JP5549346B2 - Steel continuous casting apparatus and continuous casting method - Google Patents

Steel continuous casting apparatus and continuous casting method Download PDF

Info

Publication number
JP5549346B2
JP5549346B2 JP2010094882A JP2010094882A JP5549346B2 JP 5549346 B2 JP5549346 B2 JP 5549346B2 JP 2010094882 A JP2010094882 A JP 2010094882A JP 2010094882 A JP2010094882 A JP 2010094882A JP 5549346 B2 JP5549346 B2 JP 5549346B2
Authority
JP
Japan
Prior art keywords
electromagnetic
electromagnetic stirring
mold
continuous casting
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010094882A
Other languages
Japanese (ja)
Other versions
JP2011224589A (en
Inventor
潤二 中島
健司 梅津
健彦 藤
英明 山村
暁 峰田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010094882A priority Critical patent/JP5549346B2/en
Publication of JP2011224589A publication Critical patent/JP2011224589A/en
Application granted granted Critical
Publication of JP5549346B2 publication Critical patent/JP5549346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋳型内に溶鋼を供給して鋳片を製造する鋼の連続鋳造装置及び当該連続鋳造装置を用いた鋼の連続鋳造方法に関する。   The present invention relates to a continuous casting apparatus for steel in which molten steel is supplied into a mold to produce a slab, and to a continuous casting method for steel using the continuous casting apparatus.

鋼の連続鋳造において、鋳片の表面形状を改善するために、例えば鋳型の上部に設置された電磁攪拌装置を用いて、当該鋳型内の溶鋼を電磁攪拌することが行われている。   In continuous casting of steel, in order to improve the surface shape of a slab, for example, electromagnetic stirring of molten steel in the mold is performed using an electromagnetic stirring device installed on the upper part of the mold.

この電磁攪拌では、例えば図11に示すように鋳型100の一対の長辺壁100a、100aに沿って電磁攪拌装置101、101が配置される。なお、図示の例では、通常の鋳型の形状に基づき、一対の長辺壁100a、100aの内側面は平行して直線状に形成されている。そして、浸漬ノズル102から鋳型100内に溶鋼103が吐出されると、電磁攪拌装置101に電流を供給して、鋳型100内の上部の溶鋼103に推力が付与される。この推力によって溶鋼103が水平面内で攪拌されて、当該溶鋼103の旋回流104が形成される。そして、旋回流104によって、鋳型100の上部のメニスカス近傍の介在物、気泡等が鋳型100の側面に形成された凝固シェルに捕捉されるのを抑制している。   In this electromagnetic stirring, for example, as shown in FIG. 11, electromagnetic stirring devices 101 and 101 are arranged along a pair of long side walls 100 a and 100 a of the mold 100. In the illustrated example, the inner side surfaces of the pair of long side walls 100a and 100a are formed in parallel and linearly based on the shape of a normal mold. When the molten steel 103 is discharged from the immersion nozzle 102 into the mold 100, current is supplied to the electromagnetic stirring device 101, and thrust is applied to the upper molten steel 103 in the mold 100. By this thrust, the molten steel 103 is stirred in a horizontal plane, and a swirl flow 104 of the molten steel 103 is formed. The swirl flow 104 prevents inclusions, bubbles, and the like near the meniscus at the top of the mold 100 from being trapped by the solidified shell formed on the side surface of the mold 100.

しかしながら、鋳型100内の浸漬ノズル102の周囲には介在物等が付着して堆積し易い。このように堆積した付着物は、その厚みが数10mmに達する場合もある。このため、長辺壁100aと浸漬ノズル102との間の領域105が狭くなる。すなわち、旋回流104の流路が狭くなり、溶鋼103が流れ難くなる。   However, inclusions and the like are likely to adhere and deposit around the immersion nozzle 102 in the mold 100. The deposits thus deposited may reach a thickness of several tens of millimeters. For this reason, the area | region 105 between the long side wall 100a and the immersion nozzle 102 becomes narrow. That is, the flow path of the swirl flow 104 becomes narrow, and the molten steel 103 becomes difficult to flow.

そこで、上述の電磁攪拌装置101を用いると共に、平行型の鋳型100に代えて、図12に示すようにいわゆる異型鋳型110を用いることが提案されている。異型鋳型110の長辺壁110aの内側面の中央部、すなわち浸漬ノズル102に対向する部分は、電磁攪拌装置101側に湾曲し、湾曲部111を形成している。そして、長辺壁110aの内側面において、湾曲部111の両側には直線状の直線部112、112が形成されている。この異型鋳型110の湾曲部111によって領域105を広くし、旋回流104の流路が狭くなるのを防止している(特許文献1)。   Therefore, it has been proposed to use the above-described electromagnetic stirring device 101 and to use a so-called irregular mold 110 as shown in FIG. 12 instead of the parallel mold 100. The central portion of the inner side surface of the long side wall 110a of the modified mold 110, that is, the portion facing the immersion nozzle 102 is curved toward the electromagnetic stirrer 101 side to form a curved portion 111. Further, linear straight portions 112, 112 are formed on both sides of the curved portion 111 on the inner surface of the long side wall 110 a. The curved portion 111 of the modified mold 110 widens the region 105 to prevent the swirl flow 104 from becoming narrow (Patent Document 1).

特開2008−183597号公報JP 2008-183597 A

ところで、近年、鋼製品の品質向上要求が厳しくなり、清浄度の優れた高品質の鋳片を製造する要求が高まっている。このため、従来は例えば10cm/秒〜20cm/秒の流速の旋回流104を形成して溶鋼103を攪拌していたが、介在物、気泡等をさらに効率的に除去するため、旋回流104の流速をより高速にすることが望まれている。   By the way, in recent years, the demand for improving the quality of steel products has become stricter, and the demand for producing high-quality slabs with excellent cleanliness has increased. For this reason, conventionally, for example, the swirling flow 104 having a flow rate of 10 cm / sec to 20 cm / sec was formed to stir the molten steel 103. However, in order to more efficiently remove inclusions, bubbles and the like, It is desired to increase the flow rate.

しかしながら、異型鋳型110の長辺壁110aは例えば銅板等で構成されているため、電磁攪拌装置101に電流を供給すると、当該電磁攪拌装置101で発生する磁場の強度は長辺壁110aによって減衰する。このとき、電磁攪拌装置101と湾曲部111との間の距離は、電磁攪拌装置101と直線部112との間の距離よりも短いため、湾曲部111における磁場の強度の減衰は、直線部112における磁場の強度の減衰よりも小さくなる。このため、電磁攪拌装置101によって湾曲部111近傍の溶鋼103に付与される推力は、直線部112近傍の溶鋼103に付与される推力よりも大きくなる。したがって、湾曲部111に沿って流れる旋回流104aの流速は、直線部112に沿って流れる旋回流104bの流速よりも大きくなる。   However, since the long side wall 110a of the atypical mold 110 is made of, for example, a copper plate or the like, when a current is supplied to the electromagnetic stirrer 101, the strength of the magnetic field generated by the electromagnetic stirrer 101 is attenuated by the long side wall 110a. . At this time, since the distance between the electromagnetic stirring device 101 and the bending portion 111 is shorter than the distance between the electromagnetic stirring device 101 and the linear portion 112, the attenuation of the magnetic field strength in the bending portion 111 is reduced by the linear portion 112. It becomes smaller than the attenuation of the magnetic field strength. For this reason, the thrust applied to the molten steel 103 near the curved portion 111 by the electromagnetic stirring device 101 is larger than the thrust applied to the molten steel 103 near the straight portion 112. Therefore, the flow velocity of the swirling flow 104a flowing along the curved portion 111 is larger than the flow velocity of the swirling flow 104b flowing along the straight portion 112.

かかる場合、上述のように旋回流104を高速にする際に、例えば直線部112に沿って流れる旋回流104bの流速を、従来よりも大きな所望の流速にしようとすると、湾曲部111に沿って流れる旋回流104aの流速は、直線部112に沿って流れる旋回流104bの流速よりも大きくなる。ここで、湾曲部111に沿って流れる旋回流104aの流速が大き過ぎると、超高速の旋回流104aによって、メニスカス上の溶融酸化物を有する溶融パウダーが溶鋼103に巻き込まれる。その結果、この溶融パウダーが鋳片の表層及び内部に残存して欠陥となるため、鋳片の品質に改善の余地があった。   In such a case, when the swirl flow 104 is increased in speed as described above, for example, if the flow velocity of the swirl flow 104b flowing along the straight portion 112 is set to a desired flow velocity larger than the conventional flow velocity, along the curved portion 111, The flow velocity of the flowing swirl flow 104a is larger than the flow velocity of the swirl flow 104b flowing along the straight portion 112. Here, when the flow velocity of the swirl flow 104 a flowing along the curved portion 111 is too large, the molten powder having molten oxide on the meniscus is caught in the molten steel 103 by the ultra-high speed swirl flow 104 a. As a result, this molten powder remains on the surface layer and inside of the slab and becomes a defect, so there is room for improvement in the quality of the slab.

また、このように湾曲部111に沿って流れる旋回流104aの流速が大き過ぎると、湾曲部111において鋳型110の側面の凝固シェルが直線部112の凝固シェルに比べて薄くなる。そうすると、鋳造される鋳片の湾曲部111に対応する部分の強度が低下し、いわゆる縦割れが発生し易くなる。この縦割れの程度が大きいと鋳片が鋳型110から出た後、鋳型110直下で縦割れが開口して溶鋼が流出する、ブレークアウトが発生することが懸念される。   In addition, when the flow velocity of the swirl flow 104 a flowing along the curved portion 111 is too large in this way, the solidified shell on the side surface of the mold 110 in the curved portion 111 becomes thinner than the solidified shell of the straight portion 112. If it does so, the intensity | strength of the part corresponding to the curved part 111 of the cast slab will fall, and it will become easy to generate what is called a vertical crack. If the degree of this vertical crack is large, there is a concern that after the slab comes out of the mold 110, the vertical crack opens immediately below the mold 110 and the molten steel flows out, causing a breakout.

なお、鋳片の品質を向上させるため、電磁攪拌装置101と湾曲部111との間の距離が電磁攪拌装置101と直線部112との間の距離と等しくなるように、電磁攪拌装置101を湾曲部111に沿って湾曲させることも考えられる。しかしながら、このように電磁攪拌装置101を湾曲させるのは、製作上の手間やコスト的な観点から、現実的ではない。   In order to improve the quality of the slab, the electromagnetic stirring device 101 is bent so that the distance between the electromagnetic stirring device 101 and the bending portion 111 is equal to the distance between the electromagnetic stirring device 101 and the linear portion 112. It is also conceivable to bend along the portion 111. However, curving the electromagnetic stirring device 101 in this way is not practical from the viewpoint of manufacturing effort and cost.

本発明は、かかる点に鑑みてなされたものであり、電磁攪拌を伴う鋼の連続鋳造において、鋳型内の上部の溶鋼を、従来よりも高速かつ適切な流速の範囲内で攪拌し、鋳片の品質を向上させることを目的とする。   The present invention has been made in view of the above points, and in continuous casting of steel with electromagnetic stirring, the upper molten steel in the mold is stirred at a higher speed and within a range of an appropriate flow rate than before, and a slab is obtained. The purpose is to improve the quality.

前記の目的を達成するため、本発明は、鋼の連続鋳造装置であって、一対の長辺壁と一対の短辺壁を備えた溶鋼鋳造用の鋳型と、前記鋳型内に溶鋼を吐出する浸漬ノズルと、前記鋳型の各長辺壁の外側面に沿って並べて配置され、前記鋳型内の上部の溶鋼を攪拌して当該鋳型の水平面内で溶鋼の旋回流を形成する複数の電磁攪拌装置と、前記複数の電磁攪拌装置に供給される電流を制御する制御装置と、を有し、前記各長辺壁の内側面には、少なくとも前記浸漬ノズルに対向する位置に、前記電磁攪拌装置側に湾曲した湾曲部が形成され、前記複数の電磁攪拌装置は、前記湾曲部に対向する位置に配置された第1の電磁攪拌装置と、前記第1の電磁攪拌装置に隣り合い、かつ前記長辺壁において前記旋回流の上流側に配置される第2の電磁攪拌装置と、前記第1の電磁攪拌装置に隣り合い、かつ前記長辺壁において前記旋回流の下流側に配置される第3の電磁攪拌装置とを備え、前記制御装置は、前記各長辺壁の外側に配置された一対の前記第1の電磁攪拌装置に供給される電流と、前記各長辺壁の外側に配置された一対の前記第2の電磁攪拌装置及び一対の前記第3の電磁攪拌装置に供給される電流とをそれぞれ独立に制御することを特徴としている。 In order to achieve the above object, the present invention is a continuous casting apparatus for steel, which is a molten steel casting mold having a pair of long side walls and a pair of short side walls, and discharges the molten steel into the mold. A plurality of electromagnetic stirrers arranged side by side along the outer surface of each long side wall of the mold and agitating the molten steel in the mold to form a swirling flow of the molten steel in the horizontal plane of the mold And a control device for controlling the current supplied to the plurality of electromagnetic stirrers, and the inner surface of each long side wall is at least at a position facing the immersion nozzle, on the electromagnetic stirrer side A plurality of electromagnetic stirrers are adjacent to the first electromagnetic stirrer disposed at a position facing the curved part, the first electromagnetic stirrer, and the long A second electromagnetic disturbance disposed upstream of the swirl flow in the side wall; And device, wherein the first adjoin to the electromagnetic stirring device, and a third and electromagnetic stirring device arranged downstream of the swirling flow in the long-side wall, wherein the control device, wherein each long-side wall Current supplied to the pair of first electromagnetic stirrers arranged outside the pair, the pair of second electromagnetic stirrers arranged outside the long side walls, and the pair of third electromagnetic stirrers It is characterized in that the current supplied to the stirrer is independently controlled .

本発明によれば、鋳型の長辺壁の内側面には、少なくとも浸漬ノズルに対向する位置に湾曲部が形成されているので、湾曲部と浸漬ノズル間に湾曲領域を形成することができる。この湾曲領域は、直線状の長辺壁で形成される領域よりも湾曲しているため、浸漬ノズルが配置されていても、湾曲領域を流れる旋回流の流路を確保することができる。しかも、本発明によれば、鋳型の長辺壁の外側面に沿って複数の電磁攪拌装置が並べて配置され、制御装置によってこれら複数の電磁攪拌装置に供給される電流を制御できるので、例えば第1の電磁攪拌装置で発生する磁場の強度を、第2の電磁攪拌装置及び第3の電磁攪拌装置で発生する磁場の強度に比べて小さくできる。すなわち、第1の電磁攪拌装置と湾曲部との間の磁場の強度の減衰が、第2の電磁攪拌装置及び第3の電磁攪拌装置と直線部(鋳型の長辺壁の内側面における湾曲部以外の部分)との間の磁場の強度の減衰より小さいため、湾曲部近傍の溶鋼に作用する推力と直線部近傍の溶鋼に作用する推力を独立して制御することができる。したがって、湾曲部に沿って流れる旋回流と直線部を流れる旋回流の流速を共に所望の流速の範囲内にすることができる。
ここで、所望の流速の範囲内とは、従来の流速よりも大きい値であるほど望ましく、この値が大きくなるにつれて、鋳型内の上部の介在物、気泡が鋳型の側面の凝固シェルに捕捉されるのをより抑制することができる。但し、その上限値は、メニスカス上の溶融パウダーが溶鋼に巻き込まれないことや、シェル厚さが薄くなることに起因する鋳片の縦割れが起こらない範囲内で設定することが重要である。所望の流速の範囲については、下限値は特に限定されるものではなく、要求される鋳片の品質に応じて設定すれば良い。一方、上限値は、使用する鋳型形状、パウダーの粘性等に応じて、事前に実験等により確認することにより設定することができる。
このように鋳型内の上部の溶鋼を所望の流速の範囲内で攪拌できるので、鋳型内の上部の介在物、気泡が鋳型の側面の凝固シェルに捕捉されるのを抑制し、かつメニスカス上の溶融パウダーが溶鋼に巻き込まれるのを抑制できる。また、このように湾曲部に沿って流れる旋回流の速度を所望の流速の範囲内にできるので、当該湾曲部のシェル厚さが直線部に比べて薄くなることに起因する鋳片の縦割れを抑制することができる。したがって、鋳片の品質を従来よりもさらに向上させて、清浄度の優れた高品質の鋳片を製造することができる。
また、鋳型の長辺に湾曲部を設けることで、浸漬ノズルの厚みをより大きくすることができ、これにより、浸漬ノズルの耐久性を向上させることもできる。
According to the present invention, since the curved part is formed at least at a position facing the immersion nozzle on the inner side surface of the long side wall of the mold, a curved region can be formed between the curved part and the immersion nozzle. Since the curved region is curved more than the region formed by the straight long side wall, a flow path of the swirling flow that flows through the curved region can be secured even if the immersion nozzle is arranged. Moreover, according to the present invention, a plurality of electromagnetic stirring devices are arranged side by side along the outer surface of the long side wall of the mold, and the current supplied to the plurality of electromagnetic stirring devices can be controlled by the control device. The strength of the magnetic field generated by the first magnetic stirring device can be made smaller than the strength of the magnetic field generated by the second and third magnetic stirring devices. That is, the attenuation of the strength of the magnetic field between the first electromagnetic stirrer and the bending portion is the second electromagnetic stirrer and the third electromagnetic stirrer and the straight portion (the curved portion on the inner surface of the long side wall of the mold). Therefore, the thrust acting on the molten steel near the curved portion and the thrust acting on the molten steel near the straight portion can be controlled independently. Therefore, both the flow velocity of the swirling flow flowing along the curved portion and the swirling flow flowing through the straight portion can be set within a desired flow velocity range.
Here, the value within the range of the desired flow rate is preferably a value larger than the conventional flow rate, and as this value increases, the inclusions and bubbles in the upper part of the mold are trapped by the solidified shell on the side surface of the mold. Can be further suppressed. However, it is important to set the upper limit value within a range in which the molten powder on the meniscus is not caught in the molten steel and the vertical crack of the slab caused by the thin shell thickness does not occur. About the range of desired flow velocity, a lower limit is not specifically limited, What is necessary is just to set according to the quality of the required slab. On the other hand, the upper limit value can be set by confirming beforehand by experiments or the like according to the mold shape to be used, the viscosity of the powder, and the like.
In this way, the molten steel at the upper part in the mold can be stirred within a desired flow rate range, so that the inclusions and bubbles in the upper part of the mold are prevented from being trapped by the solidified shell on the side of the mold, and on the meniscus. It is possible to suppress the molten powder from being caught in the molten steel. Further, since the speed of the swirling flow flowing along the curved portion can be set within a desired flow velocity range, the vertical crack of the slab is caused by the shell thickness of the curved portion being smaller than that of the straight portion. Can be suppressed. Accordingly, the quality of the slab can be further improved as compared with the conventional case, and a high-quality slab having excellent cleanliness can be produced.
In addition, by providing a curved portion on the long side of the mold, the thickness of the immersion nozzle can be increased, thereby improving the durability of the immersion nozzle.

前記第1の電磁攪拌装置は、複数に分割されていてもよい。   The first electromagnetic stirring device may be divided into a plurality of parts.

前記制御装置は、前記複数の電磁攪拌装置に供給される電流の電流値及び/又は周波数を制御してもよい。   The control device may control a current value and / or a frequency of a current supplied to the plurality of electromagnetic stirring devices.

また、前記制御装置は、前記一対の第1の電磁攪拌装置に供給される電流と、前記一対の第2の電磁攪拌装置に供給される電流と、前記一対の第3の電磁攪拌装置に供給される電流とをそれぞれ独立に制御してもよい。   The control device supplies a current supplied to the pair of first electromagnetic stirring devices, a current supplied to the pair of second electromagnetic stirring devices, and a pair of the third electromagnetic stirring devices. The currents to be generated may be controlled independently.

さらに、前記制御装置は、前記各第1の電磁攪拌装置、前記各第2の電磁攪拌装置、前記各第3の電磁攪拌装置に供給される電流を、すべて独立に制御してもよい。なお、この場合の「すべて独立に制御」とは、第1の電磁攪拌装置、第2の電磁攪拌装置、第3の電磁攪拌装置の個々の電磁攪拌装置に供給される電流をすべて独立に制御することをいう。   Further, the control device may independently control all currents supplied to the first electromagnetic stirring devices, the second electromagnetic stirring devices, and the third electromagnetic stirring devices. In this case, “all independently controlled” means that all currents supplied to the individual electromagnetic stirring devices of the first electromagnetic stirring device, the second electromagnetic stirring device, and the third electromagnetic stirring device are controlled independently. To do.

別な観点による本発明は、前記鋼の連続鋳造装置を用いた連続鋳造方法であって、前記複数の電磁攪拌装置に供給される電流を制御して、前記鋳型内の上部の溶鋼を所望の流速の範囲内で攪拌させることを特徴としている。なお、所望の流速の範囲とは、上述の通りであり、特に限定されないが、35cm/秒以上かつ60cm/秒未満が例示できる。下限値は大きいほど、鋳型内の上部の介在物、気泡が鋳型の側面の凝固シェルに捕捉されるのをより抑制することができることから、例えば、40cm/秒以上が好ましく、45cm/秒以上がより好ましい。   According to another aspect of the present invention, there is provided a continuous casting method using the steel continuous casting apparatus, wherein a current supplied to the plurality of electromagnetic stirrers is controlled so that an upper molten steel in the mold is desired. It is characterized by stirring within the range of the flow rate. The range of the desired flow rate is as described above and is not particularly limited, but examples thereof include 35 cm / second or more and less than 60 cm / second. For example, 40 cm / second or more is preferable and 45 cm / second or more is preferable because the lower limit value can suppress the inclusions and bubbles in the upper part of the mold from being trapped by the solidified shell on the side surface of the mold. More preferred.

本発明によれば、電磁攪拌を伴う鋼の連続鋳造において、鋳型内の上部の溶鋼を所望の流速の範囲内で攪拌し、鋳片の品質をより向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, in the continuous casting of steel with electromagnetic stirring, the molten steel of the upper part in a casting_mold | template is stirred within the range of the desired flow rate, and the quality of a slab can be improved more.

本実施の形態にかかる連続鋳造装置の鋳型近傍の構成の概略を示す横断面の説明図である。It is explanatory drawing of the cross section which shows the outline of a structure of the mold vicinity of the continuous casting apparatus concerning this Embodiment. 本実施の形態にかかる連続鋳造装置の鋳型近傍の構成の概略を示す縦断面の説明図である。It is explanatory drawing of the longitudinal cross-section which shows the outline of the structure of the mold vicinity of the continuous casting apparatus concerning this Embodiment. 本実施の形態にかかる連続鋳造装置の鋳型近傍の構成の概略を示す縦断面の説明図である。It is explanatory drawing of the longitudinal cross-section which shows the outline of the structure of the mold vicinity of the continuous casting apparatus concerning this Embodiment. 電磁攪拌装置と制御装置の構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of an electromagnetic stirring apparatus and a control apparatus. 電磁攪拌装置を作動させた場合の鋳型上部(メニスカス近傍)の溶鋼に作用する推力を示す説明図である。It is explanatory drawing which shows the thrust which acts on the molten steel of a casting_mold | template upper part (meniscus vicinity) at the time of operating an electromagnetic stirring apparatus. 電磁攪拌装置を作動させた場合の鋳型上部(メニスカス近傍)の溶鋼の流れを示す説明図である。It is explanatory drawing which shows the flow of the molten steel of a casting_mold | template upper part (meniscus vicinity) at the time of operating an electromagnetic stirring apparatus. 他の実施の形態にかかる電磁攪拌装置と制御装置の構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of the electromagnetic stirring apparatus concerning other embodiment and a control apparatus. 他の実施の形態にかかる電磁攪拌装置と制御装置の構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of the electromagnetic stirring apparatus concerning other embodiment and a control apparatus. 他の実施の形態にかかる電磁攪拌装置と制御装置の構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of the electromagnetic stirring apparatus concerning other embodiment and a control apparatus. 他の実施の形態にかかる連続鋳造装置の鋳型近傍の構成の概略を示す縦断面の説明図である。It is explanatory drawing of the longitudinal cross-section which shows the outline of the structure of the mold vicinity of the continuous casting apparatus concerning other embodiment. 従来の連続鋳造装置の鋳型近傍の構成の概略を示す横断面の説明図である。It is explanatory drawing of the cross section which shows the outline of the structure of the mold vicinity of the conventional continuous casting apparatus. 従来の連続鋳造装置の鋳型近傍の構成の概略を示す横断面の説明図である。It is explanatory drawing of the cross section which shows the outline of the structure of the mold vicinity of the conventional continuous casting apparatus.

以下、本発明の実施の形態について説明する。図1は、本実施の形態にかかる鋼の連続鋳造装置1の鋳型近傍の構成を示す横断面図であり、図2及び図3は、連続鋳造装置1の鋳型近傍の構成を示す縦断面図である。   Embodiments of the present invention will be described below. FIG. 1 is a cross-sectional view showing a configuration in the vicinity of a mold of a continuous casting apparatus 1 for steel according to the present embodiment, and FIGS. 2 and 3 are longitudinal sectional views showing a configuration in the vicinity of a mold of the continuous casting apparatus 1. It is.

連続鋳造装置1は、図1に示すように例えば水平断面が略長方形の鋳型2を有している。鋳型2は、一対の長辺壁2aと一対の短辺壁2bを有している。長辺壁2aは、内側に設けられた銅板3aと外側に設けられたステンレス製水冷ボックス4aから構成されている。また、短辺壁2bは、内側に設けられた銅板3bと外側に設けられたステンレス製水冷ボックス4bから構成されている。なお、本実施の形態において、短辺壁2bの長さ(鋳造厚み)は例えば50mm〜300mm程度である。詳細には、要求される鋳片厚みとして、薄厚の鋳片であれば50mm〜80mm程度であり、中厚の鋳片であれば80mm〜150mm程度であり、通常厚の鋳片であれば150mm〜300mm程度である。   As shown in FIG. 1, the continuous casting apparatus 1 includes a mold 2 having a substantially rectangular horizontal cross section, for example. The mold 2 has a pair of long side walls 2a and a pair of short side walls 2b. The long side wall 2a is comprised from the copper plate 3a provided in the inner side, and the stainless steel water cooling box 4a provided in the outer side. Moreover, the short side wall 2b is comprised from the copper plate 3b provided inside, and the stainless steel water-cooled box 4b provided outside. In the present embodiment, the length (casting thickness) of the short side wall 2b is, for example, about 50 mm to 300 mm. Specifically, the required slab thickness is about 50 mm to 80 mm for a thin slab, about 80 mm to 150 mm for a medium slab, and 150 mm for a normal thickness slab. About 300 mm.

長辺壁2aの銅板3aの内側面の中央部には、ステンレス製ボックス4a側に湾曲した湾曲部5が形成されている。湾曲部5は、後述する鋳型2内に設けられた浸漬ノズル6に対向して形成されている。また、湾曲部5は、図2及び図3に示すように銅板3aの上端から浸漬ノズル6に対向して形成される。湾曲部5の下端は浸漬ノズル6の下端と同じ高さでもよく、また浸漬ノズル6の下端より下方になるように形成されていてもよい。なお、湾曲部5は、例えば銅板3aの内側面を削ることにより形成される。そして、この湾曲部5と浸漬ノズル6の間に、図1に示すように湾曲領域7が形成される。   A curved portion 5 curved toward the stainless steel box 4a is formed at the center of the inner surface of the copper plate 3a of the long side wall 2a. The curved portion 5 is formed to face an immersion nozzle 6 provided in the mold 2 to be described later. Moreover, the bending part 5 is formed facing the immersion nozzle 6 from the upper end of the copper plate 3a as shown in FIG.2 and FIG.3. The lower end of the curved portion 5 may be the same height as the lower end of the immersion nozzle 6 or may be formed to be lower than the lower end of the immersion nozzle 6. In addition, the curved part 5 is formed by shaving the inner surface of the copper plate 3a, for example. A curved region 7 is formed between the curved portion 5 and the immersion nozzle 6 as shown in FIG.

なお、湾曲部5の湾曲頂部(最も窪んだ箇所)と浸漬ノズル6間の最短水平距離Lは、湾曲部5が下端に行くにつれて次第に窪んだ部分が消失していくテーパ形状であるため、高さ方向によってその長さが異なっているが、本実施の形態では、後述する電磁攪拌装置21〜26の下端部から、電磁攪拌装置21〜26の上端部よりも50mm高い位置までの範囲において、30mm〜80mmとなることが推奨される。すなわち、最短水平距離Lは、湾曲領域7における溶鋼8の流路を確保するという観点から、30mm以上であることが推奨され、また、湾曲領域7における溶鋼8の均一な流れを確保するという観点から、80mm以下であることが推奨される。また、湾曲部5の湾曲距離L(上記の最短水平距離Lが規定される高さと同じ高さにおける湾曲部5の湾曲頂部と端部間の最短水平距離であって、湾曲部5を形成する際の削り込み距離)は、上記の最短水平距離Lが所定の距離を確保できていれば特に規定されるものではなく、また、浸漬ノズル6の径や鋳型2の厚みに応じて、適宜、決定されるものである。但し、湾曲部5の湾曲距離Lは、鋳片の引抜きに際して歪みを受け難くするという観点から、極力小さいほど好ましい。なお、本実施の形態においては、上記の最短水平距離Lと湾曲距離Lの差(L−L)は、所定の距離未満、例えば20mm以上40mm以下が例示できる。 Since the minimum horizontal distance L 1 between the curved top part (most recessed portion) submerged nozzle 6 of the curved portion 5, curved portion 5 is tapered gradually recessed portion is gradually lost as going to the lower end, Although the length differs depending on the height direction, in the present embodiment, in a range from a lower end portion of electromagnetic stirring devices 21 to 26 described later to a position 50 mm higher than an upper end portion of electromagnetic stirring devices 21 to 26. 30 mm to 80 mm is recommended. That is, it is recommended that the shortest horizontal distance L 1 is 30 mm or more from the viewpoint of securing the flow path of the molten steel 8 in the curved region 7, and that a uniform flow of the molten steel 8 in the curved region 7 is ensured. From the viewpoint, 80 mm or less is recommended. Further, the bending distance L 2 of the bending portion 5 (the shortest horizontal distance between the bending top portion and the end portion of the bending portion 5 at the same height as the height at which the shortest horizontal distance L 1 is defined) The cutting distance at the time of formation is not particularly defined as long as the shortest horizontal distance L 1 can secure a predetermined distance, and depends on the diameter of the immersion nozzle 6 and the thickness of the mold 2. It is determined as appropriate. However, the curved distance L 2 of the curved portion 5, from the viewpoint of less susceptible to distortion upon withdrawal of the slab, as much as possible preferably smaller. In the present embodiment, the difference (L 1 −L 2 ) between the shortest horizontal distance L 1 and the bending distance L 2 may be less than a predetermined distance, for example, 20 mm or more and 40 mm or less.

長辺壁2aの銅板3aの内側面において、湾曲部5の両側には、直線部9、9が形成されている。また、長辺壁2aの銅板3aの外側面とステンレス製ボックス4aの両側面は、平坦に形成されている。   On the inner side surface of the copper plate 3a of the long side wall 2a, straight portions 9, 9 are formed on both sides of the curved portion 5. Moreover, the outer side surface of the copper plate 3a of the long side wall 2a and both side surfaces of the stainless steel box 4a are formed flat.

鋳型2内の上部には、図2及び図3に示すように浸漬ノズル6が設けられ、浸漬ノズル6はその下部が鋳型2内の溶鋼8に浸漬している。浸漬ノズル6の側面の下端近傍には、鋳型2内へ斜め下向きに溶鋼8を吐出する吐出孔10が2箇所形成されている。吐出孔10、10は、鋳型2の短辺壁2b側に形成されている。吐出孔10から吐出される吐出流11は、例えば後述する鋳型2の短辺壁2bに形成された凝固シェル12に衝突し、上昇流13と下降流に分岐する。また、吐出流11には、アルミナやスラグ系等の介在物14などが含まれている。介在物14は、例えば上昇流13等によってメニスカス15近傍まで浮上する。なお、メニスカス15上には、溶融酸化物を有する溶融パウダー16が供給されている。   As shown in FIGS. 2 and 3, an immersion nozzle 6 is provided in the upper part of the mold 2, and the lower part of the immersion nozzle 6 is immersed in the molten steel 8 in the mold 2. Near the lower end of the side surface of the immersion nozzle 6, two discharge holes 10 for discharging the molten steel 8 obliquely downward into the mold 2 are formed. The discharge holes 10 and 10 are formed on the short side wall 2 b side of the mold 2. The discharge flow 11 discharged from the discharge hole 10 collides with, for example, a solidified shell 12 formed on a short side wall 2b of the mold 2 described later, and branches into an upward flow 13 and a downward flow. Further, the discharge flow 11 includes inclusions 14 such as alumina or slag. Inclusions 14 rise to the vicinity of meniscus 15 by, for example, upward flow 13 or the like. On the meniscus 15, a molten powder 16 having a molten oxide is supplied.

鋳型2の内側面には、図2及び図3に示すように溶鋼8が冷却されて凝固した凝固シェル12が形成されている。   As shown in FIGS. 2 and 3, a solidified shell 12 is formed on the inner surface of the mold 2 by cooling and solidifying the molten steel 8.

鋳型2の一の長辺壁2aの外側には、当該長辺壁2aの外側面に沿って、図1〜図3に示すように例えば電磁攪拌コイルなどの複数の電磁攪拌装置21〜23が並べて設けられている。電磁攪拌装置21〜23は、鋳型2内のメニスカス15近傍に配置されている。また、鋳型2の他の長辺壁2aの外側にも、同様に当該長辺壁2aの外側面に沿って複数の電磁攪拌装置24〜26が並べて設けられている。   A plurality of electromagnetic stirring devices 21 to 23 such as electromagnetic stirring coils are provided on the outer side of one long side wall 2a of the mold 2 along the outer surface of the long side wall 2a as shown in FIGS. It is provided side by side. The electromagnetic stirring devices 21 to 23 are arranged in the vicinity of the meniscus 15 in the mold 2. Similarly, a plurality of electromagnetic stirring devices 24 to 26 are provided side by side along the outer surface of the long side wall 2a on the outside of the other long side wall 2a of the mold 2.

第1の電磁攪拌装置21、24は、長辺壁2aの湾曲部5に対向する位置にそれぞれ配置されている。すなわち、一対の第1の電磁攪拌装置21、24は、対向して配置されている。第2の電磁攪拌装置22、25は、第1の電磁攪拌装置21、24に隣り合い、かつ長辺壁2aにおいて後述する旋回流41の上流側にそれぞれ配置されている。すなわち、一対の第2の電磁攪拌装置22、25は、浸漬ノズル6に対して点対象の位置に配置されている。第3の電磁攪拌装置23、26は、第1の電磁攪拌装置21、24に隣り合い、かつ長辺壁2aにおいて後述する旋回流41の下流側にそれぞれ配置されている。すなわち、一対の第3の電磁攪拌装置23、26も、浸漬ノズル6に対して点対象の位置に配置されている。ちなみに、各電磁攪拌装置21〜26は同じ高さ(鉛直方向の位置)に設けられている。また、各電磁攪拌装置21〜26には、その厚み(鉛直方向の距離)が例えば150mm〜300mmのものが、通常、用いられている。   The 1st electromagnetic stirring apparatuses 21 and 24 are each arrange | positioned in the position facing the curved part 5 of the long side wall 2a. That is, a pair of 1st electromagnetic stirring apparatuses 21 and 24 are arrange | positioned facing. The second electromagnetic stirrers 22 and 25 are arranged adjacent to the first electromagnetic stirrers 21 and 24 and upstream of the swirling flow 41 described later on the long side wall 2a. That is, the pair of second electromagnetic stirrers 22 and 25 are arranged at point target positions with respect to the immersion nozzle 6. The third electromagnetic stirrers 23 and 26 are arranged adjacent to the first electromagnetic stirrers 21 and 24 and on the long side wall 2a on the downstream side of the swirling flow 41 to be described later. That is, the pair of third electromagnetic stirrers 23 and 26 is also arranged at a point target position with respect to the immersion nozzle 6. Incidentally, each electromagnetic stirring device 21-26 is provided in the same height (position of a perpendicular direction). Moreover, the thing with the thickness (distance of a perpendicular direction) of 150 mm-300 mm is normally used for each electromagnetic stirring apparatus 21-26, for example.

複数の電磁攪拌装置21〜26は、図4に示すように制御装置30に接続されている。制御装置30は、電源(図示せず)を有し、複数の電磁攪拌装置21〜26に電流を供給する。また、制御装置30は、電磁攪拌装置21〜26に供給される電流の電流値を制御することもできる。本実施の形態においては、制御装置30は、一対の第1の電磁攪拌装置21、24、一対の第2の電磁攪拌装置22、25、一対の第3の電磁攪拌装置23、26毎に供給される電流をそれぞれ独立に制御する。すなわち、一対の第1の電磁攪拌装置21、24は一の配線31に接続され、制御装置30から一対の第1の電磁攪拌装置21、24に同一の電流値の電流が供給される。また、一対の第2の電磁攪拌装置22、25も一の配線32に接続され、制御装置30から一対の第2の電磁攪拌装置22、25に同一の電流値の電流が供給される。さらに、一対の一対の第3の電磁攪拌装置23、26も一の配線33に接続され、制御装置30から一対の第3の電磁攪拌装置24、26に同一の電流値の電流が供給される。   The plurality of electromagnetic stirring devices 21 to 26 are connected to the control device 30 as shown in FIG. The control device 30 has a power source (not shown) and supplies current to the plurality of electromagnetic stirring devices 21 to 26. Moreover, the control apparatus 30 can also control the electric current value of the electric current supplied to the electromagnetic stirring apparatuses 21-26. In the present embodiment, the control device 30 supplies the pair of first electromagnetic stirring devices 21 and 24, the pair of second electromagnetic stirring devices 22 and 25, and the pair of third electromagnetic stirring devices 23 and 26. The currents to be controlled are controlled independently. That is, the pair of first electromagnetic stirring devices 21, 24 are connected to one wiring 31, and the current having the same current value is supplied from the control device 30 to the pair of first electromagnetic stirring devices 21, 24. The pair of second electromagnetic stirring devices 22, 25 are also connected to one wiring 32, and the current having the same current value is supplied from the control device 30 to the pair of second electromagnetic stirring devices 22, 25. Further, the pair of third electromagnetic stirring devices 23 and 26 are also connected to the one wiring 33, and the current having the same current value is supplied from the control device 30 to the pair of third electromagnetic stirring devices 24 and 26. .

本実施の形態にかかる連続鋳造装置1は以上のように構成されており、次にこの連続鋳造装置1を用いた溶鋼8の連続鋳造方法について説明する。   The continuous casting apparatus 1 according to the present embodiment is configured as described above. Next, a continuous casting method for the molten steel 8 using the continuous casting apparatus 1 will be described.

先ず、浸漬ノズル6の吐出孔10から鋳型2内に溶鋼8を吐出する。溶鋼8は鋳型2内に吐出され、吐出孔10から鋳型2の短辺壁2bに向かって吐出流11が形成される。吐出流11には介在物14が含まれており、介在物14は例えば上述した上昇流13等によってメニスカス15近傍まで浮上する。   First, the molten steel 8 is discharged into the mold 2 from the discharge hole 10 of the immersion nozzle 6. Molten steel 8 is discharged into the mold 2, and a discharge flow 11 is formed from the discharge hole 10 toward the short side wall 2 b of the mold 2. Inclusions 14 are included in the discharge flow 11, and the inclusions 14 rise to the vicinity of the meniscus 15, for example, by the upward flow 13 described above.

浸漬ノズル6から溶鋼8を吐出すると同時に、電磁攪拌装置21〜26を作動させる。これら電磁攪拌装置21〜26を作動させることによって、図5に示すように鋳型2内のメニスカス15近傍の溶鋼8に、図中の矢印の方向に推力40が作用する。この推力40によって、図6に示すようにメニスカス15近傍の溶鋼8が水平面内で攪拌され、一方向の旋回流41が形成される。そして、メニスカス15近傍まで浮上した気泡もしくは介在物14は、旋回流41によって鋳型2内を水平面内で旋回し、鋳型2の凝固シェル12に捕捉されることなく、例えばメニスカス15上の溶融パウダー16に取り込まれて除去される。   Simultaneously with discharging the molten steel 8 from the immersion nozzle 6, the electromagnetic stirring devices 21 to 26 are operated. By operating these electromagnetic stirrers 21 to 26, a thrust 40 acts on the molten steel 8 near the meniscus 15 in the mold 2 in the direction of the arrow in the figure as shown in FIG. With this thrust 40, as shown in FIG. 6, the molten steel 8 in the vicinity of the meniscus 15 is stirred in a horizontal plane, and a one-way swirl flow 41 is formed. The bubbles or inclusions 14 that have risen to the vicinity of the meniscus 15 swirl in the horizontal plane in the mold 2 by the swirl flow 41 and are not captured by the solidified shell 12 of the mold 2, for example, the molten powder 16 on the meniscus 15. It is taken in and removed.

このとき、一対の第1の電磁攪拌装置21、24、一対の第2の電磁攪拌装置22、25、一対の第3の電磁攪拌装置23、26に供給される電流の電流値は、制御装置30によって独立に制御される。   At this time, the current values of the currents supplied to the pair of first electromagnetic stirring devices 21 and 24, the pair of second electromagnetic stirring devices 22 and 25, and the pair of third electromagnetic stirring devices 23 and 26 are controlled by the control device 30 independently controlled.

ここで、電磁攪拌装置21〜26の下端部から、電磁攪拌装置21〜26の上端部よりも50mm高い位置までの範囲において、第1の電磁攪拌装置21と湾曲部5の湾曲頂部との間の距離Dは、第2の電磁攪拌装置22及び第3の電磁攪拌装置23と直線部9との間の距離Dよりも短い。このため、第1の電磁攪拌装置21と湾曲部5との間の磁場の強度の減衰は、第2の電磁攪拌装置22及び第3の電磁攪拌装置23と直線部9との間の磁場の強度の減衰よりも小さい。なお、第1の電磁攪拌装置24、第2の電磁攪拌装置25、第3の電磁攪拌装置26についても、上記と同様である。 Here, in the range from the lower end portion of the electromagnetic stirring devices 21 to 26 to a position 50 mm higher than the upper end portion of the electromagnetic stirring devices 21 to 26, between the first electromagnetic stirring device 21 and the curved top portion of the bending portion 5. distance D 1 of the is shorter than the distance D 2 between the second electromagnetic stirrer 22 and the third electromagnetic stirring device 23 and the straight portion 9. For this reason, the attenuation of the strength of the magnetic field between the first electromagnetic stirring device 21 and the bending portion 5 is caused by the magnetic field between the second electromagnetic stirring device 22 and the third electromagnetic stirring device 23 and the linear portion 9. Less than the intensity decay. The first electromagnetic stirrer 24, the second electromagnetic stirrer 25, and the third electromagnetic stirrer 26 are the same as described above.

そこで、例えば制御装置30は、第1の電磁攪拌装置21、24に供給される電流の電流値が、第2の電磁攪拌装置22、25及び第3の電磁攪拌装置23、26に供給される電流の電流値より小さくなるように制御する。そうすると、第1の電磁攪拌装置21、24で発生する磁場の強度を、第2の電磁攪拌装置22、25及び第3の電磁攪拌装置23、26で発生する磁場の強度に比べて小さくできる。これによって、第1の電磁攪拌装置21、24と湾曲部5との間の磁場の強度の減衰が、第2の電磁攪拌装置22、25及び第3の電磁攪拌装置23、26と直線部9との間の磁場の強度の減衰より小さいにも関わらず、第1の電磁攪拌装置21、24によって湾曲部5近傍の溶鋼8に作用する推力40と、第2の電磁攪拌装置22、25及び第3の電磁攪拌装置23、26によって直線部9近傍に作用する推力40を、近づけることができる。このため、湾曲部5に沿って流れる旋回流41aの流速と、直線部9に沿って流れる旋回流41bの流速を、共に所望の流速の範囲内にすることができる。したがって、旋回流41はどの場所でも高速で旋回させることができるため、メニスカス15近傍の気泡もしくは介在物14が鋳型2の側面の凝固シェル12に捕捉されるのを抑制できる。また、旋回流41の流速を過度に大き過ぎない様に制御できるため、メニスカス15上の溶融パウダー16が溶鋼8に巻き込まれるのを抑制できる。さらに、湾曲部5において凝固シェル12を直線部9と同程度に厚く形成できるため、湾曲部5で鋳造される鋳片の縦割れも抑制できる。なお、溶融パウダー16の巻き込みの有無は、例えばメニスカス15表面の振動を監視することによって行われる。   Therefore, for example, the control device 30 supplies the current value of the current supplied to the first electromagnetic stirring devices 21 and 24 to the second electromagnetic stirring devices 22 and 25 and the third electromagnetic stirring devices 23 and 26. Control is made to be smaller than the current value of the current. If it does so, the intensity | strength of the magnetic field which generate | occur | produces with the 1st electromagnetic stirring apparatus 21 and 24 can be made small compared with the intensity | strength of the magnetic field which generate | occur | produces with the 2nd electromagnetic stirring apparatus 22 and 25 and the 3rd electromagnetic stirring apparatus 23 and 26. As a result, the attenuation of the magnetic field strength between the first electromagnetic stirrers 21 and 24 and the bending portion 5 is reduced by the second electromagnetic stirrers 22 and 25 and the third electromagnetic stirrers 23 and 26 and the linear portion 9. , The thrust 40 acting on the molten steel 8 near the curved portion 5 by the first electromagnetic stirrers 21 and 24, and the second electromagnetic stirrers 22 and 25 and The thrust 40 acting in the vicinity of the linear portion 9 can be brought closer by the third electromagnetic stirring devices 23 and 26. For this reason, both the flow velocity of the swirl flow 41a flowing along the curved portion 5 and the flow velocity of the swirl flow 41b flowing along the straight portion 9 can be set within a desired flow velocity range. Therefore, since the swirl flow 41 can be swirled at any speed at high speed, it is possible to suppress trapping of bubbles or inclusions 14 in the vicinity of the meniscus 15 by the solidified shell 12 on the side surface of the mold 2. Further, since the flow velocity of the swirl flow 41 can be controlled so as not to be excessively large, the molten powder 16 on the meniscus 15 can be prevented from being caught in the molten steel 8. Furthermore, since the solidified shell 12 can be formed as thick as the straight portion 9 in the curved portion 5, vertical cracking of the cast piece cast by the curved portion 5 can also be suppressed. In addition, the presence or absence of the entrainment of the molten powder 16 is performed, for example, by monitoring the vibration of the meniscus 15 surface.

また、湾曲領域7は、直線状の壁体で形成される領域よりも湾曲しているため、湾曲していない場合と比較すると、浸漬ノズル6と長辺壁2aの内側との間に、溶鋼8の流路が広く形成されているため、長辺壁2aと浸漬ノズル6間の流れが停滞することなく、旋回流41は、長辺壁2a及び短辺壁2bに沿って浸漬ノズル6回りを旋回する。   Further, since the curved region 7 is curved more than the region formed by the linear wall body, the molten steel is between the immersion nozzle 6 and the inner side of the long side wall 2a as compared with the case where the curved region 7 is not curved. Since the flow path of 8 is widely formed, the flow between the long side wall 2a and the immersion nozzle 6 does not stagnate, and the swirl flow 41 flows around the immersion nozzle 6 along the long side wall 2a and the short side wall 2b. Turn.

以上のように旋回流41によって気泡もしくは介在物14が除去された溶鋼8は、その後、鋳造されて、鋳片となる。   As described above, the molten steel 8 from which the bubbles or inclusions 14 have been removed by the swirling flow 41 is then cast into a slab.

以上の実施の形態によれば、鋳型2の長辺壁2aの上部中央に湾曲部5が形成され、湾曲部5と浸漬ノズル6間に湾曲領域7を形成している。この湾曲領域により、上述した最短水平距離Lが確保されるため、湾曲領域7を流れる旋回流41の流路を確保することができる。 According to the above embodiment, the curved part 5 is formed in the upper center of the long side wall 2 a of the mold 2, and the curved region 7 is formed between the curved part 5 and the immersion nozzle 6. The curved region, since the shortest horizontal distance L 1 described above is ensured, it is possible to secure a flow path of the swirling flow 41 flowing in the curved region 7.

また、制御装置30によって、一対の第1の電磁攪拌装置21、24、一対の第2の電磁攪拌装置22、25、一対の第3の電磁攪拌装置23、26毎に供給される電流が独立に制御されるので、例えば第1の電磁攪拌装置21、24で発生する磁場の強度を、第2の電磁攪拌装置22、25及び第3の電磁攪拌装置23、26で発生する磁場の強度に比べて小さくできる。これによって、第1の電磁攪拌装置21、24と湾曲部5との間の磁場の強度の減衰が、第2の電磁攪拌装置22、25及び第3の電磁攪拌装置23、26と直線部9との間の磁場の強度の減衰より小さいにも関わらず、湾曲部5近傍の溶鋼8に作用する推力40と直線部9近傍の溶鋼8に作用する推力40を近づけることができる。したがって、湾曲部5に沿って流れる旋回流41aと直線部9を流れる旋回流41bの流速を共に所望の流速の範囲内にすることができる。すなわち、旋回流41の流速を、従来よりも高速とすることができるため、メニスカス15近傍の気泡もしくは介在物14が鋳型2の側面の凝固シェル12に捕捉されるのをより抑制できる。また、旋回流41の流速を、過度に大き過ぎない様に制御できるため、メニスカス5上の溶融パウダー16が溶鋼8に巻き込まれるのを抑制できる。さらに、湾曲部5で鋳造される鋳片の縦割れも抑制できる。したがって、鋳片の品質を向上させて、清浄度の優れた高品質の鋳片を製造することができる。   Further, the current supplied to the pair of first electromagnetic stirring devices 21 and 24, the pair of second electromagnetic stirring devices 22 and 25, and the pair of third electromagnetic stirring devices 23 and 26 by the control device 30 is independent. Therefore, for example, the intensity of the magnetic field generated by the first electromagnetic stirring devices 21 and 24 is changed to the strength of the magnetic field generated by the second electromagnetic stirring devices 22 and 25 and the third electromagnetic stirring devices 23 and 26. It can be made smaller. As a result, the attenuation of the magnetic field strength between the first electromagnetic stirrers 21 and 24 and the bending portion 5 is reduced by the second electromagnetic stirrers 22 and 25 and the third electromagnetic stirrers 23 and 26 and the linear portion 9. The thrust 40 acting on the molten steel 8 in the vicinity of the curved portion 5 and the thrust 40 acting on the molten steel 8 in the vicinity of the straight portion 9 can be made closer to each other. Therefore, the flow rates of the swirl flow 41a flowing along the curved portion 5 and the swirl flow 41b flowing through the straight portion 9 can both be within a desired flow velocity range. That is, since the flow velocity of the swirl flow 41 can be made higher than before, it is possible to further suppress trapping of bubbles or inclusions 14 in the vicinity of the meniscus 15 by the solidified shell 12 on the side surface of the mold 2. Moreover, since the flow velocity of the swirl flow 41 can be controlled so as not to be excessively large, the molten powder 16 on the meniscus 5 can be prevented from being caught in the molten steel 8. Furthermore, the vertical crack of the slab cast by the curved part 5 can also be suppressed. Therefore, the quality of a slab can be improved and the high quality slab excellent in the cleanliness can be manufactured.

また、一対の第1の電磁攪拌装置21、24は一の配線31に接続され、制御装置30から一対の第1の電磁攪拌装置21、24に同一の電流値の電流が供給される。同様に一対の第2の一対の第2の電磁攪拌装置22、25、一対の第3の電磁攪拌装置23、26もそれぞれ一の配線32、33に接続され、同一の電流値の電流が供給される。このように制御装置30は、一対の第1の電磁攪拌装置21、24、一対の第2の電磁攪拌装置22、25、一対の第3の電磁攪拌装置23、26毎に供給される電流の電流値を独立に制御するので、その制御が容易になる。また、制御装置30に設けられる電源の数も3個と少なくて良い。   Further, the pair of first electromagnetic stirring devices 21, 24 are connected to one wiring 31, and a current having the same current value is supplied from the control device 30 to the pair of first electromagnetic stirring devices 21, 24. Similarly, a pair of second pair of second electromagnetic stirrers 22 and 25 and a pair of third electromagnetic stirrer 23 and 26 are also connected to one wiring 32 and 33, respectively, and currents of the same current value are supplied. Is done. Thus, the control device 30 is configured to control the current supplied to the pair of first electromagnetic stirring devices 21 and 24, the pair of second electromagnetic stirring devices 22 and 25, and the pair of third electromagnetic stirring devices 23 and 26. Since the current value is controlled independently, the control becomes easy. Further, the number of power supplies provided in the control device 30 may be as small as three.

以上の実施の形態では、制御装置30は、一対の第1の電磁攪拌装置21、24、一対の第2の電磁攪拌装置22、25、一対の第3の電磁攪拌装置23、26毎に供給される電流の電流値を独立に制御していたが、制御装置30が制御する電磁攪拌装置21〜26の組合せを変更してもよい。   In the above embodiment, the control device 30 supplies the pair of first electromagnetic stirring devices 21 and 24, the pair of second electromagnetic stirring devices 22 and 25, and the pair of third electromagnetic stirring devices 23 and 26. However, the combination of the electromagnetic stirring devices 21 to 26 controlled by the control device 30 may be changed.

例えば図7に示すように制御装置30は、各長辺壁2aの外側に配置された一対の第1の電磁攪拌装置21、24に供給される電流の電流値と、各長辺壁2aの外側に配置された一対の第2の電磁攪拌装置22、25及び一対の第3の電磁攪拌装置23、26に供給される電流の電流値とを、独立に制御してもよい。かかる場合、一対の第1の電磁攪拌装置21、24は一の配線50に接続され、制御装置30から一対の第1の電磁攪拌装置21、24に同一の電流値の電流が供給される。一対の第2の電磁攪拌装置22、25及び一対の第3の電磁攪拌装置23、26は一の配線51に接続され、制御装置30から一対の第2の電磁攪拌装置22、25及び一対の第3の電磁攪拌装置23、26に同一の電流値の電流が供給される。本実施の形態でも、第1の電磁攪拌装置21、24で発生する磁場の強度を、第2の電磁攪拌装置22、25及び第3の電磁攪拌装置23、26で発生する磁場の強度に比べて小さくできる。したがって、湾曲部5に沿って流れる旋回流41aの流速と、直線部9に沿って流れる旋回流41bの流速を、共に所望の流速の範囲内にすることができる。   For example, as shown in FIG. 7, the control device 30 includes a current value of a current supplied to the pair of first electromagnetic stirring devices 21 and 24 arranged outside each long side wall 2 a, and each long side wall 2 a. You may control independently the electric current value of the electric current supplied to a pair of 2nd electromagnetic stirring apparatuses 22 and 25 arrange | positioned on the outer side, and a pair of 3rd electromagnetic stirring apparatuses 23 and 26. FIG. In this case, the pair of first electromagnetic stirrers 21 and 24 are connected to one wiring 50, and the current having the same current value is supplied from the control device 30 to the pair of first electromagnetic stirrers 21 and 24. The pair of second electromagnetic stirring devices 22, 25 and the pair of third electromagnetic stirring devices 23, 26 are connected to one wiring 51, and the pair of second electromagnetic stirring devices 22, 25 and the pair of pairs from the control device 30. A current having the same current value is supplied to the third electromagnetic stirring devices 23 and 26. Also in the present embodiment, the strength of the magnetic field generated by the first electromagnetic stirring devices 21 and 24 is compared with the strength of the magnetic field generated by the second electromagnetic stirring devices 22 and 25 and the third electromagnetic stirring devices 23 and 26. Can be small. Therefore, the flow velocity of the swirl flow 41a flowing along the curved portion 5 and the flow velocity of the swirl flow 41b flowing along the straight portion 9 can both be within a desired flow velocity range.

例えば図8に示すように制御装置30は、対向する一対の第1の電磁攪拌装置21、24、対向する第2の電磁攪拌装置22及び第3の電磁攪拌装置26、対向する第3の電磁攪拌装置23及び第2の電磁攪拌装置25毎に供給される電流の電流値を独立に制御してもよい。かかる場合、一対の第1の電磁攪拌装置21、24は一の配線52に接続され、制御装置30から一対の第1の電磁攪拌装置21、24に同一の電流値の電流が供給される。第2の電磁攪拌装置22及び第3の電磁攪拌装置26は一の配線53に接続され、制御装置30から第2の電磁攪拌装置22及び第3の電磁攪拌装置26に同一の電流値の電流が供給される。第3の電磁攪拌装置23及び第2の電磁攪拌装置25は一の配線54に接続され、制御装置30から第3の電磁攪拌装置23及び第2の電磁攪拌装置25に同一の電流値が供給される。本実施の形態でも、第1の電磁攪拌装置21、24で発生する磁場の強度を、第2の電磁攪拌装置22、25及び第3の電磁攪拌装置23、26で発生する磁場の強度に比べて小さくできる。したがって、湾曲部5に沿って流れる旋回流41aの流速と、直線部9に沿って流れる旋回流41bの流速を、共に所望の流速の範囲内にすることができる。   For example, as shown in FIG. 8, the control device 30 includes a pair of opposed first electromagnetic stirring devices 21, 24, a facing second electromagnetic stirring device 22 and a third electromagnetic stirring device 26, and a facing third electromagnetic stirring device. The current value of the current supplied to each of the stirring device 23 and the second electromagnetic stirring device 25 may be controlled independently. In this case, the pair of first electromagnetic stirrers 21 and 24 are connected to one wiring 52, and the current having the same current value is supplied from the control device 30 to the pair of first electromagnetic stirrers 21 and 24. The second electromagnetic stirrer 22 and the third electromagnetic stirrer 26 are connected to one wiring 53, and the current of the same current value is supplied from the control device 30 to the second electromagnetic stirrer 22 and the third electromagnetic stirrer 26. Is supplied. The third electromagnetic stirring device 23 and the second electromagnetic stirring device 25 are connected to one wiring 54, and the same current value is supplied from the control device 30 to the third electromagnetic stirring device 23 and the second electromagnetic stirring device 25. Is done. Also in the present embodiment, the strength of the magnetic field generated by the first electromagnetic stirring devices 21 and 24 is compared with the strength of the magnetic field generated by the second electromagnetic stirring devices 22 and 25 and the third electromagnetic stirring devices 23 and 26. Can be small. Therefore, the flow velocity of the swirl flow 41a flowing along the curved portion 5 and the flow velocity of the swirl flow 41b flowing along the straight portion 9 can both be within a desired flow velocity range.

また、例えば、図9に示すように制御装置30は、各電磁攪拌装置21〜26に供給される電流の電流値をそれぞれ独立に制御してもよい。かかる場合、電磁攪拌装置21〜26はそれぞれ別の配線60〜65に接続される。本実施の形態によれば、各電磁攪拌装置21〜26に供給される電流の電流値をすべて独立に制御するので、旋回流41の流速をより確実に所望の流速の範囲内にすることができる。   Further, for example, as illustrated in FIG. 9, the control device 30 may independently control the current values of the currents supplied to the electromagnetic stirring devices 21 to 26. In such a case, the electromagnetic stirring devices 21 to 26 are connected to separate wirings 60 to 65, respectively. According to the present embodiment, since the current values of the currents supplied to the electromagnetic stirring devices 21 to 26 are all controlled independently, the flow velocity of the swirl flow 41 can be more reliably set within the desired flow velocity range. it can.

以上の実施の形態の第1の電磁攪拌装置21、24は、図10に示すように複数、例えば3つの第1の電磁攪拌装置21a〜21c、24a〜24cにそれぞれ分割されていてもよい。かかる場合、第1の電磁攪拌装置21a〜21c、24a〜24c毎に供給される電流の電流値を独立に制御できるので、湾曲部5に沿って流れる旋回流41aの流速をより確実に所望の流速の範囲内にすることができる。なお、本実施の形態では、第1の電磁攪拌装置21、24は3つに分割されていたが、分割される数はこれに限定されない。例えば第1の電磁攪拌装置21、24は、2つ又は4つ以上に分割されてもよい。   The first electromagnetic stirring devices 21 and 24 of the above embodiment may be divided into a plurality of, for example, three first electromagnetic stirring devices 21a to 21c and 24a to 24c, respectively, as shown in FIG. In such a case, since the current value of the current supplied to each of the first electromagnetic stirring devices 21a to 21c and 24a to 24c can be controlled independently, the flow velocity of the swirling flow 41a flowing along the curved portion 5 can be more reliably desired. It can be within the range of the flow rate. In the present embodiment, the first electromagnetic stirring devices 21 and 24 are divided into three. However, the number of divisions is not limited to this. For example, the first electromagnetic stirring devices 21 and 24 may be divided into two or four or more.

以上の実施の形態の制御装置30は、電磁攪拌装置21〜26に供給される電流の電流値を独立に制御していたが、その電流の周波数を制御してもよい。かかる場合、例えば電流の電流値が一定の場合でも、各電磁攪拌装置21〜26に供給される電流の周波数を制御することによって、湾曲部5に沿って流れる旋回流41aの流速と、直線部9に沿って流れる旋回流41bの流速を、共に所望の流速の範囲内にすることができる。ちなみに、電流値と周波数の両方を変更させて、流速を制御しても問題はない。   The control device 30 according to the above embodiment independently controls the current value of the current supplied to the electromagnetic stirring devices 21 to 26, but may control the frequency of the current. In this case, for example, even when the current value of the current is constant, by controlling the frequency of the current supplied to each of the electromagnetic stirring devices 21 to 26, the flow velocity of the swirling flow 41a flowing along the bending portion 5 and the straight portion Both the flow speeds of the swirl flow 41b flowing along the line 9 can be set within a desired flow speed range. Incidentally, there is no problem even if both the current value and the frequency are changed to control the flow velocity.

なお、以上の実施の形態の電磁攪拌装置21〜26は、長辺壁2aの外側に設けられていたが、長辺壁2aのステンレス製水冷ボックス4a内に設けてもよい。   In addition, although the electromagnetic stirring apparatuses 21-26 of the above embodiment were provided in the outer side of the long side wall 2a, you may provide in the stainless steel water cooling box 4a of the long side wall 2a.

以下、本発明の鋼の連続鋳造装置を用いた場合に、鋳片の表面欠陥を抑制する効果と鋳片の縦割れを抑制する効果について説明する。本発明例の鋼の連続鋳造装置としては、先に図1〜図4に示した連続鋳造装置1を用いた。また、比較例の鋼の連続鋳造装置としては、先に図12に示した連続鋳造装置を用いた。
連続鋳造装置としては、鋳型の長辺外側の長さが1400mm、鋳型の短辺の長さが250mmのものを用いた。また、浸漬ノズルの直径は175mmの円形のものを用いた。さらに、電磁攪拌装置の上端部における湾曲部の湾曲距離(湾曲部の湾曲頂部と端部間の最短水平距離であって、湾曲部を形成する際の削り込み距離)は、20mmのものを用いた。したがって、電磁攪拌装置の上端部における湾曲部の湾曲頂部と浸漬ノズル間の水平距離は、47.5mmであった。
ちなみに、長辺側の銅板の直線部(湾曲部以外の部分)の厚みが35mm、ステンレス製水冷ボックスの厚みが50mmのものを用いた。
また、電磁攪拌装置は、厚み(鉛直方向の距離)が300mmのものを用いた。
Hereinafter, when the steel continuous casting apparatus of the present invention is used, the effect of suppressing the surface defect of the slab and the effect of suppressing the vertical crack of the slab will be described. As the continuous casting apparatus for steel of the present invention example, the continuous casting apparatus 1 previously shown in FIGS. 1 to 4 was used. Further, as the continuous casting apparatus for steel of the comparative example, the continuous casting apparatus previously shown in FIG. 12 was used.
As the continuous casting apparatus, one having a length of the outer side of the long side of the mold of 1400 mm and a length of the short side of the mold of 250 mm was used. The diameter of the immersion nozzle was 175 mm. Further, the bending distance of the bending portion at the upper end portion of the electromagnetic stirring device (the shortest horizontal distance between the bending top portion and the end portion of the bending portion and the cutting distance when forming the bending portion) is 20 mm. It was. Therefore, the horizontal distance between the bending top of the bending portion and the immersion nozzle at the upper end of the electromagnetic stirring device was 47.5 mm.
By the way, the thickness of the straight part (part other than the curved part) of the copper plate on the long side is 35 mm and the thickness of the stainless steel water-cooled box is 50 mm.
The electromagnetic stirrer used had a thickness (distance in the vertical direction) of 300 mm.

本実施例で用いた鋼の鋼種、炭素濃度、鋳片の鋳造量、鋳造幅、鋳造速度、溶融パウダーの粘度は、表1に示す通りである。ちなみに、パウダーについては、FおよびNaを含有するものを使用した。かかる場合において、電磁攪拌装置に供給する電流の電流値と周波数を変化させた。具体的には、表2に示すように電流値は500A、315A、520Aに変化させ、周波数は3.5Hz、1.1Hzに変化させた。
また、電磁攪拌装置の上端部の高さ位置がメニスカス位置となるように、連続鋳造を行った。
ちなみに、上記の連続鋳造装置およびパウダーを用いて、表1に示す製造条件において、要求される品質を考慮して、事前に実験を行ったところ、鋳型内の上部の溶鋼の所望の流速は、60cm/秒未満の範囲であることを確認している。
Table 1 shows the steel type, carbon concentration, cast amount of cast slab, casting width, casting speed, and viscosity of the molten powder used in this example. Incidentally, the powder containing F and Na was used. In such a case, the current value and frequency of the current supplied to the electromagnetic stirring device were changed. Specifically, as shown in Table 2, the current value was changed to 500A, 315A, and 520A, and the frequency was changed to 3.5 Hz and 1.1 Hz.
Moreover, continuous casting was performed such that the height position of the upper end portion of the electromagnetic stirring device was the meniscus position.
By the way, when the above-mentioned continuous casting apparatus and powder were used in the production conditions shown in Table 1 in consideration of the required quality, an experiment was conducted in advance, and the desired flow rate of the upper molten steel in the mold was It is confirmed that it is in the range of less than 60 cm / second.

以上の条件で溶鋼の連続鋳造を行った結果を表2に示す。   Table 2 shows the results of continuous casting of molten steel under the above conditions.

なお、表2中、本発明例における湾曲部の電流値、周波数、平均流速とは、図1〜図4に示した第1の電磁攪拌装置21、24に供給される電流の電流値、周波数、湾曲部5に沿って流れる旋回流41aの平均流速をいう。直線部(上流側)の電流値、周波数、平均流速とは、第2の電磁攪拌装置22、25に供給する電流の電流値、周波数、第2の電磁攪拌装置22、25に対向した直線部9に沿って流れる旋回流41bの平均流速をいう。直線部(下流側)の電流値、周波数、平均流速とは、第3の電磁攪拌装置23、26に供給する電流の電流値、周波数、第3の電磁攪拌装置23、26に対向した直線部9に沿って流れる旋回流41bの平均流速をいう。
なお、平均流速としているのは、各電磁攪拌装置21〜26に沿った流速に分布があるため、各電磁攪拌装置21〜26毎に、一定間隔で測定した流量を平均した値を用いているためである。
In Table 2, the current value, the frequency, and the average flow velocity of the bending portion in the example of the present invention are the current value and the frequency of the current supplied to the first electromagnetic stirring devices 21 and 24 shown in FIGS. The average flow velocity of the swirling flow 41a flowing along the curved portion 5 is referred to. The current value, frequency, and average flow velocity of the straight line portion (upstream side) are the current value, frequency of the current supplied to the second electromagnetic stirrers 22 and 25, and the straight line portion facing the second electromagnetic stirrers 22 and 25. 9 is the average flow velocity of the swirl flow 41b flowing along the line 9. The current value, frequency, and average flow velocity of the straight line portion (downstream side) are the current value, frequency of the current supplied to the third electromagnetic stirrers 23, 26, and the straight line portion that faces the third electromagnetic stirrers 23, 26. 9 is the average flow velocity of the swirl flow 41b flowing along the line 9.
In addition, since the distribution of the flow velocity along each electromagnetic stirrer 21-26 has distribution as the average flow rate, a value obtained by averaging the flow rate measured at regular intervals is used for each electromagnetic stirrer 21-26. Because.

また、表2中の平均流速は、デンドライト傾角の測定を行い、下記式(1)を用いて算出した各測定点の流速を平均して求めた(なお、下記式(1)は「新日鉄技法第376号、58頁、平成14年3月発行」に開示されている。)。デンドライト傾角の測定は、鋳造された鋳片の鋳造方向直角断面より試片を切り出し、酸により腐食した後、倍率5倍で凝固組織を撮像し測定した。具体的には、湾曲部及び直線部の鋳片表層から5mmの位置のデンドライト傾角を30mm間隔で測定した。
V=(θ+9.73×Inf+33.7)/(1.45×Inf+12.5)・・・・(1)
但し、V:溶鋼流速(cm/秒)、θ:デンドライト傾角(度)、凝固速度(cm/秒)
In addition, the average flow velocity in Table 2 was obtained by measuring the dendrite tilt angle and averaging the flow velocity at each measurement point calculated using the following equation (1). No. 376, page 58, published in March 2002 ”). The dendrite tilt angle was measured by cutting a specimen from a cross section perpendicular to the casting direction of the cast slab and corroding it with acid, and then imaging and measuring the solidified structure at a magnification of 5 times. Specifically, the dendrite inclination angle at a position of 5 mm from the slab surface layer of the curved portion and the straight portion was measured at intervals of 30 mm.
V = (θ + 9.73 × Inf + 33.7) / (1.45 × Inf + 12.5) (1)
Where V: molten steel flow velocity (cm / sec), θ: dendrite tilt angle (degree), solidification rate (cm / sec)

また、表2中、鋳片の表面欠陥としてのパウダー性欠陥指数や介在物系欠陥指数は、鋳造された鋳片を圧延して鋼板にした後、製品としての鋼板の単位長さ当たりの欠陥の発生比率を示している。具体的には、極低炭素鋼の欠陥指数は、本発明の連続鋳造方法で溶鋼を鋳造した後、熱延工程にて4mm厚の熱延鋼板に圧延した後に、さらに板厚1mmまで圧延し、溶融亜鉛メッキ処理をした後に疵検査を実施した。具体的には、疵1個を便宜上1mとカウントして、製品の長さで割った値に100を乗じて%表示したものとして定義した。
また、中炭素鋼の欠陥指数は、中炭素鋼を3.5mm厚の熱延鋼板にして酸洗後に疵検査を実施した。そして、極低炭素鋼の欠陥指数と同様に、疵1個を便宜上1mとカウントして、製品の長さで割った値に100を乗じて%表示したものとして定義した。
ちなみに、パウダー性欠陥指数と介在物系欠陥指数の相違点については、パウダーにFおよびNaを含有するものを使用したので、疵中にF、Naを含有する場合に、パウダー性欠陥と定義し、一方、FおよびNaを含有しないAl等の介在物を含有するものを介在物系欠陥と定義した。
In Table 2, the powder defect index and inclusion defect index as surface defects of slabs are the defects per unit length of the steel sheet as a product after rolling the cast slab into a steel sheet. It shows the generation ratio. Specifically, the defect index of the ultra-low carbon steel is obtained by casting the molten steel by the continuous casting method of the present invention, rolling it into a hot rolled steel sheet having a thickness of 4 mm in the hot rolling process, and further rolling to a thickness of 1 mm. After the hot dip galvanizing treatment, the wrinkle inspection was carried out. Specifically, it was defined as 1% for convenience, counting 1 m for convenience and multiplying by 100 the value divided by the length of the product.
In addition, the defect index of medium carbon steel was subjected to a flaw inspection after pickling after making the medium carbon steel a hot-rolled steel sheet having a thickness of 3.5 mm. And, like the defect index of ultra-low carbon steel, it was defined as one expressed by% by multiplying 100 by the value divided by the length of the product by counting 1 疵 as 1 m for convenience.
By the way, the difference between the powder defect index and the inclusion system defect index is defined as powder defect when the powder contains F and Na since the powder contains F and Na. On the other hand, those containing inclusions such as Al 2 O 3 not containing F and Na were defined as inclusion system defects.

また、表2中、鋳片縦割れ指数は、製造した製品の枚数に対して、縦割れが発生した製品の枚数のパーセンテージを示している。なお、本実施例において、鋳片縦割れ指数として中炭素鋼のみ評価している。極低炭素鋼は縦割れが発生しにくいので評価の対象にならないためである。   In Table 2, the slab vertical crack index indicates the percentage of the number of products in which vertical cracks occurred with respect to the number of manufactured products. In this example, only medium carbon steel is evaluated as the slab vertical crack index. This is because ultra-low carbon steel is not subject to evaluation because vertical cracks are unlikely to occur.

以下、表2の結果を参照して本発明の効果について検討する。   Hereinafter, the effects of the present invention will be examined with reference to the results in Table 2.

比較例1、2のように、湾曲部と直線部の電流値及び周波数が一定の値である場合、直線部の平均流速は38cm/秒〜42cm/秒であったが、湾曲部の平均流速は60cm/秒以上であった。すなわち、湾曲部の平均流速は、本発明の所望の流速の範囲である60cm/秒未満の範囲外であった。かかる場合、パウダー性欠陥指数は、比較例1で0.81、比較例2で0.50と大きく、欠陥が多いことが分かった。また、比較例2において、鋳片縦割れ指数が4と大きく、縦割れが多く発生することが分かった。   As in Comparative Examples 1 and 2, when the current value and the frequency of the curved portion and the straight portion are constant values, the average flow velocity of the straight portion was 38 cm / second to 42 cm / second. Was 60 cm / sec or more. That is, the average flow velocity of the curved portion was outside the range of less than 60 cm / second, which is the desired flow velocity range of the present invention. In such a case, the powdery defect index was as large as 0.81 in Comparative Example 1 and 0.50 in Comparative Example 2, indicating that there were many defects. Moreover, in the comparative example 2, it turned out that a slab vertical crack index is as large as 4 and many vertical cracks generate | occur | produce.

これに対して、本発明例1、2のように、湾曲部と直線部の周波数を一定にして、湾曲部の電流値を直線部の電流値に比して小さくした場合、湾曲部と直線部の平均流速は35cm/秒〜43cm/秒であった。すなわち、湾曲部と直線部の平均流速は共に本発明の所望の流速の範囲である60cm/秒未満の範囲内であった。また、従来の旋回流速である10cm/秒〜20cm/秒程度よりも大きくすることができた。かかる場合、パウダー性欠陥指数は、本発明例1〜2で0.00であって、比較例1、2に比して小さく、パウダー性の欠陥を抑制できることが分かった。また、介在物系欠陥指数も、本発明例1〜2で0.000〜0.021であって、極めて小さく抑制できることが分かった。さらに、本発明例2において、鋳片縦割れ指数が0.01であって比較例2に比して小さく、縦割れも抑制できることが分かった。すなわち、本発明例1、2では、パウダー性欠陥指数、介在物系欠陥指数、鋳片縦割れ指数のいずれも、良好に抑制できることが確認できた。   On the other hand, when the frequency of the bending portion and the straight portion is constant and the current value of the bending portion is smaller than the current value of the straight portion, as in the first and second examples of the present invention, the bending portion and the straight portion The average flow rate of the part was 35 cm / second to 43 cm / second. That is, the average flow velocity of the curved portion and the straight portion was both within the range of less than 60 cm / second, which is the desired flow velocity range of the present invention. Moreover, it was able to be larger than the conventional swirl flow rate of about 10 cm / second to 20 cm / second. In such a case, the powder defect index was 0.00 in Invention Examples 1 and 2, which was smaller than those in Comparative Examples 1 and 2, and it was found that powder defects could be suppressed. Moreover, the inclusion system defect index was 0.000 to 0.021 in Invention Examples 1 and 2, and it was found that the inclusion system defect index can be suppressed to a very small value. Furthermore, in Example 2 of the present invention, the slab vertical crack index was 0.01, which was smaller than that of Comparative Example 2, and it was found that vertical cracks could be suppressed. In other words, in Examples 1 and 2 of the present invention, it was confirmed that all of the powder defect index, inclusion defect index, and slab longitudinal crack index could be satisfactorily suppressed.

また、本発明例3、4のように、湾曲部と直線部の電流値を一定にして、湾曲部の周波数を直線部の周波数に比して小さくした場合、湾曲部と直線部の平均流速は36cm/秒〜42cm/秒であった。すなわち、湾曲部と直線部の平均流速は共に本発明の所望の流速の範囲である60cm/秒未満の範囲内であった。かかる場合、パウダー性欠陥指数は、本発明例3〜4で0.00であって比較例1、2に比して小さく、パウダー性の欠陥を抑制できることが分かった。また、介在物系欠陥指数も、本発明例3〜4で0.000〜0.010であって、極めて小さく抑制できることが分かった。さらに、本発明例4において、鋳片縦割れ指数が0.02であって比較例2に比して小さく、縦割れも抑制できることが分かった。すなわち、本発明例3、4でも、パウダー性欠陥指数、介在物系欠陥指数、鋳片縦割れ指数のいずれも、良好に抑制できることが確認できた。   In addition, as in Examples 3 and 4 of the present invention, when the current value of the bending portion and the straight portion is constant and the frequency of the bending portion is smaller than the frequency of the straight portion, the average flow velocity of the bending portion and the straight portion Was 36 cm / second to 42 cm / second. That is, the average flow velocity of the curved portion and the straight portion was both within the range of less than 60 cm / second, which is the desired flow velocity range of the present invention. In such a case, the powdery defect index was 0.00 in Invention Examples 3 to 4, which was smaller than those of Comparative Examples 1 and 2, and it was found that powdery defects could be suppressed. Moreover, the inclusion system defect index was 0.000 to 0.010 in Invention Examples 3 to 4, and it was found that the inclusion system defect index could be suppressed to a very small value. Furthermore, in the example 4 of this invention, it turned out that a slab vertical crack index is 0.02 and is small compared with the comparative example 2, and a vertical crack can also be suppressed. That is, it was confirmed that Examples 3 and 4 of the present invention can satisfactorily suppress any of the powdery defect index, the inclusion system defect index, and the slab longitudinal crack index.

さらに、本発明例5、6のように、湾曲部と直線部の平均流速は41cm/秒〜45cm/秒であった場合、すなわち、湾曲部と直線部の平均流速は共に60cm/秒未満の範囲内であり、かつ、本発明例1〜4の平均流速よりも大きな値として、湾曲部と直線部の平均流速をすべて40cm/秒以上とした場合、パウダー性欠陥指数は、本発明例5〜6で0.00であり、また、介在物系欠陥指数も、本発明例5〜6ともに、本発明例1〜4よりもさらに小さく抑制できることが分かった。   Further, as in Examples 5 and 6 of the present invention, when the average flow velocity of the curved portion and the straight portion was 41 cm / second to 45 cm / second, that is, both the average flow velocity of the curved portion and the straight portion were less than 60 cm / second. When the average flow velocity of the curved portion and the straight portion is 40 cm / second or more as a value within the range and larger than the average flow velocity of Invention Examples 1 to 4, the powder defect index is Example 5 of the invention. It was 0.00 at -6, and it was also found that the inclusion type defect index could be further suppressed to be smaller than those of Invention Examples 1-4 in both Invention Examples 5-6.

ちなみに、参考例1、2として、本発明例1〜4の平均流速よりもやや小さくした場合について、確認を行った。具体的には、直線部の平均流速は24cm/秒〜28cm/秒、湾曲部の平均流速は30〜31cm/秒とした。
その結果、参考例1では、パウダー性欠陥指数は0.00であったものの、介在物系欠陥指数が0.043となり、本発明例1よりも、やや大きくなった。また、参考例2では、パウダー粘度が低かったため、パウダー性欠陥指数を0.00、介在物系欠陥指数を0.005と小さくすることはできたものの、鋳片縦割れ指数が0.1となり、本発明例2、本発明例4、本発明例6と比較すると、やや大きくなることが分かった。
これにより、湾曲部と直線部の平均流速が60cm/秒未満の範囲内であれば、湾曲部と直線部の平均流速が大きくなるほど、パウダー性欠陥指数、介在物系欠陥指数、鋳片縦割れ指数のいずれも、より良好に抑制できることが確認できた。
By the way, as Reference Examples 1 and 2, the case where the average flow velocity of Invention Examples 1 to 4 was made slightly smaller was confirmed. Specifically, the average flow rate of the straight portion was 24 cm / second to 28 cm / second, and the average flow rate of the curved portion was 30 to 31 cm / second.
As a result, in Reference Example 1, although the powdery defect index was 0.00, the inclusion system defect index was 0.043, which was slightly larger than Example 1 of the present invention. In Reference Example 2, since the powder viscosity was low, the powder defect index could be reduced to 0.00 and the inclusion system defect index to 0.005, but the slab vertical crack index was 0.1. Compared with Invention Example 2, Invention Example 4 and Invention Example 6, it was found that the results were slightly larger.
Accordingly, if the average flow velocity between the curved portion and the straight portion is less than 60 cm / second, the larger the average flow velocity between the curved portion and the straight portion, the more the powder defect index, the inclusion system defect index, the slab vertical crack It was confirmed that any of the indices could be better suppressed.

Figure 0005549346
Figure 0005549346

Figure 0005549346
Figure 0005549346

本発明は、鋳型内に溶鋼を供給して鋳片を製造する際に有用である。   The present invention is useful when producing molten slab by supplying molten steel into a mold.

1 連続鋳造装置
2 鋳型
2a 長辺壁
2b 短辺壁
3a、3b 銅板
4a、4b ステンレス製水冷ボックス
5 湾曲部
6 浸漬ノズル
7 湾曲領域
8 溶鋼
9 直線部
10 吐出孔
11 吐出流
12 凝固シェル
13 上昇流
14 介在物
15 メニスカス
16 溶融パウダー
21、24 第1の電磁攪拌装置
21a〜21c、24a〜24c (分割された)第1の電磁攪拌装置
22、25 第2の電磁攪拌装置
23、26 第3の電磁攪拌装置
30 制御装置
31〜33 配線
40 推力
41 旋回流
41a (湾曲部5に沿って流れる)旋回流
41b (直線部9に沿って流れる)旋回流
50〜54 配線
60〜65 配線
DESCRIPTION OF SYMBOLS 1 Continuous casting apparatus 2 Mold 2a Long side wall 2b Short side wall 3a, 3b Copper plate 4a, 4b Stainless steel water-cooled box 5 Curved part 6 Immersion nozzle 7 Curved area 8 Molten steel 9 Straight line part 10 Discharge hole 11 Discharge flow 12 Solidified shell 13 Ascent Flow 14 Inclusion 15 Meniscus 16 Molten powder 21, 24 First electromagnetic stirrer 21a-21c, 24a-24c (Divided) first electromagnetic stirrer 22, 25 Second electromagnetic stirrer 23, 26 Third Electromagnetic stirrer 30 Control device 31-33 Wiring 40 Thrust 41 Swirling flow 41a Swirling flow 41b (flowing along curved portion 5) Swirling flow 50-54 Wiring 60-65 Wiring

Claims (6)

鋼の連続鋳造装置であって、
一対の長辺壁と一対の短辺壁を備えた溶鋼鋳造用の鋳型と、
前記鋳型内に溶鋼を吐出する浸漬ノズルと、
前記鋳型の各長辺壁の外側面に沿って並べて配置され、前記鋳型内の上部の溶鋼を攪拌して当該鋳型の水平面内で溶鋼の旋回流を形成する複数の電磁攪拌装置と、
前記複数の電磁攪拌装置に供給される電流を制御する制御装置と、を有し、
前記各長辺壁の内側面には、少なくとも前記浸漬ノズルに対向する位置に、前記電磁攪拌装置側に湾曲した湾曲部が形成され、
前記複数の電磁攪拌装置は、前記湾曲部に対向する位置に配置された第1の電磁攪拌装置と、前記第1の電磁攪拌装置に隣り合い、かつ前記長辺壁において前記旋回流の上流側に配置される第2の電磁攪拌装置と、前記第1の電磁攪拌装置に隣り合い、かつ前記長辺壁において前記旋回流の下流側に配置される第3の電磁攪拌装置とを備え、
前記制御装置は、前記各長辺壁の外側に配置された一対の前記第1の電磁攪拌装置に供給される電流と、前記各長辺壁の外側に配置された一対の前記第2の電磁攪拌装置及び一対の前記第3の電磁攪拌装置に供給される電流とをそれぞれ独立に制御することを特徴とする、鋼の連続鋳造装置。
A continuous casting apparatus for steel,
A mold for casting molten steel having a pair of long side walls and a pair of short side walls;
An immersion nozzle for discharging molten steel into the mold,
A plurality of electromagnetic stirrers arranged side by side along the outer surface of each long side wall of the mold, and stirring the molten steel in the upper part of the mold to form a swirling flow of the molten steel in the horizontal plane of the mold;
A control device for controlling the current supplied to the plurality of electromagnetic stirring devices,
On the inner side surface of each of the long side walls, a curved portion curved toward the electromagnetic stirrer side is formed at least at a position facing the immersion nozzle,
The plurality of electromagnetic stirrers are adjacent to the first electromagnetic stirrer disposed at a position facing the curved portion, the first electromagnetic stirrer, and upstream of the swirl flow in the long side wall A second electromagnetic stirrer disposed in the first electromagnetic stirrer, and a third electromagnetic stirrer disposed adjacent to the first electromagnetic stirrer and downstream of the swirl flow in the long side wall,
The control device includes: a current supplied to the pair of first electromagnetic stirrers arranged outside the long side walls; and the pair of second electromagnetic waves arranged outside the long side walls. A continuous casting apparatus for steel, wherein the current supplied to the stirring device and the pair of third electromagnetic stirring devices are independently controlled .
前記第1の電磁攪拌装置は、複数に分割されていることを特徴とする、請求項1に記載の鋼の連続鋳造装置。 The continuous casting apparatus for steel according to claim 1, wherein the first electromagnetic stirring device is divided into a plurality of pieces. 前記制御装置は、前記複数の電磁攪拌装置に供給される電流の電流値及び/又は周波数を制御することを特徴とする、請求項1又は2に記載の鋼の連続鋳造装置。 3. The continuous casting apparatus for steel according to claim 1, wherein the control device controls a current value and / or a frequency of a current supplied to the plurality of electromagnetic stirring devices. 4. 前記制御装置は、前記一対の第1の電磁攪拌装置に供給される電流と、前記一対の第2の電磁攪拌装置に供給される電流と、前記一対の第3の電磁攪拌装置に供給される電流とをそれぞれ独立に制御することを特徴とする、請求項1〜3のいずれか一項に記載の鋼の連続鋳造装置。 The control device is supplied to the pair of first electromagnetic stirring devices, the current supplied to the pair of second electromagnetic stirring devices, and the pair of third electromagnetic stirring devices. The continuous casting apparatus for steel according to any one of claims 1 to 3 , wherein the current is independently controlled. 前記制御装置は、前記各第1の電磁攪拌装置、前記各第2の電磁攪拌装置、前記各第3の電磁攪拌装置に供給される電流を、すべて独立に制御することを特徴とする、請求項4に記載の鋼の連続鋳造装置The control device controls all currents supplied to the first electromagnetic stirring devices, the second electromagnetic stirring devices, and the third electromagnetic stirring devices independently, respectively. Item 5. A continuous casting apparatus for steel according to Item 4. 前記請求項1〜のいずれかに記載の鋼の連続鋳造装置を用いた連続鋳造方法であって、
前記複数の電磁攪拌装置に供給される電流を制御して、
前記鋳型内の上部の溶鋼を所望の流速の範囲内で攪拌させることを特徴とする、鋼の連続鋳造方法。
A continuous casting method using the continuous casting apparatus for steel according to any one of claims 1 to 5 ,
Controlling the current supplied to the plurality of electromagnetic stirrers,
A continuous casting method of steel, wherein the molten steel in the upper part of the mold is stirred within a range of a desired flow rate.
JP2010094882A 2010-04-16 2010-04-16 Steel continuous casting apparatus and continuous casting method Active JP5549346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094882A JP5549346B2 (en) 2010-04-16 2010-04-16 Steel continuous casting apparatus and continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010094882A JP5549346B2 (en) 2010-04-16 2010-04-16 Steel continuous casting apparatus and continuous casting method

Publications (2)

Publication Number Publication Date
JP2011224589A JP2011224589A (en) 2011-11-10
JP5549346B2 true JP5549346B2 (en) 2014-07-16

Family

ID=45040623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094882A Active JP5549346B2 (en) 2010-04-16 2010-04-16 Steel continuous casting apparatus and continuous casting method

Country Status (1)

Country Link
JP (1) JP5549346B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105478695A (en) * 2016-01-09 2016-04-13 石家庄钢铁有限责任公司 Multi-zone electromagnetic stirring device and method for continuous casting machine crystallizer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100955A (en) * 1981-12-11 1983-06-15 Kawasaki Steel Corp Method and device for stirring of molten steel in continuous casting mold
JP2008183597A (en) * 2007-01-31 2008-08-14 Jfe Steel Kk Continuous casting method of steel, and method for manufacturing steel plate
JP5245800B2 (en) * 2008-06-30 2013-07-24 Jfeスチール株式会社 Continuous casting mold and steel continuous casting method
JP4505530B2 (en) * 2008-11-04 2010-07-21 新日本製鐵株式会社 Equipment for continuous casting of steel

Also Published As

Publication number Publication date
JP2011224589A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
EP2500121B1 (en) Method of continuous casting of steel
CA2844450C (en) Continuous casting apparatus for steel
EP2500120A1 (en) Method of continuous casting of steel
KR102490142B1 (en) continuous casting
JP5321528B2 (en) Equipment for continuous casting of steel
JP5604946B2 (en) Steel continuous casting method
EP3278906A1 (en) Continuous casting method for steel
JP2007105745A (en) Continuous casting method of steel
CN108025354B (en) Continuous casting method of slab
JP5245800B2 (en) Continuous casting mold and steel continuous casting method
JP5549346B2 (en) Steel continuous casting apparatus and continuous casting method
WO2011111858A1 (en) Method for continuously casting steel and process for producing steel sheet
JP6330542B2 (en) Manufacturing method of continuous cast slab
JP4728724B2 (en) Continuous casting slab and manufacturing method thereof
TW201838744A (en) Continuous casting method for steel
JP5716440B2 (en) Slab manufacturing method and slab with excellent surface quality
JP4432263B2 (en) Steel continuous casting method
JP2002028761A (en) Electromagnetic stirring method in mold for continuous casting
JP7265129B2 (en) Continuous casting method
JP4569320B2 (en) Continuous casting method of ultra-low carbon steel slab slab
JP4492333B2 (en) Steel continuous casting method
KR20190122799A (en) Continuous casting method and continuous casting device
JP2002346701A (en) Cast slab having little amount of inclusions
JP2005205441A (en) Method for continuously casting slab
JP2008272766A (en) Method for continuously casting p-containing steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140505

R151 Written notification of patent or utility model registration

Ref document number: 5549346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350