JP2018044820A - Molten layer thickness measurement device and method, and steel manufacturing method - Google Patents

Molten layer thickness measurement device and method, and steel manufacturing method Download PDF

Info

Publication number
JP2018044820A
JP2018044820A JP2016178756A JP2016178756A JP2018044820A JP 2018044820 A JP2018044820 A JP 2018044820A JP 2016178756 A JP2016178756 A JP 2016178756A JP 2016178756 A JP2016178756 A JP 2016178756A JP 2018044820 A JP2018044820 A JP 2018044820A
Authority
JP
Japan
Prior art keywords
mold
measuring
horizontal
layer thickness
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016178756A
Other languages
Japanese (ja)
Inventor
達郎 林田
Tatsuro Hayashida
達郎 林田
浩樹 西
Hiroki Nishi
浩樹 西
範孝 西口
Noritaka Nishiguchi
範孝 西口
秀栄 田中
Hideshige Tanaka
秀栄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016178756A priority Critical patent/JP2018044820A/en
Publication of JP2018044820A publication Critical patent/JP2018044820A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To measure distribution of the thickness of a molten layer, even in a narrow space.SOLUTION: A molten layer thickness measurement device 1 configured to measure the thickness of a mold powder molten layer 92 in a cast 82, includes: a horizontal part (first horizontal part 21) extending in at least one direction among horizontal directions parallel with an upper surface of the cast 82; a plurality of cylindrical first holding parts 4a-4e aligned in a direction where the horizontal part exists, fixed to the horizontal part, and extending in a vertical direction vertical to the horizontal direction; a support part (first support part 31) configured to restrict movement of the horizontal part to the at least one direction among the horizontal directions, on the cast 82; a plurality of measurement wires 7a-7e arranged through the plurality of first holding parts 4a-4e, and extending on a lower side in the vertical direction from the plurality of first holding parts 4a-4e; and a grip part 23 connected to the horizontal part.SELECTED DRAWING: Figure 1

Description

本発明は、溶融層厚みの測定装置、測定方法及び鋼の製造方法に関する。   The present invention relates to an apparatus for measuring a thickness of a molten layer, a measuring method, and a method for producing steel.

製鉄所の製鋼工程では、溶鋼を連続鋳造機で所定の形状に鋳造することで、スラブやブルーム、ビレット等の半製品を製造する連続鋳造が行われる。連続鋳造では、まず、水冷されている鋳型(「モールド」ともいう。)に精錬処理した溶鋼が注ぎ込まれ、鋳型によって溶鋼が冷却されることで、凝固シェルが形成される(一次冷却)。次いで、鋳型を抜けた凝固シェルが2次冷却帯でさらに冷却されることで、完全に凝固した鋳片となる(二次冷却)。この際、ピンチロールによって凝固した鋳片が引き抜かれることで、上述の鋼の鋳造処理が連続的に行われることとなる。   In the steelmaking process of an ironworks, continuous casting for producing semi-finished products such as slabs, blooms and billets is performed by casting molten steel into a predetermined shape with a continuous casting machine. In continuous casting, first, molten steel that has been refined is poured into a water-cooled mold (also referred to as “mold”), and the molten steel is cooled by the mold to form a solidified shell (primary cooling). Next, the solidified shell that has passed through the mold is further cooled in the secondary cooling zone, so that a completely solidified slab is obtained (secondary cooling). At this time, the above-described steel casting process is continuously performed by pulling out the slab solidified by the pinch roll.

連続鋳造の一次冷却では、凝固シェルと鋳型との潤滑性の向上や凝固シェルの均一抜熱等を目的に、鋳型内に注ぎ込まれた溶鋼の上面にモールドパウダが添加される。添加されたモールドパウダは、溶鋼側となる下側に溶融した状態の溶融層、上側に未溶融の状態のパウダ層を形成し、溶融したモールドパウダが凝固シェルと鋳型との間に入り込むことで潤滑性の向上や均一抜熱といった効果を奏する。このような効果を得るためは、モールドパウダの溶融層の厚み(「溶融層厚み」ともいう。)を適正に管理することが重要となる。例えば、溶融層厚みが設計値よりも薄い場合には、潤滑性が悪くなることで凝固シェルの鋳型への焼付きが生じ、ブレークアウトといった操業トラブルが発生したり、抜熱量が大きくなることで抜熱の不均一が助長され、縦割れ等の表面欠陥が発生したりすることとなる。このため、操業トラブルの防止や鋳片の品質管理を目的に、連続鋳造時の溶融層厚みの測定が行われている。   In the primary cooling of continuous casting, mold powder is added to the upper surface of the molten steel poured into the mold for the purpose of improving the lubricity between the solidified shell and the mold, uniform heat removal from the solidified shell, and the like. The added mold powder forms a molten layer in the molten state on the lower side, which is the molten steel side, and an unmelted powder layer on the upper side, and the molten mold powder enters between the solidified shell and the mold. There are effects such as improved lubricity and uniform heat removal. In order to obtain such an effect, it is important to appropriately manage the thickness of the molten layer of the mold powder (also referred to as “melted layer thickness”). For example, if the melt layer thickness is thinner than the design value, the lubricity will deteriorate, causing seizure of the solidified shell to the mold, causing operational troubles such as breakout, and increasing the amount of heat removed. Nonuniformity of heat removal is promoted, and surface defects such as vertical cracks are generated. For this reason, the measurement of the molten layer thickness at the time of continuous casting is performed for the purpose of preventing operational troubles and quality control of slabs.

通常、溶融層厚みの測定では、検尺棒を鋳型内の任意の1点に浸漬させ、その後、検尺棒を取り出し、検尺棒の変色した長さを測定することで、溶融層厚みの測定が行われる(例えば、特許文献1)。また、他の測定方法として、マイクロ波式の測定方法(例えば、特許文献2)や、他周波渦流式の測定方法(例えば、特許文献3〜5)が知られている。   Usually, in the measurement of the thickness of the molten layer, the measuring bar is immersed in an arbitrary point in the mold, and then the measuring bar is taken out and the length of the measuring bar is measured to measure the length of the molten layer. Measurement is performed (for example, Patent Document 1). As other measurement methods, a microwave measurement method (for example, Patent Document 2) and another frequency eddy current measurement method (for example, Patent Documents 3 to 5) are known.

特開平9−79805号公報Japanese Patent Laid-Open No. 9-79805 特開2014−34046号公報JP 2014-34046 A 特開2005−221282号公報JP 2005-221282 A 特開2006−205227号公報JP 2006-205227 A 特開2007−21529号公報JP 2007-21529 A

ところで、特許文献1に記載の測定方法では、鋳型の幅方向に検尺棒を並べて配することで、鋳型の幅方向へ連続的に溶融層厚みを測定することができる。しかし、モールド上に十分なスペースがないと測定装置を設置することができず、パウダ投入機等の他の設備がある場合には測定が困難であった。また、特許文献2〜5に記載の測定方法では、鋳型の幅方向や厚み方向への溶融層厚みの分布を測定することができず、湯面の盛り上がり等から生じる溶融層厚みの部分的な変化を測定することが困難であった。また、測定装置によっては、大型となることから、特許文献1と同様に、設置するスペースの問題から測定が困難となる場合があった。   By the way, in the measuring method described in Patent Document 1, the melt layer thickness can be continuously measured in the width direction of the mold by arranging the measuring bars in the width direction of the mold. However, if there is not enough space on the mold, the measuring device cannot be installed, and measurement is difficult when there are other equipment such as a powder feeder. Further, in the measurement methods described in Patent Documents 2 to 5, the distribution of the melt layer thickness in the width direction and the thickness direction of the mold cannot be measured, and a partial melt layer thickness resulting from the rise of the molten metal surface or the like can be obtained. It was difficult to measure changes. Moreover, since it becomes large depending on a measuring apparatus, like patent document 1, it may become difficult to measure from the problem of the installation space.

そこで、本発明は、上記の課題に着目してなされたものであり、狭いスペースにおいても、溶融層厚みの分布を測定することができる、溶融層厚みの測定装置、測定方法及び鋼の製造方法を提供することを目的としている。   Therefore, the present invention has been made paying attention to the above-mentioned problem, and it is possible to measure the distribution of the melt layer thickness even in a narrow space, the melt layer thickness measuring device, the measuring method, and the steel manufacturing method. The purpose is to provide.

本発明の一態様によれば、鋳型内のモールドパウダの溶融層の厚みを測定する溶融層厚みの測定装置であって、上記鋳型の上面に平行な水平方向のうち少なくとも一方向に延在する水平部と、この水平部の延在する方向に並んで、上記水平部に固定して設けられ、上記水平方向に垂直な鉛直方向に伸びる筒状の複数の第1保持部と、上記鋳型上で、上記水平部の上記水平方向のうち少なくとも一方向への移動を制限する支持部と、上記複数の第1保持部を通じて配され、上記複数の第1保持部から鉛直方向の下側に延出する複数の検尺線と、上記水平部に接続される把持部と、を備えることを特徴とする溶融層厚みの測定装置が提供される。   According to one aspect of the present invention, there is provided a melt layer thickness measuring device that measures the thickness of a melt layer of a mold powder in a mold, and extends in at least one of the horizontal directions parallel to the upper surface of the mold. A horizontal part, a plurality of cylindrical first holding parts arranged in a direction extending in the horizontal part, fixed to the horizontal part and extending in a vertical direction perpendicular to the horizontal direction, and on the mold The horizontal portion is disposed through a support portion that restricts movement of the horizontal portion in at least one of the horizontal directions and the plurality of first holding portions, and extends downward from the plurality of first holding portions in the vertical direction. There is provided a melt layer thickness measuring device comprising a plurality of measuring measurement lines and a gripping portion connected to the horizontal portion.

本発明の一態様によれば、上記の溶融層厚みの測定装置を用い、上記支持部で上記測定装置の少なくとも一方向への移動を制限しながら、上記複数の検尺線を、上記鋳型内の上記溶融層及び溶鋼に浸漬させることで、上記鋳型内の複数個所における上記溶融層の厚みを測定することを特徴とする溶融層厚みの測定方法が提供される。
本発明の一態様によれば、連続鋳造機にて鋼を連続鋳造する際に、上記の溶融層厚みの測定方法を用いて、上記鋳型内の複数個所における上記溶融層の厚みを測定することを特徴とする鋼の製造方法が提供される。
According to one aspect of the present invention, the plurality of measurement lines are placed in the mold while using the molten layer thickness measuring device and restricting movement of the measuring device in at least one direction at the support portion. A method for measuring the thickness of the molten layer is provided, wherein the thickness of the molten layer at a plurality of locations in the mold is measured by being immersed in the molten layer and molten steel.
According to one aspect of the present invention, when continuously casting steel with a continuous casting machine, the thickness of the molten layer at a plurality of locations in the mold is measured using the method for measuring the thickness of the molten layer. A method for producing steel is provided.

本発明の一態様によれば、狭いスペースにおいても、溶融層厚みの分布を測定することができる、溶融層厚みの測定装置、測定方法及び鋼の製造方法が提供される。   According to one aspect of the present invention, there are provided a melt layer thickness measurement device, a measurement method, and a steel manufacturing method capable of measuring the distribution of the melt layer thickness even in a narrow space.

本発明の一実施形態に係る溶融層厚みの測定装置を示す側面図である。It is a side view which shows the measuring apparatus of the molten layer thickness which concerns on one Embodiment of this invention. 本発明の一実施形態に係る溶融層厚みの測定装置を示す平面図である。It is a top view which shows the measuring apparatus of the molten layer thickness which concerns on one Embodiment of this invention. 本発明の一実施形態に係る溶融層厚みの測定方法を示す平面図である。It is a top view which shows the measuring method of the molten layer thickness which concerns on one Embodiment of this invention. 本発明の一実施形態に係る溶融層厚みの測定方法を示す側面図である。It is a side view which shows the measuring method of the molten layer thickness which concerns on one Embodiment of this invention. 変形例における溶融層厚みの測定装置を示す平面図である。It is a top view which shows the measuring apparatus of the molten layer thickness in a modification.

以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の細部について記載される。しかしながら、かかる特定の細部がなくても1つ以上の実施態様が実施できることは明らかであろう。他にも、図面を簡潔にするために、周知の構造及び装置が略図で示されている。
<溶融層厚みの測定装置>
はじめに、図1及び図2を参照して、本発明に一実施形態に係る溶融層厚みの測定装置1について説明する。測定装置1は、図1に示すように、軸部2と、支持部3と、5個の第1保持部4a〜4eと、第2保持部5と、第3保持部6と、5本の検尺線7a〜7eとを備える。
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of embodiments of the present invention. However, it will be apparent that one or more embodiments may be practiced without such specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.
<Measuring device for melt layer thickness>
First, with reference to FIG.1 and FIG.2, the measuring apparatus 1 of the molten layer thickness which concerns on one Embodiment to this invention is demonstrated. As shown in FIG. 1, the measuring device 1 includes a shaft portion 2, a support portion 3, five first holding portions 4 a to 4 e, a second holding portion 5, a third holding portion 6, and five pieces. Measuring lines 7a to 7e.

軸部2は、図1に示す側面側の方向からみて、直角に曲がったN字状の形状を有し、第1水平部21と、鉛直部22と、把持部23とからなる。また、通常、磁場が発生している鋳型82周りで使用されるため、軸部2は、ステンレス等の非磁性の金属棒からなる。
第1水平部21は、図1の左右方向に延在する。鉛直部22は、第1水平部21の長手方向先端から連続して形成され、図1の上下方向に延在する。把持部23は、第1水平部21に接続されていない側の鉛直部22の長手方向先端から連続して形成され、第1水平部21と同様に図1の左右方向に延在する。また、把持部23は、鉛直部22に接続されていない側の長手方向先端に、環状の持ち手24が形成される。このような軸部2は、例えば、一本の金属棒を曲げ加工、或いは複数本の金属棒を溶接することで製造される。
The shaft portion 2 has an N-shaped shape bent at a right angle when viewed from the side face direction shown in FIG. 1, and includes a first horizontal portion 21, a vertical portion 22, and a grip portion 23. Moreover, since it is normally used around the casting_mold | template 82 in which the magnetic field has generate | occur | produced, the axial part 2 consists of nonmagnetic metal rods, such as stainless steel.
The 1st horizontal part 21 is extended in the left-right direction of FIG. The vertical portion 22 is formed continuously from the front end in the longitudinal direction of the first horizontal portion 21 and extends in the vertical direction in FIG. The gripping part 23 is formed continuously from the longitudinal tip of the vertical part 22 on the side not connected to the first horizontal part 21, and extends in the left-right direction in FIG. 1 like the first horizontal part 21. In addition, the gripping portion 23 is formed with an annular handle 24 at the longitudinal tip on the side not connected to the vertical portion 22. Such a shaft portion 2 is manufactured, for example, by bending one metal bar or welding a plurality of metal bars.

支持部3は、軸部2と同様に非磁性の金属からなる、第1支持部31と、第2支持部32とからなる。第1支持部31は、方形の板状材を折り曲げたL字状の部材であり、第1水平部21の鉛直部22と接続されていない長手方向先端側の下面(図1における下側の面)に溶接によって接合される。なお、第1支持部31は、図1に示す側面側の方向からみて、L字状の一辺が第1水平部21に接合され、L字状の角が第1水平部21の長手方向中央側に配することで、他の一辺が下側に突出するように設けられる。第2支持部32は、方形の板状部材であり、第1水平部21の鉛直部22と接続されている長手方向先端側の下面に溶接によって接合される。また、第1支持部31と第2支持部32とは、後述するように、鋳型の幅に応じて所定の距離だけ離間して設けられる。   The support portion 3 includes a first support portion 31 and a second support portion 32 that are made of a nonmagnetic metal like the shaft portion 2. The first support portion 31 is an L-shaped member obtained by bending a square plate-like material, and is a lower surface (on the lower side in FIG. Surface) by welding. Note that the first support portion 31 has one L-shaped side joined to the first horizontal portion 21 and the L-shaped corner at the center in the longitudinal direction of the first horizontal portion 21 when viewed from the side surface side shown in FIG. By arranging on the side, the other side is provided so as to protrude downward. The second support portion 32 is a rectangular plate-like member, and is joined to the lower surface on the front end side in the longitudinal direction connected to the vertical portion 22 of the first horizontal portion 21 by welding. Moreover, the 1st support part 31 and the 2nd support part 32 are spaced apart only a predetermined distance according to the width | variety of a casting_mold | template so that it may mention later.

5個の第1保持部4a〜4eは、軸部2と同様に非磁性の金属からなる筒状のナットであり、中空が形成された内面に螺旋状の溝が形成される。5個の第1保持部4a〜4eは、第1支持部31と第2支持部32との間に、一定の距離だけ離間して並んで配され、第1水平部21の側面(図2における下側の面)に溶接によって接合される。また、5個の第1保持部4a〜4eは、筒状の延在方向が、鉛直部22の延在方向に平行になるように設けられる。   The five first holding portions 4a to 4e are cylindrical nuts made of a nonmagnetic metal like the shaft portion 2, and a spiral groove is formed on the inner surface where a hollow is formed. The five first holding portions 4a to 4e are arranged side by side by a predetermined distance between the first support portion 31 and the second support portion 32, and are arranged on the side surface of the first horizontal portion 21 (FIG. 2). To the lower surface) by welding. Further, the five first holding portions 4 a to 4 e are provided so that the cylindrical extending direction is parallel to the extending direction of the vertical portion 22.

第2保持部5は、図1の左右方向に延在する部材であり、5個の第1保持部4a〜4eに下側に配される。第2保持部5は、5本の検尺線7a〜7bに接続することで、5本の検尺線7a〜7bを連結して拘束する。第2保持部5は、磁性体でなく、これらの効果を奏するものであれば特に限定されないが、例えば、図1の左右方向に延在する非磁性の金属棒と、この金属棒に5本の検尺線7a〜7bを固定する粘着テープとからなるものでもよい。   The 2nd holding | maintenance part 5 is a member extended in the left-right direction of FIG. 1, and is distribute | arranged to five 1st holding | maintenance parts 4a-4e below. The 2nd holding | maintenance part 5 connects and restrains the five measuring lines 7a-7b by connecting with the five measuring lines 7a-7b. The second holding unit 5 is not a magnetic body and is not particularly limited as long as it exhibits these effects. For example, a nonmagnetic metal bar extending in the left-right direction in FIG. It may consist of an adhesive tape that fixes the measuring lines 7a to 7b.

第3保持部6は、軸部2と同様に非磁性の金属からなる筒状の部材であり、把持部23の鉛直部22が接続された側の先端側の上面(図1に示す上側の面)に、溶接によって接合される。また、第3保持部6は、把持部23の延在する方向に延在するように配される。
5本の検尺線7a〜7eは、溶融層厚みを測定する銅線であり、第3保持部6及び各第1保持部4a〜4eをそれぞれ通じて配される。この場合、5本の検尺線7a〜7eは、第3保持部6から湾曲しながら各第1保持部4a〜4eへと配され、各第1保持部4a〜4eの内周面に接触した状態となる。5本の検尺線7a〜7eは、不図示の粘着テープなどによって、把持部23に固定される。また、5本の検尺線7a〜7eは、鋳型の寸法に応じて、各第1保持部4a〜4eの下側から所定の長さだけ図1の上下方向に延出し、延出した部分の上側が第3保持部6に固定される。
The third holding portion 6 is a cylindrical member made of a nonmagnetic metal like the shaft portion 2, and the upper surface (the upper side shown in FIG. 1) of the grip portion 23 on the side to which the vertical portion 22 is connected. Surface) by welding. Further, the third holding part 6 is arranged so as to extend in the direction in which the grip part 23 extends.
The five measuring lines 7a to 7e are copper wires for measuring the melt layer thickness, and are arranged through the third holding unit 6 and the first holding units 4a to 4e, respectively. In this case, the five measuring lines 7a to 7e are arranged from the third holding part 6 to the first holding parts 4a to 4e while being curved, and contact the inner peripheral surfaces of the first holding parts 4a to 4e. It will be in the state. The five measuring lines 7a to 7e are fixed to the grip portion 23 by an unillustrated adhesive tape or the like. Further, the five measuring lines 7a to 7e extend in the vertical direction in FIG. 1 by a predetermined length from the lower side of the first holding portions 4a to 4e according to the dimensions of the mold, and are extended portions. Is fixed to the third holding part 6.

<溶融層厚みの測定方法>
次に、図3及び図4を参照して、本実施形態に係る溶融層厚みの測定方法について説明する。溶融層厚みの測定は、連続鋳造機で連続鋳造が行われている際に行われる。
図3及び図4に示すように、連続鋳造機では、不図示の溶鋼鍋から精錬処理が施された溶鋼が、不図示のタンディッシュ(中間容器)及びイマージョンノズル81を通じて、鋳型82に注ぎ込まれる。鋳型82に注ぎ込まれた溶鋼91は、鋳型82に冷却されることで凝固し、凝固シェル91aを形成する。そして、凝固シェル91aが引き抜かれながら、鋳型82及び不図示の二次冷却帯で冷却されることで内部まで完全に凝固した鋳片が製造される。
<Measuring method of melt layer thickness>
Next, with reference to FIG.3 and FIG.4, the measuring method of the molten layer thickness which concerns on this embodiment is demonstrated. The measurement of the molten layer thickness is performed when continuous casting is performed by a continuous casting machine.
As shown in FIGS. 3 and 4, in the continuous casting machine, molten steel that has undergone refining treatment from a molten steel pan (not shown) is poured into a mold 82 through a tundish (intermediate vessel) and an immersion nozzle 81 (not shown). . The molten steel 91 poured into the mold 82 is solidified by being cooled by the mold 82 to form a solidified shell 91a. And while the solidified shell 91a is pulled out, it is cooled in the mold 82 and a secondary cooling zone (not shown), thereby producing a slab that is completely solidified to the inside.

本実施形態では、鋳片として長手方向に垂直な断面形状が矩形状のスラブが製造される。このため、図3に示すように、鋳型82の上面は矩形状に開口し、その上方には鋳型82と同様に矩形状に開口したカバー83が設けられる。なお、鋳型82の上面に平行な面(図4の左右方向に平行な平面であり、水平方向に平行な面)内において、鋳型82の矩形状の開口部の短辺同士が対向する方向(図3の左右方向であり、図4の前後方向)を鋳型82の幅方向、長辺同士が対向する方向(図3の上下方向であり、図4の左右方向)を鋳型82の厚み方向という。   In this embodiment, a slab having a rectangular cross-sectional shape perpendicular to the longitudinal direction is manufactured as a slab. Therefore, as shown in FIG. 3, the upper surface of the mold 82 is opened in a rectangular shape, and a cover 83 that is opened in a rectangular shape is provided above the upper surface of the mold 82. In the plane parallel to the upper surface of the mold 82 (the plane parallel to the horizontal direction in FIG. 4 and the plane parallel to the horizontal direction), the short sides of the rectangular openings of the mold 82 face each other ( 3 is the width direction of the mold 82, and the direction in which the long sides face each other (the vertical direction of FIG. 3, the left-right direction of FIG. 4) is the thickness direction of the mold 82. .

さらに、連続鋳造では、鋳型82内の溶鋼91の上面にはモールドパウダが添加される。添加されたモールドパウダは、溶融した溶融層92と、未溶融のパウダ層93とを形成する。そして、溶融層92の溶融したモールドパウダが鋳型82と凝固シェル91aとの間に入り込む。
本実施形態では、このような連続鋳造において、測定装置1を用いて、図4に示す溶融層92の上下方向の深さである溶融層厚みを測定する。溶融層厚みの測定は、溶鋼鍋から溶鋼が所定量以上注ぎ込まれ、鋳込み速度が定常速度となったタイミングで行われる。溶融層厚みの測定では、まず、図4に示すように、5本の検尺線7a〜7eを溶鋼91、溶融層92及びパウダ層93に浸漬させる。
Further, in continuous casting, mold powder is added to the upper surface of the molten steel 91 in the mold 82. The added mold powder forms a melted molten layer 92 and an unmelted powder layer 93. Then, the melted mold powder of the melt layer 92 enters between the mold 82 and the solidified shell 91a.
In this embodiment, in such continuous casting, the measurement apparatus 1 is used to measure the melt layer thickness that is the depth in the vertical direction of the melt layer 92 shown in FIG. The molten layer thickness is measured at a timing when a predetermined amount or more of molten steel is poured from the molten steel pan and the casting speed becomes a steady speed. In the measurement of the molten layer thickness, first, as shown in FIG. 4, five measurement lines 7 a to 7 e are immersed in the molten steel 91, the molten layer 92, and the powder layer 93.

この際、図4に示すように、第1支持部31及び第2支持部32をカバー83の上面に載せる。なお、第1支持部31と第2支持部32とは、カバー83の上面に開口部を挟んで載せることができるよう、開口部の厚み方向に応じた距離だけ離間して設けられる。これにより、測定装置1は、第1水平部21の延在方向が水平面と平行となり、第1水平部21の軸心を中心に回転しないように配される。また、第1水平部21の下面から下側へと突出した第1支持部31の面を、カバー83及び鋳型82の開口部内側の面に押し当てた状態とする。これにより、測定装置1は、鋳型82の厚み方向への移動が制限され、第1支持部31の設置位置に応じた所定の鋳型82の厚み方向の位置に固定された状態となる。なお、測定装置1の幅方向の位置は、予めカバー83に付された目印等に基づいて調整される。例えば、図3に示す例では、測定装置1は、鋳型82の幅方向端側の所定の位置に配されることで、この幅方向位置における厚み方向に並んだ5か所の測定箇所における溶融層厚みが測定される。   At this time, as shown in FIG. 4, the first support portion 31 and the second support portion 32 are placed on the upper surface of the cover 83. The first support portion 31 and the second support portion 32 are provided apart by a distance corresponding to the thickness direction of the opening so that the opening can be placed on the upper surface of the cover 83. Thereby, the measuring device 1 is arranged so that the extending direction of the first horizontal portion 21 is parallel to the horizontal plane and does not rotate around the axis of the first horizontal portion 21. Further, the surface of the first support portion 31 protruding downward from the lower surface of the first horizontal portion 21 is pressed against the inner surfaces of the cover 83 and the mold 82. As a result, the measuring apparatus 1 is restricted from moving in the thickness direction of the mold 82 and is fixed at a predetermined position in the thickness direction of the mold 82 according to the installation position of the first support portion 31. The position in the width direction of the measuring device 1 is adjusted based on a mark or the like previously attached to the cover 83. For example, in the example shown in FIG. 3, the measuring device 1 is arranged at a predetermined position on the width direction end side of the mold 82, so that melting at five measurement points arranged in the thickness direction at the width direction position is performed. The layer thickness is measured.

次いで、測定に必要な所定の時間(例えば2〜3秒)が経過した後、5本の検尺線7a〜7eを、溶鋼91、溶融層92及びパウダ層93から取り出し、5本の検尺線7a〜7eの浸漬させた先端側の変色又は凝固したモールドパウダが付着した長さを測定することで、溶融層厚みを測定する。さらに、第1保持部4a〜4eよりも下側における所定位置(例えば、第1保持部4a〜4eの下端位置や予めマーキングしておいた位置)からの5本の検尺線7a〜7eの長さを測定する。溶鋼91に接触した検尺線7a〜7eは溶融するため、この長さを測定することで、溶鋼91の湯面高さ(「メニスカスレベル」ともいう。)が測定される。   Next, after a predetermined time required for measurement (for example, 2 to 3 seconds) has elapsed, the five measuring lines 7a to 7e are taken out from the molten steel 91, the molten layer 92, and the powder layer 93, and then the five measuring lines. The melted layer thickness is measured by measuring the length of the wire 7a to 7e to which the discolored or solidified mold powder on the tip side is immersed. Furthermore, five measurement lines 7a to 7e from a predetermined position below the first holding portions 4a to 4e (for example, a lower end position of the first holding portions 4a to 4e or a pre-marked position) Measure the length. Since the measurement lines 7a to 7e in contact with the molten steel 91 melt, the height of the molten steel 91 (also referred to as “meniscus level”) is measured by measuring this length.

以上の手順で溶融層厚みの測定が行われる。なお、溶融層厚みを測定する際の、測定装置1の取り回しは、作業者が把持部23を持った状態で行われる。このため、鋳型82周りのスペースが狭い場合でも、溶融層厚みの分布を測定することができる。
そして、測定の結果、溶融層厚みが基準よりも小さい箇所がある場合には、鋳込み速度の調整や鋳込みの中止等の対応を取ることで、操業トラブルを防止でき、品質不良材の発生を抑制することができる。また、湯面の部分的な盛り上がりがある場合にも、焼きつきによるブレークアウトといった操業トラブルの発生が懸念される。このため、湯面高さが他の測定箇所に対して基準以上に高い測定箇所がある場合には、溶融層厚みの場合と同様な対応を取ることで操業トラブルを防止することができる。
The molten layer thickness is measured by the above procedure. It should be noted that the measurement device 1 is handled when the melt layer thickness is measured while the operator holds the grip portion 23. For this reason, even when the space around the mold 82 is narrow, the distribution of the molten layer thickness can be measured.
As a result of the measurement, if there is a part where the melted layer thickness is smaller than the standard, by taking measures such as adjusting the casting speed or stopping casting, operation troubles can be prevented and the occurrence of defective materials is suppressed. can do. In addition, when there is a partial rise in the hot water surface, there is a concern about the occurrence of operational troubles such as breakout due to seizure. For this reason, when there is a measurement location where the molten metal surface height is higher than the standard with respect to other measurement locations, operation troubles can be prevented by taking the same measures as in the case of the molten layer thickness.

<変形例>
以上で、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態の種々の変形例とともに本発明の別の実施形態も明らかである。従って、特許請求の範囲は、本発明の範囲及び要旨に含まれるこれらの変形例または実施形態も網羅すると解すべきである。
<Modification>
Although the present invention has been described above with reference to specific embodiments, it is not intended that the present invention be limited by these descriptions. From the description of the invention, other embodiments of the invention will be apparent to persons skilled in the art, along with various variations of the disclosed embodiments. Therefore, it is to be understood that the claims encompass these modifications and embodiments that fall within the scope and spirit of the present invention.

例えば、上記実施形態では、測定装置1が鋳型82の厚み方向の溶融層厚みの分布を測定するとしたが、本発明はかかる例に限定されない。例えば、測定装置1は、鋳型82の幅方向の溶融層厚みの分布を測定してもよい。この場合、図5に示す測定装置1を用いられる。図5に示す測定装置1は、上記実施形態と異なり、軸部2が第1水平部21に接合され、第1水平部21及び鉛直部22の延在方向にそれぞれ直交する方向に延在する第2水平部25を有する。第2水平部25は、延在方向の中央が第1水平部21の上面に接合される。また、図5において、第1水平部21を挟む第2水平部25の上側と下側とには、4個の第1保持部4f〜4i,4j〜4mと第2保持部5a,5bとがそれぞれ設けられる。そして、第3保持部6を通じて設けられる8本の検尺線7f〜7mが、8個の第1保持部4f〜4mを通じて設けられる。さらに、4本の検尺線7f〜7iは第2保持部5aに固定され、4本の検尺線7j〜7mは第2保持部5bに固定される。図5に示す測定装置1では、第1支持部31及び第2支持部32を、上記実施形態と同様にカバー83上に置いて溶融層厚み及び湯面高さの測定を行うことで、鋳型82の幅方向における溶融層厚み及び湯面高さの分布を測定することができる。   For example, in the above embodiment, the measurement apparatus 1 measures the distribution of the molten layer thickness in the thickness direction of the mold 82, but the present invention is not limited to such an example. For example, the measuring apparatus 1 may measure the distribution of the molten layer thickness in the width direction of the mold 82. In this case, the measuring apparatus 1 shown in FIG. 5 is used. 5 differs from the above embodiment in that the shaft portion 2 is joined to the first horizontal portion 21 and extends in directions orthogonal to the extending directions of the first horizontal portion 21 and the vertical portion 22, respectively. A second horizontal portion 25 is provided. The center of the second horizontal portion 25 in the extending direction is joined to the upper surface of the first horizontal portion 21. In FIG. 5, four first holding portions 4 f to 4 i and 4 j to 4 m and second holding portions 5 a and 5 b are provided on the upper side and the lower side of the second horizontal portion 25 sandwiching the first horizontal portion 21. Are provided respectively. And eight measuring lines 7f-7m provided through the third holding part 6 are provided through the eight first holding parts 4f-4m. Further, the four measuring lines 7f to 7i are fixed to the second holding part 5a, and the four measuring lines 7j to 7m are fixed to the second holding part 5b. In the measuring apparatus 1 shown in FIG. 5, the first support portion 31 and the second support portion 32 are placed on the cover 83 in the same manner as in the above embodiment, and the molten layer thickness and the molten metal surface height are measured. The distribution of the molten layer thickness and the molten metal surface height in the width direction of 82 can be measured.

また、測定装置1は、鋳型82の幅方向及び厚み方向の溶融層厚みの分布を測定してもよい。この場合、図5に示す測定装置1の第1水平部21に、図1及び図2に示す測定装置1と同様に、複数の第1保持部4a〜4e及び第2保持部5を設けることで、幅方向及び厚み方向の両方向における溶融層厚みの分布を測定することができる。
さらに、上記実施形態では、測定装置1は5か所の測定箇所の溶融層厚みを測定するとしたが、本発明はかかる例に限定されない。測定箇所は複数個所であればよく、また、測定したい分布に応じて測定箇所同士が必ずしも等間隔に離間していなくてもよい。この場合、測定箇所の数に応じた数の、第1保持部及び検尺線が設けられる。
Moreover, the measuring apparatus 1 may measure the distribution of the molten layer thickness in the width direction and the thickness direction of the mold 82. In this case, a plurality of first holding portions 4a to 4e and a second holding portion 5 are provided on the first horizontal portion 21 of the measuring device 1 shown in FIG. 5 as in the measuring device 1 shown in FIGS. Thus, the distribution of the molten layer thickness in both the width direction and the thickness direction can be measured.
Furthermore, in the said embodiment, although the measuring apparatus 1 measured the molten layer thickness of five measurement locations, this invention is not limited to this example. There may be a plurality of measurement locations, and the measurement locations do not necessarily have to be equally spaced according to the distribution to be measured. In this case, the number of the first holding units and the measurement lines corresponding to the number of measurement points is provided.

さらに、上記実施形態では、第2保持部5を設ける構成としたが、本発明はかかる例に限定されない。例えば、測定装置1には、第2保持部5が設けられなくてもよい。なお、第2保持部5が設けられることで、5本の検尺線7a〜7eが固定されるため、精度良く溶融層厚みを測定することができる。
さらに、上記実施形態では、5個の第1保持部4a〜4eは、ナットであるとしたが、本発明はかかる例に限定されない。5個の第1保持部4a〜4eは、筒状の部材であれば、ナット以外のものが用いられてもよい。なお、ナットを用いることで、安価に測定装置1を製造することができ、さらに内面に形成された溝によって5本の検尺線7a〜7eとの摩擦力を上げることができる。このため、測定時の5本の検尺線7a〜7eの変形が抑えられ、溶融層厚みを精度良く測定することができる。
Furthermore, in the said embodiment, although it was set as the structure which provides the 2nd holding | maintenance part 5, this invention is not limited to this example. For example, the second holding unit 5 may not be provided in the measurement device 1. In addition, since the 5 measuring lines 7a-7e are fixed by providing the 2nd holding | maintenance part 5, melt layer thickness can be measured with a sufficient precision.
Furthermore, in the said embodiment, although the five 1st holding | maintenance parts 4a-4e were nuts, this invention is not limited to this example. As long as the 5 1st holding | maintenance parts 4a-4e are cylindrical members, things other than a nut may be used. In addition, by using a nut, the measuring device 1 can be manufactured at a low cost, and the frictional force with the five measuring lines 7a to 7e can be increased by a groove formed on the inner surface. For this reason, the deformation | transformation of the five measurement lines 7a-7e at the time of a measurement is suppressed, and a molten layer thickness can be measured accurately.

さらに、上記実施形態では、連続鋳造機は矩形断面形状のスラブを製造するものとしたが、本発明はかかる例に限定されない。連続鋳造機は、ブルームやビレット、ビームブランク等の他の形状の鋳片を製造するものであってもよい。
さらに、上記実施形態では、5本の検尺線7a〜7eが銅線であるとしたが、本発明はかかる例に限定されない。5本の検尺線7a〜7eは、溶融層厚みを測定することできる金属線であれば他の素材のものでもよく、例えば特許文献1のように鉄棒に銅メッキが施されたものでもよい。
Furthermore, in the said embodiment, although the continuous casting machine shall manufacture the slab of rectangular cross-sectional shape, this invention is not limited to this example. The continuous casting machine may produce slabs of other shapes such as blooms, billets and beam blanks.
Furthermore, in the said embodiment, although the five measuring lines 7a-7e were copper wires, this invention is not limited to this example. The five measuring lines 7a to 7e may be made of other materials as long as the thickness of the molten layer can be measured. For example, as shown in Patent Document 1, an iron bar may be plated with copper. .

さらに、上記実施形態では、第1支持部31をL字状にすることで、測定時において、測定装置1の鋳型82の厚み方向への移動を制限する構成としたが、本発明はかかる例に限定されない。例えば、第1支持部31及び第2支持部32をL字状にし、第1支持部31及び第2支持部32の下側に突出した部分を、カバー83及び鋳型82の開口部に嵌め入れることで測定装置1の鋳型82の厚み方向への移動を制限してもよい。また、第2支持部32のみをL字状とし、第1支持部31を上記実施形態における第2支持部32と同様な形状としてもよい。この場合、第2支持部32の下側に突出した部分を、カバー83及び鋳型82の開口部の内面に押し当てることで、測定装置1の鋳型82の厚み方向への移動を制限できる。
さらに、上記実施形態では、軸部2はN字状の形状を有するとしたが、本発明はかかる例に限定されない。他の設備に干渉しないようであれば、軸部2は鉛直部22がなく、第1水平部21に把持部23が直接接続する直線状の形状であってもよい。また、この場合、第1支持部31及び第2支持部32の水平方向に平行な面の厚みを厚くしてもよい。
Furthermore, in the said embodiment, it was set as the structure which restrict | limits the movement to the thickness direction of the casting_mold | template 82 of the measuring apparatus 1 at the time of a measurement by making the 1st support part 31 into L shape, but this invention is such an example. It is not limited to. For example, the 1st support part 31 and the 2nd support part 32 are made into L shape, and the part which protruded below the 1st support part 31 and the 2nd support part 32 is inserted in the opening part of the cover 83 and the casting_mold | template 82. Thereby, you may restrict | limit the movement to the thickness direction of the casting_mold | template 82 of the measuring apparatus 1. FIG. Further, only the second support portion 32 may be L-shaped, and the first support portion 31 may have the same shape as the second support portion 32 in the above embodiment. In this case, the movement of the measuring device 1 in the thickness direction of the measuring device 1 can be restricted by pressing the portion protruding below the second support portion 32 against the inner surface of the opening of the cover 83 and the mold 82.
Furthermore, in the said embodiment, although the axial part 2 had N-shaped shape, this invention is not limited to this example. As long as it does not interfere with other equipment, the shaft portion 2 may not have the vertical portion 22 and may have a linear shape in which the grip portion 23 is directly connected to the first horizontal portion 21. Further, in this case, the thickness of the surfaces parallel to the horizontal direction of the first support portion 31 and the second support portion 32 may be increased.

<実施形態の効果>
(1)本発明に一態様に係る溶融層厚みの測定装置1は、鋳型82内のモールドパウダの溶融層92の厚みを測定する溶融層厚みの測定装置1であって、鋳型82の上面に平行な水平方向のうち少なくとも一方向に延在する水平部(第1水平部21)と、水平部の延在する方向に並んで、水平部に固定して設けられ、水平方向に垂直な鉛直方向に伸びる筒状の複数の第1保持部4a〜4eと、鋳型82上で、水平部の水平方向のうち少なくとも一方向への移動を制限する支持部(第1支持部31)と、複数の第1保持部4a〜4eを通じて配され、複数の第1保持部4a〜4eから鉛直方向の下側に延出する複数の検尺線7a〜7eと、水平部に接続される把持部23と、を備える。
上記(1)の構成によれば、鋳型82内の少なくとも一方向に並んだ複数個所における溶融層厚みを測定することができるため、一度の測定動作で溶融層厚みの分布を測定することができる。また、支持部及び把持部を有することで、取り回しが容易になることから鋳型82回りのスペースが狭い場合でも、簡易且つ正確に溶融層厚みを測定することができる。さらに、上記(1)の構成によれば、溶融層厚みに加えて溶鋼の湯面高さの少なくとも一方向への分布も測定することができる。
<Effect of embodiment>
(1) The melt layer thickness measurement apparatus 1 according to one aspect of the present invention is a melt layer thickness measurement apparatus 1 that measures the thickness of the melt layer 92 of the mold powder in the mold 82, and is provided on the upper surface of the mold 82. A horizontal portion (first horizontal portion 21) extending in at least one of the parallel horizontal directions and a vertical portion that is fixed to the horizontal portion and arranged in the direction in which the horizontal portion extends and is perpendicular to the horizontal direction A plurality of cylindrical first holding portions 4a to 4e extending in the direction, a support portion (first support portion 31) for restricting movement of the horizontal portion in at least one of the horizontal directions on the mold 82, and a plurality of A plurality of measuring lines 7a to 7e that are arranged through the first holding portions 4a to 4e and extend downward from the plurality of first holding portions 4a to 4e, and a grip portion 23 connected to the horizontal portion. And comprising.
According to the configuration of (1) above, the melt layer thickness can be measured at a plurality of locations arranged in at least one direction in the mold 82, so that the distribution of the melt layer thickness can be measured by a single measurement operation. . In addition, since the support portion and the gripping portion are provided, handling is facilitated, so that even when the space around the mold 82 is narrow, the melt layer thickness can be measured easily and accurately. Furthermore, according to the structure of said (1), in addition to molten layer thickness, the distribution to the at least one direction of the molten steel surface height can also be measured.

(2)上記(1)の構成において、複数の第1保持部4a〜4eの鉛直方向の下側に配され、複数の検尺線7a〜7eを水平部が延在する方向に連結して拘束する第2保持部5を備える。
上記(2)の構成によれば、複数の検尺線7a〜7eがより拘束されることから、より正確に溶融層厚みを測定することができる。
(2) In the configuration of (1) above, the plurality of first holding portions 4a to 4e are arranged below the vertical direction, and the plurality of measurement lines 7a to 7e are connected in the direction in which the horizontal portion extends. The 2nd holding | maintenance part 5 to restrain is provided.
According to the configuration of (2) above, since the plurality of measurement lines 7a to 7e are more restrained, the melt layer thickness can be measured more accurately.

(3)上記(1)または(2)の構成において、水平部は、水平方向において互いに垂直な方向に延在する、第1水平部21と、第2水平部25とを有し、複数の第1保持部4a〜4eは、第1水平部21及び第2水平部25にそれぞれ複数設けられる。
上記構成によれば、鋳型82の幅方向及び厚み方向のように、異なる2方向についての溶融層厚みの分布を、一度の測定動作で測定することができる。
(3) In the configuration of (1) or (2), the horizontal portion includes a first horizontal portion 21 and a second horizontal portion 25 that extend in a direction perpendicular to each other in the horizontal direction, and a plurality of horizontal portions A plurality of first holding portions 4 a to 4 e are provided in each of the first horizontal portion 21 and the second horizontal portion 25.
According to the said structure, distribution of the molten layer thickness about two different directions like the width direction and thickness direction of the casting_mold | template 82 can be measured by one measurement operation | movement.

(4)本発明の一態様に係る溶融層厚みの測定方法は、上記(1)〜(3)のいずれかの構成に記載の溶融層厚みの測定装置1を用い、支持部で測定装置1の少なくとも一方向への移動を制限しながら、複数の検尺線7a〜7eを、鋳型82内の溶融層92及び溶鋼91に浸漬させることで、鋳型内の複数個所における溶融層92の厚みを測定する。
上記(4)の構成によれば、上記(1)の構成と同様な効果を得ることができる。
(4) The method for measuring the melt layer thickness according to one aspect of the present invention uses the melt layer thickness measurement device 1 according to any one of (1) to (3) above, and the measurement device 1 at the support portion. The thickness of the molten layer 92 at a plurality of locations in the mold is reduced by immersing the plurality of measuring lines 7a to 7e in the molten layer 92 and the molten steel 91 in the mold 82 while restricting movement in at least one direction. taking measurement.
According to the configuration of (4) above, the same effect as the configuration of (1) can be obtained.

(5)本発明に一態様に係る鋼の製造方法は、連続鋳造機にて鋼を連続鋳造する際に、上記(4)の構成の溶融層厚みの測定方法を用いて、鋳型内の複数個所における溶融層92の厚みを測定する。
上記(5)の構成によれば、上記(1)の構成と同様な効果を得ることができる。また、溶鋼91に偏流が生じる等して部分的に溶融層厚みの薄い箇所が発生するような場合においても、溶融層厚みの分布を測定することで、そのような箇所を検出することができる。このため、操業トラブルを防止でき、品質不良材の発生を抑制することができる。
(5) A method for producing steel according to an aspect of the present invention is a method for measuring a plurality of molds in a mold by using the method for measuring the thickness of a molten layer having the configuration (4) above when continuously casting steel with a continuous casting machine. The thickness of the molten layer 92 at the location is measured.
According to the configuration of (5), the same effect as the configuration of (1) can be obtained. Further, even in the case where a location where the molten layer thickness is partially generated due to drifting in the molten steel 91 or the like, such a location can be detected by measuring the distribution of the molten layer thickness. . For this reason, operational troubles can be prevented and the occurrence of poor quality materials can be suppressed.

1 測定装置
2 軸部
21 第1水平部
22 鉛直部
23 把持部
24 持ち手
25 第2水平部
3 支持部
31 第1支持部
32 第2支持部
4a〜4e 第1保持部
5,5a,5b 第2保持部
6 第3保持部
7a〜7e 検尺線
81 イマージョンノズル
82 鋳型
83 カバー
91 溶鋼
91a 凝固シェル
92 溶融層
93 パウダ層
DESCRIPTION OF SYMBOLS 1 Measuring apparatus 2 Shaft part 21 1st horizontal part 22 Vertical part 23 Grip part 24 Handle 25 2nd horizontal part 3 Support part 31 1st support part 32 2nd support part 4a-4e 1st holding part 5, 5a, 5b 2nd holding | maintenance part 6 3rd holding | maintenance part 7a-7e Measuring line 81 Immersion nozzle 82 Mold 83 Cover 91 Molten steel 91a Solidified shell 92 Molten layer 93 Powder layer

Claims (5)

鋳型内のモールドパウダの溶融層の厚みを測定する溶融層厚みの測定装置であって、
前記鋳型の上面に平行な水平方向のうち少なくとも一方向に延在する水平部と、
該水平部の延在する方向に並んで、前記水平部に固定して設けられ、前記水平方向に垂直な鉛直方向に伸びる筒状の複数の第1保持部と、
前記鋳型上で、前記水平部の前記水平方向のうち少なくとも一方向への移動を制限する支持部と、
前記複数の第1保持部を通じて配され、前記複数の第1保持部から鉛直方向の下側に延出する複数の検尺線と、
前記水平部に接続される把持部と、
を備えることを特徴とする溶融層厚みの測定装置。
A melt layer thickness measuring device for measuring a thickness of a melt layer of a mold powder in a mold,
A horizontal portion extending in at least one of the horizontal directions parallel to the upper surface of the mold;
A plurality of cylindrical first holding portions that are arranged in a direction in which the horizontal portion extends, are fixed to the horizontal portion, and extend in a vertical direction perpendicular to the horizontal direction;
On the mold, a support part that restricts movement of the horizontal part in at least one of the horizontal directions;
A plurality of measuring lines arranged through the plurality of first holding portions and extending downward in the vertical direction from the plurality of first holding portions;
A gripping part connected to the horizontal part;
An apparatus for measuring a melt layer thickness, comprising:
前記複数の第1保持部の鉛直方向の下側に配され、前記複数の検尺線を前記水平部が延在する方向に連結して拘束する第2保持部を備えることを特徴とする請求項1に記載の溶融層厚みの測定装置。   2. A second holding portion that is arranged below the plurality of first holding portions in a vertical direction and that connects and restrains the plurality of measurement lines in a direction in which the horizontal portion extends. Item 2. The molten layer thickness measuring device according to Item 1. 前記水平部は、前記水平方向において互いに垂直な方向に延在する、第1水平部と、第2水平部とを有し、
前記複数の第1保持部は、前記第1水平部及び前記第2水平部にそれぞれ複数設けられることを特徴とする請求項1または2に記載の溶融層厚みの測定装置。
The horizontal portion includes a first horizontal portion and a second horizontal portion extending in directions perpendicular to each other in the horizontal direction,
3. The melt layer thickness measuring apparatus according to claim 1, wherein a plurality of the plurality of first holding portions are provided in each of the first horizontal portion and the second horizontal portion.
請求項1〜3のいずれか1項に記載の溶融層厚みの測定装置を用い、
前記支持部で前記測定装置の少なくとも一方向への移動を制限しながら、前記複数の検尺線を、前記鋳型内の前記溶融層及び溶鋼に浸漬させることで、前記鋳型内の複数個所における前記溶融層の厚みを測定することを特徴とする溶融層厚みの測定方法。
Using the melt layer thickness measuring apparatus according to any one of claims 1 to 3,
The plurality of measuring lines are immersed in the molten layer and molten steel in the mold while restricting the movement of the measuring device in at least one direction by the support portion, so that the plurality of measurement lines in the mold at the plurality of locations. A method for measuring a thickness of a molten layer, comprising measuring the thickness of the molten layer.
連続鋳造機にて鋼を連続鋳造する際に、
請求項4に記載の溶融層厚みの測定方法を用いて、前記鋳型内の複数個所における前記溶融層の厚みを測定することを特徴とする鋼の製造方法。
When continuously casting steel with a continuous casting machine,
A method for producing steel, comprising: measuring a thickness of the molten layer at a plurality of locations in the mold using the method for measuring a molten layer thickness according to claim 4.
JP2016178756A 2016-09-13 2016-09-13 Molten layer thickness measurement device and method, and steel manufacturing method Pending JP2018044820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016178756A JP2018044820A (en) 2016-09-13 2016-09-13 Molten layer thickness measurement device and method, and steel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016178756A JP2018044820A (en) 2016-09-13 2016-09-13 Molten layer thickness measurement device and method, and steel manufacturing method

Publications (1)

Publication Number Publication Date
JP2018044820A true JP2018044820A (en) 2018-03-22

Family

ID=61693055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016178756A Pending JP2018044820A (en) 2016-09-13 2016-09-13 Molten layer thickness measurement device and method, and steel manufacturing method

Country Status (1)

Country Link
JP (1) JP2018044820A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115041643A (en) * 2022-06-24 2022-09-13 包头钢铁(集团)有限责任公司 Method for measuring crystallizer liquid slag layer by continuous casting machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115041643A (en) * 2022-06-24 2022-09-13 包头钢铁(集团)有限责任公司 Method for measuring crystallizer liquid slag layer by continuous casting machine

Similar Documents

Publication Publication Date Title
JP4864559B2 (en) Continuous casting mold
CN112074359B (en) Electromagnetic stirring device
JP5321528B2 (en) Equipment for continuous casting of steel
KR20140053279A (en) Continuous casting device for steel
JP2018044820A (en) Molten layer thickness measurement device and method, and steel manufacturing method
WO2015122602A1 (en) Mold flux, continuous casting method using same, and slab manufactured using same
KR20190029757A (en) Continuous casting method of steel
TWI690377B (en) Continuous casting method of steel
US9144840B2 (en) Electromagnetic stirrer and continuous casting method
JP4728724B2 (en) Continuous casting slab and manufacturing method thereof
JP2006281218A (en) Method for continuously casting steel
WO2018056322A1 (en) Continuous steel casting method
JP2008055431A (en) Method of continuous casting for steel
JP6330542B2 (en) Manufacturing method of continuous cast slab
JP4519600B2 (en) Electromagnetic stirring coil
JP6379955B2 (en) Continuous casting method
JP6627744B2 (en) Method and apparatus for continuous casting of steel
JP2008173644A (en) Electromagnetic coil for continuous casting mold
JP5549346B2 (en) Steel continuous casting apparatus and continuous casting method
JP5774419B2 (en) Continuous casting equipment for slabs made of titanium or titanium alloy
JP2016175115A (en) Template for continuous casting, and continuous casting method
JP4492333B2 (en) Steel continuous casting method
JP5079663B2 (en) Continuous casting method of slab in which static magnetic field is applied to upward flow of mold narrow surface.
JP5004626B2 (en) Appearance of solidified shell thickness in S-print
JP2010000518A (en) Method and apparatus for controlling flow of molten steel in continuous casting mold