JP2018039096A - 表面被覆切削工具 - Google Patents

表面被覆切削工具 Download PDF

Info

Publication number
JP2018039096A
JP2018039096A JP2017030048A JP2017030048A JP2018039096A JP 2018039096 A JP2018039096 A JP 2018039096A JP 2017030048 A JP2017030048 A JP 2017030048A JP 2017030048 A JP2017030048 A JP 2017030048A JP 2018039096 A JP2018039096 A JP 2018039096A
Authority
JP
Japan
Prior art keywords
component
composition
layer
concentration
content point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017030048A
Other languages
English (en)
Other versions
JP6452006B2 (ja
Inventor
峻 佐藤
Shun Sato
峻 佐藤
強 大上
Tsutomu Ogami
強 大上
田中 耕一
Koichi Tanaka
耕一 田中
達生 橋本
Tatsuo Hashimoto
達生 橋本
一宮 夏樹
Natsuki Ichinomiya
夏樹 一宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to EP17760015.2A priority Critical patent/EP3424629B1/en
Priority to KR1020187024310A priority patent/KR20180114905A/ko
Priority to CN201780012954.6A priority patent/CN108698134B/zh
Priority to US16/080,211 priority patent/US10751804B2/en
Priority to PCT/JP2017/007880 priority patent/WO2017150550A1/ja
Publication of JP2018039096A publication Critical patent/JP2018039096A/ja
Application granted granted Critical
Publication of JP6452006B2 publication Critical patent/JP6452006B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/28Details of hard metal, i.e. cemented carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/08Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by physical vapour deposition [PVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • B23B2228/105Coatings with specified thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/36Multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23C2222/28Details of hard metal, i.e. cemented carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/10Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F21/00Tools specially adapted for use in machines for manufacturing gear teeth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Drilling Tools (AREA)

Abstract

【課題】 高硬度鋼の高速断続切削加工において、すぐれた耐クラック性と耐摩耗性を発揮する表面被覆切削工具を提供する。
【解決手段】 工具基体の表面に、少なくとも、(Al1−a−b−cCrSiCu)N(但し0.15≦a≦0.40、0.05≦b≦0.20、0.005≦c≦0.05)層が設けられ、層厚方向にCr濃度またはCrとCu濃度が周期的に変化し、Crの最高含有点の濃度Crmaxは、a<Crmax≦1.3aであり、Crの最低含有点におけるCrminは、0.50a≦Crmin<aの範囲内であり、必要に応じて、層厚方向の任意の点zにおけるCu組成をc、Cr組成をaとしたとき、(c/a)/(c/a)は、層厚方向全体にわたって0.7以上1.5以下を満足させる。
【選択図】図1A

Description

この発明は、焼入れ鋼などの高硬度鋼の高速断続切削加工において、硬質被覆層がすぐれた耐摩耗性と耐クラック性を発揮し、長期の使用にわたってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。
一般に、被覆工具として、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、前記被削材の面削加工や溝加工、肩加工などに用いられるエンドミル、前記被削材の歯形の歯切加工などに用いられるソリッドホブ、ピニオンカッタなどが知られている。
そして、被覆工具の切削性能改善を目的として、従来から、数多くの提案がなされている。
例えば、特許文献1に示すように、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメット等の工具基体の表面に、Cr、Al及びSiを主成分とする金属成分と、C、N、O、Bから選択される少なくとも1種以上の元素とから構成される立方晶構造の硬質層を1層以上被覆することにより、耐欠損性、耐摩耗性を改善した被覆工具が提案されている。
また、特許文献2には、工具基体表面に硬質被覆層を被覆した被覆工具において、硬質膜の少なくとも1層は、(MaLb)Xc(但し、MはCr、Al、Ti、Hf、V、Zr、Ta、Mo、W、Yの中から選ばれた少なくとも1種の金属元素を示し、LはMn、Cu、Ni、Co、B、Si、Sの中から選ばれた少なくとも1種の添加元素を示し、XはC、N、Oの中から選ばれた少なくとも1種の非金属元素を示し、aはMとLとの合計に対するMの原子比を示し、bはMとLとの合計に対するLの原子比を示し、cはMとLとの合計に対するXの原子比を示す。また、a、b、cは、それぞれ0.85≦a≦0.99、0.01≦b≦0.15、a+b=1、1.00<c≦1.20を満足する。)とすることで、硬質膜の成分であるCu、Si等による結晶粒の微細化、結晶安定性により、高温硬さが高くなり、耐摩耗性が向上し、さらに、耐酸化性も向上すると記載されている。
さらに、特許文献3には、工具基体表面に、CrとAlの複合窒化物からなる硬質被覆層を物理蒸着してなる被覆工具において、硬質被覆層を、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記両点間でAl含有量が連続的に変化する成分濃度分布構造を有し、さらに、上記Al最高含有点が、組成式:(Cr1−XAl)N(但し、原子比で、Xは0.40〜0.60を示す)を満足し、また、上記Al最低含有点が、組成式:(Cr1−YAl)N(但し、原子比で、Yは0.05〜0.30を示す)を満足し、かつ、隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmである硬質被覆層とすることにより、重切削加工条件で硬質被覆層がすぐれた耐チッピング性を発揮すると記載されている。
特許第3781374号公報 特開2008−31517号公報 特開2004−50381号公報
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工はますます高速化・高能率化の傾向にあるが、上記従来の被覆工具においては、これを鋼や鋳鉄などの通常の切削条件での切削加工に用いた場合には、特段の問題は生じないが、これを、例えば、焼入れ鋼などの高硬度鋼の高速ミーリング加工のような、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷がかかる高速断続切削加工に用いた場合には、クラックの発生・伝播を抑制することができず、また、摩耗進行も促進されるため、比較的短時間で使用寿命に至るのが現状である。
例えば、特許文献1に示される従来被覆工具においては、硬質被覆層を構成する(Al、Cr、Si)N層のAl成分は高温硬さ、同Cr成分は高温靭性、高温強度を向上させると共に、AlおよびCrが共存含有した状態で高温耐酸化性を向上させ、さらに同Si成分は耐熱塑性変形性を向上させる作用があるが、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷がかかる切削条件においては、チッピング、欠損等の発生を避けることはできず、例えば、Cr含有割合を増加することにより高温靭性、高温強度の改善を図ろうとしても、相対的なAl含有割合の減少によって、耐摩耗性が低下してしまうため、(Al、Cr、Si)N層からなる硬質被覆層における耐摩耗性と耐クラック性の両立を図るには自ずから限界がある。
また、特許文献2に示される従来被覆工具においては、硬質被覆層成分としてCuを含有させ、結晶粒の微細化を図ることによって耐摩耗性を向上させることが提案されているが、耐摩耗性が向上する反面、靭性が低下することによってクラックの発生を抑制することができず、工具寿命は短命である。
さらに、特許文献3に示される従来被覆工具においては、硬質被覆層中に繰り返し成分濃度が変化する組成変調構造を形成し、高温硬さと耐熱性はAl最高含有点(Cr最低含有点に相当)で確保し、一方、硬質被覆層の強度は、Al最高含有点(Cr最低含有点に相当)に隣接するAl最低含有点(Cr最高含有点に相当)で確保することにより、耐チッピング性と耐摩耗性を確保しているが、通常の鋼や合金鋼、鋳鉄の切削加工ではある程度の効果は得られるものの、高硬度鋼(例えば、HRC60以上)の切削加工においては、切れ刃に作用する衝撃的・断続的な高負荷により、耐チッピング性、耐摩耗性が十分であるとはいえない。
そこで、本発明者等は、上述の観点から、焼入れ鋼などの高硬度鋼の高速ミーリング加工のような、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷が作用する切削加工条件下で、硬質被覆層がすぐれた耐チッピング性と耐摩耗性を両立し得る被覆工具を開発すべく、硬質被覆層を構成する成分および層構造に着目し研究を行った結果、以下のような知見を得た。
すなわち、本発明者は、(Al、Cr、Si)N層からなる硬質被覆層の成分として、Cuを含有させることによって、結晶粒微細化による耐摩耗性の向上を図ることに加え、硬質被覆層のCr成分濃度が層の層厚方向に沿って周期的に変化する組成変調構造をもった層として構成することによっても、さらには、この組成変調組織構造をもち、Cr成分の濃度とCu成分の濃度の周期的な変化が同位相である特徴をもった層として構成することによっても、硬質被覆層は、靭性と耐摩耗性の両特性を相兼ね備えるようになることを見出した。
そして、前記硬質被覆層を備えた被覆工具は、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷が作用する切削加工条件(例えば、焼入れ鋼などの高硬度鋼の高速ミーリング加工条件)に供した場合であっても、すぐれた耐チッピング性とともに、長期の使用にわたって、すぐれた耐摩耗性を発揮することも見出したのである。
この発明は、上記の知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメットあるいは立方晶窒化硼素焼結体のいずれかからなる工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚0.5〜8.0μmのAlとCrとSiとCuの複合窒化物層を少なくとも含み、
(b)前記複合窒化物層は、
組成式:(Al1−a−b−cCrSiCu)Nで表した場合、
0.15≦a≦0.40、0.05≦b≦0.20、0.005≦c≦0.05(但し、a、b、cはいずれも原子比)を満足する平均組成を有し、
(c)前記複合窒化物層は、層厚方向に沿ってCr成分濃度が周期的に変化する組成変調構造を有し、
(d)前記組成変調構造におけるCr成分濃度の周期的な変化は、Cr成分の最高含有点とCr成分の最低含有点が5nm〜100nmの間隔で繰り返され、
(e)前記Cr成分の最高含有点におけるCr成分の濃度の極大値の平均をCrmaxとしたとき、
a<Crmax≦1.3aの範囲内であり、
一方、前記Cr成分の最低含有点におけるCr成分の濃度の極小値の平均をCrminとしたとき、
0.5a≦Crmin<aの範囲内(但し、aは、前記(b)の組成式におけるCrの平均組成aを示す)であることを特徴とする表面被覆切削工具。
(2)前記Cr成分濃度の変化は、層厚方向に沿った連続的な変化であることを特徴とする(1)に記載の表面被覆切削工具。
(3)炭化タングステン基超硬合金、炭窒化チタン基サーメットあるいは立方晶窒化硼素焼結体のいずれかからなる工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚0.5〜8.0μmのAlとCrとSiとCuの複合窒化物層を少なくとも含み、
(b)前記複合窒化物層は、
組成式:(Al1−a−b−cCrSiCu)Nで表した場合、
0.15≦a≦0.40、0.05≦b≦0.20、0.005≦c≦0.05(但し、a、b、cはいずれも原子比)を満足する平均組成を有し、
(c)前記複合窒化物層は、層厚方向に沿ってCr成分の濃度が周期的に変化する組成変調構造とCu成分濃度が周期的に変化する組成変調構造を有し、
(d)前記組成変調構造におけるCr成分の濃度の周期的な変化は、Cr成分の最高含有点とCr成分の最低含有点が5nm〜100nmの間隔で繰り返され、
(e)前記Cr成分の最高含有点におけるCr成分の濃度の極大値の平均Crmaxは、
a<Crmax≦1.30aの範囲内であり、
一方、前記Cr成分の最低含有点におけるCr成分の濃度の極小値の平均Crminは、
0.5a≦Crmin<aの範囲内であり(但し、aは、前記(b)の組成式におけるCrの平均組成aを示す)、
(f)前記組成変調構造におけるCu成分濃度の周期的な変化は、Cu成分の最高含有点とCu成分の最低含有点が5nm〜100nmの間隔で繰り返され、
(g)層厚方向に沿った任意の測定点zにおけるCuの組成をc、Crの組成をaとしたとき、aに対するcの比の値(c/a)を、前記複合窒化物層におけるCrの平均組成aに対するCuの平均組成cの比の値(c/a)で除した値((c/a)/(c/a))が、層厚方向全体にわたって0.7≦(c/a)/(c/a)≦1.5の範囲に存在することを特徴とする表面被覆切削工具。
(4)前記CrおよびCu成分濃度の変化は、層厚方向に沿った連続的な変化であることを特徴とする(3)に記載の表面被覆切削工具。」
である。
本発明の被覆工具は、硬質被覆層が、少なくとも、所定の組成の(Al、Cr、Si、Cu)N層からなる層を含み、また、該(Al、Cr、Si、Cu)N層においてCr成分濃度が層厚方向に沿って周期的に変化し、Cr最高含有点とCr最低含有点が存在することによって、(Al、Cr、Si、Cu)N層全体としてすぐれた耐クラック性と耐摩耗性を相兼ね備えるという顕著な効果を奏する。
また、本発明の被覆工具は、硬質被覆層が、少なくとも、所定の平均組成の(Al、Cr、Si、Cu)N層からなる層を含み、また、該(Al、Cr、Si、Cu)N層において層を構成する各成分の組成が層厚方向に沿って周期的に変化し、特に、層厚方向の任意の測定点zにおけるCuの組成をc、Crの組成をaとし、また、(Al、Cr、Si、Cu)N層のCuの平均組成をc、Crの平均組成をaとしたとき、aに対するcの比の値(c/a)を、aに対するcの比の値(c/a)で除した値(c/a)/(c/a)は、(Al、Cr、Si、Cu)N層の層厚方向全体にわたって0.7≦(c/a)/(c/a)≦1.5の関係が満足されることから、耐チッピング性と耐摩耗性の双方が同時に向上する。すなわち、Cr成分が周期的に変調していながらもCrとCuの比の変動範囲(c/a)/(c/a)が微小な変化にとどまる、言い換えると、CrとCuが一定の比率を保ったまま相似的に変調する構造とすることにより、層内での格子ひずみの変化をより顕著にすることができ、全体として優れた靭性を発揮する。
したがって、請求項1〜4に係る本発明の被覆工具は、高熱発生を伴い、かつ、切刃に対して大きな衝撃的・機械的負荷がかかる焼き入れ鋼等の高硬度鋼の高速ミーリング加工等の高速断続切削加工においても、すぐれた耐チッピング性と耐摩耗性を長期にわたって発揮するという顕著な効果を奏する。
本発明の(Al、Cr、Si、Cu)N層の構造に関するもので、図1Aは、その概略模式図であり、図1Bは、Cr成分とCu成分の組成変調の様子、図1Cは、Al成分とSi成分の組成変調の様子を、それぞれ、示す図である。 本発明の(Al、Cr、Si、Cu)N層の層厚方向の各位置と、該位置について求めた(c/a)/(c/a)の値の関係の一例を示す図である。 本発明被覆工具の(Al、Cr、Si、Cu)N層を形成するのに用いたアークイオンプレーティング(AIP)装置を示し、図3(a)は概略平面図、図3(b)は概略正面図である。
次に、この発明の被覆工具について、詳細に説明する。
硬質被覆層:
本発明では、硬質被覆層として、少なくとも、AlとCrとSiとCuの複合窒化物層(以下、「(Al、Cr、Si、Cu)N層」で示す場合もある)を備えるが、(Al、Cr、Si、Cu)N層におけるAl成分には高温硬さ、同Cr成分には高温靭性、高温強度を向上させると共に、AlおよびCrが共存含有した状態で高温耐酸化性を向上させる作用が有り、さらに同Si成分には耐熱塑性変形性を向上させる作用があり、また、Cu成分には、結晶粒の微細化を図ることによって耐摩耗性を向上させる作用がある。
(Al、Cr、Si、Cu)N層の組成:
そして、前記(Al、Cr、Si、Cu)N層におけるCrの平均組成を示すa値(原子比)がAlとSiとCuの合量に占める割合で0.15未満では、最低限必要とされる高温靭性、高温強度を確保することができないため、チッピング、欠損等の原因となるクラックの発生を抑制することができず、一方、同a値が0.40を超えると、相対的なAl含有割合の減少により、摩耗進行が促進することから、a値を0.15〜0.40と定めた。
また、Siの平均組成を示すb値(原子比)がAlとCrとCuの合量に占める割合で0.05未満では、耐熱塑性変形性の改善による耐摩耗性向上を期待することはできず、一方、同b値が0.20を超えると、耐摩耗性向上効果に低下傾向がみられるようになることから、b値を0.05〜0.20と定めた。
さらに、Cuの平均組成を示すc値(原子比)がAlとCrとSiの合量に占める割合で0.005未満では、より一層の耐摩耗性の向上を期待することができず、一方、同c値が0.05を超えると、アークイオンプレーティング(以下、「AIP」で示す)装置によって(Al、Cr、Si、Cu)N層を成膜する際にパーティクルが発生しやすくなり、大きな衝撃的・機械的負荷がかかる切削加工において耐クラック性が低下することから、c値を0.005〜0.05と定めた。
なお、上記a、b、cについて、好ましい範囲は、それぞれ、0.15≦a≦0.25、0.05≦b≦0.15、0.01≦c≦0.03である。
(Al、Cr、Si、Cu)N層の平均層厚:
前記(Al、Cr、Si、Cu)N層は、その平均層厚が0.5μm未満では、長期の使用にわたってすぐれた耐摩耗性を発揮することはできず、一方、その平均層厚が8.0μmを超えると、チッピング、欠損等の原因となるクラックを発生しやすくなるので、(Al、Cr、Si、Cu)N層の平均層厚は、0.5〜8.0μmと定めた。
(Al、Cr、Si、Cu)N層の構造:
本発明の(Al、Cr、Si、Cu)N層において、Cr成分を含む少なくとも一つ以上の成分の濃度が、層厚方向に沿って連続的にあるいは不連続的(ステップ状)に周期的に変化する組成変調構造を有する。
まず、この組成変調構造について、図1Aに示す概略模式図により、Cr成分を例として説明をするが、他の成分についても同様である。濃度の周期的な変化が連続的変化(図1Aのb)であるか、不連続的(ステップ状)変化(図1Aのc)であるかにかかわらず、いずれの場合も、Cr成分の濃度は、層厚方向に沿って、Cr最高含有点−Cr最低含有点−Cr最高含有点−Cr最低含有点・・・と、所定の間隔を保って周期的な濃度変化を示す。ここでいう最高含有点、最低含有点について説明すると、Crの最高含有点とは、層厚方向に沿って測定した各測定点におけるCr成分の濃度が、層全体の組成式(Al1−a−b−cCrSiCu)NにおけるCr成分の平均濃度割合aの値を連続して超えている部分における極大値を言い、aの値を連続して超えている部分が複数ある場合は、それぞれの部分における極大値をそれぞれの部分における最高含有点と定義し、同様に、最低含有点とは、層厚方向に沿って測定した各測定点におけるCr成分の濃度が、層全体の組成式(Al1−a−b−cCrSiCu)NにおけるCr成分の平均濃度割合aの値未満となる連続した部分における極小値を言い、連続してaの値未満となる部分が複数ある場合は、それぞれの部分における極小値をそれぞれの部分における最小含有点と定義する。この定義によれば、aの値近傍での周期的な変化において、図1Aに示すように、最高含有点と最低含有点が交互に出現する。
次に、実際の組成変調構造を示す図1Bおよび図1Cにより説明する。これらの図では複数の成分が周期的に変化している。すなわち、図1Bは、本発明の(Al、Cr、Si、Cu)N層において、層厚方向に沿うCr成分の濃度(同図の実線で示す)およびCu成分の濃度(同図の点線で示す)が周期的に変化する様子を、また、図1Cは、層厚方向に沿うAl成分濃度(同図の実線で示す)及びSi成分濃度(同図の点線で示す)が周期的に変化する様子を、それぞれ、示している。図1B、1Cからわかるように、Cr成分とCu成分は、同じ位相で周期的な濃度変化をし、また、Al成分とSi成分は、同じ位相で周期的な濃度変化をしている。言うならば、Cr成分とCu成分、また、Al成分とSi成分は、それぞれ、ペアを組んで濃度変化し、組成変調構造を形成している。
前述したとおり、本発明の(Al、Cr、Si、Cu)N層の組成変調構造は、組成変調構造の形態として、層の構成成分であるCrの成分濃度変化が、層厚方向に沿って連続的に変化する場合(図1Aのbを参照)と、不連続的(ステップ状)に変化する場合(図1Aのcを参照)がある。本発明はいずれの形態であっても構わないが、切刃に対して衝撃的・断続的な高負荷が作用する切削加工において、硬質被覆層の耐摩耗性および耐熱性向上効果を発揮させつつ、かつ層全体としての耐クラック性を向上させる観点からは、Cr最高含有点とCr最低含有点の間の層内の親和性を高めるため、組成変調構造のCrの成分濃度変化が連続的に変化することがより好ましい。
Cr成分の組成変調における各Cr最高含有点におけるCr濃度の平均値:
各Cr最高含有点の(Al、Cr、Si、Cu)N層におけるCr成分は、層自体の強度を向上させ、耐クラック性を向上させる作用をもつが、各Cr最高含有点における極大値を与えるCr濃度の平均含有割合を示すCrmaxが、1.30a(ただし、aの値は、(Al、Cr、Si、Cu)N層の組成式:(Al1−a−b−cCrSiCu)におけるCrの平均組成aを示す)より大きくなると、相対的に、Al、Si、Cuの含有割合が減少するため、高硬度を有するCr最低含有点が隣接して存在しても層全体としての耐熱性、耐摩耗性の低下は避けられず、一方、各Cr最高含有点における平均のCrの含有割合を示すCrmaxは、その定義により、a以下の値を取らないことから、各Cr最高含有点における平均Cr濃度を示すCrmaxの値は、aを超え1.30a以下と定めた。なお、Crmaxの値は、1.03a≦Crmax≦1.25aを満足することが望ましい。
Cr成分の組成変調における各Cr最低含有点におけるCr濃度の平均値:
前記のとおり、Cr最高含有点は相対的に高い靭性を有し、耐クラック性を向上させるが、その反面、相対的に硬度が小さく耐摩耗性に劣り、また耐熱性にも劣るものであるため、このCr最高含有点の耐摩耗性不足、耐熱性不足を補うため、Cr含有割合を相対的に小さくし、これによって層全体としての耐摩耗性、耐熱性を向上させるCr最低含有点を厚さ方向に交互に周期的に形成する。
したがって、各Cr最低含有点における極小値を与えるCr濃度の平均含有割合を示すCrminが、0.50a(ただし、aの値は、(Al、Cr、Si、Cu)N層の組成式:(Al1−a−b−cCrSiCu)におけるCrの平均組成aを示す)未満となると、相対的に、Al、Si、Cuの含有割合が多くなり耐摩耗性、耐熱性は向上するものの強度低下により耐クラック性が低下し、耐摩耗性向上効果、耐熱性向上効果は期待できない。一方、Cr最低含有点におけるCrの含有割合を示すCrminは、その定義により、a以上の数値とならないことから、Cr最低含有点におけるCr濃度を示すCrminの値は、0.50a以上a未満と定めた。なお、Crminの値は、0.65a≦Crmin≦0.95aを満足することが望ましい。
Cr最高含有点とCr最低含有点の間隔:
Cr最高含有点とCr最低含有点の間隔が5nm未満では、それぞれの点を明確に区別して形成することが困難であり、その結果、層に所望の高強度、高温硬さと耐熱性を確保することができなくなり、また、その間隔が100nmを越えるとそれぞれの点がもつ欠点、すなわちCr最低含有点であれば強度不足、Cr最高含有点であれば高温硬さと耐熱性不足が層内に局部的に現れ、これが原因で切刃にクラックが発生し易くなり、また、摩耗進行が促進されるようになることから、Cr最高含有点とCr最低含有点の間隔は5nm以上100nm以下と定めた。
Cu成分の組成変調構造:
前述のとおり、Cu成分は、Cr成分と同じ位相の組成変調を示し、Cu最高含有点とCu最低含有点の間隔は5nm以上100nm以下であるが、Cu成分の組成変調とCr成分の組成変調は、位相、周期が同じであるということに加えて、さらに、Cu成分濃度とCr成分濃度の間に、所定の関係が維持される。
すなわち、(Al、Cr、Si、Cu)N層の層厚方向の任意の点zにおけるCuの組成をc、Crの組成をaとし、また、(Al、Cr、Si、Cu)N層のCuの平均組成をc、Crの平均組成をaとしたとき、aに対するcの比の値(c/a)を、aに対するcの比の値(c/a)で除した値(c/a)/(c/a)は、その値が0.7未満では、所望の靭性を発揮することができず、また、1.5超をこえると切刃にクラックが発生し易くなることから、(c/a)/(c/a)を0.7〜1.5と定めた。
図2には、本発明の(Al、Cr、Si、Cu)N層の層厚方向の各位置と、該位置について求めた(c/a)/(c/a)の値の関係を示す。
図2からも、(c/a)/(c/a)の値は、層厚方向全体にわたって、0.7≦(c/a)/(c/a)≦1.5の関係が満足されていることがわかる。
本発明の(Al、Cr、Si、Cu)N層は、前記した組成変調構造、特に、CrとCuのナノメーターオーダーの組成変調構造、を形成していることで、格子歪を顕著に変調することができ(Cr、Cuのイオン半径が、Al、Siのそれより大きいことによる)、一方、CrとCuが多い領域では、Cu成分による結晶粒の微細化を促進することによって、耐摩耗性を向上させることができる。
したがって、本発明の(Al、Cr、Si、Cu)N層においては、特に、格子歪の変調とCu成分による微細化効果によって、高速断続切削時に発生したクラックが硬質被覆層の層厚方向に伝播・進展するのではなく、面内方向(工具基体表面とほぼ平行な方向)に誘導されることによって、クラックの伝播・進展を原因とするチッピング、欠損の発生を抑制することができる。
本発明の組成変調構造を有する(Al、Cr、Si、Cu)N層は、例えば、図3に示すAIP装置を用いて成膜するに当たり、工具基体をAIP装置に装入し、回転テーブル上で自転しながら回転する工具基体とCr、または、CrおよびCuの最高含有点(言い換えれば、AlとSiの最低含有点)形成用ターゲットとの間にアーク放電を発生させて成膜すると同時に、回転テーブル上で自転しながら回転する工具基体とCr、または、CrおよびCuの最低含有点(言い換えれば、AlとSiの最高含有点)形成用ターゲットとの間にもアーク放電を発生させて成膜することによって、組成変調構造を有する(Al、Cr、Si、Cu)N層を形成することができる。
一方、工具基体とCr、または、CrおよびCuの最高含有点形成用ターゲットとの間にアーク放電を発生させて成膜したのちアーク放電を停止し、次いで、工具基体とCrまたはCrおよびCuの最低含有点形成用ターゲットとの間にアーク放電を発生させて成膜したのちアーク放電を停止するという操作を交互に行うことにより、不連続的な(ステップ状の)組成変調構造を有する(Al、Cr、Si、Cu)N層を形成することができる。
なお、本発明の(Al、Cr、Si、Cu)N層を構成する結晶は、特定の結晶構造を有する必要はないが、立方晶構造を有する結晶、または、六方晶構造を有する結晶、または、立方晶構造の結晶と六方晶構造の結晶とが混在したもの、のいずれかであることが好ましい。
次に、本発明の被覆工具を実施例により具体的に説明する。
なお、以下の実施例では、炭化タングステン基超硬合金を工具基体とする被覆工具について説明するが、工具基体として、炭窒化チタン基サーメットあるいは立方晶窒化硼素焼結体を用いた場合も同様である。
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末、同1.0μmの(Ti、W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体に押出しプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が10mmの工具基体形成用丸棒焼結体を形成し、さらに前記丸棒焼結体から、研削加工にて、切刃部の直径×長さが6mm×12mmの寸法で、ねじれ角30度の2枚刃ボール形状をもったWC基超硬合金製の工具基体(エンドミル)1〜3をそれぞれ製造した。
(a)上記の工具基体1〜3のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図3に示すAIP装置の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、AIP装置内にボンバード洗浄用のTiカソード電極(図示せず)、所定組成のCr最高含有点形成用Al−Cr−Si−Cu合金ターゲット(カソード電極)および所定組成のCr最低含有点形成用Al−Cr−Si−Cu合金ターゲット(カソード電極)を装置内に相対向して配置し、
(b)まず、装置内を排気して真空に保持しながら、ヒータで工具基体を400℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつ、Tiカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)次いで、装置内に反応ガスとして窒素ガスを導入して表2に示す窒素圧とすると共に、前記回転テーブル上で自転しながら回転する工具基体の温度を表2に示す温度範囲内に維持するとともに表2に示す直流バイアス電圧を印加し、かつ前記Cr最高含有点形成用Al−Cr−Si−Cu合金ターゲット(カソード電極)とアノード電極、さらに、Cr最低含有点形成用Al−Cr−Si−Cu合金ターゲット(カソード電極)とアノード電極との間に、それぞれ100Aの電流を流してアーク放電を同時に発生させ、もって前記工具基体の表面に、表4に示される所定の組成、目標平均層厚、組成変調の周期、Crmax、Crminからなる連続的なCr成分濃度の変化を有する(Al、Cr、Si、Cu)N層からなる硬質被覆層を蒸着形成することにより、
表4に示す本発明被覆工具としての表面被覆エンドミル1〜9(以下、本発明1〜9という)をそれぞれ製造した。
また、前記(c)工程において、装置内に反応ガスとして窒素ガスを導入して表2に示す窒素圧とすると共に、前記回転テーブル上で自転しながら回転する工具基体の温度を表2に示す温度範囲内に維持するとともに表2に示す直流バイアス電圧を印加し、ついで、Cr最高含有点形成用Al−Cr−Si−Cu合金ターゲット(カソード電極)とアノード電極、また、Cr最低含有点形成用Al−Cr−Si−Cu合金ターゲット(カソード電極)とアノード電極との間に、それぞれ交互に100Aの電流を流してアーク放電を発生させることにより、表5に示される所定の組成、目標平均層厚、組成変調の周期、Crmax、Crminからなる不連続的な(ステップ状の)Cr成分濃度の変化を有する(Al、Cr、Si、Cu)N層からなる硬質被覆層を蒸着形成することにより、
表5に示す本発明被覆工具としての表面被覆エンドミル11〜18(以下、本発明11〜18という)をそれぞれ製造した。
[比較例]
比較の目的で、上記実施例における(c)の工程を、表3に示す条件(すなわち、窒素圧、工具基体の温度、直流バイアス電圧)で行い、その他は実施例と同一の条件で成膜することにより、表6に示す比較例被覆工具としての表面被覆エンドミル1〜8(以下、比較例1〜8という)をそれぞれ製造した。
すなわち、比較例1〜8の(Al、Cr、Si、Cu)N層は、いずれも、本発明で規定する要件を備えていないものである。
上記で作製した本発明1〜18(但し、10は欠番)および比較例1〜8について、収束イオンビーム(Focused Ion Beam:FIB)を用いて工具基体表面に垂直な縦断面を切り出し、(Al、Cr、Si、Cu)N層の組成を、その層厚方向に沿って、工具基体表面に平行な方向の幅が10μmであり、硬質被覆層の厚み領域が全て含まれるよう設定された視野について、走査型電子顕微鏡(SEM)を用いたエネルギー分散型X線分析法(EDS)により測定し、(Al、Cr、Si、Cu)N層全体の平均組成を求めた。
また、その縦断面における層厚を、走査型電子顕微鏡を用いて測定し、5ヶ所の測定値の平均値から、平均層厚を算出した。
さらに、本発明1〜18(但し、10は欠番)および比較例1〜8の(Al、Cr、Si、Cu)N層について、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)およびエネルギー分散型X線分析法(EDS)を用いた層厚方向に沿った測定により、Cr最高含有点におけるCr濃度Crmaxの値、Cr最低含有点におけるCr濃度Crminの値、Cr最高含有点とCr最低含有点の間隔を測定した。
なお、前記の平均組成、Crmaxの値、Crminの値、Cr最高含有点とCr最低含有点の間隔は、いずれも5個所以上で層厚方向に沿ったEDS測定を行い、各々の層の測定値の平均値として求めたものである。
表4〜表6に、測定・算出したそれぞれの値を示す。
さらに、本発明1〜18(但し、10は欠番)および比較例1〜8の(Al、Cr、Si、Cu)N層について、(Al、Cr、Si、Cu)N層のX線回折を行い、いずれの場合においても、立方晶構造または六方晶構造を有する結晶が存在することを確認した。 なお、X線回折は、測定条件:Cu管球、測定範囲(2θ):30〜80度、スキャンステップ:0.013度、1ステップ辺り測定時間:0.48sec/stepという条件で測定した。
次に、上記本発明1〜18(但し、10は欠番)および比較例1〜8のエンドミルについて、下記の条件(切削条件Aという)での合金工具鋼の側面切削加工試験を実施した。
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD11(60HRC)の板材、
切削速度: 100 m/min、
回転速度: 5400 min.−1
切り込み:ae 0.24mm、ap 2mm、
送り速度(1刃当り): 0.06 mm/tooth、
切削長: 32m、
さらに、下記の条件(切削条件Bという)での高速度工具鋼の側面切削加工試験を実施した。
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SKH51(64HRC)の板材、
切削速度: 100 m/min、
回転速度: 5400 min.−1
切り込み:ae 0.22mm、ap 2.0mm、
送り速度(1刃当り): 0.06 mm/tooth、
切削油剤: エアーブロー
切削長: 16 m、
いずれの側面切削加工試験でも切刃の逃げ面摩耗幅を測定した。
この測定結果を表7に示した。
表7に示される結果から、本発明の被覆工具は、硬質被覆層として、少なくとも所定の平均組成の(Al、Cr、Si、Cu)N層を含み、かつ、該層中には、Cr成分の組成変調構造が形成されていることによって、(Al、Cr、Si、Cu)N層は、靭性と耐摩耗性の両特性を兼ね備えるため、焼入れ鋼などの高硬度鋼の切削加工において、すぐれた耐チッピング性と耐摩耗性を示し、長期の使用にわたってすぐれた切削性能を発揮するものである。
これに対して、硬質被覆層を構成する(Al、Cr、Si、Cu)N層の平均組成、あるいはCr成分の組成変調構造が本発明の規定を外れる比較例の被覆工具では、クラックの発生・伝播、あるいは、摩耗進行によって、比較的短時間で使用寿命に至ることが明らかである。
実施例1と同様のWC基超硬合金製の工具基体(エンドミル)1〜3をそれぞれ製造した。
(a)上記の工具基体1〜3のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図3に示すAIP装置の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、AIP装置内にボンバード洗浄用のTiカソード電極(図示せず)、所定組成のCrとCuの最高含有点形成用Al−Cr−Si−Cu合金ターゲット(カソード電極)および所定組成のCrとCuの最低含有点形成用Al−Cr−Si−Cu合金ターゲット(カソード電極)を装置内に相対向して配置し、
(b)まず、装置内を排気して真空に保持しながら、ヒータで工具基体を400℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつ、Tiカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)次いで、装置内に反応ガスとして窒素ガスを導入して表8に示す窒素圧とすると共に、前記回転テーブル上で自転しながら回転する工具基体の温度を表8に示す温度範囲内に維持するとともに表8に示す直流バイアス電圧を印加し、かつ前記CrとCuの最高含有点形成用Al−Cr−Si−Cu合金ターゲット(カソード電極)とアノード電極、さらに、CrとCuの最低含有点形成用Al−Cr−Si−Cu合金ターゲット(カソード電極)とアノード電極との間に、それぞれ100Aの電流を流してアーク放電を同時に発生させ、もって前記工具基体の表面に、表10に示される所定の組成、目標平均層厚、組成変調の周期、Crmax、Cumax、Crmin、Cuminからなる各成分濃度の変化を有する(Al、Cr、Si、Cu)N層からなる硬質被覆層を蒸着形成することにより、
表10に示す本発明被覆工具としての表面被覆エンドミル21〜30(以下、本発明21〜30という)をそれぞれ製造した。
[比較例]
比較の目的で、上記実施例における(c)の工程を、表9に示す条件(即ち、窒素圧、工具基体の温度、直流バイアス電圧)で行い、その他は実施例と同一の条件で成膜することにより、表11に示す比較例被覆工具としての表面被覆エンドミル11〜20(以下、比較例11〜20という)をそれぞれ製造した。
すなわち、比較例11〜20の(Al、Cr、Si、Cu)N層は、いずれも、本発明で規定する要件を備えていないものである。
さらに、参考のため、一種類の組成を有するAl−Cr−Si−Cu合金ターゲット(カソード電極)を用いて、表9に示す条件(即ち、窒素圧、工具基体の温度、直流バイアス電圧)で(Al、Cr、Si、Cu)N層を成膜することにより、表11に示す参考例被覆工具としての表面被覆エンドミル1〜3(以下、参考例1〜3という)を製造した。
上記で作成した本発明21〜30および比較例11〜20について、実施例1に倣って、Cr最高含有点、Cr最低含有点、Cu最高含有点、Cu最低含有点の複数箇所の測定値を平均することにより、(Al、Cr、Si、Cu)N層全体の平均組成、Cr濃度Crmaxの値、Cu濃度Cumaxの値、CrとCuの最低含有点におけるCr濃度Crminの値、Cu濃度Cuminの値、Cr最高含有点とCr最低含有点の間隔、Cu最高含有点とCu最低含有点の間隔を求めた。
また、本発明21〜30および比較例11〜20の(Al、Cr、Si、Cu)N層について、層厚方向に沿った任意の20箇所の測定点zn(n=1、2、3、・・20)において、Crの濃度azn、Cuの濃度cznを測定して(czn/azn)/(c/a)を算出し、これらの値の最大値と最小値を求めた。
さらに、本発明21〜30、比較例1〜10および参考例1〜3の(Al、Cr、Si、Cu)N層について、(Al、Cr、Si、Cu)N層のX線回折を行い、いずれの場合においても、立方晶構造または六方晶構造を有する結晶が存在することを確認した。
なお、X線回折は、実施例1と同じものである。
表10、表11に、測定・算出したそれぞれの値を示す。
次に、上記本発明21〜30、比較例11〜20および参考例1〜3のエンドミルについて、下記の切削条件C、Dによる焼き入れ鋼の側面切削加工試験を実施した。
≪切削条件C≫
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD11(60HRC)の板材、
切削速度: 107 m/min、
回転速度: 6000 min.−1
切り込み:ae 0.20mm、ap 2.0mm、
送り速度(1刃当り): 0.05 mm/tooth、
切削長: 32 m、
≪切削条件D≫
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SKH51(64HRC)の板材、
切削速度: 107 m/min、
回転速度: 6000 min.−1
切り込み:ae 0.20mm、ap 2.0mm、
送り速度(1刃当り): 0.05 mm/tooth、
切削長: 18 m、
いずれの側面切削加工試験でも切刃の逃げ面摩耗幅を測定した。
この測定結果を表12に示した。
表12に示される結果から、本発明の被覆工具は、硬質被覆層として、少なくとも所定の平均組成の(Al、Cr、Si、Cu)N層を含み、かつ、該層中には、Cr成分及びCu成分の組成変調構造が形成されていることによって、(Al、Cr、Si、Cu)N層は、耐クラック性と耐摩耗性の両特性を兼ね備えるため、焼き入れ鋼等の高硬度鋼の高速断続切削加工において、長期の使用にわたってすぐれた切削性能を発揮するものである。
これに対して、硬質被覆層を構成する(Al、Cr、Si、Cu)N層の平均組成、あるいはCr成分及びCu成分の組成変調構造が本発明の規定を外れる比較例の被覆工具、参考例の被覆工具では、クラックの発生・伝播、あるいは、摩耗進行によって、比較的短時間で使用寿命に至ることが明らかである。
この発明の被覆工具は、高硬度鋼の高速断続切削加工に供した場合に、すぐれた耐クラック性とともに長期の使用に亘ってすぐれた耐摩耗性を発揮するものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。

Claims (4)

  1. 炭化タングステン基超硬合金、炭窒化チタン基サーメットあるいは立方晶窒化硼素焼結体のいずれかからなる工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
    (a)前記硬質被覆層は、平均層厚0.5〜8.0μmのAlとCrとSiとCuの複合窒化物層を少なくとも含み、
    (b)前記複合窒化物層は、
    組成式:(Al1−a−b−cCrSiCu)Nで表した場合、
    0.15≦a≦0.40、0.05≦b≦0.20、0.005≦c≦0.05(但し、a、b、cはいずれも原子比)を満足する平均組成を有し、
    (c)前記複合窒化物層は、層厚方向に沿ってCr成分濃度が周期的に変化する組成変調構造を有し、
    (d)前記組成変調構造におけるCr成分濃度の周期的な変化は、Cr成分の最高含有点とCr成分の最低含有点が5nm〜100nmの間隔で繰り返され、
    (e)前記Cr成分の最高含有点におけるCr成分の濃度の極大値の平均をCrmaxとしたとき、
    a<Crmax≦1.3aの範囲内であり、
    一方、前記Cr成分の最低含有点におけるCr成分の濃度の極小値の平均をCrminとしたとき、
    0.5a≦Crmin<aの範囲内(但し、aは、前記(b)の組成式におけるCrの平均組成aを示す)であることを特徴とする表面被覆切削工具。
  2. 前記Cr成分濃度の変化は、層厚方向に沿った連続的な変化であることを特徴とする請求項1に記載の表面被覆切削工具。
  3. 炭化タングステン基超硬合金、炭窒化チタン基サーメットあるいは立方晶窒化硼素焼結体のいずれかからなる工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
    (a)前記硬質被覆層は、平均層厚0.5〜8.0μmのAlとCrとSiとCuの複合窒化物層を少なくとも含み、
    (b)前記複合窒化物層は、
    組成式:(Al1−a−b−cCrSiCu)Nで表した場合、
    0.15≦a≦0.40、0.05≦b≦0.20、0.005≦c≦0.05(但し、a、b、cはいずれも原子比)を満足する平均組成を有し、
    (c)前記複合窒化物層は、層厚方向に沿ってCr成分の濃度が周期的に変化する組成変調構造とCu成分濃度が周期的に変化する組成変調構造を有し、
    (d)前記組成変調構造におけるCr成分の濃度の周期的な変化は、Cr成分の最高含有点とCr成分の最低含有点が5nm〜100nmの間隔で繰り返され、
    (e)前記Cr成分の最高含有点におけるCr成分の濃度の極大値の平均Crmaxは、
    a<Crmax≦1.30aの範囲内であり、
    一方、前記Cr成分の最低含有点におけるCr成分の濃度の極小値の平均Crminは、
    0.5a≦Crmin<aの範囲内であり(但し、aは、前記(b)の組成式におけるCrの平均組成aを示す)、
    (f)前記組成変調構造におけるCu成分濃度の周期的な変化は、Cu成分の最高含有点とCu成分の最低含有点が5nm〜100nmの間隔で繰り返され、
    (g)層厚方向に沿った任意の測定点zにおけるCuの組成をc、Crの組成をaとしたとき、aに対するcの比の値(c/a)を、前記複合窒化物層におけるCrの平均組成aに対するCuの平均組成cの比の値(c/a)で除した値((c/a)/(c/a))が、層厚方向全体にわたって0.7≦(c/a)/(c/a)≦1.5の範囲に存在することを特徴とする表面被覆切削工具。
  4. 前記CrおよびCu成分濃度の変化は、層厚方向に沿った連続的な変化であることを特徴とする請求項3に記載の表面被覆切削工具。
JP2017030048A 2016-02-29 2017-02-21 表面被覆切削工具 Active JP6452006B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17760015.2A EP3424629B1 (en) 2016-02-29 2017-02-28 Surface-coated cutting tool
KR1020187024310A KR20180114905A (ko) 2016-02-29 2017-02-28 표면 피복 절삭 공구
CN201780012954.6A CN108698134B (zh) 2016-02-29 2017-02-28 表面包覆切削工具
US16/080,211 US10751804B2 (en) 2016-02-29 2017-02-28 Surface-coated cutting tool
PCT/JP2017/007880 WO2017150550A1 (ja) 2016-02-29 2017-02-28 表面被覆切削工具

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016038258 2016-02-29
JP2016038258 2016-02-29
JP2016168781 2016-08-31
JP2016168781 2016-08-31

Publications (2)

Publication Number Publication Date
JP2018039096A true JP2018039096A (ja) 2018-03-15
JP6452006B2 JP6452006B2 (ja) 2019-01-16

Family

ID=61624671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017030048A Active JP6452006B2 (ja) 2016-02-29 2017-02-21 表面被覆切削工具

Country Status (4)

Country Link
US (1) US10751804B2 (ja)
JP (1) JP6452006B2 (ja)
KR (1) KR20180114905A (ja)
CN (1) CN108698134B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008189A1 (ja) * 2021-07-30 2023-02-02 京セラ株式会社 被覆工具および切削工具

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039838A (ja) * 2007-08-10 2009-02-26 Mitsubishi Materials Corp 表面被覆切削工具
JP2016500752A (ja) * 2012-10-10 2016-01-14 エリコン・サーフェス・ソリューションズ・アクチェンゲゼルシャフト,トリュープバッハ 高温応用のための摩擦応力を備えた被覆部
WO2016021581A1 (ja) * 2014-08-08 2016-02-11 住友電気工業株式会社 硬質材料、焼結体、焼結体を用いた工具、硬質材料の製造方法および焼結体の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9625916D0 (en) 1996-12-13 1997-01-29 Gencoa Limited Low friction coating
JP3969230B2 (ja) 2002-07-24 2007-09-05 三菱マテリアル株式会社 重切削加工条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具
JP3781374B2 (ja) 2003-12-09 2006-05-31 日立ツール株式会社 硬質皮膜被覆工具及びその製造方法
CN100419117C (zh) * 2004-02-02 2008-09-17 株式会社神户制钢所 硬质叠层被膜、其制造方法及成膜装置
CN100528430C (zh) * 2004-06-18 2009-08-19 三菱麻铁里亚尔株式会社 表面被覆切削刀具及其制造方法
JP2007290091A (ja) 2006-04-26 2007-11-08 Mitsubishi Materials Corp 難削材の高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP4967505B2 (ja) 2006-07-28 2012-07-04 株式会社タンガロイ 被覆部材
JP5096715B2 (ja) * 2006-09-21 2012-12-12 株式会社神戸製鋼所 硬質皮膜および硬質皮膜被覆工具
EP2351870B1 (de) * 2007-06-25 2018-08-08 Oerlikon Surface Solutions AG, Pfäffikon Schichtsystem zur Bildung einer Oberflächenschicht auf einer Oberfläche eines Substrats
WO2011062450A2 (ko) * 2009-11-19 2011-05-26 한국생산기술연구원 다성분 단일체의 스퍼터링 타겟 및 그 제조방법, 이를 이용한 다성분 합금계 나노구조 박막 제조방법
EP2336383A1 (en) 2009-12-04 2011-06-22 Sandvik Intellectual Property AB Multilayered coated cutting tool
EP2977131B1 (en) * 2013-03-22 2019-01-02 Mitsubishi Materials Corporation Surface-coated cutting tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039838A (ja) * 2007-08-10 2009-02-26 Mitsubishi Materials Corp 表面被覆切削工具
JP2016500752A (ja) * 2012-10-10 2016-01-14 エリコン・サーフェス・ソリューションズ・アクチェンゲゼルシャフト,トリュープバッハ 高温応用のための摩擦応力を備えた被覆部
WO2016021581A1 (ja) * 2014-08-08 2016-02-11 住友電気工業株式会社 硬質材料、焼結体、焼結体を用いた工具、硬質材料の製造方法および焼結体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PULUGURTHA S.R. ET AL.: "Mechanical and tribological properties of compositionally graded CrAlN films deposited by AC reactiv", SURFACE AND COATINGS TECHNOLOGY, vol. vol.202, JPN6017015302, 2007, pages 160 - 1166 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008189A1 (ja) * 2021-07-30 2023-02-02 京セラ株式会社 被覆工具および切削工具

Also Published As

Publication number Publication date
CN108698134B (zh) 2020-01-31
US20190070668A1 (en) 2019-03-07
CN108698134A (zh) 2018-10-23
KR20180114905A (ko) 2018-10-19
US10751804B2 (en) 2020-08-25
JP6452006B2 (ja) 2019-01-16

Similar Documents

Publication Publication Date Title
JP6677932B2 (ja) 強断続切削加工においてすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP5838769B2 (ja) 表面被覆切削工具
US10618113B2 (en) Surface-coated cutting tool
JP2015160259A (ja) 耐摩耗性にすぐれた表面被覆切削工具
JP2018043326A (ja) 表面被覆切削工具
WO2017073653A1 (ja) 表面被覆切削工具
JP2017064845A (ja) 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
JP2017154200A (ja) 表面被覆切削工具
JP6296295B2 (ja) 耐摩耗性にすぐれた表面被覆切削工具
JP6376466B2 (ja) 表面被覆切削工具
US10618114B2 (en) Surface-coated cutting tool
JP6452006B2 (ja) 表面被覆切削工具
JP6233708B2 (ja) 表面被覆切削工具
WO2017073655A1 (ja) 表面被覆切削工具
JP6503818B2 (ja) 表面被覆切削工具
JP4702535B2 (ja) 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆高速度工具鋼製切削工具
JP6270131B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP6198002B2 (ja) 高速切削加工で硬質被覆層がすぐれた耐摩耗性と耐チッピング性を発揮する表面被覆切削工具
WO2017150550A1 (ja) 表面被覆切削工具
JP6399353B2 (ja) 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
JP2018034237A (ja) 表面被覆切削工具
JP2018030212A (ja) 耐チッピング性と耐摩耗性にすぐれた表面被覆切削工具
JP5590332B2 (ja) 耐摩耗性と切屑排出性に優れた表面被覆ドリル
US10751806B2 (en) Surface-coated cutting tool having excellent chipping resistance and wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181009

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181009

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181128

R150 Certificate of patent or registration of utility model

Ref document number: 6452006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150