2014-01-30 Canon Inc Capacitance transducer
JP2016002625A (en) * 2014-06-18 2016-01-12 新日本無線株式会社 MEMS element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207516A (en) * 2002-01-15 2003-07-25 Matsushita Electric Works Ltd Semiconductor acceleration sensor and method of manufacturing the same
JP2006200920A (en) * 2005-01-18 2006-08-03 Matsushita Electric Works Ltd Capacitance type semiconductor physical quantity sensor and its manufacturing method
JP2014017565A (en) * 2012-07-06 2014-01-30 Canon Inc Capacitance transducer
JP2016002625A (en) * 2014-06-18 2016-01-12 新日本無線株式会社 MEMS element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022048743A (en) * 2020-09-15 2022-03-28 株式会社東芝 MEMS element and electric circuit
JP7444745B2 (en) 2020-09-15 2024-03-06 株式会社東芝 MEMS elements and electrical circuits

Also Published As

Publication number Publication date
JP6708532B2 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
US10158952B2 (en) MEMS microphone and method of manufacturing the same
KR101578542B1 (en) Method of Manufacturing Microphone
JP5400708B2 (en) Acoustic sensor, acoustic transducer, microphone using the acoustic transducer, and method of manufacturing the acoustic transducer
TWI472474B (en) Micro-electro-mechanical systems (mems) device and method for fabricating the same
KR102322257B1 (en) Microphone and manufacturing method thereof
KR101916052B1 (en) Microphone, manufacturing method and control method therefor
JP2005039652A (en) Sound detection mechanism
KR101601120B1 (en) Micro phone and method manufacturing the same
WO2015083572A1 (en) Piezoelectric device
KR101550636B1 (en) Micro phone and method manufacturing the same
US10343898B1 (en) MEMS microphone with tunable sensitivity
US20160157012A1 (en) Microphone manufacturing method, microphone, and control method
JP2020136385A (en) Piezoelectric element
KR101776725B1 (en) Mems microphone and manufacturing method the same
JP2018074427A (en) Mems element and manufacturing method thereof
US20190342671A1 (en) Mems microphone, method of manufacturing the same and mems microphone package including the same
JP2007194913A (en) Capacitor microphone and its manufacturing method
JP6606439B2 (en) MEMS element
JP2007243757A (en) Condenser microphone
JP2019041349A (en) MEMS element
US10524060B2 (en) MEMS device having novel air flow restrictor
JP2021097302A (en) MEMS element
US20180132023A1 (en) Microphone and manufacturing method thereof
JP2018058150A (en) Mems element and manufacturing method thereof
KR20160063145A (en) Microphone and manufacturing method the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200521

R150 Certificate of patent or registration of utility model

Ref document number: 6708532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250