JP2018034093A - Reverse osmosis membrane processing system, and operational method for the reverse osmosis membrane processing system - Google Patents

Reverse osmosis membrane processing system, and operational method for the reverse osmosis membrane processing system Download PDF

Info

Publication number
JP2018034093A
JP2018034093A JP2016167830A JP2016167830A JP2018034093A JP 2018034093 A JP2018034093 A JP 2018034093A JP 2016167830 A JP2016167830 A JP 2016167830A JP 2016167830 A JP2016167830 A JP 2016167830A JP 2018034093 A JP2018034093 A JP 2018034093A
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
water
treated
concentrated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016167830A
Other languages
Japanese (ja)
Other versions
JP6737661B2 (en
Inventor
清一 中村
Seiichi Nakamura
清一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2016167830A priority Critical patent/JP6737661B2/en
Priority to KR1020197009128A priority patent/KR20190043588A/en
Priority to CN201780053161.9A priority patent/CN109843416B/en
Priority to PCT/JP2017/030059 priority patent/WO2018043234A1/en
Publication of JP2018034093A publication Critical patent/JP2018034093A/en
Application granted granted Critical
Publication of JP6737661B2 publication Critical patent/JP6737661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reverse osmosis membrane processing system for keeping a water recovery rate automatically within a predetermined range in reverse osmosis membrane processing for processing water to be treated, in parallel by a plurality of reverse osmosis membrane units, to reduce the maintenance managing load of the reverse osmosis membrane processing system and obtain the treated water at a stable flow rate, and to provide an operational method for the reverse osmosis membrane processing system.SOLUTION: A reverse osmosis membrane processing system comprises: a plurality of reverse osmosis membrane units 100, 200 and 300 for treating water to be treated, in parallel; and a concentrated water draining amount control device for controlling the draining amounts of the condensed water from the individual reverse osmosis membrane units 100, 200 and 300 so that the water recovery rates by the individual reverse osmosis membrane units 100, 200 and 300 may be kept within a predetermined range.SELECTED DRAWING: Figure 1

Description

従来、医療用水や超純水の製造において、原水中のイオン成分やコロイド成分を除去するために、逆浸透膜装置が用いられている。逆浸透膜装置は、通常、中空糸状、スパイラル状、平板状、チューブ状等に形成した逆浸透膜を備える逆浸透膜モジュールが装填されたものである。   Conventionally, reverse osmosis membrane devices have been used to remove ionic and colloidal components in raw water in the production of medical water and ultrapure water. The reverse osmosis membrane device is usually loaded with a reverse osmosis membrane module including a reverse osmosis membrane formed in a hollow fiber shape, a spiral shape, a flat plate shape, a tube shape or the like.

逆浸透膜装置は、長期間使用していると、被処理水中のスケール成分から、不溶性の無機塩などスケールが生成し、これが膜面に付着、堆積して詰まりを生じ、不純物の除去性能が低下してしまう。そのため、逆浸透膜装置の被処理水に、上記付着物の膜面への付着を抑制するスケール防止剤が添加される場合がある。   When the reverse osmosis membrane device is used for a long period of time, scales such as insoluble inorganic salts are generated from the scale components in the water to be treated, which adheres to and accumulates on the membrane surface, resulting in clogging, and the ability to remove impurities. It will decline. Therefore, the scale inhibitor which suppresses adhesion to the film surface of the said deposit may be added to the to-be-processed water of a reverse osmosis membrane apparatus.

スケール防止剤の添加方法として、例えば、スケール防止剤に蛍光トレーサを配合して、蛍光トレーサの蛍光強度を測定して、蛍光強度の変化をスケール防止剤の濃度変化に関連付けることで、最適量のスケール防止剤を自動で添加する方法が開示されている(例えば、特許文献1参照。)。   As a method for adding the scale inhibitor, for example, by adding a fluorescent tracer to the scale inhibitor, measuring the fluorescence intensity of the fluorescent tracer, and correlating the change in the fluorescence intensity with the change in the concentration of the scale inhibitor, A method of automatically adding a scale inhibitor is disclosed (for example, see Patent Document 1).

また、逆浸透膜装置においては、安定した水量で透過水を得、また、被処理水中のスケール成分からスケールの生成を起こさせないような濃縮濃度に制御するために、水回収率を所定の範囲で一定に保つのが一般的である。ところが、上記スケール生成によって膜面に付着物が付着した場合には、透過水又は濃縮水の流量の低下により、水回収率の低下又は上昇が起こる。   In the reverse osmosis membrane device, the water recovery rate is controlled within a predetermined range in order to obtain permeated water with a stable amount of water, and to control the concentration so as not to cause scale generation from scale components in the water to be treated. It is common to keep it constant. However, when deposits adhere to the membrane surface due to the scale generation, the water recovery rate decreases or increases due to a decrease in the flow rate of the permeate or concentrated water.

そのため、水回収率を所定の範囲で一定に保つ様々な方法が検討されている。このような方法として、例えば、ろ過装置を有する第一水処理部と、逆浸透膜装置を有する第二水処理部を有する水処理システムにおいて、第一水処理部の運転状態に基づいて、第二水処理部の逆浸透膜装置の濃縮水の排出量を調節する方法が提案されている(例えば、特許文献2参照。)。   Therefore, various methods for keeping the water recovery rate constant within a predetermined range have been studied. As such a method, for example, in a water treatment system having a first water treatment unit having a filtration device and a second water treatment unit having a reverse osmosis membrane device, based on the operating state of the first water treatment unit, A method for adjusting the amount of concentrated water discharged from the reverse osmosis membrane device of the two-water treatment unit has been proposed (see, for example, Patent Document 2).

特開2008−533438号公報JP 2008-533438 A 特許第4650740号公報Japanese Patent No. 4650740

上記したように、一般に、逆浸透膜装置では、水回収率を調整することで、スケールが生成しないように濃度制御することや、スケール防止剤の適量注入によって、スケールの生成を抑制している。   As described above, in general, in the reverse osmosis membrane device, by adjusting the water recovery rate, the concentration is controlled so as not to generate the scale, and the generation of the scale is suppressed by injecting an appropriate amount of the scale inhibitor. .

ここで、処理水流量の極めて多い、大型の逆浸透膜処理システムは、複数の逆浸透膜ユニットによって被処理水を並列処理する構成である。各逆浸透膜ユニットは、多段の逆浸透膜バンクを備えて構成される。逆浸透膜バンクは、複数の逆浸透膜モジュールを多段で内装した逆浸透膜ベッセルを、並列に配置したものである。   Here, a large-scale reverse osmosis membrane treatment system having an extremely large treated water flow rate has a configuration in which treated water is treated in parallel by a plurality of reverse osmosis membrane units. Each reverse osmosis membrane unit includes a multi-stage reverse osmosis membrane bank. The reverse osmosis membrane bank is a parallel arrangement of reverse osmosis membrane vessels in which a plurality of reverse osmosis membrane modules are housed in multiple stages.

このような大型の逆浸透膜処理システムにおいては、複数の逆浸透膜ユニットは、これらを同じ条件で運転していても、各逆浸透膜ユニットで水回収率が各々異なった変動を起こす。これは、逆浸透膜ユニットごとにスケール生成の度合いが異なり、逆浸透膜ユニットごとにモジュールの詰まり具合が異なったり、特定の逆浸透膜ユニットのみ新品の逆浸透膜モジュールが組み込まれていたりするためである。   In such a large reverse osmosis membrane treatment system, even if these reverse osmosis membrane units are operated under the same conditions, the water recovery rates of the reverse osmosis membrane units vary differently. This is because the degree of scale generation differs for each reverse osmosis membrane unit, and the degree of clogging of the module differs for each reverse osmosis membrane unit, or a new reverse osmosis membrane module is incorporated only in a specific reverse osmosis membrane unit. It is.

また、大型の逆浸透膜処理システムにおいては、複数の逆浸透膜ユニットのうちのある1基について被処理水の処理を停止し、薬品クリーニング洗浄を行うとともに、他の逆浸透膜ユニットによって被処理水の処理を継続することが行われる。この場合にも、逆浸透膜処理システム全体としての水回収率の変動が生じる。このように、水回収率の変動が生じると、逆浸透膜処理システムにおける処理水流量の変動が起こる。   In a large reverse osmosis membrane treatment system, treatment of water to be treated is stopped for one of a plurality of reverse osmosis membrane units, chemical cleaning is performed, and treatment is performed by another reverse osmosis membrane unit. The water treatment is continued. Also in this case, the water recovery rate varies as a whole reverse osmosis membrane treatment system. Thus, when the fluctuation | variation of a water recovery rate arises, the fluctuation | variation of the treated water flow volume in a reverse osmosis membrane processing system will occur.

そのため、従来、大型の逆浸透膜処理システムでは、水回収率の変動を修正するために、例えば、各逆浸透膜ユニットでの水回収率が均等になるように手動で調整して、逆浸透膜処理システム全体の水回収率を維持することや、各ユニットの透過水流量が均等になるようにすること等が試みられていた。   For this reason, conventionally, in large reverse osmosis membrane treatment systems, for example, by manually adjusting the water recovery rate in each reverse osmosis membrane unit so as to correct the fluctuation of the water recovery rate, reverse osmosis Attempts have been made to maintain the water recovery rate of the entire membrane treatment system and to make the permeate flow rate of each unit uniform.

さらに、スケール防止剤が使用される場合、複数ある逆浸透膜ユニットにおけるスケール生成度合いが各々異なる状況や、複数ある逆浸透膜ユニットのうち1基を停止して行う作業等によって、逆浸透膜処理システムに供給される被処理水の供給流量が変動して、スケール防止剤の濃度が変動してしまう。この際にも、逆浸透膜システムの被処理水に供給されるスケール防止剤の添加量が手動で調節されていた。   Further, when a scale inhibitor is used, the reverse osmosis membrane treatment is performed depending on the situation in which the degree of scale generation in each of the plurality of reverse osmosis membrane units is different, or work performed by stopping one of the plurality of reverse osmosis membrane units. The supply flow rate of the water to be treated supplied to the system fluctuates and the concentration of the scale inhibitor changes. Also at this time, the amount of the scale inhibitor added to the treated water of the reverse osmosis membrane system was manually adjusted.

これらのことから、特に、処理水流量の極めて多い大型の逆浸透膜処理システムでは、被処理水へのスケール防止剤の供給濃度や水回収率の調整のためのバルブの開閉操作や開度調節操作などの作業負荷が極めて高いという問題があった。   For these reasons, especially in large reverse osmosis membrane treatment systems with extremely high treated water flow rates, valve opening / closing operations and opening adjustments are required to adjust the concentration of scale inhibitor to be treated and the water recovery rate. There was a problem that the workload of operations and the like was extremely high.

さらに、上記バルブの開閉操作を行った場合にも、各逆浸透膜ユニットにおけるバルブの開度を変化させると、これが別の逆浸透膜ユニットの透過水流量を変化させて、当該逆浸透膜ユニットの水回収率が変化してしまう。したがって、例えば、逆浸透膜ユニットのバルブを手動で操作することで、複数の逆浸透膜ユニットの水回収率を均等になるように調整することは困難であり、いずれも場合でも、設定値に正確に調整することはできなかった。   Furthermore, even when the opening and closing operation of the valve is performed, if the opening of the valve in each reverse osmosis membrane unit is changed, this changes the permeate flow rate of another reverse osmosis membrane unit, and the reverse osmosis membrane unit The water recovery rate will change. Therefore, for example, it is difficult to adjust the water recovery rate of a plurality of reverse osmosis membrane units to be equal by manually operating the valve of the reverse osmosis membrane unit. It was not possible to adjust accurately.

また、ある逆浸透膜ユニットにおいて水回収率の変動が起こった状況で、逆浸透膜処理システム全体としての処理水流量を維持しようとすると、新品の逆浸透膜モジュールが組み込まれた逆浸透膜ユニットなど、詰まりの少ない特定の逆浸透膜ユニットに被処理水が流れやすく、複数の逆浸透膜ユニットで水回収率をそれぞれ均等に得ることが困難であるという問題もあった。   In addition, in a situation where the water recovery rate fluctuates in a reverse osmosis membrane unit, when trying to maintain the treated water flow rate as a whole reverse osmosis membrane treatment system, a reverse osmosis membrane unit incorporating a new reverse osmosis membrane module For example, the water to be treated easily flows to a specific reverse osmosis membrane unit with little clogging, and there is a problem that it is difficult to obtain a water recovery rate evenly with a plurality of reverse osmosis membrane units.

詰まりの少ない特定の逆浸透膜ユニットに被処理水が多く供給されると、当該逆浸透膜ユニットにおける透過水流量が増加してしまい、当該逆浸透膜ユニットの水回収率が大きくなってしまう。その結果、当該逆浸透膜ユニットに組み込まれた逆浸透膜モジュールの劣化が早まり、結果的に逆浸透膜処理システム全体のライフが低下してしまうことも分かってきた。逆浸透膜処理システム全体のライフが低下することで、逆浸透膜処理システム設計時の想定以上に、逆浸透膜の洗浄頻度が増加し、さらに、逆浸透膜モジュールの交換頻度が増加してしまう。   When a large amount of water to be treated is supplied to a specific reverse osmosis membrane unit with little clogging, the permeate flow rate in the reverse osmosis membrane unit increases, and the water recovery rate of the reverse osmosis membrane unit increases. As a result, it has been found that the reverse osmosis membrane module incorporated in the reverse osmosis membrane unit is rapidly deteriorated, and as a result, the life of the entire reverse osmosis membrane treatment system is reduced. Since the life of the entire reverse osmosis membrane treatment system is reduced, the frequency of cleaning the reverse osmosis membrane increases and the frequency of replacement of the reverse osmosis membrane module increases more than expected when designing the reverse osmosis membrane treatment system. .

さらには、逆浸透膜のスケール生成による詰まりは、処理水流量の増加に伴って急激に進行し、スケール防止剤の効果が急激に減少していくため、スケール防止剤の供給量の調整が極めて困難となるという問題もあった。   Furthermore, clogging due to scale formation in the reverse osmosis membrane progresses rapidly as the treated water flow rate increases, and the effect of the scale inhibitor decreases rapidly. There was also a problem that it became difficult.

これらの知見から、長期間にわたって処理水を安定的な流量で得るためには、水回収率を正確に調整することが重要であることが明らかとなった。   From these findings, in order to obtain treated water at a stable flow rate over a long period of time, it has become clear that it is important to accurately adjust the water recovery rate.

本発明は、上記した課題を解決するためになされたものであって、複数の逆浸透膜ユニットにより被処理水を並列処理する逆浸透膜処理において、水回収率を所定の範囲に自動で保ち、逆浸透膜処理システムの維持管理負荷を軽減するとともに、安定的な流量で処理水を得ることのできる、逆浸透膜処理システム及び逆浸透膜処理システムの運転方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and in reverse osmosis membrane treatment in which treated water is processed in parallel by a plurality of reverse osmosis membrane units, the water recovery rate is automatically maintained within a predetermined range. An object of the present invention is to provide a reverse osmosis membrane treatment system and a method of operating a reverse osmosis membrane treatment system that can reduce the maintenance load of the reverse osmosis membrane treatment system and obtain treated water at a stable flow rate. .

本発明の逆浸透膜処理システムは、被処理水を並列処理する複数の逆浸透膜ユニットと、各逆浸透膜ユニットによる水回収率が所定の範囲で維持されるように、各逆浸透膜ユニットからの濃縮水の排水量を制御する濃縮水排水量制御装置とを備えることを特徴とする。   The reverse osmosis membrane treatment system of the present invention includes a plurality of reverse osmosis membrane units that process treated water in parallel, and each reverse osmosis membrane unit so that the water recovery rate by each reverse osmosis membrane unit is maintained within a predetermined range. And a concentrated water drainage amount control device for controlling the drainage amount of the concentrated water from the water.

本発明の逆浸透膜処理システムでは、濃縮水排水量制御装置によって、個々の逆浸透膜ユニットで、水回収率を所定の範囲に自動で維持することができる。そのため、特定の逆浸透膜ユニットのみで透過水流量が増大することがなく、当該逆浸透膜ユニットのライフが急激に短縮されることもなくなる。そのため、逆浸透膜処理システム全体のライフを長期化することができる。また、水回収率を自動で制御するため、バルブの操作などの作業負荷が軽減される。   In the reverse osmosis membrane treatment system of the present invention, the water recovery rate can be automatically maintained within a predetermined range by each reverse osmosis membrane unit by the concentrated water discharge amount control device. Therefore, the permeated water flow rate does not increase only with a specific reverse osmosis membrane unit, and the life of the reverse osmosis membrane unit is not rapidly shortened. Therefore, the life of the entire reverse osmosis membrane treatment system can be prolonged. In addition, since the water recovery rate is automatically controlled, a work load such as valve operation is reduced.

本発明の逆浸透膜処理システムは、前記複数の逆浸透膜ユニットの上流側で被処理水へスケール防止剤を供給するスケール防止剤供給装置と、前記複数の逆浸透膜ユニットに供給される前記被処理水中のスケール防止剤濃度を検出するスケール防止剤濃度検出装置と、前記スケール防止剤濃度検出装置の出力により前記スケール防止剤供給装置から前記被処理水へのスケール防止剤の供給量を制御するスケール防止剤供給量制御装置とをさらに備えることが好ましい。   The reverse osmosis membrane treatment system of the present invention includes a scale inhibitor supply device that supplies a scale inhibitor to the water to be treated on the upstream side of the plurality of reverse osmosis membrane units, and the plurality of reverse osmosis membrane units supplied to the plurality of reverse osmosis membrane units. A scale inhibitor concentration detecting device for detecting a concentration of the scale inhibitor in the water to be treated, and an output of the scale inhibitor concentration detecting device to control a supply amount of the scale inhibitor from the scale inhibitor supply device to the water to be treated. It is preferable to further include a scale inhibitor supply amount control device.

本発明の逆浸透膜処理システムにおいて、前記複数の逆浸透膜ユニットの各逆浸透膜ユニットは、前記各逆浸透膜ユニットに被処理水を供給する被処理水供給管と、前記各逆浸透膜ユニットを透過した透過水を流出させる透過水流出管と、前記各逆浸透膜ユニットの濃縮水を流出させる濃縮水流出管とを備え、前記濃縮水排水量制御装置は、前記濃縮水流出管に介装された濃縮水流量調節バルブと、前記透過水流出管内の前記透過水の流量を測定する透過水流量測定装置と、前記濃縮水流出管内の前記濃縮水の流量を測定する濃縮水流量測定装置と、前記透過水流量測定装置による測定値と前記濃縮水流量測定装置による測定値に基づいて、前記各逆浸透膜ユニットにおける水回収率を算出する演算部と、前記演算部により算出される水回収率が所定の略一定の値に保たれるように、前記濃縮水流量調節バルブを制御する制御装置とを備えることが好ましい。   In the reverse osmosis membrane treatment system of the present invention, each reverse osmosis membrane unit of the plurality of reverse osmosis membrane units includes a treated water supply pipe for supplying treated water to each reverse osmosis membrane unit, and each reverse osmosis membrane A permeated water outflow pipe for flowing out the permeated water that has passed through the unit, and a concentrated water outflow pipe for discharging the concentrated water of each reverse osmosis membrane unit, and the concentrated water drainage control device is interposed in the concentrated water outflow pipe. Concentrated water flow control valve, a permeate flow rate measuring device for measuring the flow rate of the permeated water in the permeate outflow tube, and a concentrated water flow rate measuring device for measuring the flow rate of the concentrated water in the concentrated water outflow tube A calculation unit that calculates a water recovery rate in each reverse osmosis membrane unit based on a measurement value obtained by the permeate flow rate measurement device and a measurement value obtained by the concentrated water flow rate measurement device, and water calculated by the calculation unit Recovery So they are kept at a predetermined substantially constant value, it is preferable that a control device for controlling the concentrated water flow control valve.

本発明の逆浸透膜処理システムにおいて、前記複数の逆浸透膜ユニットは、多段の逆浸透膜バンクを備えており、前記多段の逆浸透膜バンクにおいて、前段側の逆浸透膜バンクの濃縮水が、後段側の逆浸透膜バンクの供給側に各々供給され、前記濃縮水排水量制御装置は、前記多段の逆浸透膜バンクにおける最終段の逆浸透膜バンクからの濃縮水の排水量を制御することが好ましい。   In the reverse osmosis membrane treatment system of the present invention, each of the plurality of reverse osmosis membrane units includes a multi-stage reverse osmosis membrane bank, and in the multi-stage reverse osmosis membrane bank, the concentrated water from the reverse osmosis membrane bank on the front stage side is provided. The concentrated water drainage amount control device controls the drainage amount of the concentrated water from the final reverse osmosis membrane bank in the multi-stage reverse osmosis membrane bank. preferable.

本発明の逆浸透膜処理システムにおいて、前記被処理水は、硬度成分及びシリカから選ばれる1種以上を含むことが好ましい。また、前記被処理水のpHは、3.5〜11であることが好ましい。   In the reverse osmosis membrane treatment system of the present invention, the water to be treated preferably contains at least one selected from a hardness component and silica. Moreover, it is preferable that pH of the said to-be-processed water is 3.5-11.

本発明の逆浸透膜処理システムにおける水回収率は、50%〜90%であることが好ましい。   The water recovery rate in the reverse osmosis membrane treatment system of the present invention is preferably 50% to 90%.

本発明の逆浸透膜処理システムの運転方法は、被処理水を並列処理するように配置された複数の逆浸透膜ユニットを備える逆浸透膜処理システムの運転方法であって、前記複数の逆浸透膜ユニットのうち各逆浸透膜ユニットからの濃縮水の排水量を制御する濃縮水排水量制御装置を設けて、前記各逆浸透膜ユニットの濃縮水の排水量をそれぞれ運転状態に応じて自動で制御するとともに、前記複数の逆浸透膜ユニットの上流側で被処理水へスケール防止剤を供給するスケール防止剤供給装置と、前記複数の逆浸透膜ユニットに供給される前記被処理水のスケール防止剤濃度を検出するスケール防止剤濃度検出装置と、前記スケール防止剤濃度検出装置の出力により前記スケール防止剤供給装置から前記被処理水へのスケール防止剤の供給量を制御する制御装置とを設け、前記複数の逆浸透膜ユニットのうち、少なくとも1つの逆浸透膜ユニットにおいて被処理水の供給流量の変動があっても、前記複数の逆浸透膜ユニットに供給されるスケール防止剤供給濃度を所定の範囲に維持させることを特徴とする。   The operation method of the reverse osmosis membrane treatment system of the present invention is an operation method of a reverse osmosis membrane treatment system comprising a plurality of reverse osmosis membrane units arranged to process water to be treated in parallel. Concentrated water drainage control device for controlling the drainage amount of concentrated water from each reverse osmosis membrane unit among the membrane units, and automatically controlling the drainage amount of concentrated water of each reverse osmosis membrane unit according to the operating state A scale inhibitor supplying device for supplying scale inhibitor to the water to be treated upstream of the plurality of reverse osmosis membrane units; and a scale inhibitor concentration of the water to be treated supplied to the plurality of reverse osmosis membrane units. An amount of scale inhibitor supplied from the scale inhibitor supply device to the water to be treated is determined by an output of the scale inhibitor concentration detector to be detected and an output of the scale inhibitor concentration detector. And a control device for controlling the water to be supplied to the plurality of reverse osmosis membrane units even if there is a fluctuation in the supply flow rate of the water to be treated in at least one of the plurality of reverse osmosis membrane units. The scale inhibitor supply concentration is maintained in a predetermined range.

本発明の逆浸透膜処理システム及び逆浸透膜処理システムの運転方法によれば、複数の逆浸透膜ユニットにより被処理水を並列処理する逆浸透膜処理において、水回収率を所定の範囲に自動で保ち、逆浸透膜処理システムの維持管理負荷を軽減するとともに、安定的な流量で処理水を得ることができる。   According to the reverse osmosis membrane treatment system and the operation method of the reverse osmosis membrane treatment system of the present invention, in the reverse osmosis membrane treatment in which treated water is treated in parallel by a plurality of reverse osmosis membrane units, the water recovery rate is automatically set within a predetermined range. In addition to reducing the maintenance load of the reverse osmosis membrane treatment system, treated water can be obtained at a stable flow rate.

実施形態の逆浸透膜処理システムを概略的に表わす図である。It is a figure showing the reverse osmosis membrane processing system of an embodiment roughly. 逆浸透膜処理システムに用いられる逆浸透膜ユニットの一例を概略的に表わす図である。It is a figure which represents roughly an example of the reverse osmosis membrane unit used for a reverse osmosis membrane processing system. 逆浸透膜ユニットの他の一例を概略的に表わす図である。It is a figure which represents schematically another example of a reverse osmosis membrane unit.

以下、図面を参照して、実施形態を詳細に説明する。
(第1の実施形態)
図1に示すように、第1の実施形態に係る逆浸透膜処理システム1は、被処理水を並列処理する3基の逆浸透膜ユニット100、200、300を有している。逆浸透膜ユニット100、200、300は例えば、それぞれ、被処理水を直列処理する逆浸透膜バンクを多段で備えて構成される。逆浸透膜バンクは、複数の逆浸透膜モジュールを多段で内装した逆浸透膜ベッセルを、並列に配置したものである。
Hereinafter, embodiments will be described in detail with reference to the drawings.
(First embodiment)
As shown in FIG. 1, the reverse osmosis membrane treatment system 1 according to the first embodiment includes three reverse osmosis membrane units 100, 200, and 300 that process treated water in parallel. Each of the reverse osmosis membrane units 100, 200, and 300 includes, for example, multiple stages of reverse osmosis membrane banks that serially process the water to be treated. The reverse osmosis membrane bank is a parallel arrangement of reverse osmosis membrane vessels in which a plurality of reverse osmosis membrane modules are housed in multiple stages.

逆浸透膜ユニット100には、逆浸透膜ユニット100に被処理水を供給する被処理水供給管121と、逆浸透膜ユニットから濃縮水を排出する濃縮水流出管171と、逆浸透膜ユニット100から透過水を排出する透過水流出管161が接続されている。被処理水供給管121には、逆浸透膜ユニット100に流入する被処理水の流量を調節する被処理水流量調節バルブV11が介装されている。濃縮水流出管171には、濃縮水流出管171から排出される濃縮水の流量を調節する濃縮水流量調節バルブV21が介装されている。逆浸透膜ユニット100は、逆浸透膜ユニット100における水回収率が所定の範囲で一定となるように、逆浸透膜ユニット100の濃縮水の排出流量を制御する濃縮水排出量制御装置を備えている。   The reverse osmosis membrane unit 100 includes a treated water supply pipe 121 that supplies treated water to the reverse osmosis membrane unit 100, a concentrated water outflow pipe 171 that discharges concentrated water from the reverse osmosis membrane unit, and a reverse osmosis membrane unit 100. A permeate outflow pipe 161 for discharging the permeate from is connected. The treated water supply pipe 121 is provided with a treated water flow rate adjustment valve V11 for adjusting the flow rate of the treated water flowing into the reverse osmosis membrane unit 100. The concentrated water outflow pipe 171 is provided with a concentrated water flow rate adjustment valve V21 that adjusts the flow rate of the concentrated water discharged from the concentrated water outflow pipe 171. The reverse osmosis membrane unit 100 includes a concentrated water discharge control device that controls the discharge flow rate of the concentrated water of the reverse osmosis membrane unit 100 so that the water recovery rate in the reverse osmosis membrane unit 100 is constant within a predetermined range. Yes.

逆浸透膜ユニット100において、濃縮水排出量制御装置は、透過水流出管161内の透過水の流量を測定する透過水流量測定装置181と、濃縮水流出管171内の濃縮水の流量を測定する濃縮水流量測定装置191と、透過水流量測定装置181で測定された透過水の流量及び濃縮水流量測定装置191で測定された濃縮水の流量に基づいて、逆浸透膜ユニット100の水回収率を算出する演算部301を備えている。   In the reverse osmosis membrane unit 100, the concentrated water discharge amount control device measures the flow rate of the permeated water flow measuring device 181 that measures the flow rate of the permeated water in the permeated water outflow tube 161 and the flow rate of the concentrated water in the concentrated water outflow tube 171. Water recovery of the reverse osmosis membrane unit 100 based on the flow rate of the permeated water measured by the permeated water flow rate measuring device 181 and the flow rate of the concentrated water measured by the concentrated water flow rate measuring device 191 A calculation unit 301 for calculating the rate is provided.

逆浸透膜ユニット200、300は、逆浸透膜ユニット100と同様の構成である。逆浸透膜ユニット200、300には、それぞれ、被処理水供給管122、123、透過水流出管162、163、濃縮水流出管172、173が接続されている。被処理水供給管122、123には、それぞれ、被処理水流量調節バルブV12、V13が介装されている。濃縮水流出管172、173には、それぞれ、濃縮水流量調節バルブV22、V23が介装されている。また、逆浸透膜ユニット200、300は、それぞれ、透過水流量測定装置182、183、濃縮水流量測定装置192、193、演算部302、303を備えた濃縮水排出量制御装置を有している。   The reverse osmosis membrane units 200 and 300 have the same configuration as the reverse osmosis membrane unit 100. Connected to the reverse osmosis membrane units 200 and 300 are treated water supply pipes 122 and 123, permeate outflow pipes 162 and 163, and concentrated water outflow pipes 172 and 173, respectively. To-be-treated water supply pipes 122 and 123 are respectively provided with to-be-treated water flow rate adjustment valves V12 and V13. Concentrated water flow control valves V22 and V23 are interposed in the concentrated water outflow pipes 172 and 173, respectively. The reverse osmosis membrane units 200 and 300 also have a concentrated water discharge control device including permeate flow rate measuring devices 182 and 183, concentrated water flow rate measuring devices 192 and 193, and calculation units 302 and 303, respectively. .

また、逆浸透膜処理システム1は、被処理水を供給する被処理水供給管12と、被処理水にスケール防止剤を供給するスケール防止剤供給装置13と、逆浸透膜処理システム1に供給される被処理水中のスケール防止剤の濃度を測定するスケール防止剤濃度検出装置14とを備えている。被処理水供給管12には、ポンプ15が介装されており、ポンプ15によって、スケール防止剤の供給された被処理水が、逆浸透膜ユニット100、200、300に供給される。   The reverse osmosis membrane treatment system 1 supplies the treated water supply pipe 12 for supplying the treated water, the scale inhibitor supply device 13 for supplying the scale inhibitor to the treated water, and the reverse osmosis membrane treatment system 1. And a scale inhibitor concentration detector 14 for measuring the concentration of the scale inhibitor in the water to be treated. The treated water supply pipe 12 is provided with a pump 15, and the treated water supplied with the scale inhibitor is supplied to the reverse osmosis membrane units 100, 200, and 300 by the pump 15.

被処理水供給管12は、被処理水供給管121、122、123に接続されて、ポンプ15により加圧された被処理水を各逆浸透膜ユニット100、200、300に並列に供給する。   The to-be-treated water supply pipe 12 is connected to the to-be-treated water supply pipes 121, 122, and 123, and supplies the to-be-treated water pressurized by the pump 15 to the reverse osmosis membrane units 100, 200, and 300 in parallel.

また、逆浸透膜処理システム1は、制御装置40を備えている。制御装置40は、濃縮水流量調節バルブV21〜23をそれぞれ制御して、濃縮水流出管171〜173を通流する濃縮水の流量をそれぞれ調節する。また、制御装置40は、スケール防止剤供給装置13を制御して、スケール防止剤供給装置13により供給されるスケール防止剤の濃度を調節することができる。   Further, the reverse osmosis membrane treatment system 1 includes a control device 40. The control device 40 controls the concentrated water flow rate adjusting valves V21 to 23, respectively, to adjust the flow rates of the concentrated water flowing through the concentrated water outlet pipes 171 to 173, respectively. Further, the control device 40 can control the scale inhibitor supply device 13 to adjust the concentration of the scale inhibitor supplied by the scale inhibitor supply device 13.

次に、逆浸透膜ユニット100によって、被処理水を逆浸透膜処理する方法について説明する。ポンプ15を作動させると、被処理水が、被処理水供給管12を介して、逆浸透膜ユニット100に供給される。ポンプ15の吐出圧は、逆浸透膜処理システム1に備えられる逆浸透膜ユニットの数、各逆浸透膜ユニットにおける逆浸透膜バンクの段数、逆浸透膜ベッセルの数等にもよるが、処理水流量が50〜5000m/hである逆浸透膜処理システムにおいては、例えば、0.5〜3.0MPa程度である。 Next, a method for performing reverse osmosis membrane treatment of water to be treated by the reverse osmosis membrane unit 100 will be described. When the pump 15 is operated, the treated water is supplied to the reverse osmosis membrane unit 100 via the treated water supply pipe 12. The discharge pressure of the pump 15 depends on the number of reverse osmosis membrane units provided in the reverse osmosis membrane treatment system 1, the number of reverse osmosis membrane banks in each reverse osmosis membrane unit, the number of reverse osmosis membrane vessels, etc. In the reverse osmosis membrane treatment system having a flow rate of 50 to 5000 m 3 / h, for example, about 0.5 to 3.0 MPa.

被処理水は、例えば、市水、井水、工業用水等の原水である。また、被処理水は、超純水の使用場所で使用され、回収され、その後必要に応じて薬品除去処理等の施された使用済み回収水であってもよい。例えば、原水には、不溶性の無機塩を形成してスケール成分を生成し得るイオンとして、カルシウム、マグネシウム等の硬度成分及び溶存炭酸ガスが、炭酸カルシウム換算の合計で10mg/L〜300mg/L含まれている。また、原水には、シリカ(Si)が1mg/L〜50mg/L程度含まれている。原水のpHは3.5〜11程度である。   The treated water is, for example, raw water such as city water, well water, and industrial water. Moreover, the to-be-processed water may be used recovered water that is used and collected at a place where ultrapure water is used, and thereafter subjected to chemical removal processing or the like as necessary. For example, the raw water contains 10 mg / L to 300 mg / L of a total of calcium carbonate converted hardness components and dissolved carbon dioxide as ions that can form an insoluble inorganic salt to form a scale component. It is. The raw water contains about 1 mg / L to 50 mg / L of silica (Si). The pH of the raw water is about 3.5-11.

ポンプ15の上流側で、スケール防止剤供給装置13によって、被処理水にスケール防止剤が供給される。また、スケール防止剤濃度検出装置14によって、スケール防止剤の供給された被処理水中のスケール防止剤の濃度が測定される。スケール防止剤濃度検出装置14による測定値は、制御装置40に入力される。   On the upstream side of the pump 15, the scale inhibitor is supplied to the treated water by the scale inhibitor supply device 13. Further, the scale inhibitor concentration detector 14 measures the concentration of the scale inhibitor in the water to be treated supplied with the scale inhibitor. The measurement value by the scale inhibitor concentration detector 14 is input to the controller 40.

スケール防止剤供給装置13は、例えば、スケール防止剤を貯留するタンクと、当該タンク内のスケール防止剤を所定量で計量して、被処理水供給管12内に供給する定量ポンプからなる。スケール防止剤は、シリカスケール、カルシウムスケール、マグネシウムスケールなどの生成や、生成したスケールの逆浸透膜面への付着を化学的に抑制するものであり、無機ポリリン酸類、ホスホン酸類、カルボキシル基含有コポリマー等を主成分とするものである。   The scale inhibitor supply device 13 includes, for example, a tank that stores the scale inhibitor and a metering pump that measures the scale inhibitor in the tank by a predetermined amount and supplies the scale inhibitor into the treated water supply pipe 12. Anti-scale agents are those that chemically inhibit the generation of silica scale, calcium scale, magnesium scale, etc., and the adhesion of the generated scale to the reverse osmosis membrane surface. Inorganic polyphosphoric acids, phosphonic acids, carboxyl group-containing copolymers Etc. as a main component.

スケール防止剤の供給された被処理水は、逆浸透膜ユニット100〜300に供給され、ここで逆浸透膜処理されて、塩類が除去される。逆浸透膜ユニット100〜300で除去される塩類は、塩化物イオン、硫酸イオン、硝酸イオン、フッ化物イオン、イオン化した重炭酸イオン等のアニオン成分や、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン等のカチオン成分、及びシリカ、ボロン等の弱電解質等である。また、上記逆浸透膜処理においては、被処理水中の有機物も除去される。   The treated water supplied with the scale inhibitor is supplied to the reverse osmosis membrane units 100 to 300, where the reverse osmosis membrane treatment is performed to remove salts. Salts removed by the reverse osmosis membrane units 100 to 300 are anion components such as chloride ions, sulfate ions, nitrate ions, fluoride ions, ionized bicarbonate ions, sodium ions, potassium ions, calcium ions, magnesium ions. And the like, and weak electrolytes such as silica and boron. In the reverse osmosis membrane treatment, organic substances in the water to be treated are also removed.

このとき、1基の逆浸透膜処理ユニット100の水回収率は、例えば、導電率が50μS/cm以上の透過水を得る場合、50%〜90%に設定される。逆浸透膜ユニット100の水回収率は、{透過水流出管161の透過水流量/(透過水流出管161の透過水流量+濃縮水流出管171の濃縮水流量)}×100(%)で算出される。   At this time, the water recovery rate of one reverse osmosis membrane treatment unit 100 is set to 50% to 90%, for example, when permeate having an electric conductivity of 50 μS / cm or more is obtained. The water recovery rate of the reverse osmosis membrane unit 100 is {permeate flow rate of the permeate outflow tube 161 / (permeate flow rate of the permeate outflow tube 161 + concentrate flow rate of the concentrated water outflow tube 171)} × 100 (%). Calculated.

また、逆浸透膜ユニット100における塩類除去率は、水温25℃、上記被処理水の供給圧における除去率として、90%〜99.9%である。   Moreover, the salt removal rate in the reverse osmosis membrane unit 100 is 90% to 99.9% as a removal rate at a water temperature of 25 ° C. and a supply pressure of the water to be treated.

逆浸透膜ユニット100により得られた透過水は、透過水流出管161から流出する。この過程で、透過水流量測定装置181により、透過水流出管161を通流する透過水の流量が測定される。また、上記逆浸透膜処理により生じる濃縮水は、濃縮水流出管171から流出する。この過程で、濃縮水流量測定装置191により、濃縮水流出管171を通流する濃縮の流量が測定される。透過水流量測定装置181による透過水流量及び濃縮水流量測定装置191による濃縮水流量の測定値は、それぞれ演算部301に入力される。   The permeate obtained by the reverse osmosis membrane unit 100 flows out from the permeate outflow pipe 161. In this process, the permeated water flow measuring device 181 measures the flow rate of the permeated water flowing through the permeated water outflow pipe 161. Further, the concentrated water generated by the reverse osmosis membrane treatment flows out from the concentrated water outflow pipe 171. In this process, the concentrated flow rate measuring device 191 measures the flow rate of concentration flowing through the concentrated water outflow pipe 171. The measured values of the permeated water flow rate measured by the permeated water flow rate measuring device 181 and the concentrated water flow rate measured by the concentrated water flow rate measuring device 191 are respectively input to the calculation unit 301.

透過水流量測定装置181及び濃縮水流量測定装置191としては、例えば、オリフィス流量計、面積流量計、超音波流量計の流量計等によって流量を測定し、アナログ式又はデジタル式で測定値を出力可能な出力付き流量指示計を使用することができる。   As the permeated water flow measuring device 181 and the concentrated water flow measuring device 191, for example, the flow rate is measured by an orifice flow meter, an area flow meter, a flow meter of an ultrasonic flow meter, etc., and the measured value is output in an analog type or a digital type. A flow indicator with possible output can be used.

演算部301は、上記透過水流量及び濃縮水流量の測定値に基づいて、逆浸透膜ユニット100の水回収率を算出し、その値を制御装置40に入力する。制御装置40は、演算部301による入力値に基づいて、濃縮水流量調節バルブV21の開度を、例えば、PID制御する。これにより、濃縮水流出管171から流出する濃縮水の流量を調節する。濃縮水流量調節バルブV21は、開度の調節可能な弁であり、空気式、電気式などにより弁体を駆動するアクチュエータ開閉弁である。   The calculation unit 301 calculates the water recovery rate of the reverse osmosis membrane unit 100 based on the measured values of the permeate flow rate and the concentrated water flow rate, and inputs the values to the control device 40. The control device 40 performs, for example, PID control on the opening degree of the concentrated water flow rate adjustment valve V21 based on the input value from the calculation unit 301. As a result, the flow rate of the concentrated water flowing out from the concentrated water outflow pipe 171 is adjusted. The concentrated water flow rate adjusting valve V21 is a valve whose opening degree can be adjusted, and is an actuator opening / closing valve that drives the valve body by an air type, an electric type or the like.

例えば、逆浸透膜ユニット100において、逆浸透膜面へのスケール生成等が生じ、透過水流量が減少した場合、透過水流量測定装置181による透過水流量の測定値が小さくなる。そのため、演算部301が算出する水回収率の値が小さくなる。   For example, in the reverse osmosis membrane unit 100, when scale generation or the like occurs on the reverse osmosis membrane surface and the permeate flow rate decreases, the measured value of the permeate flow rate measured by the permeate flow rate measuring device 181 decreases. Therefore, the value of the water recovery rate calculated by the calculation unit 301 becomes small.

水回収率の入力値が小さくなると、制御装置40が、濃縮水流出管171から流出する濃縮水の流量を減少させるように、濃縮水流量調節バルブV21を制御する。これにより濃縮水流量調節バルブV21の開度が絞られる。これにより、透過水流量が増加する。その結果、透過水流量測定装置181による透過水流量の測定値が増加し、濃縮水流量測定装置191による濃縮水流量が減少して、演算部301が算出する水回収率の値が大きくなる。このようにして、制御装置40は、逆浸透膜ユニット100の水回収率が所定の範囲で略一定の値になるように、濃縮水流量調節バルブV21の開度を調整する。   When the input value of the water recovery rate decreases, the control device 40 controls the concentrated water flow rate adjustment valve V21 so as to decrease the flow rate of the concentrated water flowing out from the concentrated water outflow pipe 171. Thereby, the opening degree of the concentrated water flow rate adjustment valve V21 is reduced. This increases the permeate flow rate. As a result, the measured value of the permeated water flow rate by the permeated water flow rate measuring device 181 increases, the concentrated water flow rate by the concentrated water flow rate measuring device 191 decreases, and the value of the water recovery rate calculated by the computing unit 301 increases. In this way, the control device 40 adjusts the opening degree of the concentrated water flow rate adjustment valve V21 so that the water recovery rate of the reverse osmosis membrane unit 100 becomes a substantially constant value within a predetermined range.

また、逆浸透膜ユニット100において、濃縮水流量が減少した場合、濃縮水流量測定装置191による濃縮水流量の測定値が小さくなる。そのため、演算部301が算出する水回収率の値が大きくなる。   Further, in the reverse osmosis membrane unit 100, when the concentrated water flow rate decreases, the measured value of the concentrated water flow rate by the concentrated water flow rate measuring device 191 decreases. Therefore, the value of the water recovery rate calculated by the calculation unit 301 is increased.

水回収率の入力値が大きくなると、制御装置40が、濃縮水流出管171から流出する濃縮水の流量を増加させるように、濃縮水流量調節バルブV21を制御する。これにより濃縮水流量調節バルブV21の開度が大きくされる。これにより、濃縮水流量が増加する。その結果、濃縮水流量測定装置191による濃縮水流量の測定値が増加し、透過水流量測定装置181による透過水流量が減少して、演算部301が算出する水回収率の値が小さくなる。このようにして、制御装置40は、逆浸透膜ユニット100の水回収率が所定の範囲で略一定の値になるように、濃縮水流量調節バルブV21の開度を調整する。   When the input value of the water recovery rate increases, the control device 40 controls the concentrated water flow rate adjustment valve V21 so as to increase the flow rate of the concentrated water flowing out from the concentrated water outflow pipe 171. Thereby, the opening degree of the concentrated water flow rate adjustment valve V21 is increased. Thereby, a concentrated water flow rate increases. As a result, the measured value of the concentrated water flow rate by the concentrated water flow rate measuring device 191 increases, the permeated water flow rate by the permeated water flow rate measuring device 181 decreases, and the value of the water recovery rate calculated by the calculation unit 301 becomes smaller. In this way, the control device 40 adjusts the opening degree of the concentrated water flow rate adjustment valve V21 so that the water recovery rate of the reverse osmosis membrane unit 100 becomes a substantially constant value within a predetermined range.

各逆浸透膜ユニットの水回収率は、制御装置40において、複数の逆浸透膜ユニットにそれぞれ同じ水回収率をあらかじめ設定してもよいし、使用される逆浸透膜の詰まり度合いとライフの関係を予め計測しておき、この予測を考慮して、水回収率の最適値を個々の逆浸透膜ユニットに設定してもよい。後者の場合、逆浸透膜の詰まり具合は、例えば、逆浸透膜の膜間差圧/フラックスで評価することができる(膜間差圧は当該逆浸透膜への被処理水の供給圧と濃縮水の流出圧の相加平均を透過水圧で除した値であり、フラックスは、当該逆浸透膜における透過水流量を逆浸透膜面積で除した値である。)。   As for the water recovery rate of each reverse osmosis membrane unit, the control device 40 may preset the same water recovery rate for each of the plurality of reverse osmosis membrane units, or the relationship between the degree of clogging of the reverse osmosis membrane used and the life May be measured in advance, and the optimum value of the water recovery rate may be set for each reverse osmosis membrane unit in consideration of this prediction. In the latter case, the degree of clogging of the reverse osmosis membrane can be evaluated by, for example, the transmembrane differential pressure / flux of the reverse osmosis membrane (the transmembrane differential pressure is the supply pressure and concentration of treated water to the reverse osmosis membrane). The value obtained by dividing the arithmetic mean of the outflow pressure of water by the permeated water pressure, and the flux is the value obtained by dividing the permeate flow rate in the reverse osmosis membrane by the reverse osmosis membrane area).

また、逆浸透膜ユニット100において、スケール生成により透過水流量及び濃縮水流量が変動したときには、逆浸透膜処理システム1における被処理水の供給流量も変動する。そのため、ポンプ15の吐出流量を変化させずに、所定の量でスケール防止剤が供給され続けると、被処理水中のスケール防止剤の濃度が変動してしまう。   Further, in the reverse osmosis membrane unit 100, when the permeate flow rate and the concentrated water flow rate change due to scale generation, the supply flow rate of the water to be treated in the reverse osmosis membrane treatment system 1 also changes. Therefore, if the scale inhibitor is continuously supplied in a predetermined amount without changing the discharge flow rate of the pump 15, the concentration of the scale inhibitor in the water to be treated will fluctuate.

この場合には、制御装置40は、スケール防止剤濃度検出装置14により測定されたスケール防止剤の濃度に基づいて、スケール防止剤供給装置13を制御する。これにより、スケール防止剤の供給量を自動的に変更させる。これにより、被処理水中のスケール防止剤の濃度が所定の最適濃度で維持される。また、制御装置40は、上記透過水流量の測定値及び濃縮水流量の測定値に基づいて、ポンプ15の吐出圧力又は吐出流量を制御してもよい。このようにすれば、被処理水中のスケール防止剤の濃度が所定の最適濃度でより安定的に維持することができる。   In this case, the control device 40 controls the scale inhibitor supply device 13 based on the scale inhibitor concentration measured by the scale inhibitor concentration detector 14. Thereby, the supply amount of the scale inhibitor is automatically changed. Thereby, the density | concentration of the scale inhibitor in to-be-processed water is maintained by the predetermined | prescribed optimal density | concentration. Further, the control device 40 may control the discharge pressure or the discharge flow rate of the pump 15 based on the measured value of the permeate flow rate and the measured value of the concentrated water flow rate. In this way, the concentration of the scale inhibitor in the water to be treated can be more stably maintained at a predetermined optimum concentration.

そして、被処理水中のスケール防止剤の濃度が所定の範囲の最適量に維持されるため、逆浸透膜ユニット100におけるスケール抑制効果を安定的に得ることができる。   And since the density | concentration of the scale inhibitor in to-be-processed water is maintained by the optimal quantity of a predetermined range, the scale suppression effect in the reverse osmosis membrane unit 100 can be acquired stably.

このように、透過水流出管161における透過水流量及び濃縮水流出管171における濃縮水流量から算出される水回収率に基づいて、濃縮水流量調節バルブV21の開度を自動制御し、濃縮水流出管171から流出する濃縮水の流量を調節することで、逆浸透膜ユニット100における水回収率を所定の略一定の値に保つことができる。また、逆浸透膜ユニット200、300についても上記逆浸透膜ユニット100で行われるのと同様に、それぞれ水回収率の調節が行われる。そのため、逆浸透膜処理システム1における水回収率を安定に保つことができる。その結果、各逆浸透膜ユニットにおける水回収率が、外因などにより変動した場合にも、逆浸透膜処理システム1全体の水回収率を維持するためのバルブの操作などの作業負荷が軽減される。   As described above, the opening degree of the concentrated water flow rate adjusting valve V21 is automatically controlled based on the water recovery rate calculated from the permeated water flow rate in the permeated water outflow tube 161 and the concentrated water flow rate in the concentrated water outflow tube 171. By adjusting the flow rate of the concentrated water flowing out of the outflow pipe 171, the water recovery rate in the reverse osmosis membrane unit 100 can be maintained at a predetermined substantially constant value. Further, similarly to the reverse osmosis membrane unit 100, the water recovery rate is adjusted for the reverse osmosis membrane units 200 and 300, respectively. Therefore, the water recovery rate in the reverse osmosis membrane treatment system 1 can be kept stable. As a result, even when the water recovery rate in each reverse osmosis membrane unit fluctuates due to an external factor or the like, the workload such as operation of a valve for maintaining the water recovery rate of the entire reverse osmosis membrane treatment system 1 is reduced. .

そして、本実施形態の逆浸透膜処理システムでは、複数の逆浸透膜ユニットにおいて、各逆浸透膜ユニットでそれぞれ水回収率が自動で調整されるため、逆浸透膜処理システムにおける洗浄サイクルを長期化することができるほか、逆浸透膜モジュールのライフを長く保つことができる。さらに、本実施形態の逆浸透膜処理システムでは、操作の簡易な流量計を用いて運転の管理を行っているため、運転管理のために、新たに、センサー、分析器等の設置をする必要がない。そのため、運転コストが低減されるとともに、故障や不具合の問題が少ないという利点がある。   In the reverse osmosis membrane treatment system of the present embodiment, the water recovery rate is automatically adjusted in each reverse osmosis membrane unit in each of the reverse osmosis membrane units, so the cleaning cycle in the reverse osmosis membrane treatment system is prolonged. In addition, the life of the reverse osmosis membrane module can be kept long. Furthermore, in the reverse osmosis membrane treatment system of the present embodiment, since operation is managed using a flow meter that is easy to operate, it is necessary to newly install sensors, analyzers, etc. for operation management. There is no. Therefore, there are advantages that the operating cost is reduced and that there are few problems of failure and malfunction.

また、被処理水供給管12における被処理水中のスケール防止剤の濃度に基づいて、スケール防止剤の供給量を自動制御する。このため、被処理水流量の変動が生じた場合にも、手動でのスケール防止剤の供給量の設定変更を行わずに、被処理水中のスケール防止剤の濃度を最適量に維持することができる。そのため、水回収率を維持するための作業負荷が著しく低減される。さらに、自動制御によって、各逆浸透膜ベッセルでの良好なスケール生成抑制効果が得られるため、逆浸透膜処理システム1におけるスケールの生成の抑制を自動で行うことができる。   Further, the supply amount of the scale inhibitor is automatically controlled based on the concentration of the scale inhibitor in the treated water in the treated water supply pipe 12. For this reason, even when fluctuations in the flow rate of the treated water occur, the concentration of the scale inhibitor in the treated water can be maintained at the optimum amount without manually changing the setting amount of the scale inhibitor. it can. Therefore, the work load for maintaining the water recovery rate is significantly reduced. Furthermore, since a favorable scale generation suppression effect in each reverse osmosis membrane vessel is obtained by automatic control, scale generation in the reverse osmosis membrane treatment system 1 can be automatically suppressed.

なお、上記の実施形態では、逆浸透膜処理システム1が3基の逆浸透膜ユニットを有する場合について説明したが、これは一例であり、逆浸透膜処理システム1に備えられる逆浸透膜ユニットの数は、2以上であればよい。   In the above embodiment, the case where the reverse osmosis membrane treatment system 1 has three reverse osmosis membrane units has been described, but this is an example, and the reverse osmosis membrane treatment system 1 includes the reverse osmosis membrane treatment system 1. The number may be two or more.

図2は、逆浸透膜ユニット100の構成の一例を概略的に示す図である。逆浸透膜処理ユニット100は、被処理水を並列処理する第1逆浸透膜ベッセル10及び第2逆浸透膜ベッセル11を備えている。   FIG. 2 is a diagram schematically showing an example of the configuration of the reverse osmosis membrane unit 100. The reverse osmosis membrane treatment unit 100 includes a first reverse osmosis membrane vessel 10 and a second reverse osmosis membrane vessel 11 for treating treated water in parallel.

第1の逆浸透膜ベッセル10及び第2の逆浸透膜ベッセル11にはそれぞれ、被処理水を供給する被処理水管10a、11aと、透過水を流出させる透過水管10b、11bと、濃縮水を流出させる濃縮水管10c、11cとが接続されている。被処理水管10a、11aは、被処理水供給管12に分岐して設けられている。また、透過水管10b、11bは、透過水流出管161に接続され、濃縮水管10c、11cは、濃縮水流出管171に接続されている。   Each of the first reverse osmosis membrane vessel 10 and the second reverse osmosis membrane vessel 11 has treated water pipes 10a and 11a for supplying the treated water, permeated water pipes 10b and 11b for flowing the permeated water, and concentrated water. Concentrated water pipes 10c and 11c to be discharged are connected. The treated water pipes 10 a and 11 a are branched from the treated water supply pipe 12. The permeated water pipes 10 b and 11 b are connected to the permeated water outflow pipe 161, and the concentrated water pipes 10 c and 11 c are connected to the concentrated water outflow pipe 171.

第1の逆浸透膜ベッセル10及び第2の逆浸透膜ベッセル11には、それぞれ複数の逆浸透膜モジュールm1、m2、m3が多段で内装されている。逆浸透膜モジュールm1、m2、m3は、例えば、モジュール内に、逆浸透膜と、逆浸透膜に被処理水を通水するための流路材とを収容して構成される。逆浸透膜モジュールm1、m2、m3において、逆浸透膜は、中空糸状、スパイラル状、平板状、チューブ状等に形成される。本実施形態の逆浸透膜モジュールm1、m2、m3においては、逆浸透膜は、耐圧性を高くして処理効率を向上させる点から、スパイラル状の逆浸透膜であることが好ましい。各逆浸透膜ベッセル10、20に備えられる逆浸透膜モジュールm1、m2、m3の構成はそれぞれ同じであってもよく異なっていてもよいが、同じであることが好ましい。   In the first reverse osmosis membrane vessel 10 and the second reverse osmosis membrane vessel 11, a plurality of reverse osmosis membrane modules m1, m2, and m3 are provided in multiple stages. The reverse osmosis membrane modules m1, m2, and m3 are configured, for example, by accommodating a reverse osmosis membrane and a flow path material for passing water to be treated through the reverse osmosis membrane in the module. In the reverse osmosis membrane modules m1, m2, and m3, the reverse osmosis membrane is formed in a hollow fiber shape, a spiral shape, a flat plate shape, a tube shape, or the like. In the reverse osmosis membrane modules m1, m2, and m3 of the present embodiment, the reverse osmosis membrane is preferably a spiral reverse osmosis membrane from the viewpoint of improving pressure resistance and improving processing efficiency. The configurations of the reverse osmosis membrane modules m1, m2, and m3 provided in each of the reverse osmosis membrane vessels 10 and 20 may be the same or different, but are preferably the same.

なお、図2に示す逆浸透膜ユニット100は、2基の逆浸透膜ベッセルを備えているが、逆浸透膜ユニット100に備えられる逆浸透膜ベッセルの数はこれに限定されない。逆浸透膜ユニット100の有する逆浸透膜ベッセルは2基以上の任意の数であってよい。   The reverse osmosis membrane unit 100 shown in FIG. 2 includes two reverse osmosis membrane vessels, but the number of reverse osmosis membrane vessels provided in the reverse osmosis membrane unit 100 is not limited thereto. The reverse osmosis membrane unit 100 may have any number of two or more reverse osmosis membrane vessels.

また、逆浸透膜ユニット100において、並列に配置された2基の逆浸透膜ベッセルにより逆浸透膜バンクが構成されている。逆浸透膜ユニット100は、この逆浸透膜バンクを1段のみで有しているが、上記逆浸透膜バンクを直列に接続した多段で構成されていてもよい。   Further, in the reverse osmosis membrane unit 100, a reverse osmosis membrane bank is constituted by two reverse osmosis membrane vessels arranged in parallel. The reverse osmosis membrane unit 100 has the reverse osmosis membrane bank in only one stage, but may be configured in multiple stages in which the reverse osmosis membrane banks are connected in series.

図3は、逆浸透膜バンクを2段で有する逆浸透膜ユニット101の構成を概略的に示す図である。逆浸透膜ユニット101において、図2に示す逆浸透膜ユニット100と共通する構成には同一の符号を付して共通する説明を省略する。   FIG. 3 is a diagram schematically showing the configuration of a reverse osmosis membrane unit 101 having two stages of reverse osmosis membrane banks. In the reverse osmosis membrane unit 101, the same components as those in the reverse osmosis membrane unit 100 shown in FIG.

逆浸透膜ユニット101において、並列に接続された逆浸透膜ベッセル50、51が前段側の逆浸透膜バンクを構成し、並列に接続された逆浸透膜ベッセル60、61が後段側の逆浸透膜バンクを構成している。逆浸透膜ユニット101においては、前段側の逆浸透膜バンクに設けられた逆浸透膜ベッセルの濃縮水管50c、51cが、被処理水供給管60dに接続され、被処理水供給管60dが、後段側の逆浸透膜バンクの被処理水管60a、61aと接続される。   In the reverse osmosis membrane unit 101, the reverse osmosis membrane vessels 50 and 51 connected in parallel constitute a reverse osmosis membrane bank on the front side, and the reverse osmosis membrane vessels 60 and 61 connected in parallel on the reverse osmosis membrane side It constitutes a bank. In the reverse osmosis membrane unit 101, the concentrated water pipes 50c and 51c of the reverse osmosis membrane vessel provided in the upstream reverse osmosis membrane bank are connected to the treated water supply pipe 60d, and the treated water supply pipe 60d is connected to the latter stage. It connects with the to-be-processed water pipes 60a and 61a of the reverse osmosis membrane bank of the side.

逆浸透膜ユニット101において、下流側の逆浸透膜バンクに備えられる逆浸透膜ベッセルの濃縮水管60c、61cに、濃縮水流出管171が接続される。また、各段に設けられた逆浸透膜ベッセルの透過水管50b、51b、60b、61bが透過水流出管161に接続される。透過水流量測定装置181は透過水流出管161の下流側に、濃縮水流量測定装置191は、濃縮水流出管171の下流側に、それぞれ設けられる。   In the reverse osmosis membrane unit 101, the concentrated water outflow pipe 171 is connected to the concentrated water pipes 60c and 61c of the reverse osmosis membrane vessel provided in the downstream reverse osmosis membrane bank. Further, the permeate pipes 50 b, 51 b, 60 b, 61 b of the reverse osmosis membrane vessel provided in each stage are connected to the permeate outflow pipe 161. The permeated water flow measuring device 181 is provided on the downstream side of the permeated water outflow pipe 161, and the concentrated water flow measuring device 191 is provided on the downstream side of the concentrated water outflow pipe 171.

なお、逆浸透膜ユニットが、3段以上の逆浸透膜バンクを備える場合にも、上記逆浸透膜ユニット101と同様に、それぞれ、前段側の逆浸透膜バンクの濃縮水管が、後段側の逆浸透膜バンクの供給側に接続される。もっとも下流側(最終段)の逆浸透膜バンクの濃縮水管に、濃縮水流出管171が接続される。各段に配置された逆浸透膜ベッセルの透過水管が透過水流出管161に接続される。透過水流量測定装置181は透過水流出管161の、最終段の逆浸透膜バンクの下流側に、濃縮水流量測定装置191は、濃縮水流出管171の、最終段の逆浸透膜バンクの下流側に、それぞれ設けられる。   Even when the reverse osmosis membrane unit has three or more stages of reverse osmosis membrane banks, as in the case of the reverse osmosis membrane unit 101, the concentrated water pipes of the reverse osmosis membrane banks on the front side are respectively connected to the reverse osmosis membrane banks on the rear side. Connected to the supply side of the osmotic membrane bank. A concentrated water outlet pipe 171 is connected to the concentrated water pipe of the reverse osmosis membrane bank on the most downstream side (final stage). The permeate pipes of the reverse osmosis membrane vessel arranged in each stage are connected to the permeate outflow pipe 161. The permeated water flow measuring device 181 is downstream of the permeate outflow pipe 161 downstream of the final reverse osmosis membrane bank, and the concentrated water flow measuring device 191 is downstream of the concentrated water outflow tube 171 downstream of the final reverse osmosis membrane bank. Provided on each side.

これにより、2段以上の多段の逆浸透膜バンクを有する逆浸透膜ユニットでは、各前段側の逆浸透膜バンクの濃縮水が、その後段側の逆浸透膜バンクで処理される。もっとも下流側(最終段)の逆浸透膜バンクの濃縮水は、濃縮水流出管171を介して流出する。また、各逆浸透膜ベッセルの透過水は、透過水流出管161を介して集水され、流出する。   As a result, in the reverse osmosis membrane unit having two or more multi-stage reverse osmosis membrane banks, the concentrated water of each reverse osmosis membrane bank is processed in the reverse osmosis membrane bank on the subsequent stage side. The concentrated water in the reverse osmosis membrane bank on the most downstream side (final stage) flows out through the concentrated water outflow pipe 171. Further, the permeated water of each reverse osmosis membrane vessel is collected through the permeated water outflow pipe 161 and flows out.

そして、逆浸透膜ユニットが多段の逆浸透膜バンクを有する場合、透過水流量測定装置181により測定された透過水流量と、濃縮水流量測定装置191により測定された濃縮水流量に基づいて、演算部301が、水回収率を算出し、算出された水回収率の値に基づいて、制御装置40が、濃縮水流出管171に介装された濃縮水流量調節バルブV21の開度を制御して、濃縮水流出管171から流出される濃縮水の流量を調節する。   When the reverse osmosis membrane unit has a multi-stage reverse osmosis membrane bank, the calculation is performed based on the permeate flow rate measured by the permeate flow rate measurement device 181 and the concentrated water flow rate measured by the concentrated water flow rate measurement device 191. The unit 301 calculates the water recovery rate, and the control device 40 controls the opening degree of the concentrated water flow rate adjustment valve V21 interposed in the concentrated water outlet pipe 171 based on the calculated water recovery rate value. Then, the flow rate of the concentrated water flowing out from the concentrated water outflow pipe 171 is adjusted.

上記多段の逆浸透膜バンクを有する逆浸透膜ユニットにおいても、1段又は2段の逆浸透膜バンクを有する逆浸透膜ユニットと同様に、透過水流出管161における透過水流量及び濃縮水流出管171における濃縮水流量から算出される水回収率に基づいて、濃縮水流量調節バルブV21の開度を自動制御し、濃縮水流出管171から流出する濃縮水の流量を調節することで、各逆浸透膜ユニットにおける水回収率が自動で調整される。これにより、逆浸透膜処理システム全体の水回収率が所定の範囲で維持される。そのため、例えば、逆浸透膜システムに備えられる、ある1基の逆浸透膜ユニットにおいて、外因などによって水回収率が変動した場合にも、逆浸透膜処理システムにおける水回収率が維持されるので、このためのバルブの操作などの作業負荷が軽減される。   In the reverse osmosis membrane unit having the multi-stage reverse osmosis membrane bank, the permeate flow rate and the concentrated water outflow tube in the permeate outflow pipe 161 are the same as in the reverse osmosis membrane unit having one or two stages of reverse osmosis membrane banks. On the basis of the water recovery rate calculated from the concentrated water flow rate in 171, the opening degree of the concentrated water flow rate adjustment valve V <b> 21 is automatically controlled, and the flow rate of the concentrated water flowing out from the concentrated water outlet tube 171 is adjusted. The water recovery rate in the osmotic membrane unit is automatically adjusted. Thereby, the water recovery rate of the entire reverse osmosis membrane treatment system is maintained within a predetermined range. Therefore, for example, in one reverse osmosis membrane unit provided in the reverse osmosis membrane system, even when the water recovery rate fluctuates due to external factors, the water recovery rate in the reverse osmosis membrane treatment system is maintained. For this reason, the work load such as the operation of the valve is reduced.

そして、本実施形態の逆浸透膜処理システムでは、複数の逆浸透膜ユニットにおいて、各逆浸透膜ユニットでそれぞれ水回収率が自動で調整されるため、逆浸透膜処理システムにおける洗浄サイクルを長期化することができるほか、逆浸透膜モジュールのライフを長く保つことができる。さらに、操作の簡易な流量計を用いて運転の管理を行っているため、運転管理のために、新たに、センサー、分析器等の設置をする必要がない。そのため、運転コストを低減できるとともに、故障や不具合の問題が少ないという利点がある。   In the reverse osmosis membrane treatment system of the present embodiment, the water recovery rate is automatically adjusted in each reverse osmosis membrane unit in a plurality of reverse osmosis membrane units, so the cleaning cycle in the reverse osmosis membrane treatment system is prolonged. In addition, the life of the reverse osmosis membrane module can be kept long. Furthermore, since the operation is managed using a flow meter that is easy to operate, there is no need to newly install a sensor, an analyzer or the like for the operation management. Therefore, there is an advantage that the operation cost can be reduced and there are few problems of failure or malfunction.

また、被処理水供給管における被処理水中のスケール防止剤の濃度に基づいて、スケール防止剤の供給量を自動制御する。このため、被処理水流量の変動が生じた場合にも、手動でのスケール防止剤の供給量の設定変更を行わずに、被処理水中のスケール防止剤の濃度を最適量に維持することができる。そのため、作業負荷が著しく低減される。   Further, the supply amount of the scale inhibitor is automatically controlled based on the concentration of the scale inhibitor in the treated water in the treated water supply pipe. For this reason, even when fluctuations in the flow rate of the treated water occur, the concentration of the scale inhibitor in the treated water can be maintained at the optimum amount without manually changing the setting amount of the scale inhibitor. it can. Therefore, the work load is significantly reduced.

上記本発明の効果は、例えば、逆浸透膜処理システムが、塩類濃度の比較的高い被処理水を処理する、いわゆる前段逆浸透膜装置であり、処理水流量の極めて多い大型のシステムである場合に、より多大な効果が得られる。これは、塩類濃度の比較的高い被処理水を逆浸透膜処理すると、不溶性の無機塩などが膜面に付着し易く、これによりスケールが生成して、複数の逆浸透膜ユニットにおける処理水流量及び水回収率がそれぞれ独立に変動し易いためである。このような場合にも、上記で説明した実施形態の逆浸透膜処理システムでは、スケール生成の抑制のためのスケール防止剤の供給濃度と、水回収率を自動で安定的に維持することができる。   The effect of the present invention is, for example, a case where the reverse osmosis membrane treatment system is a so-called upstream reverse osmosis membrane device that treats water to be treated having a relatively high salt concentration, and is a large system having a very large treated water flow rate. In addition, a greater effect can be obtained. This is because when treated water with a relatively high salt concentration is treated with a reverse osmosis membrane, insoluble inorganic salts and the like are likely to adhere to the membrane surface, thereby generating a scale and the flow rate of treated water in a plurality of reverse osmosis membrane units. This is because the water recovery rate tends to fluctuate independently. Even in such a case, the reverse osmosis membrane treatment system of the embodiment described above can automatically and stably maintain the supply concentration of the scale inhibitor for suppressing the scale generation and the water recovery rate. .

以上、上記で説明した逆浸透膜処理システム及び逆浸透膜処理システムの運転方法によれば、複数の逆浸透膜ユニットにより被処理水を並列処理する逆浸透膜処理において、スケール防止剤の供給濃度と水回収率を、所定の一定の範囲に自動で保つことができる。   As described above, according to the reverse osmosis membrane treatment system and the operation method of the reverse osmosis membrane treatment system described above, in the reverse osmosis membrane treatment in which the water to be treated is processed in parallel by the plurality of reverse osmosis membrane units, the supply concentration of the scale inhibitor And the water recovery rate can be automatically maintained within a predetermined range.

1…逆浸透膜処理システム、10,11,50,51,60,61…逆浸透膜ベッセル、10a,11a,50a,51a,60a,61a…被処理水管、10b,11b,50b,51b,60b,61b…透過水管、10c,11c,50c,51c,60c,61c…濃縮水管、12,60d…被処理水供給管、13…スケール防止剤供給装置、14…スケール防止剤濃度検出装置、15…ポンプ、161,162,163…透過水流出管、171,172,173…濃縮水流出管、181,182,183…透過水流量測定装置、191,192,193…濃縮水流量測定装置、301,302,303…演算部、40…制御装置、100,200,300…逆浸透膜ユニット、V11〜13…被処理水供給流量調節バルブ、V21〜23…濃縮水流量調節バルブ、m1〜m3…逆浸透膜モジュール。   DESCRIPTION OF SYMBOLS 1 ... Reverse osmosis membrane processing system 10, 11, 50, 51, 60, 61 ... Reverse osmosis membrane vessel, 10a, 11a, 50a, 51a, 60a, 61a ... Water pipe to be treated, 10b, 11b, 50b, 51b, 60b , 61b ... permeate pipe, 10c, 11c, 50c, 51c, 60c, 61c ... concentrated water pipe, 12, 60d ... treated water supply pipe, 13 ... scale inhibitor supply apparatus, 14 ... scale inhibitor concentration detector, 15 ... Pump, 161, 162, 163 ... Permeate outflow pipe, 171, 172, 173 ... Concentrated water outflow pipe, 181, 182, 183 ... Permeate flow rate measuring device, 191, 192, 193 ... Concentrated water flow rate measuring device, 301, 302, 303 ... arithmetic unit, 40 ... control device, 100, 200, 300 ... reverse osmosis membrane unit, V11-13 ... treated water supply flow rate adjustment valve, V21 23 ... concentrated water flow control valve, m1 to m3 ... reverse osmosis membrane module.

Claims (8)

被処理水を並列処理する複数の逆浸透膜ユニットと、
各逆浸透膜ユニットによる水回収率が所定の範囲で維持されるように、前記各逆浸透膜ユニットからの濃縮水の排水量を制御する濃縮水排水量制御装置と
を備えることを特徴とする逆浸透膜処理システム。
A plurality of reverse osmosis membrane units for treating treated water in parallel;
A reverse osmosis device comprising: a concentrated water drainage control device for controlling a drainage amount of the concentrated water from each reverse osmosis membrane unit so that a water recovery rate by each reverse osmosis membrane unit is maintained within a predetermined range. Membrane processing system.
前記複数の逆浸透膜ユニットの上流側で被処理水へスケール防止剤を供給するスケール防止剤供給装置と、
前記複数の逆浸透膜ユニットに供給される前記被処理水中のスケール防止剤濃度を検出するスケール防止剤濃度検出装置と、
前記スケール防止剤濃度検出装置の出力により前記スケール防止剤供給装置から前記被処理水へのスケール防止剤の供給量を制御するスケール防止剤供給量制御装置と
をさらに備えることを特徴とする請求項1に記載の逆浸透膜処理システム。
A scale inhibitor supply device for supplying a scale inhibitor to the water to be treated on the upstream side of the plurality of reverse osmosis membrane units;
A scale inhibitor concentration detecting device for detecting a scale inhibitor concentration in the water to be treated supplied to the plurality of reverse osmosis membrane units;
The scale inhibitor supply amount control device which controls the supply amount of the scale inhibitor from the scale inhibitor supply device to the water to be treated from the output of the scale inhibitor concentration detection device. 2. The reverse osmosis membrane treatment system according to 1.
前記複数の逆浸透膜ユニットの各逆浸透膜ユニットは、前記各逆浸透膜ユニットに被処理水を供給する被処理水供給管と、前記各逆浸透膜ユニットを透過した透過水を流出させる透過水流出管と、前記各逆浸透膜ユニットの濃縮水を流出させる濃縮水流出管とを備え、
前記濃縮水排水量制御装置は、
前記濃縮水流出管に介装された濃縮水流量調節バルブと、
前記透過水流出管内の前記透過水の流量を測定する透過水流量測定装置と、
前記濃縮水流出管内の前記濃縮水の流量を測定する濃縮水流量測定装置と、
前記透過水流量測定装置による測定値と前記濃縮水流量測定装置による測定値に基づいて、前記各逆浸透膜ユニットにおける水回収率を算出する演算部と、
前記演算部により算出される水回収率が所定の略一定の値に保たれるように、前記濃縮水流量調節バルブを制御する制御装置と
を備えることを特徴とする請求項1又は2に記載の逆浸透膜処理システム。
Each reverse osmosis membrane unit of the plurality of reverse osmosis membrane units includes a treated water supply pipe for supplying treated water to each reverse osmosis membrane unit, and a permeate for allowing permeated water that has passed through each reverse osmosis membrane unit to flow out. A water outflow pipe and a concentrated water outflow pipe through which the concentrated water of each reverse osmosis membrane unit flows out,
The concentrated water drainage control device is:
A concentrated water flow rate adjusting valve interposed in the concentrated water outlet pipe;
A permeate flow rate measuring device for measuring a flow rate of the permeate in the permeate outflow pipe;
A concentrated water flow rate measuring device for measuring a flow rate of the concentrated water in the concentrated water outlet pipe;
Based on the measured value by the permeated water flow rate measuring device and the measured value by the concentrated water flow rate measuring device, a calculation unit that calculates the water recovery rate in each reverse osmosis membrane unit,
The control apparatus which controls the said concentrated water flow rate adjustment valve so that the water recovery rate computed by the said calculating part may be maintained by the predetermined substantially constant value is provided. Reverse osmosis membrane treatment system.
前記複数の逆浸透膜ユニットは、多段の逆浸透膜バンクを備えており、
前記多段の逆浸透膜バンクにおいて、前段側の逆浸透膜バンクの濃縮水が、後段側の逆浸透膜バンクの供給側に各々供給され、
前記濃縮水排水量制御装置は、前記多段の逆浸透膜バンクにおける最終段の逆浸透膜バンクからの濃縮水の排水量を制御することを特徴とする請求項1乃至3のいずれか1項に記載の逆浸透膜処理システム。
The plurality of reverse osmosis membrane units include a multi-stage reverse osmosis membrane bank,
In the multi-stage reverse osmosis membrane bank, the concentrated water of the reverse osmosis membrane bank on the front side is supplied to the supply side of the reverse osmosis membrane bank on the back side, respectively.
The said concentrated water drainage amount control apparatus controls the drainage amount of the concentrated water from the reverse osmosis membrane bank of the last stage in the said multistage reverse osmosis membrane bank, The Claim 1 characterized by the above-mentioned. Reverse osmosis membrane treatment system.
前記被処理水は、硬度成分及びシリカから選ばれる1種以上を含むことを特徴とする請求項1乃至4のいずれか1項に記載の逆浸透膜処理システム。   The reverse osmosis membrane treatment system according to any one of claims 1 to 4, wherein the water to be treated contains at least one selected from a hardness component and silica. 前記被処理水のpHは、3.5〜11であることを特徴とする請求項1乃至5のいずれか1項に記載の逆浸透膜処理システム。   The reverse osmosis membrane treatment system according to any one of claims 1 to 5, wherein the pH of the water to be treated is 3.5 to 11. 前記逆浸透膜処理システムにおける水回収率は、50%〜90%であることを特徴とする請求項1乃至6のいずれか1項に記載の逆浸透膜処理システム。   The reverse osmosis membrane treatment system according to any one of claims 1 to 6, wherein a water recovery rate in the reverse osmosis membrane treatment system is 50% to 90%. 被処理水を並列処理するように配置された複数の逆浸透膜ユニットを備える逆浸透膜処理システムの運転方法であって、
前記複数の逆浸透膜ユニットのうち各逆浸透膜ユニットからの濃縮水の排水量を制御する濃縮水排水量制御装置を設けて、前記各逆浸透膜ユニットの濃縮水の排水量をそれぞれ運転状態に応じて自動で制御するとともに、前記複数の逆浸透膜ユニットの上流側で被処理水へスケール防止剤を供給するスケール防止剤供給装置と、前記複数の逆浸透膜ユニットに供給される前記被処理水のスケール防止剤濃度を検出するスケール防止剤濃度検出装置と、前記スケール防止剤濃度検出装置の出力により前記スケール防止剤供給装置から前記被処理水へのスケール防止剤の供給量を制御する制御装置とを設け、前記複数の逆浸透膜ユニットのうち、少なくとも1つの逆浸透膜ユニットにおいて被処理水の供給流量の変動があっても、前記複数の逆浸透膜ユニットに供給されるスケール防止剤供給濃度を所定の範囲に維持させることを特徴とする逆浸透膜処理システムの運転方法。
A method for operating a reverse osmosis membrane treatment system comprising a plurality of reverse osmosis membrane units arranged to process treated water in parallel,
A concentrated water drainage control device for controlling the drainage amount of the concentrated water from each reverse osmosis membrane unit among the plurality of reverse osmosis membrane units is provided, and the drainage amount of the concentrated water of each reverse osmosis membrane unit according to the operating state, respectively. A scale inhibitor supply device that automatically controls and supplies a scale inhibitor to the water to be treated upstream of the plurality of reverse osmosis membrane units, and the water to be treated supplied to the plurality of reverse osmosis membrane units A scale inhibitor concentration detecting device for detecting a scale inhibitor concentration, and a control device for controlling a supply amount of the scale inhibitor from the scale inhibitor supply device to the water to be treated by an output of the scale inhibitor concentration detector; The plurality of reverse osmosis membrane units are provided with a plurality of reverse osmosis membrane units, even if there is a change in the flow rate of water to be treated in at least one reverse osmosis membrane unit. The method of operating a reverse osmosis membrane treatment system, characterized in that to maintain the scale inhibitor feed concentration to be supplied to the film unit in a predetermined range.
JP2016167830A 2016-08-30 2016-08-30 Reverse osmosis membrane treatment system and method of operating reverse osmosis membrane treatment system Active JP6737661B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016167830A JP6737661B2 (en) 2016-08-30 2016-08-30 Reverse osmosis membrane treatment system and method of operating reverse osmosis membrane treatment system
KR1020197009128A KR20190043588A (en) 2016-08-30 2017-08-23 Reverse osmosis membrane treatment system and operation method of reverse osmosis membrane treatment system
CN201780053161.9A CN109843416B (en) 2016-08-30 2017-08-23 Reverse osmosis membrane treatment system and operation method thereof
PCT/JP2017/030059 WO2018043234A1 (en) 2016-08-30 2017-08-23 Reverse osmosis membrane treatment system and operating method of reverse osmosis membrane treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016167830A JP6737661B2 (en) 2016-08-30 2016-08-30 Reverse osmosis membrane treatment system and method of operating reverse osmosis membrane treatment system

Publications (2)

Publication Number Publication Date
JP2018034093A true JP2018034093A (en) 2018-03-08
JP6737661B2 JP6737661B2 (en) 2020-08-12

Family

ID=61301100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016167830A Active JP6737661B2 (en) 2016-08-30 2016-08-30 Reverse osmosis membrane treatment system and method of operating reverse osmosis membrane treatment system

Country Status (4)

Country Link
JP (1) JP6737661B2 (en)
KR (1) KR20190043588A (en)
CN (1) CN109843416B (en)
WO (1) WO2018043234A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7239428B2 (en) * 2019-09-04 2023-03-14 オルガノ株式会社 Water treatment system and water treatment method
JP7044848B1 (en) * 2020-10-14 2022-03-30 野村マイクロ・サイエンス株式会社 Liquid treatment equipment, pure water production system and liquid treatment method
KR102419863B1 (en) * 2020-11-30 2022-07-11 장필수 Functional ingredient supply module for shower
KR102282983B1 (en) * 2021-01-13 2021-07-28 주식회사 엑세스워터 High recovery RO reusing system and its control method through optimization of the batch and continuous operation of membrane modules which has the parallel arrangement
JP2022135710A (en) * 2021-03-05 2022-09-15 オルガノ株式会社 Water treatment method and water treatment apparatus
KR102628923B1 (en) 2023-07-19 2024-01-24 주식회사 엑세스워터 High recovery rate reverse osmosis membrane type industrial water purification system with improved concentrated water circulation supply structure
KR102631339B1 (en) 2023-07-19 2024-01-31 주식회사 엑세스워터 Concentrated water circulation supply type industrial water purification system with diluted supply structure of concentrated water

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000107757A (en) * 1998-10-05 2000-04-18 Kikai Kagaku Kenkyusho:Kk Desalination system and method for operating it
JP2003080246A (en) * 2001-09-10 2003-03-18 Toray Ind Inc Apparatus and method for treating water
JP2010000455A (en) * 2008-06-20 2010-01-07 Japan Organo Co Ltd Supply control method and supply control apparatus for scale inhibitor
JP2012183473A (en) * 2011-03-04 2012-09-27 Miura Co Ltd Water treatment apparatus
JP2013154274A (en) * 2012-01-27 2013-08-15 Miura Co Ltd Reverse osmosis membrane separation device
JP2014213260A (en) * 2013-04-25 2014-11-17 オルガノ株式会社 Membrane filtration device
JP2015104710A (en) * 2013-12-02 2015-06-08 株式会社日立製作所 Seawater desalination system
JP2016032810A (en) * 2015-10-30 2016-03-10 三浦工業株式会社 Water treatment system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7910371B2 (en) 2005-01-20 2011-03-22 Nalco Company Method of monitoring treating agent residuals in water treatment processes
JP4650740B2 (en) 2006-01-12 2011-03-16 三浦工業株式会社 Operation method of water treatment system
JP5743774B2 (en) * 2011-07-25 2015-07-01 株式会社クボタ Membrane treatment apparatus and operation method thereof
JP5768615B2 (en) * 2011-09-20 2015-08-26 三浦工業株式会社 Reverse osmosis membrane separator
CN104944524B (en) * 2014-12-03 2018-07-24 佛山市云米电器科技有限公司 Aspect ratio adjusting method is discharged in reverse osmosis water purifying plant and its waste water
CN105771657B (en) * 2016-05-09 2019-03-08 佛山市云米电器科技有限公司 A kind of water flow adjusting method of water purification system and its condensed water and pure water

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000107757A (en) * 1998-10-05 2000-04-18 Kikai Kagaku Kenkyusho:Kk Desalination system and method for operating it
JP2003080246A (en) * 2001-09-10 2003-03-18 Toray Ind Inc Apparatus and method for treating water
JP2010000455A (en) * 2008-06-20 2010-01-07 Japan Organo Co Ltd Supply control method and supply control apparatus for scale inhibitor
JP2012183473A (en) * 2011-03-04 2012-09-27 Miura Co Ltd Water treatment apparatus
JP2013154274A (en) * 2012-01-27 2013-08-15 Miura Co Ltd Reverse osmosis membrane separation device
JP2014213260A (en) * 2013-04-25 2014-11-17 オルガノ株式会社 Membrane filtration device
JP2015104710A (en) * 2013-12-02 2015-06-08 株式会社日立製作所 Seawater desalination system
JP2016032810A (en) * 2015-10-30 2016-03-10 三浦工業株式会社 Water treatment system

Also Published As

Publication number Publication date
WO2018043234A1 (en) 2018-03-08
KR20190043588A (en) 2019-04-26
JP6737661B2 (en) 2020-08-12
CN109843416A (en) 2019-06-04
CN109843416B (en) 2021-09-21

Similar Documents

Publication Publication Date Title
WO2018043234A1 (en) Reverse osmosis membrane treatment system and operating method of reverse osmosis membrane treatment system
EP3218309B1 (en) Water purification system and method
JP5359898B2 (en) Water treatment method and water treatment system
JP2012206073A (en) Deionized water production system
KR20130140370A (en) Method and apparatus for controlling pressure by forward osmosis
JP2013034926A (en) Reverse osmosis membrane separator
JPWO2016035174A1 (en) Adhesion monitoring device for water treatment device, water treatment device and operation method thereof, and cleaning method for water treatment device
JP2017170273A (en) Operation control method of reverse osmosis membrane device and reverse osmosis membrane processing system
CN108380051B (en) Stable energy-saving reverse osmosis system and control method thereof
JP6040856B2 (en) Water treatment system
JP2016032810A (en) Water treatment system
JPH09299944A (en) Fresh water producing device having reverse-osmosis membrane
JP6907745B2 (en) Membrane separation device
JP6155742B2 (en) Water treatment equipment
TW201838709A (en) Method for managing operation of reverse osmotic membrane device, and reverse osmosis membrane treatment system
JP5903948B2 (en) Water treatment system
JP2019018185A (en) Control device for water treatment system
JP2017064599A (en) Washing method of reverse osmosis membrane module
WO2018047156A1 (en) Method and system for liquid treatment
JP6939121B2 (en) Membrane separation device
JP6246994B2 (en) Water treatment system
JP2017209624A (en) Water treatment system
KR20210070359A (en) High recovery electrodialysis method
JP7293079B2 (en) Water treatment system and water treatment method
CN113396130B (en) Water treatment system and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200716

R150 Certificate of patent or registration of utility model

Ref document number: 6737661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250