JP2018059323A - Shaft, and design method for vertical shaft during earthquake - Google Patents

Shaft, and design method for vertical shaft during earthquake Download PDF

Info

Publication number
JP2018059323A
JP2018059323A JP2016197427A JP2016197427A JP2018059323A JP 2018059323 A JP2018059323 A JP 2018059323A JP 2016197427 A JP2016197427 A JP 2016197427A JP 2016197427 A JP2016197427 A JP 2016197427A JP 2018059323 A JP2018059323 A JP 2018059323A
Authority
JP
Japan
Prior art keywords
shaft
main body
stiffening member
side wall
shaft main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016197427A
Other languages
Japanese (ja)
Other versions
JP6915254B2 (en
Inventor
山本 修一
Shuichi Yamamoto
修一 山本
佐藤 清
Kiyoshi Sato
清 佐藤
賢一 久末
Kenichi Hisasue
賢一 久末
喬博 秀島
Takahiro Hideshima
喬博 秀島
麻里子 森
Mariko Mori
麻里子 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2016197427A priority Critical patent/JP6915254B2/en
Publication of JP2018059323A publication Critical patent/JP2018059323A/en
Application granted granted Critical
Publication of JP6915254B2 publication Critical patent/JP6915254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vertical shaft having a connecting portion with a linear underground structure and a method for designing earthquake resistance of a vertical shaft, which can achieve labor saving of earthquake resistant design with a simple structure.SOLUTION: A shaft is constructed in a ground and has a connecting portion with a linear underground structure. The vertical shaft includes a vertical shaft main body made of a cylindrical body having a hole-shaped cutout portion on a side wall, and a stiffening member for stiffening the vicinity of the cutout portion. The stiffening member is formed of a tubular member rigidly joined to the side wall at its proximal end in a posture in which a hollow portion communicates with the cut portion, and a distal end thereof protrudes from the side wall and forms a connecting portion with the linear underground structure.SELECTED DRAWING: Figure 8

Description

本発明は、トンネル等線状地下構造物との接続部を有する立坑および立坑の地震時設計方法に関する。   The present invention relates to a shaft having a connection portion with a linear underground structure such as a tunnel and a method for designing a shaft at the time of earthquake.

従来より、線状地下構造物と接続する立坑を地盤中に構築するにあたっては、例えば特許文献1に開示されているトンネルと立坑坑口部との接合構造のように、立坑の側壁に開口を設けるとともに当該開口にトンネルの端部を挿入した状態で、両者の間に可撓性部材を介装させることにより、立坑およびトンネルの安全性と止水性能を確保している。   Conventionally, when a shaft connected to a linear underground structure is built in the ground, an opening is provided in the side wall of the shaft, as in the joint structure of a tunnel and a shaft port disclosed in Patent Document 1, for example. At the same time, with the end of the tunnel inserted into the opening, a flexible member is interposed between the two to ensure the safety and water stopping performance of the shaft and the tunnel.

このような地盤中に構築される立坑には、常時土圧および水圧が作用するだけでなく、地震発生時には、構造物周辺地盤の地盤変位に起因する地震力等の荷重が作用することが知られている。このため、立坑を設計する際には、例えば特許文献2で示すように、立坑に設計条件を与えてこれをモデル化し、構造解析を行って断面力や変位を測定したのち、耐震性能の照査を行う、という一連の作業に則った耐震設計を行っている。   It is known that not only earth pressure and water pressure always act on the shaft constructed in such ground, but also earthquake loads such as seismic force due to ground displacement around the structure when earthquake occurs. It has been. For this reason, when designing a shaft, as shown in Patent Document 2, for example, a design condition is given to the shaft, this is modeled, a structural analysis is performed, and the cross-sectional force and displacement are measured. Seismic design is performed in accordance with a series of work.

特開2011−241639号公報JP 2011-241639 A 特開2008−133595号公報JP 2008-133595 A

しかし、側壁に開口が存在する立坑において開口は側壁の欠損部であり、側壁の開口を含まない高さ範囲と比較して開口を含む高さ範囲は、せん断抵抗部材として考慮できる範囲が小さくなるため、立坑における開口を含む高さ範囲は、開口を含まない高さ範囲と比較して過大な設計となりやすい。   However, in a shaft with an opening on the side wall, the opening is a missing portion of the side wall, and the height range including the opening is smaller than the height range not including the opening on the side wall. For this reason, the height range including the opening in the shaft is likely to be excessively designed as compared with the height range not including the opening.

また、水平方向の耐震設計を行う場合、立坑における開口を含まない高さ範囲では、解析モデルにリングモデルを採用できるが、開口を含む高さ範囲では、リング効果が期待できない。このため、開口を含む高さ範囲と含まない高さ範囲のそれぞれの断面に対して別途、耐震性能照査を実施する必要があり、設計に係る手間も膨大なものとなっていた。そして、立坑を、地震等の外力が作用しても損傷を生じることなく、設備としての機能を保持できる健全な構造体として設計するには、側壁の欠損部を含む周辺領域の部材厚を大きくする、または、側壁の内周面であって欠損部の上下にリング梁補強を設ける等の補剛対策を講じることとなる。   In addition, when performing seismic design in the horizontal direction, a ring model can be adopted as the analysis model in the height range that does not include the opening in the shaft, but the ring effect cannot be expected in the height range that includes the opening. For this reason, it is necessary to separately perform a seismic performance check on each cross section of the height range including the opening and the height range not including the opening, and the effort involved in the design is enormous. In order to design a shaft as a sound structure that can maintain its function as equipment without causing damage even if an external force such as an earthquake acts, the member thickness in the peripheral region including the missing portion of the side wall is increased. Or, stiffening measures such as providing ring beam reinforcement on the inner peripheral surface of the side wall and above and below the missing portion will be taken.

本発明は、かかる課題に鑑みなされたものであって、その主な目的は、簡略な構成で耐震設計の合理化を図ることが可能な、線状地下構造物との接続部を有する立坑、および立坑の地震時設計方法を提供することである。   The present invention has been made in view of such a problem, and its main purpose is a shaft having a connecting portion with a linear underground structure capable of rationalizing seismic design with a simple configuration, and It is to provide a method for designing shafts during earthquakes.

かかる目的を達成するため、本発明の立坑は、地盤中に構築され、線状地下構造物との接続部を備える立坑であって、側壁に孔状の欠損部を有する筒体よりなる立坑本体と、前記欠損部の近傍を補剛する補剛部材とを備え、該補剛部材は、中空部を前記欠損部と連通させる姿勢で、基端が前記側壁に剛接合された管状材よりなり、先端が前記側壁から突出し、前記線状地下構造物との接続部をなすことを特徴とする。   In order to achieve such an object, the shaft of the present invention is a shaft constructed in the ground and provided with a connecting portion with a linear underground structure, and a shaft main body comprising a cylindrical body having a hole-like defect portion on a side wall. And a stiffening member that stiffens the vicinity of the defect portion, and the stiffening member is made of a tubular material whose base end is rigidly joined to the side wall in a posture that allows the hollow portion to communicate with the defect portion. The tip protrudes from the side wall and forms a connecting portion with the linear underground structure.

上記の立坑によれば、立坑本体における欠損部の近傍に補剛部材が立坑本体と一体をなすよう剛結合される。これにより、地盤変位に起因する水平方向の荷重が立坑に作用した際に、側壁における欠損部周囲だけでなく補剛部材をもせん断抵抗部材として考慮することができる。これにより、従来の側壁に欠損部を有する立坑のように、側壁の内周面であって欠損部の上下に補剛リングを構築したり、欠損部周辺における側壁の部材厚を厚くするといった、立坑の中空断面を狭小化するような過大な補剛対策を回避でき、立坑を経済的で合理化された構造とすることが可能となる。   According to the vertical shaft, the stiffening member is rigidly coupled in the vicinity of the missing portion in the vertical shaft body so as to be integrated with the vertical shaft body. Thereby, when the horizontal load resulting from a ground displacement acts on a shaft, not only the periphery of the defect | deletion part in a side wall but a stiffening member can be considered as a shear resistance member. This makes it possible to build a stiffening ring on the inner peripheral surface of the side wall and above and below the defect part, such as a shaft having a defect part on the conventional side wall, or to increase the thickness of the side wall member around the defect part, Excessive stiffening measures such as narrowing the hollow cross section of the shaft can be avoided, and the shaft can have an economical and streamlined structure.

上記の立坑は、前記補剛部材の先端に、前記線状地下構造物と接続する可撓性継ぎ手が設置されることを特徴とする。   The vertical shaft is characterized in that a flexible joint for connecting to the linear underground structure is installed at the tip of the stiffening member.

上記の立坑によれば、地震発生時に立坑とトンネル各々が異なる挙動を示すことに起因して両者の間に相対変位が生じた場合にも、線状地下構造物が可撓性継ぎ手を介して補剛部材の先端に接続されるため、応力の集中しやすい補剛部材の基端と立坑本体の側壁との接合部において、発生応力の大幅な緩和を図ることが可能となる。   According to the above shaft, even if relative displacement occurs between the shaft and tunnel due to the different behavior when an earthquake occurs, the linear underground structure can be connected via the flexible joint. Since it is connected to the distal end of the stiffening member, it is possible to significantly reduce the generated stress at the joint portion between the proximal end of the stiffening member where stress tends to concentrate and the side wall of the shaft main body.

上記の立坑は、前記補剛部材の配置される地盤が、岩盤であることを特徴とする。   The above shaft is characterized in that the ground where the stiffening member is arranged is a rock.

上記の立坑によれば、地震発生時に立坑に対して、例えば地盤変位による水平方向の外力もしくは地下水位の上昇による鉛直方向の外力が作用し、立坑に転倒や浮き上がりを生じるような挙動が生じた場合、補剛部材が岩盤に当接して立坑の挙動を抑制できる。これにより、地震発生時に立坑に対していずれの外力が作用しても、その姿勢を安定した状態に保持し、立坑としての機能を安全に維持することが可能となる。   According to the vertical shaft, when an earthquake occurs, the horizontal shaft due to ground displacement or the vertical external force due to the rise of the groundwater level acts on the shaft, causing the shaft to fall or rise. In this case, the stiffening member can be brought into contact with the rock to suppress the shaft behavior. As a result, even if any external force is applied to the shaft when an earthquake occurs, the posture can be maintained in a stable state, and the function as the shaft can be maintained safely.

上記の立坑の地震時設計方法は、前記立坑本体の鉛直方向について、該立坑本体をモデル化した2次元解析モデルを作成し、該立坑本体の側壁において前記欠損部の周囲に発生する応力が前記補剛部材に分散することを考慮して該立坑本体の構造解析を行うとともに耐震性能照査を行った後、前記立坑の水平方向について、前記立坑をモデル化した2次元または3次元解析モデル作成し、該立坑の構造解析を行うとともに耐震性能照査を行うことを特徴とする。   The above-mentioned design method for an earthquake of a shaft is to create a two-dimensional analysis model that models the shaft main body in the vertical direction of the shaft main body, and the stress generated around the defect portion on the side wall of the shaft main body After analyzing the structure of the shaft body in consideration of dispersion in the stiffening members and checking the seismic performance, create a two-dimensional or three-dimensional analysis model that models the shaft in the horizontal direction of the shaft. The structure of the shaft is analyzed and the seismic performance is checked.

上記の立坑の地震時設計方法によれば、鉛直方向の検討時には、立坑本体に対して欠損部近傍に生じる応力を前記補剛部材に分散させる処理を行い、水平方向の検討時には、立坑本体に補剛部材を剛接合した状態の立坑の2次元または3次元解析モデルによるFEM解析を行う。これにより、立坑本体における欠損部を含む高さ範囲の設計を合理化することが可能になるとともに、欠損部が存在しない高さ範囲と欠損部を含む高さ範囲とを分けることなく、立坑全体で耐震性能照査を実施でき、設計に係る手間を大幅に削減し、耐震設計の合理化を図ることが可能となる。   According to the above-mentioned design method for an earthquake of a shaft, when the vertical direction is examined, the stress generated in the vicinity of the defect portion is distributed to the stiffening member with respect to the shaft body, and when the horizontal direction is examined, FEM analysis is performed using a two-dimensional or three-dimensional analysis model of a shaft with rigid stiffening members joined. This makes it possible to rationalize the design of the height range including the missing part in the shaft main body, and without dividing the height range including the missing part and the height range including the missing part in the whole shaft. The seismic performance check can be carried out, the design effort can be greatly reduced, and the seismic design can be rationalized.

上記の立坑の地震時設計方法は、前記立坑の水平方向の耐震性能照査では、前記補剛部材の設計条件を変更することにより、前記立坑本体の部材耐力を増減させることを特徴とする。   The above-mentioned shaft design method at the time of earthquake is characterized in that in the horizontal seismic performance verification of the shaft, the member strength of the shaft main body is increased or decreased by changing the design condition of the stiffening member.

上記の立坑の地震時設計方法によれば、立坑本体の水平方向の耐震性能照査において安全性を満足できない場合に、補剛部材の設計条件を適宜変更して検討を繰り返すことができるため、必ずしも立坑本体の鉛直方向の検討にまで戻って、立坑本体の設計条件から検討をやり直す必要がなく、耐震設計に係る手間を大幅に削減し、合理化を図ることができる。   According to the above design method for earthquakes of shafts, when safety cannot be satisfied in the horizontal seismic performance verification of the shaft body, the design conditions of the stiffening member can be changed as appropriate and the examination can be repeated. It is not necessary to go back to the examination of the vertical direction of the shaft main body, and it is not necessary to re-examine the design conditions of the shaft main body, and it is possible to greatly reduce the labor involved in the seismic design and achieve rationalization.

また、立坑本体を過大な構造としなくても、補剛部材の設計条件の変更により立坑本体の部材耐力を増加させることができ、立坑本体を必要とされる機能に見合った合理的な構造に設計することが可能となる。   In addition, even if the shaft main body is not oversized, the strength of the shaft main body can be increased by changing the design conditions of the stiffening member, and the shaft main body has a rational structure that matches the required function. It becomes possible to design.

本発明によれば、立坑本体を補剛する機能と線状地下構造物との接続部としての機能とを有する補剛部材を、立坑本体の側壁に形成された欠損部の周囲に剛接合し、立坑を立坑本体と補剛部材の一体化構造とすることにより、立坑全体の構造が合理化でき、設計の手間を大幅に削減し、耐震設計の合理化を図ることが可能となる。   According to the present invention, a stiffening member having a function of stiffening a shaft main body and a function as a connecting portion with a linear underground structure is rigidly joined around a defect portion formed on a side wall of the shaft main body. By making the shaft a unified structure of the shaft main body and the stiffening member, the structure of the entire shaft can be rationalized, the design effort can be greatly reduced, and the seismic design can be rationalized.

本発明の立坑の概略を示す図である。It is a figure which shows the outline of the shaft of this invention. 本発明の立坑と補剛部材を備えない立坑本体のみの各々に静的荷重を作用させてFEM解析を行った際の緒元を示す図である。It is a figure which shows the specification at the time of performing a FEM analysis by making a static load act on each of only the shaft main body which is not provided with the shaft and stiffening member of this invention. 本発明の立坑と補剛部材を備えない立坑本体のみの各々についてFEM解析を行った際の静的荷重を示す図である。It is a figure which shows the static load at the time of performing FEM analysis about each of only the shaft main body which is not provided with the shaft and stiffening member of this invention. 本発明の立坑と補剛部材を備えない立坑本体のみの各々に静的荷重を作用させてFEM解析を行った場合の変形図である。It is a deformation | transformation figure at the time of applying a static load to each of only the shaft main body which is not provided with the shaft of the present invention, and a stiffening member, and performing FEM analysis. 本発明の立坑と補剛部材を備えない立坑本体のみの各々に静的荷重を作用させたFEM解析を行った場合のモーメント図である。It is a moment figure at the time of performing the FEM analysis which made the static load act on each of only the shaft main body which is not provided with the shaft of this invention, and a stiffening member. 本発明の立坑の地震時設計方法の手順を示すフロー図である。It is a flowchart which shows the procedure of the design method at the time of the earthquake of the vertical shaft of this invention. 本発明の立坑本体の2次元の解析モデルを示す図である。It is a figure which shows the two-dimensional analysis model of the shaft main body of this invention. 本発明の立坑の3次元の解析モデルを示す図である。It is a figure which shows the three-dimensional analysis model of the shaft of this invention.

本発明の立坑および立坑の地震時設計方法は、立坑本体の側壁に形成された欠損部を補剛する補剛部材を側壁の外周面に剛接合するとともに、補剛部材の先端を線状地下構造物との接続部とすることにより、立坑を経済的で合理化された構造とするものである。以下に、トンネルに接続する立坑を事例に挙げ、本発明の立坑と立坑の地震時設計方法を、図1〜図8を用いて説明する。   According to the shaft and the shaft earthquake design method of the present invention, a stiffening member for stiffening a defect formed in the side wall of the shaft main body is rigidly joined to the outer peripheral surface of the side wall, and the tip of the stiffening member is connected to the linear underground By using the connection part with the structure, the shaft is made an economical and streamlined structure. Below, the shaft connected to a tunnel is mentioned as an example, and the design method at the time of the earthquake of the shaft and shaft of the present invention is explained using Drawings 1-8.

なお、線状地下構造物は、トンネル、下水管、電力線や通信線の洞道等、地盤中で横方向に延在する地下構造物であればいずれでもよく、また、立坑も、シールドトンネルの発進もしくは到達立坑、地下駅舎の躯体、洞道に連絡する立坑等、鉛直方向に構築される円筒状や角筒状の地下構造物であればいずれでもよい。さらに立坑本体の躯体も、ケーソンや地中連続壁等、鉄筋コンクリート造であればなんら限定されるものではない。   The linear underground structure may be any underground structure that extends laterally in the ground, such as a tunnel, a sewer pipe, a power line or a communication line, and the shaft is also a shield tunnel. Any of underground structures such as starting or reaching shafts, underground station buildings, shafts connected to the caverns, and the like constructed in the vertical direction may be used. Further, the shaft body is not limited as long as it is a reinforced concrete structure such as a caisson or underground continuous wall.

図1(a)(b)で示すように、全長が地盤9中に構築されている立坑1は、立坑本体2と補剛部材6とを備えている。立坑本体2は、床版3にて底部を閉塞された筒状の側壁4を備え、軸心が鉛直状となる姿勢で立設されている。側壁4には、内外を連通する孔状の欠損部5が設けられるとともに、欠損部5を囲うように補剛部材6が接合されている。   As shown in FIGS. 1 (a) and 1 (b), a shaft 1 whose entire length is built in the ground 9 includes a shaft main body 2 and a stiffening member 6. The shaft main body 2 includes a cylindrical side wall 4 whose bottom is closed by a floor slab 3, and is erected in a posture in which the axis is vertical. The side wall 4 is provided with a hole-like defect portion 5 that communicates inside and outside, and a stiffening member 6 is joined so as to surround the defect portion 5.

補剛部材6は管状材よりなり、中空が欠損部5と連通する態様でその基端が立坑本体2の側壁4に剛接合されている。本実施の形態では、補剛部材6の基端を側壁4のの外周面に剛接合しているが、必ずしもこれに限定されるものではなく、立坑本体2に対して一体に接合されていれば、例えば欠損部5の内周面に接合されるものであってもよい。   The stiffening member 6 is made of a tubular material, and the base end thereof is rigidly joined to the side wall 4 of the shaft main body 2 in such a manner that the hollow communicates with the defect portion 5. In the present embodiment, the proximal end of the stiffening member 6 is rigidly joined to the outer peripheral surface of the side wall 4, but is not necessarily limited thereto, and may be integrally joined to the shaft main body 2. For example, it may be joined to the inner peripheral surface of the defect portion 5.

このような立坑本体2の欠損部5を、補剛部材6にて補剛することにより生じる効果を把握するべく、立坑本体2のみの解析モデルおよび立坑本体2に補剛部材6を剛接合した立坑1の解析モデルを作成し、3次元FEM解析を行った。   In order to grasp the effect produced by stiffening the defect portion 5 of the shaft main body 2 with the stiffening member 6, the stiffening member 6 is rigidly joined to the analysis model of the shaft main body 2 alone and the shaft main body 2. An analysis model of the shaft 1 was created and a three-dimensional FEM analysis was performed.

3次元FEM解析を実施するにあたって、立坑本体2および補剛部材6は、それぞれ図心位置における線状シェル要素でモデル化した。なお、本実施の形態では、図1(b)で示すように、欠損部5は、立坑本体2の側壁4に対して対向する位置に1対設けられており、これらを補剛する補剛部材6は、各々の軸心を同一直線状に位置するようにして配置されているものとした。   In carrying out the three-dimensional FEM analysis, the shaft main body 2 and the stiffening member 6 were each modeled by a linear shell element at the centroid position. In the present embodiment, as shown in FIG. 1B, a pair of missing portions 5 are provided at positions facing the side walls 4 of the shaft main body 2, and stiffening is performed to stiffen them. The members 6 are arranged so that the respective axis centers are positioned on the same straight line.

また、立坑本体2、欠損部5および補剛部材6の寸法は図2(a)に、立坑本体2および補剛部材6の物性値は図2(b)に、立坑本体2および補剛部材6の線状シェル要素の壁厚は図2(c)に、それぞれ示すとおりである。そして、荷重条件は、図3で示すように、立坑本体2の軸線と補剛部材6の軸線を含む平面に対して直交する方向に作用する100kN/m2の等分布荷重とした。 Also, the dimensions of the shaft main body 2, the defect portion 5 and the stiffening member 6 are shown in FIG. 2A, and the physical properties of the shaft main body 2 and the stiffening member 6 are shown in FIG. The wall thicknesses of the 6 linear shell elements are as shown in FIG. As shown in FIG. 3, the load condition was a 100 kN / m 2 equally distributed load acting in a direction perpendicular to a plane including the axis of the shaft main body 2 and the axis of the stiffening member 6.

図4(a)(b)の変形図をみると、立坑本体2に補剛部材6が設置されていない図4(a)では、側壁4における一対の欠損部5の間に位置する領域において、大きい変形が生じていることを示す濃色部分が広い範囲に広がっている。これに対し、立坑本体2に補剛部材6が設置されている図4(b)では、濃色部分の範囲が小さくなっており、欠損部5周辺の変形が小さくなっている様子がわかる。   4 (a) and 4 (b), in FIG. 4 (a) in which the stiffening member 6 is not installed in the shaft main body 2, in the region located between the pair of missing portions 5 in the side wall 4. A dark portion indicating that a large deformation has occurred spreads over a wide range. On the other hand, in FIG. 4B in which the stiffening member 6 is installed on the shaft main body 2, it can be seen that the range of the dark color portion is small and the deformation around the defect portion 5 is small.

同様に、図5(a)(b)の曲げモーメント図をみると、立坑本体2に補剛部材6が設置されていない図5(a)では、側壁4における一対の欠損部5の間に位置する領域および床板3近傍において、応力が発生していることを示す濃色部分が広い範囲に広がっている。これに対し、立坑本体2に補剛部材6が設置されている図5(b)では、上記の位置における濃色部分の範囲が小さくなる一方で、側壁4の欠損部周辺および側壁4と剛接合している補剛部材6の基端近傍に濃色部分が存在し、応力が分散している様子がわかる。   Similarly, looking at the bending moment diagrams of FIGS. 5 (a) and 5 (b), in FIG. 5 (a) in which the stiffening member 6 is not installed on the shaft main body 2, between the pair of missing portions 5 on the side wall 4. In the vicinity of the located region and the floor board 3, a dark color portion indicating that stress is generated spreads over a wide range. On the other hand, in FIG. 5B in which the stiffening member 6 is installed in the shaft main body 2, the range of the dark-colored portion at the above position becomes small, while the periphery of the defect portion of the side wall 4 and the side wall 4 are rigid. It can be seen that there is a dark portion near the base end of the stiffening member 6 being joined, and the stress is dispersed.

このように、欠損部5の近傍に補剛部材6を立坑本体2と一体をなすよう剛結合することで、立坑本体2の軸線と補剛部材6の軸線を含む平面に対して直交する方向に作用する等分布荷重が立坑1に作用した際に、図1(b)示すような、側壁4の欠損部周辺Sと補剛部材6の両者をせん断抵抗部材として扱うことができる。このため、立坑本体4に対して、側壁4の内周面であって欠損部5の上下に補剛リングを構築したり、欠損部5周辺における側壁4の部材厚を厚くするといった、中空断面を狭小化するような過大な補剛対策を回避でき、立坑1を経済的で合理化された構造とすることが可能となる。   In this way, the stiffening member 6 is rigidly coupled in the vicinity of the defect portion 5 so as to be integrated with the shaft main body 2 so as to be orthogonal to the plane including the axis of the shaft main body 2 and the axis of the stiffening member 6. When the equally distributed load acting on the shaft 1 acts on the shaft 1, both the defect portion periphery S of the side wall 4 and the stiffening member 6 can be handled as shear resistance members as shown in FIG. For this reason, a hollow cross section in which a stiffening ring is constructed on the inner peripheral surface of the side wall 4 and above and below the defect part 5 with respect to the shaft main body 4 or the thickness of the side wall 4 around the defect part 5 is increased. Therefore, it is possible to avoid an excessive stiffening measure such as narrowing the width of the shaft 1 and to make the shaft 1 an economical and streamlined structure.

また、補剛部材6は、上述する側壁4を補剛する機能に加えて、立坑1と線状地下構造物7とを接続する機能を有するとともに、接続後は線状地下構造物7の一部分として機能する。具体的には、図1(b)で示すように、補剛部材6の中空断面の形状および大きさを立坑1と接続しようとする線状地下構造物7の内空断面と同様の形状に形成しておくとともに、補剛部材6の軸線を線状地下構造物7の軸線の延在方向に位置合わせしておく。こうすると、補剛部材6を利用して立坑1と線状地下構造物7とを容易に接続することが可能となる。   Further, the stiffening member 6 has a function of connecting the shaft 1 and the linear underground structure 7 in addition to the function of stiffening the side wall 4 described above, and a part of the linear underground structure 7 after the connection. Function as. Specifically, as shown in FIG. 1 (b), the shape and size of the hollow section of the stiffening member 6 are the same as the inner section of the linear underground structure 7 to be connected to the shaft 1. In addition, the axis of the stiffening member 6 is aligned with the direction in which the axis of the linear underground structure 7 extends. If it carries out like this, it will become possible to connect the shaft 1 and the linear underground structure 7 easily using the stiffening member 6. FIG.

このとき、補剛部材6の先端に可撓性継ぎ手8を設置し、可撓性継ぎ手8を介して線状地下構造物7を接続するとよい。こうすると、地震発生時に立坑1と線状地下構造物7各々が異なる挙動を示すことに起因して両者の間に相対変位が生じた場合にも、応力の集中しやすい補剛部材6の基端と立坑本体2の側壁との接合部において、発生応力の大幅な緩和を図ることが可能となる。   At this time, a flexible joint 8 may be installed at the tip of the stiffening member 6, and the linear underground structure 7 may be connected via the flexible joint 8. In this way, even when relative displacement occurs between the shaft 1 and the linear underground structure 7 when the earthquake occurs, the base of the stiffening member 6 where stress is easily concentrated is generated. Significant relaxation of the generated stress can be achieved at the joint between the end and the side wall of the shaft main body 2.

なお、可撓性継ぎ手8を介することにより補剛部材6と線状構造物7とは絶縁されるため、補剛部材6が線状構造物7の一部として機能する場合であっても、両者の躯体は必ずしも同一の構造を備えていなくてもよい。したがって、線状地下構造物7は、山岳工法やシールド工法等いずれの施工方法により構築されるものであってもよいし、補剛部材6も、立坑本体2の側壁4に剛に接合できる構造を有していれば、場所打ちコンクリート造、プレキャストコンクリート造、もしくは合成構造等、いずれの態様にて構築するものであってもよい。   In addition, since the stiffening member 6 and the linear structure 7 are insulated by interposing the flexible joint 8, even when the stiffening member 6 functions as a part of the linear structure 7, Both housings do not necessarily have the same structure. Therefore, the linear underground structure 7 may be constructed by any construction method such as a mountain construction method or a shield construction method, and the stiffening member 6 can be rigidly joined to the side wall 4 of the shaft main body 2. It may be constructed in any form such as cast-in-place concrete, precast concrete, or composite structure.

さらに、補剛部材6は立坑本体2の側壁4を補剛する機能および立坑1と線状地下構造物7とを接続する機能に加えて、立坑1の地震時の安定性を確保する機能を付与することも可能である。   Further, the stiffening member 6 has the function of securing the stability of the shaft 1 during an earthquake in addition to the function of stiffening the side wall 4 of the shaft main body 2 and the function of connecting the shaft 1 and the linear underground structure 7. It is also possible to grant.

具体的には、図1で示すように、立坑1のうち少なくとも補剛部材6を岩盤10に構築するとともに、補剛部材6の突出長さを適宜調整する。こうすると、立坑1に対して地震等により水平方向の外力が作用するもしくは地下水位の上昇等により鉛直方向の外力が作用して、立坑1に転倒や浮き上がりを生じるような挙動が生じても、立坑本体2の外周面から突出する補剛部材6が岩盤10に当接する。これにより立坑1の挙動が抑制されるため、立坑1はいずれの外力が作用しても、その姿勢を安定した状態で保持し、立坑1としての機能を維持することが可能となる。   Specifically, as shown in FIG. 1, at least the stiffening member 6 of the shaft 1 is constructed on the rock 10 and the protruding length of the stiffening member 6 is adjusted as appropriate. In this way, even if a horizontal external force acts on the shaft 1 due to an earthquake or the like, or a vertical external force acts on the shaft 1 due to an increase in the groundwater level, etc. A stiffening member 6 protruding from the outer peripheral surface of the shaft main body 2 abuts on the rock 10. As a result, since the behavior of the shaft 1 is suppressed, the shaft 1 can maintain its posture in a stable state and maintain the function as the shaft 1 regardless of which external force is applied.

上述する補剛部材6を立坑本体2に備えた立坑1について耐震設計を実施する際には、立坑1が地盤9内にあることを考慮した耐震性能照査を行う。一般に、地盤9中に構築される地中構造物は、地震発生時に自身が変形するのではなく、先に周辺地盤が変形し、その影響が地中構造物に作用して地中構造物に変形および断面力が生じることが知られている。このため、地中構造物の構造解析には、応答変位法、応答震度法、動的解析法のいずれかが採用される。そこで、本実施の形態では、立坑1の耐震解析に動的解析法を採用することとし、動的解析法により算定された結果に対して耐震性能照査を実施する、補剛部材6を備えた立坑1の地震時設計方法を、図6のフロー図で示す手順に従って詳述する。   When the seismic design is performed on the shaft 1 provided with the stiffening member 6 described above in the shaft main body 2, the seismic performance is checked in consideration of the fact that the shaft 1 is in the ground 9. In general, the underground structure built in the ground 9 does not deform itself when an earthquake occurs, but the surrounding ground first deforms, and its influence acts on the underground structure to change into the underground structure. It is known that deformation and cross-sectional forces occur. For this reason, any one of the response displacement method, the response seismic intensity method, and the dynamic analysis method is adopted for the structural analysis of the underground structure. Therefore, in the present embodiment, the dynamic analysis method is adopted for the seismic analysis of the shaft 1, and the stiffening member 6 that performs the seismic performance check on the result calculated by the dynamic analysis method is provided. The design method of the shaft 1 during an earthquake will be described in detail according to the procedure shown in the flowchart of FIG.

まず、立坑本体2の鉛直方向について耐震設計を行う(STEP1)。具体的には、立坑本体2の設計条件(例えば、側壁4の壁圧、配筋、コンクリート強度等)を設定する。次に、図7で示すように、立坑本体2を側壁4を梁要素、床版3や地盤9および立坑本体2内部を平面ひずみ連続体要素でモデル化した2次元解析モデルを作成し、FEM動的解析法により地震時の変位および断面力(曲げモーメント、せん断)を算出する。   First, seismic design is performed in the vertical direction of the vertical shaft body 2 (STEP 1). Specifically, the design conditions (for example, the wall pressure of the side wall 4, reinforcement, concrete strength, etc.) of the shaft main body 2 are set. Next, as shown in FIG. 7, a two-dimensional analysis model is created by modeling the shaft main body 2 with the side wall 4 as a beam element, the floor slab 3, the ground 9, and the shaft main body 2 with a plane strain continuum element. Displacement and sectional force (bending moment, shear) at the time of earthquake are calculated by dynamic analysis method.

なお、本実施の形態では、地震時の変位および断面力を、前記立坑本体2の側壁4における欠損部5の周囲に発生する応力が前記補剛部材6に分散することを考慮し、算出している。具体的には、欠損部における剛性を欠損部のない状態としてモデル化し、断面力を算出する。そして、算出した断面力に相当する荷重を、後述する立坑1の水平方向の耐震設計(STEP2)を行う際に、補剛部材6に作用させることにより、2次元解析モデル上で欠損部5の周囲に発生する応力を前記補剛部材6に分散させている。   In the present embodiment, the displacement and the cross-sectional force at the time of the earthquake are calculated in consideration of the stress generated around the defect portion 5 in the side wall 4 of the shaft main body 2 being dispersed in the stiffening member 6. ing. Specifically, the rigidity at the defect portion is modeled as a state without the defect portion, and the cross-sectional force is calculated. A load corresponding to the calculated cross-sectional force is applied to the stiffening member 6 when performing a horizontal seismic design (STEP 2) of the vertical shaft 1 to be described later. The stress generated around is distributed to the stiffening member 6.

この後、耐震性能照査として、FEM動的解析法により算出した水平変位に基づいて、立坑本体2の安定照査を実施するとともに、同じくFEM動的解析法により算出した断面力に基づいて、立坑本体2の耐力照査を行う。耐力照査は、従来より実施されている手法である許容応力度設計法もしくは限界状態設計法のいずれを使用してもよい。   After this, as the seismic performance verification, the shaft main body 2 is stably checked based on the horizontal displacement calculated by the FEM dynamic analysis method, and the shaft main body is also calculated based on the cross-sectional force calculated by the FEM dynamic analysis method. 2) Strength check. For the strength check, either a permissible stress degree design method or a limit state design method, which is a conventionally practiced method, may be used.

上記の耐震性能照査にて、地震後に立坑本体2としての安全性および機能が維持でないと判定した場合には、立坑本体2の設計条件を変更する工程に戻り、上記の検討を繰り返す。一方、立坑本体2としての安全性および機能が維持できると判定した場合には、立坑1の水平方向の耐震設計を行う(STEP2)。   If it is determined in the above seismic performance check that the safety and function of the shaft main body 2 are not maintained after the earthquake, the process returns to the step of changing the design conditions of the shaft main body 2 and the above examination is repeated. On the other hand, when it determines with the safety | security and function as a shaft main body 2 being maintainable, the earthquake-proof design of the horizontal direction of the shaft 1 is performed (STEP2).

立坑1の水平方向の耐震設計では、補剛部材6の設計条件を設定したうえで、立坑本体2に補剛部材6を剛接合した立坑1をモデル化した3次元解析モデルを作成し、立坑本体2の鉛直方向の耐震設計において算出される最大地盤ばね反力度を地盤反力として採用し、この荷重を作用させることにより、FEM動的解析法にて地震時の断面力(曲げモーメント、せん断)を算出する。このとき、立坑本体2の設計条件(例えば、側壁4の壁厚、配筋、コンクリート強度等)は、立坑本体2の鉛直方向の耐震設計において安全性および機能が維持できると判定した時の数値を採用する。   In the seismic design of the shaft 1 in the horizontal direction, a design condition for the stiffening member 6 is set, and then a three-dimensional analysis model that models the shaft 1 in which the stiffening member 6 is rigidly joined to the shaft main body 2 is created. The maximum ground spring reaction force calculated in the vertical seismic design of the main body 2 is adopted as the ground reaction force, and by applying this load, the cross-sectional force (bending moment, shear at the time of earthquake) by FEM dynamic analysis method. ) Is calculated. At this time, the design conditions (for example, wall thickness of the side wall 4, reinforcement, concrete strength, etc.) of the shaft main body 2 are numerical values when it is determined that safety and function can be maintained in the vertical seismic design of the shaft main body 2 Is adopted.

また、3次元の解析モデルを作成する際の要素はいずれでもよいが、例えば、図8で示すように、立坑本体2の側壁4と補剛部材6とを線形シェル要素、立坑本体2の床版3をソリッド要素(図示せず)でモデル化するとよい。さらに、荷重条件は、静水圧と静止土圧を足し合わせた等分布荷重と、先に述べた立坑本体2の鉛直方向の耐震設計において算出される最大地盤ばね反力度を採用した地盤反力と、補剛部材6に作用させる、立坑本体2の鉛直方向の耐震設計において算出した断面力に相当する荷重である。なお、地盤反力は、立坑周辺の地盤応力から計算してもよい。   Any element may be used when creating the three-dimensional analysis model. For example, as shown in FIG. 8, the side wall 4 and the stiffening member 6 of the shaft main body 2 are connected to the linear shell element, Version 3 may be modeled with solid elements (not shown). In addition, the load conditions are the equal distributed load that is the sum of the hydrostatic pressure and the static earth pressure, The load corresponds to the cross-sectional force calculated in the vertical seismic design of the shaft main body 2 to be applied to the stiffening member 6. The ground reaction force may be calculated from the ground stress around the shaft.

この後、FEM動的解析法により算出した断面力に基づいて、立坑本体1の耐力照査を行う。耐力照査は、立坑本体2の鉛直方向の耐震設計と同様に、許容応力度設計法もしくは限界状態設定法のいずれを採用してもよい。耐力照査にて、地震後に立坑1としての安全性および機能が維持でないと判定した場合、立坑本体2の鉛直断面の耐震設計(STEP1)まで戻って、立坑本体2の設計条件を適宜変更し、再計算を行ってもよいし、立坑本体2の設計条件は変更せず、補剛部材6の設計条件を変更し、立坑1の水平方向の耐震設計に係る再計算を行ってもよい。   Thereafter, the strength verification of the shaft main body 1 is performed based on the cross-sectional force calculated by the FEM dynamic analysis method. As with the vertical seismic design of the shaft main body 2, either the allowable stress design method or the limit state setting method may be adopted for the strength check. If it is determined that the safety and function of the vertical shaft 1 is not maintained after the earthquake, the design condition of the vertical shaft body 2 is changed as appropriate by returning to the vertical section earthquake resistance design (STEP 1). Recalculation may be performed, or the design condition of the shaft main body 2 may be changed, the design condition of the stiffening member 6 may be changed, and the recalculation related to the horizontal seismic design of the shaft 1 may be performed.

このように、本実施の形態では、立坑1の水平方向の耐震性能照査において安全性を満足できない場合に、補剛部材6の設計条件を適宜変更して検討を繰り返すことができるため、必ずしも立坑本体2の鉛直方向の検討に戻って立坑本体2の設計条件から検討をやり直す必要がなく、耐震設計に係る手間を大幅に省力化することが可能となる。   As described above, in this embodiment, when the horizontal seismic performance verification of the vertical shaft 1 cannot satisfy the safety, the design condition of the stiffening member 6 can be appropriately changed and the examination can be repeated. It is not necessary to return to the examination of the vertical direction of the main body 2 and re-examine from the design conditions of the shaft main body 2, and it is possible to greatly save labor related to the seismic design.

また、補剛部材6の設計条件を変更することで、立坑本体2について鉛直方向の検討で得た設計条件を変えることなく部材耐力を増減できるため、立坑本体2を過大な構造とせず、必要とされる機能に見合った合理的な構造に設計できる。   In addition, by changing the design conditions of the stiffening member 6, the strength of the member can be increased or decreased without changing the design conditions obtained by examining the vertical direction of the vertical shaft body 2, so the vertical shaft body 2 is not required to have an excessive structure. It can be designed to be a reasonable structure that matches the function.

一方、立坑1に接続する線状構造物7は、上記のような立坑1の耐震設計に影響を受けることなく、応答変位法等従来の手法に基づいて耐震設計を行えばよい(STEP3)。なお、線状地下構造物7は、可撓性継ぎ手8を介して補剛部材6に接続するされるため、一般部についてのみ設計すればよい。   On the other hand, the linear structure 7 connected to the shaft 1 may be subjected to an earthquake resistant design based on a conventional method such as a response displacement method without being affected by the earthquake resistant design of the shaft 1 as described above (STEP 3). In addition, since the linear underground structure 7 is connected to the stiffening member 6 through the flexible joint 8, only the general part needs to be designed.

本発明の立坑1および立坑1の地震時設計方法は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。   The shaft 1 and the design method at the time of earthquake of the shaft 1 of the present invention are not limited to the above embodiment, and various modifications can be made without departing from the gist of the present invention.

例えば、本実施の形態では、側壁4に2つの欠損部5が設けられ、欠損部5の形状が円形の孔であることから、補剛部材6も側壁4に2体設置され、その形状は中空断面が円形の管状材となっている。しかし、補剛部材6の数量および中空断面形状は、欠損部5に対応していればいずれでもよい。   For example, in the present embodiment, two defect portions 5 are provided on the side wall 4 and the shape of the defect portion 5 is a circular hole. Therefore, two stiffening members 6 are also installed on the side wall 4, and the shape is The hollow cross section is a circular tubular material. However, the number of the stiffening members 6 and the hollow cross-sectional shape may be any as long as they correspond to the defect portion 5.

また、本実施の形態では、欠損部5を円形孔としたが、必ずしもこれに限定されるものではなく、線状構造物7の中空断面形状と同様の形状を有していれば、馬蹄形等いずれの形状であってもよく、欠損部5の数量やその配置位置についても、なんら限定されるものではない。   Moreover, in this Embodiment, although the defect | deletion part 5 was made into the circular hole, it is not necessarily limited to this, If it has the shape similar to the hollow cross-sectional shape of the linear structure 7, a horseshoe shape etc. Any shape may be sufficient, and neither the quantity of the defect | deletion part 5 nor its arrangement position is limited at all.

さらに、本実施の形態では、立坑1の水平方向の耐震設計において、3次元解析モデルを採用したが、必ずしもこれに限定されるものではなく、2次元解析モデルを採用してもよい。   Furthermore, in this Embodiment, although the three-dimensional analysis model was employ | adopted in the seismic design of the vertical shaft 1 in the horizontal direction, it is not necessarily limited to this, You may employ | adopt a two-dimensional analysis model.

1 立坑
2 立坑本体
3 床版
4 側壁
5 欠損部
6 補剛部材
7 線状地下構造物
8 接合部材
9 地盤
10 岩盤
DESCRIPTION OF SYMBOLS 1 Vertical shaft 2 Vertical shaft main body 3 Floor slab 4 Side wall 5 Defect part 6 Stiffening member 7 Linear underground structure 8 Joining member 9 Ground 10 Rock

Claims (5)

地盤中に構築され、線状地下構造物との接続部を備える立坑であって、
側壁に孔状の欠損部を有する筒体よりなる立坑本体と、前記欠損部の近傍を補剛する補剛部材とを備え、
該補剛部材は、中空部を前記欠損部と連通させる姿勢で、基端が前記側壁に剛接合された管状材よりなり、先端が前記側壁から突出し、前記線状地下構造物との接続部をなすことを特徴とする立坑。
A shaft built in the ground and equipped with a connection with a linear underground structure,
A shaft main body made of a cylindrical body having a hole-like defect portion on a side wall, and a stiffening member that stiffens the vicinity of the defect portion,
The stiffening member is made of a tubular material whose base end is rigidly joined to the side wall in a posture to communicate a hollow portion with the defect portion, and a distal end protrudes from the side wall, and is a connecting portion with the linear underground structure A vertical shaft characterized by
請求項1に記載の立坑において、
前記補剛部材の先端に、前記線状地下構造物と接続する可撓性継ぎ手が設置されることを特徴とする立坑。
In the shaft according to claim 1,
A vertical shaft, wherein a flexible joint that connects to the linear underground structure is installed at the tip of the stiffening member.
請求項1または2に記載の立坑において、
前記補剛部材の配置される地盤が、岩盤であることを特徴とする立坑。
In the shaft according to claim 1 or 2,
The ground where the stiffening member is disposed is a rock.
請求項1から3のいずれか1項に記載の立坑の地震時設計方法であって、
前記立坑本体の鉛直方向について、該立坑本体をモデル化した2次元解析モデルを作成し、該立坑本体の側壁において前記欠損部の周囲に発生する応力が前記補剛部材に分散することを考慮して該立坑本体の構造解析を行うとともに耐震性能照査を行った後、
前記立坑の水平方向について、前記立坑をモデル化した2次元または3次元解析モデル作成し、該立坑の構造解析を行うとともに耐震性能照査を行うことを特徴とする立坑の地震時設計方法。
It is the design method at the time of the earthquake of the shaft of any one of Claim 1 to 3,
Create a two-dimensional analysis model that models the shaft main body in the vertical direction of the shaft main body, considering that the stress generated around the defect portion on the side wall of the shaft main body is dispersed in the stiffening member. After conducting the structural analysis of the shaft main body and performing the seismic performance verification,
A method for designing a shaft during an earthquake, comprising creating a two-dimensional or three-dimensional analysis model that models the shaft in the horizontal direction of the shaft, performing structural analysis of the shaft, and performing seismic performance verification.
請求項5に記載の立坑の地震時設計方法において、
前記立坑の水平方向の耐震性能照査では、前記補剛部材の設計条件を変更することにより、前記立坑本体の部材耐力を増減させることを特徴とする立坑の地震時設計方法。
In the method for designing an upright shaft according to claim 5,
In the horizontal seismic performance verification of the vertical shaft, the vertical shaft earthquake design method is characterized by increasing or decreasing the member strength of the vertical shaft main body by changing the design conditions of the stiffening member.
JP2016197427A 2016-10-05 2016-10-05 Shaft and shaft earthquake design method Active JP6915254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016197427A JP6915254B2 (en) 2016-10-05 2016-10-05 Shaft and shaft earthquake design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016197427A JP6915254B2 (en) 2016-10-05 2016-10-05 Shaft and shaft earthquake design method

Publications (2)

Publication Number Publication Date
JP2018059323A true JP2018059323A (en) 2018-04-12
JP6915254B2 JP6915254B2 (en) 2021-08-04

Family

ID=61908734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016197427A Active JP6915254B2 (en) 2016-10-05 2016-10-05 Shaft and shaft earthquake design method

Country Status (1)

Country Link
JP (1) JP6915254B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065633A (en) * 2017-10-03 2019-04-25 株式会社大林組 Earthquake design method of shaft

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813562A (en) * 1994-06-27 1996-01-16 K Mac Kk Unit body for wall drain meeting pipe and installing method thereof
JPH08113968A (en) * 1994-10-17 1996-05-07 K Mac Kk Drain pipe joint
JPH11247582A (en) * 1998-03-05 1999-09-14 Pub Works Res Inst Ministry Of Constr Base isolation and water isolation work method at jointing portion of vertical shaft and base isolation and water isolation construction
JPH11287083A (en) * 1998-04-02 1999-10-19 Mitsui Constr Co Ltd Connection structure of adit structure and shaft structure
JP2008133595A (en) * 2006-11-27 2008-06-12 Tokyo Institute Of Technology Safety evaluation system and safety evaluation method for underground structure
JP2009057714A (en) * 2007-08-30 2009-03-19 Sanritsu:Kk Structure for connecting manhole and sewer main together
JP2011241639A (en) * 2010-05-20 2011-12-01 Kajima Corp Junction structure of vertical shaft mouth part

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813562A (en) * 1994-06-27 1996-01-16 K Mac Kk Unit body for wall drain meeting pipe and installing method thereof
JPH08113968A (en) * 1994-10-17 1996-05-07 K Mac Kk Drain pipe joint
JPH11247582A (en) * 1998-03-05 1999-09-14 Pub Works Res Inst Ministry Of Constr Base isolation and water isolation work method at jointing portion of vertical shaft and base isolation and water isolation construction
JPH11287083A (en) * 1998-04-02 1999-10-19 Mitsui Constr Co Ltd Connection structure of adit structure and shaft structure
JP2008133595A (en) * 2006-11-27 2008-06-12 Tokyo Institute Of Technology Safety evaluation system and safety evaluation method for underground structure
JP2009057714A (en) * 2007-08-30 2009-03-19 Sanritsu:Kk Structure for connecting manhole and sewer main together
JP2011241639A (en) * 2010-05-20 2011-12-01 Kajima Corp Junction structure of vertical shaft mouth part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065633A (en) * 2017-10-03 2019-04-25 株式会社大林組 Earthquake design method of shaft

Also Published As

Publication number Publication date
JP6915254B2 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
Cardoso et al. Finite element (FE) modelling of storage rack frames
Lee et al. Strength prediction for ring-stiffened DT-joints in offshore jacket structures
JP5276139B2 (en) Buckling restraint brace and building structure using the buckling restraint brace
CN106096211B (en) A kind of underground engineering confined concrete support system design method
Carrera et al. Analysis of reinforced and thin-walled structures by multi-line refined 1D/beam models
Bahrami et al. 3D numerical investigation of the effect of wall penetration depth on excavations behavior in sand
Kim et al. Analytical solutions of lateral–torsional buckling of castellated beams
JP6730884B2 (en) How to design a structure
Fanaie et al. Numerical study of slotted web drilled flange moment frame connection
Zhao et al. Hysteretic behaviour of overlapped tubular k-joints under cyclic loading
JP2018059323A (en) Shaft, and design method for vertical shaft during earthquake
JP6972870B2 (en) How to design a shaft during an earthquake
CN108166503B (en) Approximate calculation method and system for maximum deformability of supporting structure
CN105102734B (en) Mixed structure and its construction method
CN106055782B (en) A kind of constructing tunnel escape capsule body limited strength member analog analysing method
JP2016008384A (en) Hybrid beam
JP5377563B2 (en) Manhole reinforcement method
da Freitas et al. Numerical and experimental study of steel space truss with stamped connection
CN110427701B (en) Tunnel secondary lining design method and system based on safety reserve coefficient
Lou et al. Studies into a high performance composite connection for high-rise buildings
CN110472314B (en) Method for evaluating stability of tunnel face under weak interlayer in tunnel
CN209055418U (en) A kind of rock tensile shear(ing) test shear box
KR101502772B1 (en) Connector Between Struts
Kharat et al. Study of different type reinforcement in cylindrical pressure vessel
CN206655222U (en) Continuous underground wall structure and its connector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210628

R150 Certificate of patent or registration of utility model

Ref document number: 6915254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150