JP2010000455A - Supply control method and supply control apparatus for scale inhibitor - Google Patents

Supply control method and supply control apparatus for scale inhibitor Download PDF

Info

Publication number
JP2010000455A
JP2010000455A JP2008161849A JP2008161849A JP2010000455A JP 2010000455 A JP2010000455 A JP 2010000455A JP 2008161849 A JP2008161849 A JP 2008161849A JP 2008161849 A JP2008161849 A JP 2008161849A JP 2010000455 A JP2010000455 A JP 2010000455A
Authority
JP
Japan
Prior art keywords
water
scale inhibitor
treated
supply
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008161849A
Other languages
Japanese (ja)
Other versions
JP5345344B2 (en
Inventor
Yuki Kanai
佑樹 金井
Akira Era
彰 恵良
Masahiro Eguchi
正浩 江口
Hiroshi Takahashi
洋 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2008161849A priority Critical patent/JP5345344B2/en
Publication of JP2010000455A publication Critical patent/JP2010000455A/en
Application granted granted Critical
Publication of JP5345344B2 publication Critical patent/JP5345344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supply control method for a scale inhibitor, which can reduce the amount of a scale inhibitor supplied to water to be treated in a water treatment system such as a recovery system of industrial wastewater. <P>SOLUTION: In the supply control method for a scale inhibitor, which controls the supply of a scale inhibitor to water to be treated in a water treatment system, the water to be treated contains at least one of calcium, magnesium and silica, and an electrolyte other than these; the electric conductivity of the water to be treated is measured; and the amount of the scale inhibitor supplied to the water to be treated is adjusted in response to the electric conductivity measured. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、工場排水回収系などの水処理系におけるスケール防止剤の供給管理方法および供給管理装置に関する。   The present invention relates to a scale inhibitor supply management method and a supply management apparatus in a water treatment system such as a factory wastewater recovery system.

工業排水などの排水を回収して再利用することは水資源の節約を図るだけでなく、環境汚染防止にも役立つものであり、排水の回収再利用は技術的にも重要な問題である。   Collecting and reusing wastewater such as industrial wastewater not only saves water resources but also helps prevent environmental pollution, and wastewater collection and reuse is an important technical issue.

一般に工業排水には酸やアルカリ、塩類などが含まれているため、排水の回収に当たっては逆浸透膜処理などの脱塩処理を施す。逆浸透膜による脱塩処理の場合、膜の一次側には被処理水中の溶存成分が濃縮されるため、カルシウム塩やマグネシウム塩、シリカなどの無機成分がスケールとして析出し、膜を閉塞させることがある。   In general, industrial wastewater contains acids, alkalis, salts, and the like, and therefore, desalting treatment such as reverse osmosis membrane treatment is performed when collecting wastewater. In the case of desalting with a reverse osmosis membrane, dissolved components in the water to be treated are concentrated on the primary side of the membrane, so that inorganic components such as calcium salts, magnesium salts, and silica precipitate as scales and block the membrane. There is.

このような問題を解決するために、被処理水に対してスケール防止剤を供給することが一般に行われる。被処理水に対するスケール防止剤の供給量は、従来、被処理水中のカルシウム塩やマグネシウム塩、シリカなどのスケール成分の存在量に応じて、あるいはそれらの溶解度に関わる被処理水のpHを考慮に入れて決定されてきた(例えば、特許文献1参照)。すなわち、被処理水中のカルシウム塩やマグネシウム塩、シリカなどのスケール成分の存在量が高いほど、被処理水に対して多くのスケール防止剤を供給していた。   In order to solve such a problem, a scale inhibitor is generally supplied to the water to be treated. The amount of scale inhibitor supplied to the water to be treated is conventionally determined according to the abundance of scale components such as calcium salts, magnesium salts, and silica in the water to be treated, or taking into account the pH of the water to be treated in relation to their solubility. It has been determined (for example, see Patent Document 1). That is, the higher the amount of scale components such as calcium salt, magnesium salt, and silica in the water to be treated, the more scale inhibitor is supplied to the water to be treated.

被処理水へのスケール防止剤の供給量の制御方法としては、被処理水中の供給したスケール防止剤の濃度の測定が不可能あるいは困難なため、例えば特許文献2のように、簡単に濃度測定できる物質をトレーサとして用いることが行われている。このトレーサ物質の被処理水中の濃度に応じて、前述のように決定されたスケール防止剤の供給量に対する不足分を補うという形で、被処理水中に一定濃度のスケール防止剤が存在するように制御されている。   As a method of controlling the supply amount of the scale inhibitor to the water to be treated, it is impossible or difficult to measure the concentration of the scale inhibitor supplied in the water to be treated. A material that can be used is used as a tracer. Depending on the concentration of the tracer substance in the water to be treated, the amount of the scale inhibitor to be present in the water to be treated is compensated for the shortage of the supply amount of the scale inhibitor determined as described above. It is controlled.

特開2005−224761号公報Japanese Patent Laid-Open No. 2005-224761 特開2004−322058号公報Japanese Patent Laid-Open No. 2004-322058

被処理水へのスケール防止剤の供給量は、被処理水中のカルシウム塩やマグネシウム塩、シリカなどのスケール成分の濃度やpHのみに応じて、経験的に、または実験的に決定され、定量供給されてきた。しかし、前述の回収系のように、工場排水などにおいてカルシウム塩やマグネシウム塩、シリカなどのスケール成分の濃度が高い場合は、スケール防止剤の供給量は必然的に高くなり、コストが高くなる問題があった。   The amount of scale inhibitor supplied to the water to be treated is determined empirically or experimentally according to the concentration and pH of scale components such as calcium salt, magnesium salt and silica in the water to be treated. It has been. However, when the concentration of scale components such as calcium salt, magnesium salt, and silica is high in factory effluents as in the above-mentioned recovery system, the supply of scale inhibitor is inevitably high and the cost increases. was there.

本発明は、工場排水回収系などの水処理系において、被処理水へのスケール防止剤の供給量を低減することができるスケール防止剤の供給管理方法および供給管理装置である。   The present invention relates to a scale inhibitor supply management method and a supply management apparatus capable of reducing the amount of scale inhibitor supplied to water to be treated in a water treatment system such as a factory wastewater recovery system.

本発明は、水処理系における被処理水へのスケール防止剤の供給を管理するスケール防止剤の供給管理方法であって、前記被処理水は、カルシウム、マグネシウムおよびシリカのうち少なくとも1種、ならびにこれら以外の電解質を含有し、前記被処理水の電気伝導度を測定し、前記測定した電気伝導度に応じてスケール防止剤の前記被処理水への供給量を調整するスケール防止剤の供給管理方法である。   The present invention is a scale inhibitor supply management method for managing supply of a scale inhibitor to treated water in a water treatment system, wherein the treated water is at least one of calcium, magnesium and silica, and Supply management of a scale inhibitor that contains an electrolyte other than these, measures the electrical conductivity of the treated water, and adjusts the supply amount of the scale inhibitor to the treated water according to the measured electrical conductivity Is the method.

また、本発明は、逆浸透膜処理における被処理水へのスケール防止剤の供給を管理するスケール防止剤の供給管理方法であって、前記被処理水は、カルシウム、マグネシウムおよびシリカのうち少なくとも1種、ならびにこれら以外の電解質を含有し、前記被処理水および前記逆浸透膜処理により生成する濃縮水のうち少なくとも1つの電気伝導度を測定し、前記測定した電気伝導度に応じてスケール防止剤の前記被処理水への供給量を調整するスケール防止剤の供給管理方法である。   The present invention is also a scale management agent supply management method for managing the supply of the scale inhibitor to the water to be treated in reverse osmosis membrane treatment, wherein the water to be treated is at least one of calcium, magnesium and silica. A scale, and an electrolyte other than these, measuring at least one electrical conductivity of the water to be treated and the concentrated water produced by the reverse osmosis membrane treatment, and a scale inhibitor according to the measured electrical conductivity It is a supply management method of the scale inhibitor which adjusts the supply amount to the said to-be-processed water.

また、前記スケール防止剤の供給管理方法において、前記測定した電気伝導度が高いほど、前記スケール防止剤の前記被処理水への供給量を低減するように調整することが好ましい。   In the scale inhibitor supply management method, it is preferable to adjust so that the amount of the scale inhibitor supplied to the water to be treated decreases as the measured electrical conductivity increases.

また、前記スケール防止剤の供給管理方法において、前記測定した電気伝導度が1,000μS/cm以上のときに、前記スケール防止剤の前記被処理水への供給量を低減するように調整することが好ましい。   Further, in the supply management method of the scale inhibitor, when the measured electrical conductivity is 1,000 μS / cm or more, adjustment is made so as to reduce the supply amount of the scale inhibitor to the water to be treated. Is preferred.

また、前記スケール防止剤の供給管理方法において、前記被処理水が、電子産業工場排水の回収系における水であることが好ましい。   In the scale inhibitor supply management method, the water to be treated is preferably water in an electronic industrial factory wastewater recovery system.

また、本発明は、水処理系における被処理水へのスケール防止剤の供給を管理するスケール防止剤の供給管理装置であって、前記被処理水は、カルシウム、マグネシウムおよびシリカのうち少なくとも1種、ならびにこれら以外の電解質を含有し、前記被処理水の電気伝導度を測定する電気伝導度測定手段と、前記測定した電気伝導度に応じてスケール防止剤の前記被処理水への供給量を調整する供給量調整手段と、を有するスケール防止剤の供給管理装置である。   The present invention is also a scale inhibitor supply management device for managing the supply of the scale inhibitor to the water to be treated in the water treatment system, wherein the water to be treated is at least one of calcium, magnesium and silica. As well as an electrolyte other than these, an electric conductivity measuring means for measuring the electric conductivity of the water to be treated, and a supply amount of the scale inhibitor to the water to be treated according to the measured electric conductivity. And a supply amount adjusting unit for adjusting the scale.

本発明では、工場排水回収系などの水処理系において、カルシウム、マグネシウムおよびシリカのうち少なくとも1種、ならびにこれら以外の電解質を含有する被処理水の電気伝導度を測定し、測定した電気伝導度に応じてスケール防止剤の被処理水への供給量を調整することにより、被処理水へのスケール防止剤の供給量を低減することが可能なスケール防止剤の供給管理方法および供給管理装置を提供することができる。   In the present invention, in a water treatment system such as a factory wastewater recovery system, the electrical conductivity of water to be treated containing at least one of calcium, magnesium and silica and an electrolyte other than these is measured, and the measured electrical conductivity A scale inhibitor supply management method and a supply management apparatus capable of reducing the amount of scale inhibitor supplied to the water to be treated by adjusting the amount of scale inhibitor supplied to the water to be treated according to Can be provided.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

本発明者らは鋭意検討を行った結果、異種イオン効果による、沈殿の溶解度増大効果を利用して、カルシウム、マグネシウムおよびシリカのうち少なくとも1種、ならびにこれら以外の電解質を含有する被処理水あるいは濃縮水中の塩類濃度、すなわち電気伝導度の測定結果に応じてスケール防止剤の被処理水への供給量を調整することにより、スケール防止剤の供給量を低減することができることを見出した。   As a result of intensive studies, the present inventors have made use of the effect of increasing the solubility of precipitates due to the effect of different ions, so that water to be treated containing at least one of calcium, magnesium and silica and an electrolyte other than these can be used. It has been found that the supply amount of the scale inhibitor can be reduced by adjusting the supply amount of the scale inhibitor to the water to be treated according to the salt concentration in the concentrated water, that is, the measurement result of electric conductivity.

本発明者らは、被処理水へのスケール防止剤の供給量を削減すべく、後述する実施例に示すように、半導体工場の排水に対してスケール防止剤の供給濃度を数パターンに分け、24時間後の溶存Fイオン濃度を測定する実験を行った。この実験に使用した工場排水においては、不定期の樹脂再生工程などによる、酸(HCl、HSOなど)とアルカリ(NaOHなど)の使用量に応じて、電気伝導度が大きく変動するという特徴があった。 In order to reduce the amount of scale inhibitor supplied to the water to be treated, the present inventors divide the supply concentration of scale inhibitor into several patterns with respect to the wastewater of the semiconductor factory, as shown in the examples described later, An experiment was conducted to measure the dissolved F ion concentration after 24 hours. In the factory wastewater used in this experiment, the electrical conductivity varies greatly depending on the amount of acid (HCl, H 2 SO 4, etc.) and alkali (NaOH, etc.) used due to irregular resin regeneration processes. There was a feature.

スケール防止剤として、アクリル酸/2−アクリルアミド−2−メチルプロパンスルホン酸の共重合体43%品を用いた実験結果によると、被処理水中の電気伝導度が1,000μS/cm以上、逆浸透膜処理の濃縮水中の電気伝導度が5,000μS/cm以上の工場排水においては、被処理水中のカルシウムイオン濃度とフッ素イオン濃度は、フッ化カルシウムを析出するのに充分な濃度であったにもかかわらず、スケール分散剤の供給量を通常よりも少なく抑えることが可能であった。また、被処理水中の電気伝導度が2,500μS/cm以上、濃縮水中の電気伝導度が7,000μS/cm以上の場合には、スケール防止剤を全く加えない場合でも、スケールをほとんど析出しなかった。すなわち、実際にはスケール析出のリスクはカルシウム塩やマグネシウム塩、シリカなどの濃度だけによらず、共存イオンの存在による影響も大きいことがわかった。   According to the experimental results using a 43% acrylic acid / 2-acrylamido-2-methylpropanesulfonic acid copolymer as a scale inhibitor, the electrical conductivity in the water to be treated is 1,000 μS / cm or more and reverse osmosis. In factory wastewater with electrical conductivity in the concentrated water of membrane treatment of 5,000 μS / cm or more, the calcium ion concentration and fluorine ion concentration in the treated water were sufficient to precipitate calcium fluoride. Nevertheless, it was possible to keep the supply amount of the scale dispersant smaller than usual. In addition, when the electrical conductivity in the water to be treated is 2500 μS / cm or higher and the electrical conductivity in the concentrated water is 7,000 μS / cm or higher, the scale is almost precipitated even when no scale inhibitor is added. There wasn't. In other words, it was found that the risk of scale precipitation is not only dependent on the concentration of calcium salt, magnesium salt, silica, etc., but also the presence of coexisting ions.

これは、異種イオン効果と呼ばれる現象によるものと考えられる。異種イオン効果とは、沈殿との共通イオンを持たない塩が溶液中に共存する時、反対電価を帯びたイオン間の引力が大きくなるために活量係数が減少し、そのために多くの場合、沈殿の溶解度が増大する現象である。また、シリカについても、他のイオンの存在下では、シリカの溶解度が増大する現象が見られる。   This is thought to be due to a phenomenon called the heterogeneous ion effect. The effect of heterogeneous ions is that when a salt that does not have a common ion with the precipitate coexists in the solution, the activity coefficient decreases because the attractive force between ions with opposite charge increases, and in many cases This is a phenomenon in which the solubility of the precipitate increases. In addition, silica also has a phenomenon in which the solubility of silica increases in the presence of other ions.

例えば、被処理水中のスケール原因成分であるCa濃度が>3mg/Lであり、SO濃度が>1,000mg/L、あるいはPO濃度が>1.0mg/L、あるいはF濃度が>15mg/Lであるとき、沈殿の溶解度積は>1なので、スケール析出のリスクが高い。しかし、このような被処理水中にナトリウムイオン(Na)、塩素イオン(Cl)などの異種イオンを含み、例えばNa、Clの濃度がそれぞれ20mM以上であるような水では、異種イオン効果によって、沈殿の溶解度積は2倍以上となる。シリカについては、例えば、被処理水中のスケール原因成分であるシリカ濃度が>96mg/Lであるとき、スケール析出のリスクが高い。しかし、このような被処理水中にナトリウムイオン(Na)、塩素イオン(Cl)などの異種イオンを含み、例えばNa、Clの濃度がそれぞれ100mM以上であるような水では、異種イオン効果によって、シリカの溶解度積は3倍以上となる。 For example, the Ca concentration which is a scale-causing component in the treated water is> 3 mg / L, the SO 4 concentration is> 1,000 mg / L, or the PO 4 concentration is> 1.0 mg / L, or the F concentration is> 15 mg. When / L, the solubility product of the precipitate is> 1, so the risk of scale precipitation is high. However, in such water to be treated which contains different ions such as sodium ions (Na + ) and chlorine ions (Cl ), for example, when the concentrations of Na + and Cl are 20 mM or more, the different ions Depending on the effect, the solubility product of the precipitate is more than doubled. For silica, for example, when the concentration of silica that is a scale-causing component in the water to be treated is> 96 mg / L, the risk of scale deposition is high. However, in such water to be treated which contains different ions such as sodium ions (Na + ) and chlorine ions (Cl ), for example, in water where the concentrations of Na + and Cl are 100 mM or more, the different ions Depending on the effect, the solubility product of silica is more than three times.

本実施形態では、このような現象を利用して、スケール防止剤の供給量を従来よりも低減するものである。すなわち、被処理水中の塩類濃度をリアルタイムにモニタリングし、その測定結果に応じて、スケール防止剤の供給量を適切に制御する。具体的には、被処理水中の塩類濃度の指標として被処理水中の電気伝導度を測定し、この電気伝導度の測定結果に応じて、スケール防止剤の供給量を適切に制御する。   In the present embodiment, such a phenomenon is used to reduce the supply amount of the scale inhibitor as compared with the conventional case. That is, the salt concentration in the water to be treated is monitored in real time, and the supply amount of the scale inhibitor is appropriately controlled according to the measurement result. Specifically, the electrical conductivity in the treated water is measured as an index of the salt concentration in the treated water, and the supply amount of the scale inhibitor is appropriately controlled according to the measurement result of the electrical conductivity.

本発明の実施形態に係るスケール防止剤の供給管理装置を備える水処理システムの一例の概略を図1に示し、その構成について説明する。水処理システム1として、ここでは逆浸透膜処理による水処理システムを一例として説明する。水処理システム1は、供給管理装置3と、逆浸透膜処理装置10とを備える。また、供給管理装置3は、スケール防止剤貯槽12と、スケール防止剤を供給するスケール防止剤供給手段であるスケール防止剤供給ポンプ14と、供給量調整手段である制御装置16と、電気伝導度測定手段である導電率計18,20とを備える。   An outline of an example of a water treatment system provided with a scale inhibitor supply management device according to an embodiment of the present invention is shown in FIG. Here, as the water treatment system 1, a water treatment system using reverse osmosis membrane treatment will be described as an example. The water treatment system 1 includes a supply management device 3 and a reverse osmosis membrane treatment device 10. The supply management device 3 includes a scale inhibitor storage tank 12, a scale inhibitor supply pump 14 that is a scale inhibitor supply unit that supplies the scale inhibitor, a control device 16 that is a supply amount adjustment unit, and electrical conductivity. Conductivity meters 18 and 20 as measuring means are provided.

図1の水処理システム1において、図示しない被処理水槽などからの被処理水配管28が被処理水供給ポンプ26を介して逆浸透膜処理装置10の入口に接続されている。逆浸透膜処理装置10の出口には、処理水配管30が接続されている。スケール防止剤貯槽12の出口は、スケール防止剤配管32によりスケール防止剤供給ポンプ14を介して、被処理水配管28に接続されている。被処理水配管28のスケール防止剤配管32との接続点の後流側には、導電率計18が設置されている。また、逆浸透膜処理装置10の濃縮水側に、導電率計20が設置されている。制御装置16は、スケール防止剤供給ポンプ14、導電率計18,20と電気的などにより接続されている。   In the water treatment system 1 of FIG. 1, a to-be-treated water pipe 28 from a to-be-treated water tank or the like (not shown) is connected to an inlet of the reverse osmosis membrane treatment apparatus 10 via a to-be-treated water supply pump 26. A treated water pipe 30 is connected to the outlet of the reverse osmosis membrane treatment apparatus 10. The outlet of the scale inhibitor storage tank 12 is connected to the treated water pipe 28 via the scale inhibitor supply pump 14 by the scale inhibitor pipe 32. A conductivity meter 18 is installed on the downstream side of the connection point of the water pipe 28 to be treated with the scale inhibitor pipe 32. Further, a conductivity meter 20 is installed on the concentrated water side of the reverse osmosis membrane treatment apparatus 10. The control device 16 is electrically connected to the scale inhibitor supply pump 14 and the conductivity meters 18 and 20.

本実施形態に係る水処理システム1、供給管理装置3の動作、およびスケール防止剤の供給管理方法について説明する。   The operation of the water treatment system 1 and the supply management device 3 according to this embodiment and the supply management method for the scale inhibitor will be described.

水処理システム1において、被処理水は、被処理水槽などから被処理水供給ポンプ26により被処理水配管28を通して、逆浸透膜処理装置10に送液される。逆浸透膜処理装置10への流入前に、被処理水配管28において、スケール防止剤貯槽12からスケール防止剤供給ポンプ14により、スケール防止剤が供給される(スケール防止剤供給工程)。スケール防止剤は、連続的に供給されてもよいし、間欠的に供給されてもよい。また、スケール防止剤は、被処理水槽へ供給されてもよいし、あるいは被処理水槽などからの被処理水を貯留する貯留槽を別途設けて、その貯留槽へ供給されてもよい。   In the water treatment system 1, the water to be treated is sent from the water tank to be treated to the reverse osmosis membrane treatment device 10 through the water to be treated pipe 28 by the water feed pump 26 to be treated. Before flowing into the reverse osmosis membrane treatment apparatus 10, the scale inhibitor is supplied from the scale inhibitor storage tank 12 by the scale inhibitor supply pump 14 in the treated water pipe 28 (scale inhibitor supply process). The scale inhibitor may be supplied continuously or intermittently. Further, the scale inhibitor may be supplied to the water tank to be treated, or may be provided separately by providing a storage tank for storing the water to be treated from the water tank to be treated.

逆浸透膜処理装置10において、スケール防止剤が供給された被処理水について、逆浸透膜処理が行われ、逆浸透膜を透過した透過水と、不純物が濃縮された濃縮水とが得られる(逆浸透膜処理工程)。逆浸透膜処理装置10において逆浸透膜処理されて逆浸透膜を透過した透過水(処理水)は、処理水配管30を通して排出される。また、濃縮水は、系外に排出される。処理水について、さらに紫外線照射処理、イオン交換処理などが行われてもよい。   In the reverse osmosis membrane treatment apparatus 10, the reverse osmosis membrane treatment is performed on the water to be treated to which the scale inhibitor is supplied, and the permeated water that has permeated the reverse osmosis membrane and the concentrated water in which the impurities are concentrated are obtained ( Reverse osmosis membrane treatment process). The permeated water (treated water) that has been subjected to the reverse osmosis membrane treatment in the reverse osmosis membrane treatment apparatus 10 and permeated through the reverse osmosis membrane is discharged through the treated water pipe 30. The concentrated water is discharged out of the system. The treated water may be further subjected to ultraviolet irradiation treatment, ion exchange treatment, and the like.

本実施形態に係る供給管理方法および供給管理装置は、カルシウム、マグネシウムおよびシリカのうち少なくとも1種、ならびにこれら以外の電解質を含有する被処理水に適用することができる。具体的には、スケール原因成分として、カルシウムイオン(Ca2+)およびマグネシウム(Mg2+)のうち少なくとも1種と、フッ素イオン(F)、炭酸イオン(CO 2−)、リン酸イオン(PO 2−)のうち少なくとも1種とを含み、あるいはスケール原因成分としてシリカを含み、異種イオンとして、スケール原因成分以外のイオン、例えば、ナトリウムイオン(Na)、塩素イオン(Cl)、硫酸イオン(SO 2−)などのうち少なくとも1種を含有する被処理水に好ましく適用することができる。特に、スケール原因成分の濃度がほぼ一定の範囲であるのに対し、異種イオンの濃度変動が大きいことによって電気伝導度の変動が大きい(例えば、500〜10,000μS/cmの変動がある)被処理水に好ましく適用することができる。 The supply management method and the supply management apparatus according to the present embodiment can be applied to water to be treated containing at least one of calcium, magnesium, and silica and an electrolyte other than these. Specifically, as scale-causing components, at least one of calcium ions (Ca 2+ ) and magnesium (Mg 2+ ), fluorine ions (F ), carbonate ions (CO 3 2− ), phosphate ions (PO) 4 2− ), or at least one of scale-causing components, and silica other than scale-causing components such as sodium ions (Na + ), chlorine ions (Cl ), and sulfuric acids. It can be preferably applied to water to be treated containing at least one of ions (SO 4 2− ) and the like. In particular, while the concentration of the scale-causing component is in a substantially constant range, the variation in the electric conductivity is large due to the large variation in the concentration of different ions (for example, there is a variation of 500 to 10,000 μS / cm). It can be preferably applied to treated water.

被処理水中に含まれるスケール原因成分の濃度としては、例えば、逆浸透膜処理の濃縮水中のCa濃度が0.1mg/L<[Ca]<50g/Lであり、PO濃度が<10g/L、またはF濃度が<10g/Lであり、これらの範囲でほぼ一定である被処理水に好ましく適用することができる。あるいは、例えば、逆浸透膜処理の濃縮水中のシリカ濃度が[SiO]<10g/Lであり、この範囲でほぼ一定である被処理水に好ましく適用することができる。なお、逆浸透膜処理の透過水の回収率は70%とする。 As the concentration of the scale-causing component contained in the water to be treated, for example, the Ca concentration in the concentrated water of the reverse osmosis membrane treatment is 0.1 mg / L <[Ca] <50 g / L, and the PO 4 concentration is <10 g / L The L or F concentration is <10 g / L, and it can be preferably applied to water to be treated which is almost constant in these ranges. Or, for example, the silica concentration in the concentrated water of the reverse osmosis membrane treatment is [SiO 2 ] <10 g / L, and it can be preferably applied to water to be treated which is substantially constant in this range. Note that the recovery rate of the permeated water in the reverse osmosis membrane treatment is 70%.

本実施形態に係る供給管理方法および供給管理装置においては、まず、被処理水の電気伝導度が導電率計により測定される。水処理系が逆浸透膜処理の場合、図1の導電率計18,20により、被処理水と逆浸透膜の濃縮水のいずれか、または両方の電気伝導度が測定される。   In the supply management method and the supply management apparatus according to the present embodiment, first, the electrical conductivity of the water to be treated is measured by a conductivity meter. When the water treatment system is a reverse osmosis membrane treatment, the electrical conductivity of either or both of the water to be treated and the concentrated water of the reverse osmosis membrane is measured by the conductivity meters 18 and 20 in FIG.

ここで、実質的にスケール発生傾向に影響を及ぼすのは、濃縮水中の電気伝導度であるため、少なくとも濃縮水中の電気伝導度を測定することが好ましい。しかし、濃縮水中の電気伝導度を測定しなくても、被処理水中の電気伝導度と逆浸透膜処理の回収率とから、濃縮水中の電気伝導度を算出してもよい。   Here, since it is the electrical conductivity in the concentrated water that substantially affects the scale generation tendency, it is preferable to measure at least the electrical conductivity in the concentrated water. However, the electrical conductivity in the concentrated water may be calculated from the electrical conductivity in the treated water and the recovery rate of the reverse osmosis membrane treatment without measuring the electrical conductivity in the concentrated water.

導電率計18,20により測定された電気伝導度の測定値に応じたスケール防止剤の必要供給量は、制御装置16が備えるプログラマブルコントローラ(PLC)などによって決定され、制御装置16によりスケール防止剤供給ポンプ14の吐出流量が自動的に制御される。   The necessary supply amount of the scale inhibitor according to the measured value of the electrical conductivity measured by the conductivity meters 18 and 20 is determined by a programmable controller (PLC) provided in the control device 16, and the scale inhibitor is controlled by the control device 16. The discharge flow rate of the supply pump 14 is automatically controlled.

ここで、スケール防止剤の必要供給量について、例えばスケール防止剤としてアクリル酸/2−アクリルアミド−2−メチルプロパンスルホン酸の共重合体43%品を半導体工場排水の回収系に用いた前述の試験データによれば、濃縮水の電気伝導度が7,000μS/cm以上である場合は、スケール防止剤の供給は不要である。また、濃縮水の電気伝導度が5,000μS/cm以上7,000μS/cm未満である場合は、濃縮水中でスケール防止剤が33mg/Lとなるような供給量に調整する。すなわち、被処理水に対してスケール防止剤が10mg/Lとなるように供給する。電気伝導度が5,000μS/cm未満である場合は、さらにスケール防止剤の供給量を2〜3倍に増加するというように、濃縮水中の電気伝導度に応じてスケール防止剤の供給量を調整することができる。   Here, with regard to the necessary supply of scale inhibitor, for example, the above-mentioned test using a 43% copolymer of acrylic acid / 2-acrylamido-2-methylpropane sulfonic acid as a scale inhibitor in a semiconductor factory wastewater recovery system According to the data, when the electric conductivity of the concentrated water is 7,000 μS / cm or more, it is not necessary to supply the scale inhibitor. Moreover, when the electrical conductivity of concentrated water is 5,000 μS / cm or more and less than 7,000 μS / cm, the supply amount is adjusted so that the scale inhibitor is 33 mg / L in the concentrated water. That is, it supplies so that a scale inhibitor may be 10 mg / L with respect to to-be-processed water. When the electrical conductivity is less than 5,000 μS / cm, the supply amount of the scale inhibitor is increased according to the electrical conductivity in the concentrated water so that the supply amount of the scale inhibitor is further increased 2 to 3 times. Can be adjusted.

上記供給量は一例であって、電気伝導度とスケール防止剤の必要供給量との関係は、被処理水の性状、スケール防止剤の種類などに応じて、適宜決定することができる。   The above supply amount is an example, and the relationship between the electrical conductivity and the necessary supply amount of the scale inhibitor can be appropriately determined according to the properties of the water to be treated, the type of the scale inhibitor, and the like.

図2に、スケール防止剤の濃度の調整方法の一例を示す。図2において、横軸は濃縮水の電気伝導度(μS/cm)、縦軸は濃縮水中のスケール防止剤の濃度(mg/L)を示す。従来の方法では、スケール防止剤の供給量は、被処理水中のカルシウム塩やマグネシウム塩、シリカなどのスケール成分の濃度やpHのみに応じて、経験的に、または実験的に決定され、定量供給されてきた。それに対して、本実施形態に係る供給管理方法では、測定した電気伝導度が高いほど、スケール防止剤の被処理水への供給量を低減するように調整する。例えば、スケール防止剤供給ポンプ14の吐出流量は、電気伝導度に応じて比例制御(例えば、図3の供給例(1))としてもよいし、電気伝導度にしきい値を設定して、ポンプの吐出量を多段制御(例えば、図3の供給例(2))としてもよい。   FIG. 2 shows an example of a method for adjusting the concentration of the scale inhibitor. In FIG. 2, the horizontal axis represents the electrical conductivity (μS / cm) of the concentrated water, and the vertical axis represents the concentration of the scale inhibitor in the concentrated water (mg / L). In the conventional method, the supply amount of the scale inhibitor is determined empirically or experimentally according to only the concentration and pH of the scale components such as calcium salt, magnesium salt and silica in the water to be treated, and is supplied quantitatively. It has been. On the other hand, in the supply management method according to the present embodiment, the higher the measured electrical conductivity, the lower the supply amount of the scale inhibitor to the water to be treated. For example, the discharge flow rate of the scale inhibitor supply pump 14 may be proportionally controlled according to the electrical conductivity (for example, supply example (1) in FIG. 3), or a threshold value is set for the electrical conductivity, and the pump It is good also as multistage control (for example, supply example (2) of FIG. 3).

スケール防止剤供給ポンプ14の吐出流量は、制御装置16が備えるプログラマブルコントローラ(PLC)などからの出力(アナログ出力、パルス出力など)や、インバータによる調整、タイマによる発停など任意の方法で自動調整することができる。   The discharge flow rate of the scale inhibitor supply pump 14 is automatically adjusted by an arbitrary method such as output from a programmable controller (PLC) provided in the control device 16 (analog output, pulse output, etc.), adjustment by an inverter, and start / stop by a timer. can do.

また、被処理水の水質変動(電気伝導度の変動)が小さい場合には、スケール防止剤供給ポンプ14の吐出量をPLC制御しなくてもよいが、濃縮水中の電気伝導度が7,000μS/cm以上のときはスケール防止剤を供給しないなど、電気伝導度に応じて従来よりもスケール防止剤の定量供給する量を少なく調整することが可能となる。   Moreover, when the water quality fluctuation | variation (electrical conductivity fluctuation | variation) of to-be-processed water is small, although the discharge amount of the scale inhibitor supply pump 14 does not need to carry out PLC control, the electrical conductivity in concentrated water is 7,000 microseconds. It is possible to adjust the amount of scale inhibitor to be supplied in a smaller amount than in the past, depending on the electrical conductivity, such as not supplying the scale inhibitor when it is more than / cm.

また、被処理水中のカルシウムなどのスケール原因成分の濃度変動が大きい場合には、図3に示すように、供給管理装置5が、スケール原因成分の濃度を測定するスケール原因成分濃度測定手段であるスケール原因成分濃度計22,24を備えてもよい。   In addition, when the concentration variation of the scale cause component such as calcium in the water to be treated is large, the supply management device 5 is a scale cause component concentration measuring means for measuring the concentration of the scale cause component as shown in FIG. Scale cause component concentration meters 22 and 24 may be provided.

図3の水処理システム1において、被処理水配管28のスケール防止剤配管32との接続点の後流側には、導電率計18およびスケール原因成分濃度計22が設置されている。また、逆浸透膜処理装置10の濃縮水側に、導電率計20およびスケール原因成分濃度計24が設置されている。制御装置16は、スケール防止剤供給ポンプ14、導電率計18,20、スケール原因成分濃度計22,24と電気的な結線などにより接続されている。   In the water treatment system 1 of FIG. 3, the conductivity meter 18 and the scale-causing component concentration meter 22 are installed on the downstream side of the connection point between the treated water pipe 28 and the scale inhibitor pipe 32. Further, a conductivity meter 20 and a scale-causing component concentration meter 24 are installed on the concentrated water side of the reverse osmosis membrane treatment apparatus 10. The control device 16 is connected to the scale inhibitor supply pump 14, the conductivity meters 18 and 20, and the scale cause component concentration meters 22 and 24 by electrical connection or the like.

図3の供給管理装置5では、導電率計18,20による被処理水または濃縮水の電気伝導度、およびスケール原因成分濃度計22,24による被処理水または濃縮水のスケール原因成分の濃度に応じてスケール防止剤の被処理水への供給量を調整することができる。具体的には、測定したスケール原因成分の濃度がほぼ同じであり、測定した電気伝導度が高いほど、スケール防止剤の被処理水への供給量を低減するように調整する。スケール防止剤の供給量は、被処理水の性状、スケール防止剤の種類などに応じて、適宜決定することができる。   In the supply management device 5 of FIG. 3, the electrical conductivity of the treated water or concentrated water by the conductivity meters 18 and 20 and the concentration of the scale causing component of the treated water or concentrated water by the scale causing component concentration meters 22 and 24 are measured. Accordingly, the supply amount of the scale inhibitor to the water to be treated can be adjusted. Specifically, the concentration of the measured scale cause component is substantially the same, and the higher the measured electrical conductivity, the lower the supply amount of the scale inhibitor to the water to be treated. The supply amount of the scale inhibitor can be appropriately determined according to the properties of the water to be treated, the type of the scale inhibitor, and the like.

本実施形態に係る供給管理方法および供給管理装置においては、まず、被処理水の電気伝導度が導電率計により測定され、被処理水中のスケール原因成分の濃度がスケール原因成分濃度計により測定される。水処理系が逆浸透膜処理の場合、図3の導電率計18,20により、被処理水と逆浸透膜の濃縮水のいずれか、または両方の電気伝導度が測定され、スケール原因成分濃度計22,24により、被処理水と逆浸透膜の濃縮水のいずれか、または両方のスケール原因成分濃度が測定される。   In the supply management method and the supply management apparatus according to the present embodiment, first, the electrical conductivity of the water to be treated is measured by a conductivity meter, and the concentration of the scale cause component in the treated water is measured by the scale cause component concentration meter. The When the water treatment system is reverse osmosis membrane treatment, the electrical conductivity of either or both of the water to be treated and the concentrated water of the reverse osmosis membrane is measured by the conductivity meters 18 and 20 in FIG. The scales 22 and 24 measure the scale-causing component concentrations of either the treated water, the concentrated water of the reverse osmosis membrane, or both.

ここで、実質的にスケール発生傾向に影響を及ぼすのは、濃縮水中の電気伝導度およびスケール原因成分濃度であるため、少なくとも濃縮水中の電気伝導度およびスケール原因成分濃度を測定することが好ましい。   Here, since it is the electrical conductivity and scale-causing component concentration in the concentrated water that substantially affect the scale generation tendency, it is preferable to measure at least the electrical conductivity and scale-causing component concentration in the concentrated water.

導電率計18,20により測定された電気伝導度の測定値、およびにスケール原因成分濃度計22,24により測定されたスケール原因成分濃度の測定値に応じたスケール防止剤の必要供給量は、制御装置16が備えるプログラマブルコントローラ(PLC)などによって決定され、制御装置16によりスケール防止剤供給ポンプ14の吐出流量が自動的に制御される。   The required supply amount of the scale inhibitor according to the measured value of the electrical conductivity measured by the conductivity meters 18 and 20 and the measured value of the scale cause component concentration measured by the scale cause component concentration meters 22 and 24 is It is determined by a programmable controller (PLC) or the like provided in the control device 16, and the discharge flow rate of the scale inhibitor supply pump 14 is automatically controlled by the control device 16.

スケール原因成分濃度計22,24としては、カルシウム濃度計、マグネシウム濃度計、シリカ濃度計などを用いることができる。   As the scale cause component concentration meters 22 and 24, a calcium concentration meter, a magnesium concentration meter, a silica concentration meter, or the like can be used.

本実施形態において用いられるスケール防止剤としては、ホスホン酸およびその塩のうち少なくとも1つ、重合りん酸およびその塩のうち少なくとも1つ、ポリマレイン酸およびその塩のうち少なくとも1つ、(メタ)アクリル酸およびその塩のうち少なくとも1つで構成される重合体、(メタ)アクリル酸およびその塩のうち少なくとも1つと他の二重結合を有する単量体との共重合体;ヒドロキシエチリデンジホスホン酸、ヒドロキシエチリデンジホスホン酸塩、ホスホノブタントリカルボン酸およびホスホノブタントリカルボン酸塩よりなる群から選ばれる少なくとも1つ;トリポリリン酸、トリポリリン酸塩、ヘキサメタリン酸およびヘキサメタリン酸塩よりなる群から選ばれる少なくとも1つ;ポリ(メタ)アクリル酸およびその塩のうち少なくとも1つ、(メタ)アクリル酸およびその塩のうち少なくとも1つとヒドロキシエチル(メタ)アクリル酸およびその塩のうち少なくとも1つとの共重合体、ならびに、(メタ)アクリル酸およびその塩のうち少なくとも1つとヒドロキシアリロキシプロパンスルホン酸およびその塩のうち少なくとも1つとの共重合体よりなる群から選ばれる少なくとも1つ;などが挙げられる。   The scale inhibitor used in this embodiment includes at least one of phosphonic acid and its salt, at least one of polymerized phosphoric acid and its salt, at least one of polymaleic acid and its salt, (meth) acrylic A polymer comprising at least one of an acid and a salt thereof, a copolymer of at least one of (meth) acrylic acid and a salt thereof and a monomer having another double bond; hydroxyethylidene diphosphonic acid , At least one selected from the group consisting of hydroxyethylidene diphosphonate, phosphonobutane tricarboxylic acid and phosphonobutane tricarboxylate; at least selected from the group consisting of tripolyphosphate, tripolyphosphate, hexametaphosphate and hexametaphosphate One; poly (meth) acrylic acid and its A copolymer of at least one of (meth) acrylic acid and its salt with at least one of hydroxyethyl (meth) acrylic acid and its salt, and (meth) acrylic acid and its salt And at least one selected from the group consisting of a copolymer of at least one of them and at least one of hydroxyallyloxypropane sulfonic acid and a salt thereof.

逆浸透膜処理装置10としては、逆浸透膜(RO膜、NF膜)などを用いる膜処理装置が挙げられるが、TOCの除去効果などの点から、RO膜を用いる逆浸透膜装置であることが好ましい。RO膜としては、酢酸セルロース膜(CA膜)、ポリアミド膜(PA膜)などを用いることができる。   Examples of the reverse osmosis membrane treatment device 10 include a membrane treatment device using a reverse osmosis membrane (RO membrane, NF membrane), etc., but from the viewpoint of the TOC removal effect, the reverse osmosis membrane treatment device 10 is a reverse osmosis membrane device using an RO membrane. Is preferred. As the RO membrane, a cellulose acetate membrane (CA membrane), a polyamide membrane (PA membrane), or the like can be used.

本実施形態において処理対象となる被処理水としては、カルシウム、マグネシウムおよびシリカのうち少なくとも1種、ならびにこれら以外の電解質を含有する水であればよく特に制限はないが、工場排水回収系、冷却水処理系、排水処理系、工業用水処理系、純水処理系などの各種水処理系全般における水が挙げられる。   The treated water to be treated in this embodiment is not particularly limited as long as it contains at least one of calcium, magnesium and silica and an electrolyte other than these. Examples include water in various water treatment systems such as water treatment systems, wastewater treatment systems, industrial water treatment systems, and pure water treatment systems.

本実施形態に係る供給管理方法および供給管理装置は、例えば、海水淡水化やかん水淡水化、排水回収系など塩類を含む被処理水を逆浸透膜処理する装置の濃縮水側において、スケールを防止するのに好適に利用される。特に、半導体および液晶表示装置製造工場の排水回収系のように、カルシウム塩やマグネシウム塩、シリカの濃度に対して電気伝導度の変動が大きい水系において、コスト削減効果が高い。   The supply management method and the supply management apparatus according to the present embodiment prevent scale on the concentrated water side of a device that performs reverse osmosis membrane treatment of water to be treated including salts, such as seawater desalination, brine desalination, and wastewater recovery systems. It is preferably used to do this. In particular, the cost reduction effect is high in an aqueous system in which variation in electrical conductivity is large with respect to the concentration of calcium salt, magnesium salt, and silica, such as a wastewater recovery system in a semiconductor and liquid crystal display manufacturing factory.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

(実施例1)
半導体工場から排出される排水に対してスケール防止剤の供給濃度を数パターンに分け、24時間後の溶存Fイオン濃度を測定する実験を行った。この実験に使用した工場排水においては、不定期の樹脂再生工程などによる、酸(HCl、HSOなど)とアルカリ(NaOHなど)の使用量に応じて、電気伝導度が500μS/cm〜10,000μS/cmの間で大きく変動するという特徴があった。また、この排水中のスケール原因成分の濃度は、Ca濃度が30mg/L、PO濃度が70mg/L、F濃度が7mg/Lでほぼ一定であった。
Example 1
The supply concentration of the scale inhibitor was divided into several patterns for the wastewater discharged from the semiconductor factory, and an experiment was conducted to measure the dissolved F ion concentration after 24 hours. The factory wastewater used in this experiment has an electric conductivity of 500 μS / cm or more depending on the amount of acid (HCl, H 2 SO 4, etc.) and alkali (NaOH, etc.) used due to irregular resin regeneration processes. There was a characteristic that it fluctuated greatly between 10,000 μS / cm. In addition, the concentration of the scale-causing component in the waste water was almost constant at a Ca concentration of 30 mg / L, a PO 4 concentration of 70 mg / L, and an F concentration of 7 mg / L.

スケール防止剤として、アクリル酸/2−アクリルアミド−2−メチルプロパンスルホン酸の共重合体43%品を用いて、以下の条件で実験を行った。被処理水サンプルを300mL採取し、スケール防止剤を所定濃度添加、撹拌後、RO平膜試験機にて3.3倍濃縮し、濃縮水を一昼夜静置後に孔径0.1μmのフィルタでろ過した。ろ過後のサンプルについてカルシウムイオン濃度とフッ素イオン濃度を測定し、実験前後のイオン回収率からスケール防止剤必要濃度を決定した。結果を図4に示す。   As a scale inhibitor, an acrylic acid / 2-acrylamido-2-methylpropanesulfonic acid copolymer 43% product was used for the experiment under the following conditions. 300 mL of a sample of water to be treated was collected, a scale inhibitor was added at a predetermined concentration, stirred, and concentrated 3.3 times with a RO flat membrane tester, and the concentrated water was allowed to stand overnight and filtered through a filter having a pore size of 0.1 μm. . The calcium ion concentration and the fluorine ion concentration were measured for the sample after filtration, and the necessary concentration of the scale inhibitor was determined from the ion recovery rate before and after the experiment. The results are shown in FIG.

図4からわかるように、被処理水中の電気伝導度が1,000μS/cm以上、逆浸透膜処理の濃縮水中の電気伝導度が5,000μS/cm以上の工場排水においては、被処理水中のカルシウムイオン濃度とフッ素イオン濃度は、フッ化カルシウムを析出するのに充分な濃度であったにもかかわらず、スケール分散剤供給量を通常の50mg/Lよりも少なく抑えることができた。また、被処理水中の電気伝導度が2500μS/cm以上、濃縮水中の電気伝導度が7000μS/cm以上の場合には、スケール防止剤を全く加えない場合でも、スケールをほとんど析出しなかった。すなわち、実際にはスケール析出のリスクはカルシウム塩やマグネシウム塩、シリカなどの濃度だけによらず、共存イオンの存在による影響も大きいことがわかった。   As can be seen from FIG. 4, in the industrial wastewater having an electrical conductivity of 1,000 μS / cm or more in the treated water and an electrical conductivity in the concentrated water of the reverse osmosis membrane treatment of 5,000 μS / cm or more, Although the calcium ion concentration and the fluorine ion concentration were sufficient to precipitate calcium fluoride, the scale dispersant supply amount could be suppressed to less than the usual 50 mg / L. Further, when the electrical conductivity in the water to be treated was 2500 μS / cm or higher and the electrical conductivity in the concentrated water was 7000 μS / cm or higher, the scale hardly precipitated even when no scale inhibitor was added. In other words, it was found that the risk of scale precipitation is not only dependent on the concentration of calcium salt, magnesium salt, silica, etc., but also the presence of coexisting ions.

また、濃縮水の電気伝導度とフッ素イオン回収率との関係を図5に示す。これより、濃縮水の電気伝導度が7,000μS/cm以上である場合は、スケール防止剤の供給は不要であり、濃縮水の電気伝導度が5,000μS/cm以上7,000μS/cm未満である場合は、濃縮水中でスケール防止剤が33mg/Lとなるような供給量に調整すればよいことがわかった。   Moreover, the relationship between the electrical conductivity of concentrated water and a fluorine ion recovery rate is shown in FIG. Accordingly, when the electrical conductivity of the concentrated water is 7,000 μS / cm or more, it is not necessary to supply the scale inhibitor, and the electrical conductivity of the concentrated water is 5,000 μS / cm or more and less than 7,000 μS / cm. It was found that the amount of the scale inhibitor in the concentrated water should be adjusted to 33 mg / L.

このように、カルシウム、マグネシウムおよびシリカのうち少なくとも1種、ならびにこれら以外の電解質を含有する被処理水の電気伝導度を測定し、測定した電気伝導度に応じてスケール防止剤の被処理水への供給量を調整することにより、被処理水へのスケール防止剤の供給量を低減することができた。   Thus, the electrical conductivity of the water to be treated containing at least one of calcium, magnesium and silica and an electrolyte other than these is measured, and the water to be treated with the scale inhibitor is measured according to the measured electrical conductivity. It was possible to reduce the supply amount of the scale inhibitor to the water to be treated by adjusting the supply amount.

本発明の一実施形態に係るスケール防止剤の供給管理装置を備える水処理システムの一例を示す概略構成図である。It is a schematic block diagram which shows an example of a water treatment system provided with the supply management apparatus of the scale inhibitor which concerns on one Embodiment of this invention. 本発明の実施形態におけるスケール防止剤の濃度の調整方法の一例を示す図である。It is a figure which shows an example of the adjustment method of the density | concentration of the scale inhibitor in embodiment of this invention. 本発明の他の実施形態に係るスケール防止剤の供給管理装置を備える水処理システムの一例を示す概略構成図である。It is a schematic block diagram which shows an example of a water treatment system provided with the supply management apparatus of the scale inhibitor which concerns on other embodiment of this invention. 本発明の実施例における濃縮水の電気伝導度と必要スケール防止剤濃度との関係を示す図である。It is a figure which shows the relationship between the electrical conductivity of concentrated water in the Example of this invention, and a required scale inhibitor density | concentration. 本発明の実施例における濃縮水の電気伝導度とフッ素イオン回収率との関係を示す図である。It is a figure which shows the relationship between the electrical conductivity of the concentrated water in the Example of this invention, and a fluorine ion recovery rate.

符号の説明Explanation of symbols

1 水処理システム、3,5 供給管理装置、10 逆浸透膜処理装置、12 スケール防止剤貯槽、14 スケール防止剤供給ポンプ、16 制御装置、18,20 導電率計、22,24 スケール原因成分濃度計、26 被処理水供給ポンプ、28 被処理水配管、30 処理水配管、32 スケール防止剤配管。   1 Water treatment system, 3, 5 Supply management device, 10 Reverse osmosis membrane treatment device, 12 Scale inhibitor storage tank, 14 Scale inhibitor supply pump, 16 Control device, 18, 20 Conductivity meter, 22, 24 Scale causal component concentration Total, 26 treated water supply pump, 28 treated water piping, 30 treated water piping, 32 scale inhibitor piping.

Claims (6)

水処理系における被処理水へのスケール防止剤の供給を管理するスケール防止剤の供給管理方法であって、
前記被処理水は、カルシウム、マグネシウムおよびシリカのうち少なくとも1種、ならびにこれら以外の電解質を含有し、
前記被処理水の電気伝導度を測定し、前記測定した電気伝導度に応じてスケール防止剤の前記被処理水への供給量を調整することを特徴とするスケール防止剤の供給管理方法。
A scale inhibitor supply management method for managing supply of scale inhibitor to water to be treated in a water treatment system,
The treated water contains at least one of calcium, magnesium and silica, and an electrolyte other than these,
A scale inhibitor supply management method, wherein the electrical conductivity of the water to be treated is measured, and the supply amount of the scale inhibitor to the water to be treated is adjusted according to the measured electrical conductivity.
逆浸透膜処理における被処理水へのスケール防止剤の供給を管理するスケール防止剤の供給管理方法であって、
前記被処理水は、カルシウム、マグネシウムおよびシリカのうち少なくとも1種、ならびにこれら以外の電解質を含有し、
前記被処理水および前記逆浸透膜処理により生成する濃縮水のうち少なくとも1つの電気伝導度を測定し、前記測定した電気伝導度に応じてスケール防止剤の前記被処理水への供給量を調整することを特徴とするスケール防止剤の供給管理方法。
A scale inhibitor supply management method for managing supply of scale inhibitor to treated water in reverse osmosis membrane treatment,
The treated water contains at least one of calcium, magnesium and silica, and an electrolyte other than these,
Measure the electrical conductivity of at least one of the treated water and the concentrated water generated by the reverse osmosis membrane treatment, and adjust the supply amount of the scale inhibitor to the treated water according to the measured electrical conductivity A method for managing the supply of a scale inhibitor, comprising:
請求項1または2に記載のスケール防止剤の供給管理方法であって、
前記測定した電気伝導度が高いほど、前記スケール防止剤の前記被処理水への供給量を低減するように調整することを特徴とするスケール防止剤の供給管理方法。
It is the supply management method of the scale inhibitor of Claim 1 or 2,
The scale inhibitor supply management method is characterized in that the higher the measured electrical conductivity, the lower the supply amount of the scale inhibitor to the water to be treated.
請求項3に記載のスケール防止剤の供給管理方法であって、
前記測定した電気伝導度が1,000μS/cm以上のときに、前記スケール防止剤の前記被処理水への供給量を低減するように調整することを特徴とするスケール防止剤の供給管理方法。
It is the supply management method of the scale inhibitor of Claim 3,
When the measured electrical conductivity is 1,000 μS / cm or more, the supply of the scale inhibitor is adjusted so as to reduce the supply amount of the scale inhibitor to the water to be treated.
請求項1〜4のいずれか1項に記載のスケール防止剤の供給管理方法であって、
前記被処理水が、電子産業工場排水の回収系における水であることを特徴とするスケール防止剤の供給管理方法。
It is the supply management method of the scale inhibitor of any one of Claims 1-4,
The scale treatment agent supply management method, wherein the water to be treated is water in an electronic industrial factory wastewater recovery system.
水処理系における被処理水へのスケール防止剤の供給を管理するスケール防止剤の供給管理装置であって、
前記被処理水は、カルシウム、マグネシウムおよびシリカのうち少なくとも1種、ならびにこれら以外の電解質を含有し、
前記被処理水の電気伝導度を測定する電気伝導度測定手段と、
前記測定した電気伝導度に応じてスケール防止剤の前記被処理水への供給量を調整する供給量調整手段と、
を有することを特徴とするスケール防止剤の供給管理装置。
A scale management agent supply management device for managing the supply of scale inhibitor to water to be treated in a water treatment system,
The treated water contains at least one of calcium, magnesium and silica, and an electrolyte other than these,
Electrical conductivity measuring means for measuring electrical conductivity of the treated water;
A supply amount adjusting means for adjusting a supply amount of the scale inhibitor to the water to be treated according to the measured electrical conductivity;
A scale management agent supply management device comprising:
JP2008161849A 2008-06-20 2008-06-20 Scale inhibitor supply management method and supply management apparatus Active JP5345344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008161849A JP5345344B2 (en) 2008-06-20 2008-06-20 Scale inhibitor supply management method and supply management apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008161849A JP5345344B2 (en) 2008-06-20 2008-06-20 Scale inhibitor supply management method and supply management apparatus

Publications (2)

Publication Number Publication Date
JP2010000455A true JP2010000455A (en) 2010-01-07
JP5345344B2 JP5345344B2 (en) 2013-11-20

Family

ID=41582606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008161849A Active JP5345344B2 (en) 2008-06-20 2008-06-20 Scale inhibitor supply management method and supply management apparatus

Country Status (1)

Country Link
JP (1) JP5345344B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203031A (en) * 2010-03-25 2011-10-13 Aquas Corp Quality measuring method of cooling water, quality control method of cooling water, and method for injecting water treatment chemical agent in cooling water
JP2013156130A (en) * 2012-01-30 2013-08-15 Hitachi-Ge Nuclear Energy Ltd Radioactive waste liquid treatment method and radioactive waste liquid treatment apparatus
WO2013157549A1 (en) * 2012-04-17 2013-10-24 栗田工業株式会社 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment device
CN103864230A (en) * 2014-03-05 2014-06-18 长沙中联重科环卫机械有限公司 Scaling inhibitor adding control system, method and device as well as sewage treatment equipment
WO2014148462A1 (en) * 2013-03-22 2014-09-25 栗田工業株式会社 Method for preventing scale deposition and scale inhibitor
CN104250042A (en) * 2014-09-22 2014-12-31 许锦璐 Integrated equipment and method for automatically treating circulating cooling water and recycling sewage water
JP2016187788A (en) * 2015-03-30 2016-11-04 栗田工業株式会社 Water treatment method and water treatment equipment using reverse osmosis membrane
JP2018034093A (en) * 2016-08-30 2018-03-08 野村マイクロ・サイエンス株式会社 Reverse osmosis membrane processing system, and operational method for the reverse osmosis membrane processing system
JP2019202246A (en) * 2018-05-21 2019-11-28 王子ホールディングス株式会社 Water treatment equipment and water treatment method
WO2020166276A1 (en) * 2019-02-15 2020-08-20 栗田工業株式会社 Control method for reverse osmosis system
CN114409125A (en) * 2021-12-23 2022-04-29 广州高澜节能技术股份有限公司 Reverse osmosis intelligent dosing control system and dosing process
WO2023032566A1 (en) * 2021-09-06 2023-03-09 オルガノ株式会社 Water treatment method and water treatment apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016035175A1 (en) 2014-09-03 2017-04-27 三菱重工業株式会社 Water treatment apparatus and water treatment apparatus operating method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114598A (en) * 1989-09-29 1991-05-15 Kurita Water Ind Ltd Method and apparatus for controlling water quality of cooling water apparatus
JPH03288586A (en) * 1990-04-04 1991-12-18 Kurita Water Ind Ltd Method for monitoring contamination of water system
JPH05155920A (en) * 1991-12-05 1993-06-22 Tosoh Corp Scale preventive
JP2002210335A (en) * 2001-01-16 2002-07-30 Japan Organo Co Ltd Apparatus and method for desalting using reverse osmosis membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114598A (en) * 1989-09-29 1991-05-15 Kurita Water Ind Ltd Method and apparatus for controlling water quality of cooling water apparatus
JPH03288586A (en) * 1990-04-04 1991-12-18 Kurita Water Ind Ltd Method for monitoring contamination of water system
JPH05155920A (en) * 1991-12-05 1993-06-22 Tosoh Corp Scale preventive
JP2002210335A (en) * 2001-01-16 2002-07-30 Japan Organo Co Ltd Apparatus and method for desalting using reverse osmosis membrane

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203031A (en) * 2010-03-25 2011-10-13 Aquas Corp Quality measuring method of cooling water, quality control method of cooling water, and method for injecting water treatment chemical agent in cooling water
JP2013156130A (en) * 2012-01-30 2013-08-15 Hitachi-Ge Nuclear Energy Ltd Radioactive waste liquid treatment method and radioactive waste liquid treatment apparatus
WO2013157549A1 (en) * 2012-04-17 2013-10-24 栗田工業株式会社 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment device
JP2013220384A (en) * 2012-04-17 2013-10-28 Kurita Water Ind Ltd Method and apparatus for treating reverse osmosis membrane
WO2014148462A1 (en) * 2013-03-22 2014-09-25 栗田工業株式会社 Method for preventing scale deposition and scale inhibitor
JP2014184365A (en) * 2013-03-22 2014-10-02 Kurita Water Ind Ltd Method for preventing scale, and scale preventive
CN105050966A (en) * 2013-03-22 2015-11-11 栗田工业株式会社 Method for preventing scale deposition and scale inhibitor
CN103864230A (en) * 2014-03-05 2014-06-18 长沙中联重科环卫机械有限公司 Scaling inhibitor adding control system, method and device as well as sewage treatment equipment
CN104250042A (en) * 2014-09-22 2014-12-31 许锦璐 Integrated equipment and method for automatically treating circulating cooling water and recycling sewage water
CN104250042B (en) * 2014-09-22 2015-12-23 许锦璐 Automatically process and the integrated equipment of sewer reuse and method for recirculated cooling water
JP2016187788A (en) * 2015-03-30 2016-11-04 栗田工業株式会社 Water treatment method and water treatment equipment using reverse osmosis membrane
JP2018034093A (en) * 2016-08-30 2018-03-08 野村マイクロ・サイエンス株式会社 Reverse osmosis membrane processing system, and operational method for the reverse osmosis membrane processing system
WO2018043234A1 (en) * 2016-08-30 2018-03-08 野村マイクロ・サイエンス株式会社 Reverse osmosis membrane treatment system and operating method of reverse osmosis membrane treatment system
CN109843416A (en) * 2016-08-30 2019-06-04 野村微科学股份有限公司 The operation method of reverse osmosis membrane treatment system and reverse osmosis membrane treatment system
CN109843416B (en) * 2016-08-30 2021-09-21 野村微科学股份有限公司 Reverse osmosis membrane treatment system and operation method thereof
JP2019202246A (en) * 2018-05-21 2019-11-28 王子ホールディングス株式会社 Water treatment equipment and water treatment method
WO2020166276A1 (en) * 2019-02-15 2020-08-20 栗田工業株式会社 Control method for reverse osmosis system
JP2020131087A (en) * 2019-02-15 2020-08-31 栗田工業株式会社 Control method for reverse osmosis system
WO2023032566A1 (en) * 2021-09-06 2023-03-09 オルガノ株式会社 Water treatment method and water treatment apparatus
CN114409125A (en) * 2021-12-23 2022-04-29 广州高澜节能技术股份有限公司 Reverse osmosis intelligent dosing control system and dosing process

Also Published As

Publication number Publication date
JP5345344B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5345344B2 (en) Scale inhibitor supply management method and supply management apparatus
JP5359898B2 (en) Water treatment method and water treatment system
US10407331B2 (en) Scale detection device and method for concentrating device, and water reclamation processing treatment system
US20120325745A1 (en) Treating acidic water
JP5768959B2 (en) Water treatment equipment
JP5955389B2 (en) Desalination treatment apparatus and method of operating desalination treatment apparatus
CN105645625A (en) High-efficiency high-recovery-rate reverse osmosis dense water recycling treatment method and system
JP2019042651A (en) Treatment device and treatment method of hardness component-containing water
JP6162221B2 (en) Water regeneration system, desalination apparatus, and water regeneration method
JP5961916B2 (en) Water treatment equipment
JP2011031146A (en) Water treatment system
WO2018030109A1 (en) Membrane filtration method and membrane filtration system
JP2007090249A (en) Method for cleaning membrane deaerator
JP2006281174A (en) Method, apparatus and system for recycling wastewater
TW201838709A (en) Method for managing operation of reverse osmotic membrane device, and reverse osmosis membrane treatment system
JP2005118712A (en) Pure water manufacturing method
JP2008062223A (en) Membrane filtering method and membrane filtering system
WO2023032566A1 (en) Water treatment method and water treatment apparatus
JP6468384B1 (en) Water treatment equipment
CN118159497A (en) Water treatment method and water treatment device
AU2022267038A1 (en) Preventive control method and system for preventing the fouling of a membrane separation unit
CN116903176A (en) Use tubular microfiltration membrane&#39;s system of removing hard silicon that removes
JP2019130501A (en) Removal method and apparatus for dissolved aluminium
CN117222470A (en) Preventive control method and system for preventing fouling of membrane separation units
JP2005000892A (en) Apparatus and method for treating membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130814

R150 Certificate of patent or registration of utility model

Ref document number: 5345344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250