JP2018031323A - Process for manufacture of compressor and compressor bearing position setting device - Google Patents

Process for manufacture of compressor and compressor bearing position setting device Download PDF

Info

Publication number
JP2018031323A
JP2018031323A JP2016165204A JP2016165204A JP2018031323A JP 2018031323 A JP2018031323 A JP 2018031323A JP 2016165204 A JP2016165204 A JP 2016165204A JP 2016165204 A JP2016165204 A JP 2016165204A JP 2018031323 A JP2018031323 A JP 2018031323A
Authority
JP
Japan
Prior art keywords
bearing
cylinder
main
main shaft
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016165204A
Other languages
Japanese (ja)
Other versions
JP6673605B2 (en
Inventor
真紀 岡田
Masanori Okada
真紀 岡田
國分 忍
Shinobu Kokubu
忍 國分
広康 高橋
Hiroyasu Takahashi
広康 高橋
基亮 玉谷
Motoaki Tamaya
基亮 玉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016165204A priority Critical patent/JP6673605B2/en
Publication of JP2018031323A publication Critical patent/JP2018031323A/en
Application granted granted Critical
Publication of JP6673605B2 publication Critical patent/JP6673605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process of manufacture of a compressor in which a position setting of a main bearing and a sub-bearing against a cylinder can be easily attained and an influence of strain against the cylinder is restricted and provide a compressor bearing position setting device.SOLUTION: This invention relates to a process of manufacture of a compressor in which a main bearing 2, a cylinder 1 and a sub-bearing 3 are commonly fastened by a through-bolt 5, only any one of three members of the main bearing, cylinder and sub-bearing is fixed to a base 61, the other two members can be oscillatably held only in a direction crossing at a right angle with the axial direction at each of the arranging positions in respect to one member fixed to the base, each of oscillations of the other two members in a direction crossing at a right angle with the axial direction is measured when the main shaft is inclined and rotated in respect to the axial direction under its state and they are fixed by the through-bolt after each of the other two members is set in position in respect to the center position of the measured oscillation width.SELECTED DRAWING: Figure 4

Description

本発明は圧縮機、特にロータリ圧縮機のクランク軸を主軸受と副軸受で支持する圧縮機の製造方法及び圧縮機の軸受位置決め装置に関するものである。   The present invention relates to a method of manufacturing a compressor, particularly a compressor for supporting a crankshaft of a rotary compressor with a main bearing and a sub-bearing, and a bearing positioning device for the compressor.

従来の圧縮機として、シリンダの両端面を数本のボルトにて締結される軸受を兼ねる主端板と補助端板に対し、ローラとシリンダ内径の隙間が最小となる位置付近を締結するボルトの締結力を他の箇所のボルトの締結力に対して小さくすることで、圧縮機の効率に大きく影響する最小隙間に対し、ボルト締結による歪を減少させ、最小隙間をさらに小さく設定して圧縮機の効率を上げるようにしたものがある(例えば特許文献1参照)。また、主軸受を取付台に固定し、クランク軸(主軸)の長軸部に偏心部の偏心方向と同方向に偏心錘を取付け、モータによって主軸を振れ回り運動させることで副軸受を揺動運動させ、副軸受の揺動軌跡を副軸受計測機構で計測し、揺動軌跡の中心を求め、アクチュエータ及び背圧機構を用いてその中心位置に副軸受を調心するようにしたものがある(例えば特許文献2参照)。   As a conventional compressor, the bolts that fasten the vicinity of the position where the gap between the roller and the cylinder inner diameter becomes the minimum with respect to the main end plate and auxiliary end plate that also serve as bearings that are fastened with several bolts at both ends of the cylinder By reducing the fastening force relative to the fastening force of the bolts at other locations, the distortion caused by bolt fastening is reduced with respect to the minimum gap that greatly affects the efficiency of the compressor, and the minimum gap is set to be even smaller. There is one that increases the efficiency of (see, for example, Patent Document 1). Also, the main bearing is fixed to the mounting base, an eccentric weight is attached to the long shaft of the crankshaft (main shaft) in the same direction as the eccentric direction of the eccentric portion, and the main shaft is swung around by the motor to swing the auxiliary bearing. There is a type in which the sub-bearing trajectory is measured by the sub-bearing measuring mechanism, the center of the swing trajectory is obtained, and the sub-bearing is aligned at the center position using the actuator and back pressure mechanism. (For example, refer to Patent Document 2).

特開2002−98075号公報JP 2002-98075 A 特開平9−32773号公報JP-A-9-32773

上記特許文献1のような圧縮機にあっては、主軸受と副軸受をそれぞれシリンダにボルト締結する必要があり、シリンダ内径の歪量分はローラとシリンダ内径の隙間をあけることで、効率を低下させていた。また、シリンダに対し、主軸受と副軸受を別々に位置決めし固定する必要があるため、設備を複数台設けるため、設備費が高く、組立時間が増加するという問題があった。また、特許文献2の調心方法ではシリンダに固定された主軸受に対する副軸受の中心を正確に調芯できるものの、シリンダに対する主軸受と副軸受の固定手法に関しては特許文献1と同様の課題があり、また、偏心錘を主軸の偏心部の偏心方向と同方向に取付ける必要があるという課題があった。   In a compressor such as the above-mentioned Patent Document 1, it is necessary to bolt the main bearing and the sub-bearing to the cylinder respectively, and the amount of distortion of the cylinder inner diameter can be improved by opening a gap between the roller and the cylinder inner diameter. It was decreasing. Moreover, since it is necessary to position and fix the main bearing and the sub-bearing separately with respect to the cylinder, a plurality of facilities are provided, so that there is a problem that equipment costs are high and assembly time is increased. Further, although the centering method of Patent Document 2 can accurately align the center of the sub-bearing with respect to the main bearing fixed to the cylinder, the same problem as Patent Document 1 regarding the fixing method of the main bearing and the sub-bearing with respect to the cylinder. In addition, there is a problem that the eccentric weight needs to be attached in the same direction as the eccentric direction of the eccentric portion of the main shaft.

本発明は上記のような課題を解決するためになされたもので、シリンダに対する主軸受と副軸受の位置決めを同時に行うことができ、しかもボルト締結によるシリンダに対する歪の影響を抑制することができる圧縮機の製造方法及び圧縮機の軸受位置決め装置を得ることを目的としている。   The present invention has been made to solve the above-described problems, and can compress the main bearing and the sub-bearing with respect to the cylinder at the same time, and can suppress the influence of distortion on the cylinder due to the bolt fastening. It is an object to obtain a machine manufacturing method and a compressor bearing positioning device.

本発明に係る圧縮機の製造方法は、シリンダと、前記シリンダに対してその軸方向に挿通して設けられ該軸方向の中央部にローラが嵌装された偏芯部を有し、両端部が前記シリンダの外方に突出された主軸と、前記シリンダの一側部に配設され前記主軸の一端部を回転自在に支持する主軸受と、前記シリンダの他側部に配設されて前記主軸の他端部を回転自在に支持する副軸受と、を備え、前記主軸受、前記シリンダ、及び前記副軸受を、通しボルトによって共締め固定するようにした圧縮機の製造方法であって、前記主軸受、前記シリンダ、及び前記副軸受からなる三部材の何れか一部材のみをベースに対して固定し、他の二部材を、前記ベースに固定された前記一部材に対するそれぞれの配設位置において前記軸方向に直交する方向にのみ揺動可能に保持し、その状態で前記主軸を前記軸方向に対して傾斜させて回転させたときの、前記他の二部材の前記軸方向に直交する方向の振れをそれぞれ計測し、計測された振れ幅の中心位置に対して前記他の二部材をそれぞれ位置決めした後、前記通しボルトによって、前記主軸受、前記シリンダ、及び前記副軸受を固定するようにしたものである。
また、本発明に係る圧縮機の軸受位置決め装置は、シリンダと、前記シリンダに対してその軸方向に挿通して設けられ該軸方向の中央部にローラが嵌装された偏芯部を有し、両端部が前記シリンダの外方に突出された主軸と、前記シリンダの一側部に配設され前記主軸の一端部を回転自在に支持する主軸受と、前記シリンダの他側部に配設されて前記主軸の他端部を回転自在に支持する副軸受と、を備え、前記主軸受、前記シリンダ、及び前記副軸受を、通しボルトによって共締め固定するようにした圧縮機の軸受位置決め装置であって、ベースと、前記主軸受、前記主軸が挿通された前記シリンダ、及び前記副軸受からなる三部材の何れか一部材のみを基準部材として前記ベースに対して固定する基準部材固定手段と、他の二部材を前記ベースに固定された前記一部材に対するそれぞれの配設位置において前記軸方向に直交する径方向にのみ揺動可能に保持する保持手段と、前記主軸を前記軸方向に対して傾斜させて回転させる主軸傾斜回転手段と、前記主軸傾斜回転手段によって前記主軸を回転させたときの前記他の二部材の振れをそれぞれ計測する二組の変位センサと、前記変位センサによって計測された振れ幅の中心位置に対して前記他の二部材をそれぞれ移動させる移動手段と、を備えたものである。
The compressor manufacturing method according to the present invention includes a cylinder, and an eccentric portion that is provided so as to be inserted in the axial direction with respect to the cylinder and in which a roller is fitted in a central portion of the axial direction. Is a main shaft protruding outward of the cylinder, a main bearing disposed on one side of the cylinder and rotatably supporting one end of the main shaft, and disposed on the other side of the cylinder. A sub-bearing that rotatably supports the other end of the main shaft, and a method of manufacturing a compressor in which the main bearing, the cylinder, and the sub-bearing are fixed together with a through bolt, Only one of the three members consisting of the main bearing, the cylinder, and the sub-bearing is fixed to the base, and the other two members are arranged relative to the one member fixed to the base. In the direction perpendicular to the axial direction When the main shaft is tilted with respect to the axial direction and rotated in this state, the deflection of the other two members in the direction perpendicular to the axial direction is measured and measured. After positioning the other two members with respect to the center position of the deflection width, the main bearing, the cylinder, and the auxiliary bearing are fixed by the through bolts.
In addition, a bearing positioning device for a compressor according to the present invention includes a cylinder and an eccentric portion that is provided so as to be inserted in the axial direction of the cylinder and in which a roller is fitted in the central portion of the axial direction. A main shaft having both ends projecting outward from the cylinder, a main bearing disposed on one side of the cylinder and rotatably supporting one end of the main shaft, and disposed on the other side of the cylinder And a sub-bearing that rotatably supports the other end of the main shaft, and a bearing positioning device for a compressor, wherein the main bearing, the cylinder, and the sub-bearing are fixed together by a through bolt And a reference member fixing means for fixing to the base using only one member of the base, the main bearing, the cylinder through which the main shaft is inserted, and the auxiliary bearing as a reference member. The other two members A holding means for swingably holding only in a radial direction orthogonal to the axial direction at each disposition position with respect to the one member fixed to a shaft, and a main shaft for rotating the main shaft while tilting the main shaft An inclination rotation means, two sets of displacement sensors for measuring the deflection of the other two members when the spindle is rotated by the spindle inclination rotation means, and a center position of the deflection width measured by the displacement sensor And a moving means for moving the other two members, respectively.

本発明の圧縮機の製造方法によれば、主軸受、シリンダ、及び副軸受からなる三部材の何れか一部材のみをベースに対して固定し、他の二部材を、ベースに固定された前記一部材に対するそれぞれの配設位置において軸方向に直交する方向にのみ揺動可能に保持し、その状態で前記主軸を前記軸方向に対して傾斜させて回転させたときの、前記他の二部材の前記軸方向に直交する方向の振れをそれぞれ計測し、計測された振れ幅の中心位置に対して前記他の二部材をそれぞれ位置決めした後、通しボルトによって、前記主軸受、前記シリンダ、及び前記副軸受を固定するようにしたので、シリンダに対する主軸受と副軸受の同軸を確保するための理想的な位置を同時に検知することができると共に、ボルト締結によるシリンダの歪を抑制した効率の高い圧縮機を得ることができる。
また、本発明の圧縮機の軸受位置決め装置によれば、シリンダに対する主軸受と副軸受の同軸を確保するための理想的な中心位置を同時かつ容易に検知することができると共に、ボルト締結によるシリンダの歪を抑制した効率の高い圧縮機を得ることができる。
According to the compressor manufacturing method of the present invention, only one of the three members including the main bearing, the cylinder, and the auxiliary bearing is fixed to the base, and the other two members are fixed to the base. The other two members when the main shaft is tilted with respect to the axial direction and rotated while being held so as to be swingable only in a direction orthogonal to the axial direction at each disposition position with respect to the one member. And measuring the deflection in the direction perpendicular to the axial direction of each, positioning the other two members with respect to the center position of the measured deflection width, and then using the through-bolts, the main bearing, the cylinder, and the Since the secondary bearing is fixed, it is possible to detect the ideal position for ensuring the coaxiality of the main bearing and the secondary bearing with respect to the cylinder at the same time, and to suppress the distortion of the cylinder due to the bolt fastening. It is possible to obtain a high rate compressor.
According to the compressor bearing positioning device of the present invention, the ideal center position for ensuring the coaxiality of the main bearing and the sub-bearing with respect to the cylinder can be detected simultaneously and easily, and the cylinder by bolt fastening Therefore, it is possible to obtain a highly efficient compressor with suppressed distortion.

本発明の実施の形態1〜5による圧縮機の製造方法によって製造された圧縮機の要部を概念的に示す断面図である。It is sectional drawing which shows notionally the principal part of the compressor manufactured by the manufacturing method of the compressor by Embodiment 1-5 of this invention. 図1に示された圧縮機の径方向における断面構成図である。It is a cross-sectional block diagram in the radial direction of the compressor shown by FIG. シリンダに螺設されたネジ山に軸受をボルト締結した際に生じるシリンダの変形を説明する参考図である。It is a reference figure explaining the deformation | transformation of the cylinder which arises when a bearing is bolted to the screw thread screwed in the cylinder. 本発明の実施の形態1による圧縮機の軸受位置決め装置の全体的な概要構成を示す断面図である。1 is a cross-sectional view illustrating an overall schematic configuration of a bearing positioning device for a compressor according to a first embodiment of the present invention. 図4に示す軸受位置決め装置の第1の要部を概念的に示す断面図である。It is sectional drawing which shows notionally the 1st principal part of the bearing positioning device shown in FIG. 図4に示す軸受位置決め装置の第2の要部を概念的に示す断面図である。It is sectional drawing which shows the 2nd principal part of the bearing positioning device shown in FIG. 4 notionally. 図4に示す軸受位置決め装置の変形例を概念的に示す要部断面図である。It is principal part sectional drawing which shows notionally the modification of the bearing positioning device shown in FIG. 図4に示す軸受位置決め装置の動作を概略的に示すフロー図である。FIG. 5 is a flowchart schematically showing the operation of the bearing positioning device shown in FIG. 4. 本発明の実施の形態2による圧縮機の製造方法に用いた軸受位置決め装置の要部を概念的に示す断面図である。It is sectional drawing which shows notionally the principal part of the bearing positioning apparatus used for the manufacturing method of the compressor by Embodiment 2 of this invention. 本発明の実施の形態3の製造方法における圧縮機の要部構成部材を説明する図である。It is a figure explaining the principal part structural member of the compressor in the manufacturing method of Embodiment 3 of this invention. 本発明の実施の形態4の製造方法における圧縮機の要部構成部分を示す図である。It is a figure which shows the principal part structure part of the compressor in the manufacturing method of Embodiment 4 of this invention.

実施の形態1.
先ず、本発明の圧縮機の製造方法によって製造された圧縮機における各実施の形態に共通した特徴について図1〜図3を参照して説明する。図1は本発明の実施の形態1〜4による圧縮機の製造方法によって製造された圧縮機の要部を概念的に示す断面図、図2は図1に示された圧縮機の径方向における断面構成図、図3はシリンダに螺設されたネジ山に軸受をボルト締結した際に生じるシリンダの変形を説明する参考図である。図において、圧縮機は被固定部品であるシリンダ1と、シリンダ1の図1の姿勢における下端と上端に形成された固定面Aにそれぞれ固定された主軸受2及び副軸受3と、主軸受2と副軸受3に軸支されたクランク軸である主軸4を備えている。主軸4の軸方向中間部には偏芯部41が形成され、その偏芯部41の外周面には円筒状のローラ42が嵌装されている。主軸受2には周方向に複数(ここでは4か所)のネジ穴21が螺設されている。副軸受3とシリンダ1には主軸受2のネジ穴21に対応した位置に通しボルト5を挿通するための貫通穴31と貫通穴11がそれぞれ設けられている。通しボルト5は副軸受3の側から挿入され、主軸受2のネジ穴21に締結することで主軸受2と副軸受3にてシリンダ1を挟み込んだ状態で共締めされ固定される。なお、便宜上、主軸4の軸方向をZ軸、そのZ軸に直交した面における互いに直交した方向をX軸、Y軸とする。
Embodiment 1 FIG.
First, features common to the respective embodiments of the compressor manufactured by the compressor manufacturing method of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view conceptually showing a main part of a compressor manufactured by a compressor manufacturing method according to Embodiments 1 to 4 of the present invention, and FIG. 2 is a radial view of the compressor shown in FIG. FIG. 3 is a cross-sectional configuration diagram, and FIG. 3 is a reference diagram for explaining deformation of the cylinder that occurs when a bearing is bolted to a thread threaded on the cylinder. In the drawing, the compressor is a cylinder 1 which is a fixed part, a main bearing 2 and a sub-bearing 3 which are respectively fixed to a fixed surface A formed at a lower end and an upper end in the posture of FIG. And a main shaft 4 which is a crank shaft supported by the auxiliary bearing 3. An eccentric portion 41 is formed at an intermediate portion in the axial direction of the main shaft 4, and a cylindrical roller 42 is fitted on the outer peripheral surface of the eccentric portion 41. A plurality (four in this case) of screw holes 21 are threaded in the main bearing 2 in the circumferential direction. The sub bearing 3 and the cylinder 1 are provided with a through hole 31 and a through hole 11 for inserting the through bolts 5 at positions corresponding to the screw holes 21 of the main bearing 2. The through-bolt 5 is inserted from the side of the auxiliary bearing 3 and fastened to the screw hole 21 of the main bearing 2 so that the cylinder 1 is sandwiched between the main bearing 2 and the auxiliary bearing 3 and fixed together. For convenience, the axial direction of the main shaft 4 is defined as the Z axis, and the directions orthogonal to each other on the plane orthogonal to the Z axis are defined as the X axis and the Y axis.

シリンダ1の中央部には、圧縮用の空間を形成する円筒状の内周面12が軸方向の周りに設けられ、内周面12の周方向の所定部には、図2に示すように、冷媒を圧縮する際の高圧部と低圧部の隔壁となるベーン13が径方向に進退移動自在に設けられ、そのベーン13はバネ14にてローラ42の外周面に常時押し付けられるように付勢されている。偏芯部41を有する主軸4は主軸受2と副軸受3によって決められた中心軸を基準に、図2における時計方向(右回り)に回転することで、シリンダ1に形成された吸入口15から冷媒を吸入し、吸気後に主軸4の回転と共に、ベーン13とシリンダ1の内周面12とローラ42の外周面とシリンダ1の両端面を挟み込む主軸受2、及び副軸受3で囲まれた圧縮空間の容積が減少することで冷媒を圧縮し、高圧となった冷媒が吐出口16からシリンダ1の外部に吐出される。   A cylindrical inner peripheral surface 12 that forms a compression space is provided around the axial direction at the center of the cylinder 1, and a predetermined portion in the circumferential direction of the inner peripheral surface 12 is provided as shown in FIG. A vane 13 serving as a partition wall between the high pressure portion and the low pressure portion when compressing the refrigerant is provided so as to be movable forward and backward in the radial direction, and the vane 13 is urged so as to be constantly pressed against the outer peripheral surface of the roller 42 by the spring 14. Has been. The main shaft 4 having the eccentric portion 41 rotates in the clockwise direction (clockwise) in FIG. 2 with respect to the central axis determined by the main bearing 2 and the sub-bearing 3, so that the suction port 15 formed in the cylinder 1. The refrigerant was sucked from the main shaft 4 and the main shaft 4 and the inner bearing surface 12 of the cylinder 1, the outer peripheral surface of the roller 42, and the both ends of the cylinder 1 were sandwiched between the main bearing 2 and the auxiliary bearing 3. The refrigerant is compressed by reducing the volume of the compression space, and the high-pressure refrigerant is discharged from the discharge port 16 to the outside of the cylinder 1.

次に、シリンダと軸受などの部材相互をボルトで締結する際に、一方の部材にネジ穴を設けてボルト締結するときに、ネジ穴を設けた部材に生じる歪について図3を用いて説明する。なお、図3(a)はボルト締結時にネジ部周辺に作用する力の方向を説明する図、図3(b)はボルト締結によるネジ部周辺の変形を説明する模式図である。一般的に、部材相互をボルト締結する際には、図3(a)のようにネジ部B周辺の部材はボルト締結の軸力F1によってネジ部B内周の山部が圧縮され、ネジ山の斜面を押し付ける力はネジ部Bの半径方向の分力F1rに分けられる。ネジ部Bが加工された部材には、ボルト締結によりネジ部外周部に半径方向の分力F1rが加わるため、図3(b)のようにネジ部Bの周辺は外側に変形する力Cを受け、剛性の弱い方向(図3(b)では左右方向)に破線で示すように変形する。   Next, when a member such as a cylinder and a bearing is fastened with a bolt, a distortion generated in the member provided with a screw hole when a screw hole is provided in one member and the bolt is fastened will be described with reference to FIG. . FIG. 3A is a diagram for explaining the direction of the force acting on the periphery of the screw portion when the bolt is fastened, and FIG. 3B is a schematic diagram for explaining the deformation around the screw portion due to the bolt fastening. In general, when bolting members together, as shown in FIG. 3 (a), the peripheral portion of the screw portion B is compressed by the axial force F1 of the bolt fastening, as shown in FIG. The force for pressing the inclined surface is divided into a component force F1r in the radial direction of the screw portion B. Since a component F1r in the radial direction is applied to the outer peripheral portion of the screw portion by fastening the bolt, a member C in which the screw portion B is processed has a force C that deforms outwardly around the screw portion B as shown in FIG. It is deformed as shown by the broken line in the direction of low rigidity (left and right in FIG. 3B).

このように、ネジ部Bには半径方向外側に向かう力Cが発生し、ネジ締結後は図3(b)の破線で示したように変形する。このため、圧縮機の圧縮機構部については、従来装置のようにシリンダに(雌)ネジ部を螺設し、主軸受と副軸受をシリンダのネジ部に対してボルト締結する手法ではシリンダのボルト締結部分の半径方向への変形によってシリンダ内径の変形が避けられないが、本発明ではネジ穴を螺設する部材を歪の影響の少ない主軸受または副軸受にしたことで、シリンダにはネジ部が不要となり、ボルト締結によるシリンダの締結部分の半径方向への歪の影響が抑制される。なお、図1では主軸受2にネジ穴21を設け、副軸受3とシリンダ1には通しボルト5を挿通するための貫通穴31、貫通穴11を設けているが、副軸受3にネジ穴を設け、主軸受とシリンダに貫通穴を設けても同様の作用効果が得られる。また、主軸受2、シリンダ1、及び副軸受3に通し穴を設け、通しボルトとナットにより、主軸受と副軸受を介してシリンダを挟み込むように固定しても同等の作用効果が得られる。   Thus, a force C directed radially outward is generated in the screw portion B, and the screw portion B is deformed as shown by a broken line in FIG. For this reason, as for the compression mechanism of the compressor, the cylinder bolt is used in the method of screwing the (female) screw into the cylinder and fastening the main bearing and auxiliary bearing to the screw of the cylinder as in the conventional device. Although it is inevitable that the inner diameter of the cylinder is deformed due to the deformation of the fastening portion in the radial direction, in the present invention, the screw member is screwed into the main bearing or the sub-bearing having less influence of distortion, so that the screw portion is provided in the cylinder. Is eliminated, and the influence of the distortion in the radial direction of the fastening portion of the cylinder due to the bolt fastening is suppressed. In FIG. 1, a screw hole 21 is provided in the main bearing 2, and a through hole 31 and a through hole 11 for inserting the through bolt 5 are provided in the sub bearing 3 and the cylinder 1. Even if the main bearing and the cylinder are provided with through holes, the same effect can be obtained. Further, even if a through hole is provided in the main bearing 2, the cylinder 1, and the sub bearing 3, and the cylinder is fixed by sandwiching the cylinder through the main bearing and the sub bearing with a through bolt and a nut, the same effect can be obtained.

前記のように、本発明に係る圧縮機は通しボルト5の締結力によって主軸受2と副軸受3にてシリンダ1を挟み込み、シリンダ1を共締めするようにしたものであり、シリンダ1には板厚方向の締結力が加わるのみとなるため、シリンダ1のネジ締結部周辺の歪を抑制でき、シリンダ内径の変形が抑制される。そのため、従来、シリンダ内径の変形量を見越して広く設定していたシリンダ内周とローラ外周の隙間について、隙間量を低減させることが可能となり、それにより主軸4の回転時にローラ42とシリンダ1の隙間からの冷媒の漏れを抑制し、圧縮機の効率を向上させることができる。   As described above, the compressor according to the present invention is such that the cylinder 1 is sandwiched between the main bearing 2 and the auxiliary bearing 3 by the fastening force of the through bolt 5, and the cylinder 1 is fastened together. Since only the fastening force in the plate thickness direction is applied, distortion around the screw fastening portion of the cylinder 1 can be suppressed, and deformation of the cylinder inner diameter is suppressed. For this reason, it is possible to reduce the gap amount between the inner circumference of the cylinder and the outer circumference of the roller, which has conventionally been set in anticipation of the deformation amount of the cylinder inner diameter. It is possible to suppress the leakage of the refrigerant from the gap and improve the efficiency of the compressor.

次に、上記のような本発明の圧縮機の実施の形態1による製造方法及びその製造方法に用いる軸受位置決め装置について図4〜図8を参照して説明する。なお、図4は本発明の実施の形態1による圧縮機の軸受位置決め装置の全体的な概要構成を示す断面図、図5は図4に示す軸受位置決め装置の第1の要部を概念的に示す断面図、図6は図4に示す軸受位置決め装置の第2の要部を概念的に示す図である。なお、実施の形態1の製造方法は、シリンダ1を基準部材として主軸受2及び副軸受3を同時に位置決めした後、通しボルト5によって固定することで、組立工数や加工コストを削減可能としたものである。なお、図5(a)はシリンダ1のみを軸受位置決め装置のベースに固定し、主軸受2及び副軸受3を、シリンダ1の軸方向に直交する方向にのみ揺動可能に保持するときの要部構成を示し、図5(b)は、主軸受2及び副軸受3には、その振れを計測するための変位センサ64が設けられていることを概念的に示している。また、各図とも摺動回転部分のクリアランスや傾斜角度などは何れも誇張して図示している。   Next, a manufacturing method according to Embodiment 1 of the compressor of the present invention as described above and a bearing positioning device used in the manufacturing method will be described with reference to FIGS. 4 is a cross-sectional view showing an overall schematic configuration of the compressor bearing positioning device according to Embodiment 1 of the present invention, and FIG. 5 conceptually shows a first main part of the bearing positioning device shown in FIG. FIG. 6 is a diagram conceptually showing a second main part of the bearing positioning device shown in FIG. In the manufacturing method of the first embodiment, the main bearing 2 and the sub-bearing 3 are simultaneously positioned using the cylinder 1 as a reference member, and then fixed with the through bolts 5 so that the number of assembling steps and processing costs can be reduced. It is. FIG. 5 (a) shows the necessity for fixing only the cylinder 1 to the base of the bearing positioning device and holding the main bearing 2 and the sub bearing 3 so as to be swingable only in the direction orthogonal to the axial direction of the cylinder 1. FIG. 5B conceptually shows that the main bearing 2 and the auxiliary bearing 3 are provided with a displacement sensor 64 for measuring the deflection thereof. In each figure, the clearance and inclination angle of the sliding rotation part are all exaggerated.

図4において、圧縮機の軸受位置決め装置はワークを固定するためのベース61と、シリンダ1、主軸受2、及び副軸受3からなる三部材の何れか一部材のみを基準部材としてベース61に対して固定する基準部材固定手段62と、前記三部材の内の他の二部材をベース61に固定された前記基準部材に対するそれぞれの配設位置において軸方向に直交する径方向にのみ揺動可能に保持する保持手段63(63A、63B)と、主軸4を軸方向に対して傾斜させて回転させる主軸傾斜回転手段68と、主軸傾斜回転手段68によって主軸4を回転させたときの前記他の二部材の振れをそれぞれ計測する二組の変位センサ64と、変位センサ64によって計測された振れ幅の中心位置に対して前記他の二部材をそれぞれ移動させる二組の移動手段65、66(図6に図示)と、移動手段65、66によって相互に位置決めされた前記三部材を一体的に固定するためのナットランナからなるボルト締結装置69とを備え、更に、各要素の動作を個々にまたは連動して制御する機能、及び二組の変位センサ64の出力信号を演算処理して結果を出力する機能を有する制御装置(図示省略)を備えている。   In FIG. 4, the bearing positioning device of the compressor is based on the base 61 using only one of the base 61 for fixing the work and the three members consisting of the cylinder 1, the main bearing 2 and the auxiliary bearing 3 as a reference member. The reference member fixing means 62 for fixing the second member and the other two members among the three members can be swung only in the radial direction orthogonal to the axial direction at the respective arrangement positions with respect to the reference member fixed to the base 61. The holding means 63 (63A, 63B) for holding, the main shaft tilt rotating means 68 for rotating the main shaft 4 with respect to the axial direction, and the other two when the main shaft 4 is rotated by the main shaft tilt rotating means 68. Two sets of displacement sensors 64 for measuring the deflection of each member, and two sets of moving hands for moving the other two members with respect to the center position of the deflection width measured by the displacement sensor 64 65 and 66 (shown in FIG. 6) and a bolt fastening device 69 comprising a nut runner for integrally fixing the three members positioned relative to each other by the moving means 65 and 66, and further, the operation of each element And a control device (not shown) having a function of controlling the output signals of the two sets of displacement sensors 64 and outputting a result after calculating the signals.

ベース61の所定部には挿通孔61aが設けられ、その上方部に該ベース61と一体的に接続された上側支持部材611が設けられ、下方部には該ベース61と一体的に接続された下側支持部材612が設けられている。基準部材固定手段62は挿通孔61aの近傍に設けられ、平面視V字形状の内角側の係止面に基準部材として選択されたシリンダ1の外周面を係止することでシリンダ1の固定位置を定める係止プレート621と、シリンダ1の軸方向(図5におけるZ方向)の移動を拘束するエアシリンダ622と、係止プレート621に対してシリンダ1を介した反対側に配設されシリンダ1の径方向の移動を拘束するエアシリンダ623からなっている。なお、ベース61に対して固定されたシリンダ1には、その内周面12によって形成された圧縮空間部に、ローラ42が嵌装された偏芯部41が位置するように主軸4が挿通される。   An insertion hole 61 a is provided in a predetermined portion of the base 61, an upper support member 611 that is integrally connected to the base 61 is provided in an upper portion thereof, and a lower portion is integrally connected to the base 61. A lower support member 612 is provided. The reference member fixing means 62 is provided in the vicinity of the insertion hole 61a, and the outer peripheral surface of the cylinder 1 selected as the reference member is locked to the locking surface on the inner angle side of the V-shape in plan view, thereby fixing the cylinder 1 to the fixed position. A locking plate 621 for defining the cylinder 1, an air cylinder 622 for restraining movement of the cylinder 1 in the axial direction (Z direction in FIG. 5), and a cylinder 1 disposed on the opposite side of the locking plate 621 via the cylinder 1. The air cylinder 623 restrains the movement in the radial direction. Note that the main shaft 4 is inserted into the cylinder 1 fixed to the base 61 so that the eccentric portion 41 in which the roller 42 is fitted is positioned in the compression space portion formed by the inner peripheral surface 12 thereof. The

ベース61の下側の保持手段63は、主軸4の下部側を回転自在に支持すると共にシリンダ1の圧縮空間の下面部を塞ぐようにシリンダ1の図における下側の固定面A(図5に図示)に配設された主軸受2を、軸方向上方向に押付けて軸方向の移動を規制し、軸方向に直交する径方向にのみ揺動移動可能に保持するものであり、圧縮ばねと同様の機能を有する押付け機構であるエアシリンダ63Aが用いられている。ベース61の上側の保持手段63は、主軸4の上部側を支持すると共にシリンダ1の圧縮空間の上面部を塞ぐようにシリンダ1の図における上側の固定面Aに配設された副軸受3を軸方向下方向に押付けて軸方向の移動を規制し、同様に軸方向に直交する径方向にのみ揺動移動可能に保持するものであり、エアシリンダ63Bが用いられている。なお、エアシリンダ63Bは上側支持部材611に対して固定されている。主軸受2及び副軸受3はそれぞれ予め設定された所定の加圧力でシリンダ1の方向に押え付けられている。   The holding means 63 on the lower side of the base 61 rotatably supports the lower side of the main shaft 4 and fixes the lower fixing surface A (see FIG. 5) of the cylinder 1 so as to close the lower surface portion of the compression space of the cylinder 1. The main bearing 2 disposed in the figure is pressed upward in the axial direction to restrict axial movement, and is held so as to be swingable only in the radial direction perpendicular to the axial direction. An air cylinder 63A, which is a pressing mechanism having a similar function, is used. The holding means 63 on the upper side of the base 61 supports the auxiliary bearing 3 disposed on the upper fixed surface A in the drawing of the cylinder 1 so as to support the upper side of the main shaft 4 and close the upper surface portion of the compression space of the cylinder 1. It is pressed downward in the axial direction to restrict axial movement, and is similarly held so as to be able to swing and move only in the radial direction orthogonal to the axial direction. An air cylinder 63B is used. The air cylinder 63B is fixed to the upper support member 611. The main bearing 2 and the sub-bearing 3 are respectively pressed against the cylinder 1 with a predetermined pressurizing force set in advance.

主軸傾斜回転手段68は、下側支持部材612に取付けられた駆動モータ681と、駆動モータ681の出力軸と主軸4との間に介装されたオルダム継手682と、主軸4の一端部に取付けられた錘683とを備えている。なお、本発明ではシリンダに対する軸受の位置決めの際に主軸4を傾斜させ、いわゆる「すりこぎ運動」ないしは「振れ回り」の状態で回転させることを特徴の1つとしている。主軸4はローラ42が嵌装された偏芯部41を有していることにより、組み合わされた各要素部材のサイズやクリアランスなどによって個々に決まる角度で、偏芯部41の外周面の上端と下端の2点がローラ42の内周面に接触した状態で傾斜して回転され、傾斜方向の位相が360度回されるいわゆる「すりこぎ運動」、または「振れ回り」の状態となる。このとき、偏芯部41の回転に伴って、その偏芯部41に嵌装されたローラ42は、その上端面が副軸受3の下面に沿って摺動され、ローラ42の下端面は主軸受2の上面に沿って摺動される。錘683は主軸4を傾斜回転させるのに有利ではあるが、必ずしも必須のものではないので、図5、図6では錘683を取付けていない場合を例示している。   The main shaft tilt rotation means 68 is attached to a drive motor 681 attached to the lower support member 612, an Oldham coupling 682 interposed between the output shaft of the drive motor 681 and the main shaft 4, and one end of the main shaft 4. The weight 683 is provided. In the present invention, one of the features is that the main shaft 4 is tilted at the time of positioning the bearing with respect to the cylinder, and is rotated in a so-called “grinding motion” or “swinging” state. Since the main shaft 4 has the eccentric portion 41 with the roller 42 fitted thereto, the main shaft 4 has an angle determined individually by the size and clearance of the combined element members and the upper end of the outer peripheral surface of the eccentric portion 41. A state of so-called “rubbing motion” or “swinging” in which the two points at the lower end are rotated while being tilted while being in contact with the inner peripheral surface of the roller 42 and the phase in the tilt direction is rotated 360 degrees. At this time, as the eccentric portion 41 rotates, the roller 42 fitted to the eccentric portion 41 has its upper end surface slid along the lower surface of the auxiliary bearing 3, and the lower end surface of the roller 42 is the main surface. It slides along the upper surface of the bearing 2. Although the weight 683 is advantageous for tilting and rotating the main shaft 4, it is not always essential, and FIGS. 5 and 6 illustrate the case where the weight 683 is not attached.

次に、二組の変位センサ64と移動手段65、66の構成について、図6を参照して説明する。なお、図6(a)は理想的な位置決めの中心位置D、Eに対して主軸受2及び副軸受3をそれぞれ移動させるためのアクチュエータを用いた移動手段の設置状態の要部構成を概念的に示す断面図、図6(b)は図6(a)を上面から見たときに副軸受3の側の変位センサ64と移動手段66が何れも半径方向に対して直交する2方向に向けて副軸受3の外周面に設置されていることを示し、図6(c)は移動手段による位置決めの後、通しボルトで固定するときの状態を概念的に示す断面図である。
図6に示すように、二組の変位センサ64の一方は主軸受2の軸心方向に向けて直交する2方向から該主軸受2の外周面に当接するように取付けられ、他方は図6(b)に例示するように、副軸受3の軸心方向に向けて直交する2方向からその副軸受3の外周面に当接するように取付けられる。
Next, the configuration of the two sets of displacement sensor 64 and moving means 65 and 66 will be described with reference to FIG. FIG. 6A conceptually shows the configuration of the main part of the installation state of the moving means using the actuator for moving the main bearing 2 and the auxiliary bearing 3 with respect to the ideal positioning center positions D and E, respectively. FIG. 6B is a cross-sectional view of FIG. 6B. When FIG. 6A is viewed from above, the displacement sensor 64 and the moving means 66 on the side of the auxiliary bearing 3 are both directed in two directions orthogonal to the radial direction. 6 (c) is a cross-sectional view conceptually showing a state where the through-bolt is fixed after positioning by the moving means.
As shown in FIG. 6, one of the two sets of displacement sensors 64 is attached so as to contact the outer peripheral surface of the main bearing 2 from two directions orthogonal to the axial direction of the main bearing 2, and the other is shown in FIG. As illustrated in (b), the auxiliary bearing 3 is attached so as to come into contact with the outer peripheral surface of the auxiliary bearing 3 from two directions orthogonal to the axial direction.

二組の移動手段65、66は、軸受位置決め装置のベース61に設けられており、図6(a)、図6(b)に示すように主軸受2または副軸受3をそれぞれ直交するX方向とY方向の2軸方向に任意の寸法だけ微小寸法で移動可能な、何れも直交された一対のエアシリンダなどを用いたアクチュエータからなっている。なお、移動手段65、66に対して主軸受2または副軸受3を挟んだ反対側にはバネ等の弾性部材65a、66aで一定の押付け力で主軸受2と副軸受3を移動手段65、66の側に押し付ける背圧付与機構がそれぞれ設けられている。また、移動手段65、66、弾性部材65a、66a、及び変位センサ64、64は、互いに干渉することがないように、ここでは図5に示す基準部材固定手段62や保持手段63とは周方向にずらした位置に設置されている。   The two sets of moving means 65 and 66 are provided on the base 61 of the bearing positioning device, and as shown in FIGS. 6 (a) and 6 (b), the main bearing 2 or the auxiliary bearing 3 is orthogonal to each other in the X direction. And an actuator using a pair of air cylinders or the like that are orthogonal to each other and can be moved by a small dimension in two axial directions in the Y direction. In addition, the main bearing 2 and the sub bearing 3 are moved to the moving means 65, 66 with a constant pressing force by elastic members 65a, 66a such as springs on the opposite side of the main bearing 2 or the sub bearing 3 with respect to the moving means 65, 66. A back pressure application mechanism is provided for pressing against the 66 side. In addition, the moving means 65 and 66, the elastic members 65a and 66a, and the displacement sensors 64 and 64 are not connected to the reference member fixing means 62 and the holding means 63 shown in FIG. It is installed in the position shifted to.

また、移動手段65、66と弾性部材65a、66aは、主軸4が「すりこぎ運動」するように回転され、2組の変位センサ64によって主軸受2及び副軸受3の振れ幅を測定する際には、主軸受2と副軸受3から退避できる構造となっている。
ボルト締結装置69は上側支持部材611に固定され、各通しボルト5の頭部を回転させるソケットが下方向に伸びるように複数設置されている。
次に、上記のように構成された実施の形態1における圧縮機の軸受位置決め装置の動作及び圧縮機の製造方法について図8に示すフロー図も参照して説明する。
Further, the moving means 65 and 66 and the elastic members 65a and 66a are rotated so that the main shaft 4 performs “grinding motion”, and when the deflection widths of the main bearing 2 and the sub bearing 3 are measured by the two sets of displacement sensors 64. In the structure, the main bearing 2 and the auxiliary bearing 3 can be retracted.
A plurality of bolt fastening devices 69 are fixed to the upper support member 611, and a plurality of sockets for rotating the heads of the through bolts 5 are provided so as to extend downward.
Next, the operation of the bearing positioning device for a compressor and the method for manufacturing the compressor according to Embodiment 1 configured as described above will be described with reference to the flowchart shown in FIG.

ステップS1:まず、基準部材として選択したシリンダ1を用意し、図5(a)に示すようにベース61における挿通孔61aの上縁部に設けられたワーク固定部であるV字形状の係止プレート621の内角側にシリンダ1を載置する。なお、このとき、シリンダ1に対して、ローラ42を嵌装した偏芯部41がシリンダ1の内周面12の内側に収容されるように主軸4を挿入した後、主軸受2及び副軸受3を装着し、更に通しボルト5によってシリンダ1に対して主軸受2及び副軸受3が径方向に揺動可能に仮止めしたものを載置するようにしても良い。   Step S1: First, a cylinder 1 selected as a reference member is prepared. As shown in FIG. 5 (a), a V-shaped lock which is a work fixing portion provided at the upper edge of the insertion hole 61a in the base 61. The cylinder 1 is placed on the inner corner side of the plate 621. At this time, after inserting the main shaft 4 so that the eccentric portion 41 fitted with the roller 42 is accommodated inside the inner peripheral surface 12 of the cylinder 1 with respect to the cylinder 1, the main bearing 2 and the sub bearing 3 may be mounted, and the main bearing 2 and the auxiliary bearing 3 may be temporarily fixed to the cylinder 1 by a through bolt 5 so as to be swingable in the radial direction.

ステップS2:基準部材固定手段62を構成するエアシリンダ623によって、シリンダ1の外周面が係止プレート621のV字形状の内角側の係止面(図示省略)に当接するように半径方向に押し付け、その後、エアシリンダ622を作動させてシリンダ1を軸方向に押し付けることで、シリンダ1をベース61に対して径方向及び軸方向に確実に固定する。なお、図5における係止プレート621、エアシリンダ622、623の位置関係は図4とは左右逆に示している。
なお、ステップS1にてシリンダ1のみを載置し、基準部材固定手段62によって固定した場合は、前述の基準部材固定手段62によってベース61に固定されたシリンダ1に対してローラ42を嵌装した偏芯部41がシリンダ1の内周面12の内側に収容されるように主軸4を挿入した後、その主軸4の下部側に主軸受2を装着し上部側に副軸受3を装着して仮組立状態とする。
Step S2: The air cylinder 623 constituting the reference member fixing means 62 is pressed in the radial direction so that the outer peripheral surface of the cylinder 1 comes into contact with the V-shaped inner corner side locking surface (not shown) of the locking plate 621. Thereafter, the cylinder 1 is securely fixed in the radial direction and the axial direction with respect to the base 61 by operating the air cylinder 622 and pressing the cylinder 1 in the axial direction. Note that the positional relationship between the locking plate 621 and the air cylinders 622 and 623 in FIG. 5 is shown opposite to that in FIG.
When only the cylinder 1 is placed in step S1 and is fixed by the reference member fixing means 62, the roller 42 is fitted to the cylinder 1 fixed to the base 61 by the reference member fixing means 62 described above. After the main shaft 4 is inserted so that the eccentric portion 41 is accommodated inside the inner peripheral surface 12 of the cylinder 1, the main bearing 2 is mounted on the lower side of the main shaft 4, and the auxiliary bearing 3 is mounted on the upper side. A temporary assembly state is assumed.

ステップS3:主軸受2及び副軸受3がシリンダ1から軸方向に離れるのを防ぐため、主軸受2を保持手段63としてのエアシリンダ63Aによって図の軸方向上方向に押付け、副軸受3を保持手段63としてのエアシリンダ63Bによって図の軸方向下方向に押付ける。なお、何れのエアシリンダも予め設定された所定の押付け力を保持するように制御される。これにより、主軸受2と副軸受3は軸方向には移動が規制され径方向には揺動自在の状態となる。なお、摺動部分には潤滑油の膜が形成されている。
ステップS4:主軸4に錘683を取付ける(図7に示す変形例の場合)。なお、図5、図6は錘683を取付けずに実施する場合を示している。
Step S3: In order to prevent the main bearing 2 and the sub-bearing 3 from separating from the cylinder 1 in the axial direction, the main bearing 2 is pressed upward in the axial direction in the drawing by the air cylinder 63A as the holding means 63, and the sub-bearing 3 is held. The air cylinder 63B as the means 63 is pressed downward in the axial direction in the figure. Each air cylinder is controlled so as to maintain a predetermined pressing force set in advance. As a result, the main bearing 2 and the sub-bearing 3 are in a state in which movement is restricted in the axial direction and swingable in the radial direction. A lubricating oil film is formed on the sliding portion.
Step S4: A weight 683 is attached to the main shaft 4 (in the case of the modification shown in FIG. 7). 5 and 6 show the case where the weight 683 is not attached.

ステップS5:主軸4の図における下端部をオルダム継手682を介して駆動モータ681の出力軸に接続する。そして、主軸受2と副軸受3の外周面に、図5(b)に示す変位センサ64を、図6(b)に示すように互いに直交する2方向の変位を計測できるように、それぞれ1対ずつ合計2組設置する。なお、アクチュエータを用いた移動手段65、66と弾性部材65a、66aは退避させ、主軸受2と副軸受3の揺動を変位センサ64にて計測できる状態としておく。   Step S5: The lower end of the main shaft 4 in the figure is connected to the output shaft of the drive motor 681 via the Oldham coupling 682. Then, a displacement sensor 64 shown in FIG. 5B is provided on the outer peripheral surfaces of the main bearing 2 and the sub-bearing 3 so that displacements in two directions perpendicular to each other can be measured as shown in FIG. 6B. A total of 2 pairs will be installed. The moving means 65, 66 using the actuator and the elastic members 65a, 66a are retracted so that the swing of the main bearing 2 and the sub bearing 3 can be measured by the displacement sensor 64.

ステップS6:次に、駆動モータを回転させて主軸4を振れ回り運動、ないしは「すりこぎ運動」させる。そのとき、シリンダ1の固定面Aに対して油膜を介して径方向に自由に摺動し得るように当接された主軸受2と副軸受3は、円を描くような軌跡でそれぞれ径方向に揺動する。
ステップS7:そのときの主軸4の回転位相に対する主軸受2及び副軸受3の径方向の振れ幅を、直交する2方向に設けられた1対ずつ2組の変位センサ64によって検出する。
ステップS8:それぞれの変位センサの検出信号を基に振れの中心位置が図示省略している制御装置の演算機能によって演算処理され、振れ幅のXY座標上の中心位置D、Eをそれぞれ求める。前記中心位置D、Eが、シリンダ1に対する主軸受2と副軸受3の理想的な位置決め位置となる。
Step S6: Next, the drive motor is rotated to cause the main shaft 4 to swing around or “rubbing”. At that time, the main bearing 2 and the sub-bearing 3 which are in contact with the fixed surface A of the cylinder 1 through the oil film so as to be freely slidable in the radial direction are respectively in the radial direction along a circular path. Rocks.
Step S7: The radial displacements of the main bearing 2 and the auxiliary bearing 3 with respect to the rotational phase of the main shaft 4 at that time are detected by two pairs of displacement sensors 64 provided in two orthogonal directions.
Step S8: The center position of the shake is calculated by the calculation function of the control device (not shown) based on the detection signal of each displacement sensor, and the center positions D and E on the XY coordinates of the shake width are obtained. The center positions D and E are ideal positioning positions of the main bearing 2 and the auxiliary bearing 3 with respect to the cylinder 1.

ステップS9:退避させていた移動手段65、66と弾性部材65a、66aを、図6(a)のように、軸受けの外周面に当接させた後、移動手段65、66を動作させ、主軸受2と副軸受3の中心が演算によって求められた回転中心に合致するように、主軸受2と副軸受3をそれぞれ移動させる。
例えば副軸受3の場合、図6(b)に示すように、副軸受3の上部に配設された互いに直交する二本の変位センサ64、64をそれぞれF、Gとし、その変位センサF、Gに対して周方向にずらして設けられた、互いに直交する移動手段66、66をそれぞれH、Iとする。そして、主軸を傾斜させて回転させたときに測定された、変位センサFの最大変位をXmax、最小変位をXminとし、変位センサGの最大変位をYmax、最小変位をYminとした場合、変位センサFの値が(Xmax−Xmin)/2、変位センサGの値が(Ymax−Ymin)/2になるように移動手段HとIを押し込む。主軸受2についても同様である。
Step S9: The moving means 65, 66 and the elastic members 65a, 66a that have been retracted are brought into contact with the outer peripheral surface of the bearing as shown in FIG. The main bearing 2 and the sub-bearing 3 are moved so that the centers of the bearing 2 and the sub-bearing 3 coincide with the rotation center obtained by calculation.
For example, in the case of the auxiliary bearing 3, as shown in FIG. 6 (b), the two displacement sensors 64, 64 disposed on the upper portion of the auxiliary bearing 3 are orthogonal to each other, and F, G, respectively. The moving means 66 and 66 that are provided to be shifted in the circumferential direction with respect to G and that are orthogonal to each other are denoted by H and I, respectively. When the maximum displacement of the displacement sensor F is Xmax, the minimum displacement is Xmin, the maximum displacement of the displacement sensor G is Ymax, and the minimum displacement is Ymin, measured when the main shaft is tilted and rotated, the displacement sensor The moving means H and I are pushed in such that the value of F is (Xmax−Xmin) / 2 and the value of the displacement sensor G is (Ymax−Ymin) / 2. The same applies to the main bearing 2.

なお、図6(b)では変位センサ64と位置決め用のアクチュエータからなる移動手段66の配置上、周方向に45度ずらせた位置でそれぞれを直交させたが、変位センサ64と移動手段66を同じ回転位相、例えば変位センサFと移動手段H、変位センサGと移動手段Iに設けるようにしても良い。その場合、それぞれの移動手段66の押込み量PHとPIは、それぞれ、
PH=(Xmax−Xmin)/2
PI=(Ymax−Ymin)/2
となる。
In FIG. 6B, the displacement sensor 64 and the moving means 66 including the positioning actuator are arranged at right angles at positions shifted by 45 degrees in the circumferential direction, but the displacement sensor 64 and the moving means 66 are the same. You may make it provide in a rotation phase, for example, the displacement sensor F and the moving means H, the displacement sensor G, and the moving means I. In that case, the pushing amounts PH and PI of the respective moving means 66 are respectively
PH = (Xmax−Xmin) / 2
PI = (Ymax−Ymin) / 2
It becomes.

ステップS10:その押込み量PHを保った状態で、ナットランナからなるボルト締結装置69によって通しボルト5を副軸受3側から貫通穴31、11に挿通し、主軸受2のネジ穴21に対して予め設定された所定のトルクで締結する。これにより、主軸受2と副軸受3によってシリンダ1を挟み込んで固定することができ、シリンダ1の内径歪を抑制し、かつ、シリンダ内径に対する主軸受2と副軸受3の同軸を確保することができる。
ステップS11:ベース61上の圧縮機の固定箇所、保持手段63、変位センサ64、移動手段65、66などを全て解放する。
ステップS12:主軸受2と副軸受3が組付けられた圧縮機を軸受位置決め装置から搬出する。
Step S10: With the pushing amount PH maintained, the through bolt 5 is inserted into the through holes 31 and 11 from the auxiliary bearing 3 side by the bolt fastening device 69 made of a nut runner, and is inserted into the screw hole 21 of the main bearing 2 in advance. Fasten with the specified torque. As a result, the cylinder 1 can be sandwiched and fixed by the main bearing 2 and the auxiliary bearing 3, the inner diameter distortion of the cylinder 1 can be suppressed, and the coaxiality of the main bearing 2 and the auxiliary bearing 3 with respect to the cylinder inner diameter can be secured. it can.
Step S11: The compressor fixing point on the base 61, the holding means 63, the displacement sensor 64, the moving means 65, 66, etc. are all released.
Step S12: The compressor assembled with the main bearing 2 and the auxiliary bearing 3 is unloaded from the bearing positioning device.

なお、主軸4を傾斜させて回転させる際、偏芯部41に嵌装されたローラ42が主軸受2と副軸受3をシリンダ1に対して軸方向に押し上げるように変位されて、シリンダ1と主軸受2や副軸受3の間に隙間ができると、主軸受2と副軸受3の変位量が大きくなり、正確な振れ幅を測定できなくなるため、バネやエアシリンダ等による軸方向の押し付け力は、主軸4を傾斜させた状態で回転した際に主軸受2と副軸受3にかかる力に対して、主軸受2とシリンダ1、及び副軸受3とシリンダ1の摩擦力が小さくなるように設定すると良い。また、主軸受2と副軸受3の調整時にシリンダ1の位相に対する主軸受2と副軸受3の位相がずれることで、ボルト締結時にボルト位置ずれによる取付け不良が発生するため、シリンダ1と副軸受3のボルト固定用の貫通穴11、31は、測定時の振れ幅以上に広げておく方が良い。   When the main shaft 4 is inclined and rotated, the roller 42 fitted to the eccentric portion 41 is displaced so as to push up the main bearing 2 and the sub-bearing 3 with respect to the cylinder 1 in the axial direction. If there is a gap between the main bearing 2 and the sub-bearing 3, the amount of displacement between the main bearing 2 and the sub-bearing 3 becomes large, and an accurate swing width cannot be measured. The frictional force between the main bearing 2 and the cylinder 1 and between the sub bearing 3 and the cylinder 1 is reduced with respect to the force applied to the main bearing 2 and the sub bearing 3 when the main shaft 4 is rotated in an inclined state. It is good to set. Further, when the main bearing 2 and the sub-bearing 3 are adjusted, the main bearing 2 and the sub-bearing 3 are out of phase with respect to the phase of the cylinder 1. It is better to widen the through holes 11 and 31 for fixing the bolts 3 to be larger than the deflection width at the time of measurement.

また、主軸4を傾斜させる際、図7の変形例に示すように、主軸4の下端部に錘683を取付けて回転させる場合においては、錘683を取付けることで、回転による錘683の遠心力で主軸4が傾斜した状態で回転運動する「すりこぎ運動」を起こし易くなる。錘683を取付ける軸方向の位置、錘683の重量、偏芯部41の偏芯方向に対する錘683の取付け位置の位相などを調節することにより、変位センサ64、64による理想的な中心位置の測定が容易となる。なお、錘683を取付ける際の偏芯部41の偏芯方向に対する周方向の取付位置は特に限定されないので、錘683を取付ける際の操作が容易である。   Further, when the main shaft 4 is inclined, as shown in the modification of FIG. 7, when the weight 683 is attached to the lower end portion of the main shaft 4 and rotated, the centrifugal force of the weight 683 due to the rotation is obtained by attaching the weight 683. Thus, it becomes easy to cause a “grinding motion” that rotates in a state where the main shaft 4 is inclined. The ideal center position is measured by the displacement sensors 64 and 64 by adjusting the position of the weight 683 in the axial direction, the weight of the weight 683, the phase of the mounting position of the weight 683 with respect to the eccentric direction of the eccentric portion 41, and the like. Becomes easy. In addition, since the attachment position of the circumferential direction with respect to the eccentric direction of the eccentric part 41 at the time of attaching the weight 683 is not specifically limited, operation at the time of attaching the weight 683 is easy.

また、主軸4を傾斜させて回転させる際、主軸4は自転させずに傾斜方向のみを回転させて、「すりこぎ運動」させるようにしても良い。その場合、主軸4の偏芯部41の真円度の影響を抑制できる。
更に、主軸受2と副軸受3に位相決めの穴や切欠きなどの目印(図示省略)を設けて、軸受位置決め装置の側には主軸受2と副軸受3の回転位相を調整できるアクチュエータを設け、それぞれの位置決め時に前述の切欠きなどの目印を利用して位相を決めた後、シリンダの中心位置に位置決めしても良い。
In addition, when the main shaft 4 is rotated while being tilted, the main shaft 4 may be rotated only in the tilt direction without rotating, and may be “rubbed”. In that case, the influence of the roundness of the eccentric portion 41 of the main shaft 4 can be suppressed.
Further, the main bearing 2 and the sub-bearing 3 are provided with marks (not shown) such as phasing holes and notches, and an actuator capable of adjusting the rotational phase of the main bearing 2 and the sub-bearing 3 is provided on the bearing positioning device side. The phase may be determined using the above-mentioned marks such as notches at the time of positioning, and then positioned at the center position of the cylinder.

また、位置決めする際の手順として、例えば、1)主軸受2、シリンダ1、主軸4、副軸受3を設置、2)主軸受2、副軸受3のそれぞれに設けた切欠きなどの目印に合わせて回転位相を決め、3)主軸受2、副軸受3を軸方向に圧縮、4)変位センサ64をセット、5)主軸4を傾斜させて回転させ変位を計測、6)変位量を基に計算した値になるようにアクチュエータにより押付け、7)通しボルト5を主軸受2、シリンダ1、副軸受3の穴に通し、ナットに対してネジ締結、8)変位センサ64とアクチュエータを退避させ、ワークを搬出する、という1)〜8)のステップによって構成しても良い。   In addition, as a procedure for positioning, for example, 1) the main bearing 2, the cylinder 1, the main shaft 4, and the auxiliary bearing 3 are installed, and 2) according to marks such as notches provided in the main bearing 2 and the auxiliary bearing 3, respectively. 3) Compress the main bearing 2 and auxiliary bearing 3 in the axial direction, 4) Set the displacement sensor 64, 5) Rotate the main shaft 4 to measure the displacement, and 6) Based on the amount of displacement 7) Push the through bolt 5 through the holes of the main bearing 2, the cylinder 1 and the auxiliary bearing 3 and tighten the screw to the nut. 8) Retract the displacement sensor 64 and the actuator. You may comprise by the step of 1) -8) called carrying out a workpiece | work.

上記のように、実施の形態1による圧縮機の製造方法は、主軸受2、シリンダ1、及び副軸受3からなる三部材の内、シリンダ1を軸受位置決め装置のベース61に固定し、主軸受及び副軸受の二部材を、ベースに固定されたシリンダに対して軸方向に直交する径方向にのみ揺動可能に保持し、その状態で主軸4を軸方向に対して傾斜させて回転させたときの、主軸受及び副軸受の軸方向に直交する径方向の振れを二組の変位センサ64によってそれぞれ同時に計測し、計測された振れ幅の中心位置に対して主軸受及び副軸受をそれぞれ位置決めした後、通しボルト5によって、主軸受2、シリンダ1、及び副軸受3を固定するようにしたものである。   As described above, in the compressor manufacturing method according to the first embodiment, the cylinder 1 is fixed to the base 61 of the bearing positioning device among the three members including the main bearing 2, the cylinder 1, and the auxiliary bearing 3. The two members of the auxiliary bearing and the auxiliary bearing are held so as to be swingable only in the radial direction orthogonal to the axial direction with respect to the cylinder fixed to the base, and in this state, the main shaft 4 is rotated while being inclined with respect to the axial direction Measure the radial runout perpendicular to the axial direction of the main bearing and the secondary bearing at the same time by the two sets of displacement sensors 64, respectively, and position the main bearing and the secondary bearing with respect to the center position of the measured runout width. After that, the main bearing 2, the cylinder 1, and the auxiliary bearing 3 are fixed by the through bolts 5.

この実施の形態1に係る圧縮機の製造方法によれば、シリンダ1に対する主軸受2と副軸受3の同軸を同時に決めることができる。そのため、ネジ穴21が螺設された主軸受2に対して副軸受3側から挿通された通しボルト5によってシリンダ1を共締めする構造の圧縮機を組立てることが可能となる。シリンダには軸受固定用のネジ穴を螺設する必要がないため、ボルト締結によるシリンダ内径歪量を低減した効率の優れた圧縮機を得ることができる。また、主軸受2と副軸受3を1台の設備で位置決めできるため、設備費用の抑制や組立時間の短縮を実現できる。   According to the compressor manufacturing method according to the first embodiment, the coaxiality of the main bearing 2 and the sub bearing 3 with respect to the cylinder 1 can be determined simultaneously. Therefore, it is possible to assemble a compressor having a structure in which the cylinder 1 is fastened together with a through bolt 5 inserted from the auxiliary bearing 3 side into the main bearing 2 in which the screw hole 21 is screwed. Since it is not necessary to screw a screw hole for fixing the bearing to the cylinder, it is possible to obtain a compressor with excellent efficiency in which the amount of distortion of the cylinder inner diameter due to bolt fastening is reduced. Moreover, since the main bearing 2 and the sub-bearing 3 can be positioned with one equipment, the equipment cost can be suppressed and the assembling time can be shortened.

なお、従来技術による2部品ずつの位置決めでは主軸受側にネジ穴を設ける場合、主軸受とシリンダを位置決めしてボルト固定した後、その主軸受、シリンダが一体となったものと副軸受を位置決めしてボルト固定せねばならないため組立工数が増加する。さらに、シリンダ内径の歪を抑制するために、締結用のネジ穴を主軸受や副軸受側に設けて、2部品ずつの位置決めを行う従来の手法では、主軸受に設けられたネジ部を利用してシリンダ側からボルトを挿入して主軸受とシリンダを固定した後、副軸受を固定する際に、主軸受を固定したボルト頭と副軸受の干渉を防ぐために、副軸受側にボルト頭を逃がす加工が必要であった。さらに、主軸受側も同様に副軸受とシリンダを固定するボルト頭を逃がす加工が必要なため、加工コストが増加する。これに対し、本発明の実施の形態1はそれらの問題をすべて解消することができるものである。   When positioning the screw holes on the main bearing side by positioning two parts according to the prior art, after positioning the main bearing and cylinder and fixing them with bolts, the main bearing and cylinder integrated with the sub bearing are positioned. As a result, the number of assembly steps increases because the bolts must be fixed. Further, in order to suppress the distortion of the cylinder inner diameter, the conventional method of positioning two parts at a time by providing a screw hole for fastening on the main bearing or sub-bearing side uses the screw part provided on the main bearing. After fixing the main bearing and cylinder by inserting bolts from the cylinder side, when fixing the sub bearing, the bolt head on the sub bearing side should be Processing to escape was necessary. Furthermore, since the main bearing side needs to be processed to release the bolt head that fixes the auxiliary bearing and the cylinder, the processing cost increases. In contrast, the first embodiment of the present invention can solve all of these problems.

また、上記のように、実施の形態1による圧縮機の軸受位置決め装置は、ベース61と、主軸受2、主軸4が挿通されたシリンダ1、及び副軸受3からなる三部材の内、シリンダ1のみを基準部材としてベースに固定する基準部材固定手段62と、主軸受2と副軸受3の二部材をベースに固定されたシリンダ1に対するそれぞれの配設位置において径方向にのみ揺動可能に保持する二組の保持手段63と、主軸4を軸方向に対して傾斜させて回転させる主軸傾斜回転手段68と、主軸傾斜回転手段によって主軸を回転させたときの主軸受2と副軸受3の径方向の振れをそれぞれ計測する二組の変位センサ64と、変位センサによって計測された振れ幅の中心位置に対して主軸受2と副軸受3をそれぞれ移動させる二組の移動手段65、66と、主軸傾斜回転手段68と、ボルト締結装置69と、を備えたものである。   As described above, the compressor bearing positioning apparatus according to the first embodiment includes the cylinder 61 among the three members including the base 61, the main bearing 2, the cylinder 1 through which the main shaft 4 is inserted, and the auxiliary bearing 3. The reference member fixing means 62 for fixing only the base member as a reference member, and the two members of the main bearing 2 and the sub bearing 3 are held so as to be swingable only in the radial direction at the respective arrangement positions with respect to the cylinder 1 fixed to the base. Two sets of holding means 63, a spindle tilt rotating means 68 for tilting and rotating the spindle 4 with respect to the axial direction, and the diameters of the main bearing 2 and the auxiliary bearing 3 when the spindle is rotated by the spindle tilt rotating means. Two sets of displacement sensors 64 for measuring the deflection of each direction, and two sets of moving means 65, 66 for moving the main bearing 2 and the sub-bearing 3 with respect to the center position of the deflection width measured by the displacement sensor, respectively A spindle inclined rotating means 68, a bolt fastening apparatus 69, those having a.

実施の形態1に係る圧縮機の軸受位置決め装置によれば、シリンダ1の内周面12に対する主軸受2や副軸受3の内径の同軸を確保する位置を同時に決めることができるため、ネジ穴21が螺設された主軸受2に対して副軸受3の側から挿通された通しボルト5によってシリンダ1を共締めする構造の圧縮機を組立てることが可能となり、シリンダ1には軸受固定用のネジ穴を螺設する必要がなくなるのでシリンダ歪を低減した効率の高い圧縮機を得ることができる。また、主軸受2と副軸受3を1台の設備で位置決めできるため、装置コストの抑制や組立時間を抑制できる。   According to the bearing positioning device for a compressor according to the first embodiment, the position where the inner diameters of the main bearing 2 and the auxiliary bearing 3 are secured with respect to the inner peripheral surface 12 of the cylinder 1 can be determined simultaneously. It is possible to assemble a compressor having a structure in which the cylinder 1 is fastened together with a through-bolt 5 inserted from the side of the sub-bearing 3 with respect to the main bearing 2 in which is screwed. Since it is not necessary to screw holes, it is possible to obtain a highly efficient compressor with reduced cylinder distortion. Moreover, since the main bearing 2 and the sub-bearing 3 can be positioned by one equipment, the cost of the apparatus and the assembly time can be suppressed.

また、前述の三部材の内、被固定部品であるシリンダ1を基準部材としてベースに固定するので、主軸受2と副軸受3の位置決めが容易となり、精度も高めることができる。
また、実施の形態1によって製造された圧縮機は、シリンダ1にボルト締結用のネジ部Bを設けていないので、ボルト締結によるシリンダ1の内径の変形量が無く、ローラ42とシリンダ1の内径との隙間量を低減させることで、主軸回転時にローラ42とシリンダ1の隙間からの冷媒の漏れが抑制され、圧縮機の効率を向上させることができる。
Moreover, since the cylinder 1 which is a fixed part among the above-mentioned three members is fixed to the base as a reference member, the positioning of the main bearing 2 and the auxiliary bearing 3 is facilitated, and the accuracy can be improved.
Further, since the compressor manufactured according to the first embodiment does not have the screw portion B for fastening the bolt in the cylinder 1, there is no deformation amount of the inner diameter of the cylinder 1 due to the bolt fastening, and the inner diameter of the roller 42 and the cylinder 1 is increased. , The leakage of the refrigerant from the gap between the roller 42 and the cylinder 1 during rotation of the spindle is suppressed, and the efficiency of the compressor can be improved.

実施の形態2.
図9は本発明の実施の形態2による圧縮機の製造方法に用いた軸受位置決め装置の要部を概念的に示す断面図である。なお、本実施の形態2は、シリンダ1に対して主軸受2、及び副軸受3を位置決めする際に、主軸受2を基準部材としてベース61に固定し、その主軸受2に対してシリンダ1と副軸受3を、保持手段63によって径方向にのみ揺動自在に係止した状態で主軸4を「すりこぎ運動」するように回転させ、直交するように設けた一対、2組の変位センサ64によって、シリンダ1と副軸受3の振れ幅を同時に測定し、その振れ幅の中心位置によって主軸受2に対するシリンダ1と副軸受3の同軸位置を求めるように構成したものである。なお、簡素化のため、軸受位置決め装置を構成するベース61や基準部材固定手段62など実施の形態1と同様の部材の多くを図示省略している。
Embodiment 2. FIG.
FIG. 9 is a cross-sectional view conceptually showing the main part of the bearing positioning device used in the compressor manufacturing method according to Embodiment 2 of the present invention. In the second embodiment, when the main bearing 2 and the auxiliary bearing 3 are positioned with respect to the cylinder 1, the main bearing 2 is fixed to the base 61 as a reference member, and the cylinder 1 is fixed to the main bearing 2. And a pair of displacement sensors provided so as to be orthogonal to each other by rotating the main shaft 4 so as to “crush” in a state in which the sub-bearing 3 is pivotally locked only in the radial direction by the holding means 63. 64, the swing widths of the cylinder 1 and the auxiliary bearing 3 are simultaneously measured, and the coaxial position of the cylinder 1 and the secondary bearing 3 with respect to the main bearing 2 is obtained from the center position of the swing width. For simplification, many of the same members as in the first embodiment such as the base 61 and the reference member fixing means 62 constituting the bearing positioning device are not shown.

図9に示すように、主軸4が挿通されたシリンダ1は主軸受2の上面に載置される如く当接され、その外周面には互いに直交する一対のアクチュエータからなる移動手段67の反対側にシリンダ1を介して設置されシリンダ1を移動手段67の側に押し付ける背圧付与機構である圧縮ばねなどの弾性部材67aと、移動手段67及び弾性部材67aに対して周方向に異なる位相で設けられた一対の変位センサ64(図示省略)とが設けられている。なお、図9において、主軸受2はベース61に対して実施の形態1と同様の基準部材固定手段62によって径方向及び軸方向に固定されている。   As shown in FIG. 9, the cylinder 1 through which the main shaft 4 is inserted is brought into contact with the upper surface of the main bearing 2, and the outer peripheral surface thereof is opposite to the moving means 67 composed of a pair of actuators orthogonal to each other. The elastic member 67a such as a compression spring, which is a back pressure applying mechanism that is installed via the cylinder 1 and presses the cylinder 1 against the moving means 67, and the moving means 67 and the elastic member 67a are provided in different phases in the circumferential direction. A pair of displacement sensors 64 (not shown) are provided. In FIG. 9, the main bearing 2 is fixed to the base 61 in the radial direction and the axial direction by the same reference member fixing means 62 as in the first embodiment.

また、シリンダ1の上面には副軸受3が載置される如く当接され、実施の形態1と同様にその外周面には互いに直交する一対のアクチュエータからなる移動手段66と、移動手段66の反対側に副軸受3を介して設置されその副軸受3を移動手段66の側に押し付ける背圧付与機構である圧縮ばねなどの弾性部材66aと、移動手段66及び弾性部材66aに対して周方向に異なる位相で設けられた一対の変位センサ64(図示省略)とが設けられている。   Further, the upper surface of the cylinder 1 is brought into contact with the auxiliary bearing 3 so as to be placed, and the moving means 66 composed of a pair of actuators orthogonal to each other on the outer peripheral surface as in the first embodiment, and the moving means 66 An elastic member 66a such as a compression spring, which is a back pressure applying mechanism that is installed on the opposite side via the auxiliary bearing 3 and presses the auxiliary bearing 3 against the moving means 66 side, and the circumferential direction with respect to the moving means 66 and the elastic member 66a And a pair of displacement sensors 64 (not shown) provided at different phases.

なお、主軸受2を軸受位置決め装置のベースに固定する際に、主軸受2には回転方向の位相を決める構造(例えば基準穴)を設けておき、ベース61内にて位相決め部を基準に主軸受2を取付けるようにしておくと良い。
主軸受2の下端部には、「すりこぎ運動」させる際に主軸が効果的に傾斜するようにする錘683が取付けられ、実施の形態1と同様、カップリングを介して駆動モータに接続される。また、「すりこぎ運動」によってシリンダ1と副軸受3の振れを計測する際には移動手段66、67と弾性部材66a、67aは退避できるように構成され、また、シリンダ1と副軸受3は軸方向への移動が規制され、半径方向にのみ揺動可能に構成されている。
When the main bearing 2 is fixed to the base of the bearing positioning device, the main bearing 2 is provided with a structure (for example, a reference hole) for determining the phase in the rotational direction, and the phase determining portion is used as a reference in the base 61. The main bearing 2 is preferably attached.
A weight 683 is attached to the lower end portion of the main bearing 2 so that the main shaft effectively tilts when performing a “grinding motion”, and is connected to the drive motor via the coupling as in the first embodiment. The Further, when the deflection of the cylinder 1 and the auxiliary bearing 3 is measured by “grinding motion”, the moving means 66 and 67 and the elastic members 66a and 67a are configured to be retractable, and the cylinder 1 and the auxiliary bearing 3 are The movement in the axial direction is restricted, and the movement is possible only in the radial direction.

前記のように構成された実施の形態2においては、シリンダ1、主軸受2、及び副軸受3からなる三部材の内、主軸受2を軸受位置決め装置のベース61に固定し、主軸4を傾斜させて回転させることによるシリンダ1と副軸受3の振れ幅の中心位置にて、三部材を通しボルト5によってそれぞれを固定する。これにより、主軸受2に対してシリンダ1や副軸受3の同軸を確保する位置を同時に決めることができる。また、通しボルト5を取付けるネジ穴21を螺設した主軸受2について、その主軸受2をベース61に固定するため、主軸受2のネジ穴21位置と回転方向の位相を設備上の決められた位置に固定できるため、シリンダ1と主軸受2、副軸受3を固定する際に、決められたネジ穴位置を狙って通しボルト5を挿入することができる。その結果、ボルト締結時にボルト位置のずれによる取付け不良を抑制することができる。   In the second embodiment configured as described above, the main bearing 2 is fixed to the base 61 of the bearing positioning device among the three members including the cylinder 1, the main bearing 2, and the auxiliary bearing 3, and the main shaft 4 is inclined. The three members are fixed by the through bolts 5 at the center position of the swing width of the cylinder 1 and the auxiliary bearing 3 by rotating them. Thereby, the position which ensures the coaxial of the cylinder 1 and the subbearing 3 with respect to the main bearing 2 can be determined simultaneously. Further, for the main bearing 2 in which the screw hole 21 for attaching the through bolt 5 is screwed, the main bearing 2 is fixed to the base 61, and therefore the position of the screw hole 21 and the phase in the rotation direction of the main bearing 2 are determined on the equipment. Therefore, when the cylinder 1, the main bearing 2, and the auxiliary bearing 3 are fixed, the through bolts 5 can be inserted aiming at a predetermined screw hole position. As a result, it is possible to suppress mounting failure due to the displacement of the bolt position at the time of bolt fastening.

なお、図9では主軸受2を固定して、主軸受2に対する副軸受3とシリンダ1の位置を決めるようにしたが、基準部材として副軸受3を固定して、その副軸受3に対する主軸受2とシリンダ1の位置を決めても同様の効果が得られる。要するに、本発明では、主軸受、シリンダ、及び副軸受からなる三部材の何れか一部材のみをベース61に対して固定し、他の二部材を、61ベースに固定された一部材に対するそれぞれの配設位置において軸方向に直交する方向にのみ揺動可能に保持し、その状態で主軸4を軸方向に対して傾斜させて回転させたときの、前記他の二部材の軸方向に直交する方向の振れをそれぞれ計測し、計測された振れ幅の中心位置に対して他の二部材をそれぞれ位置決めした後、通しボルトによって、前記三者を共締め固定するようにしたものであり、これにより、シリンダに対する主軸受と副軸受の理想位置を同時に検知することができると共に、ボルト締結による被固定部品であるシリンダの歪を抑制することができることを特徴としている。   In FIG. 9, the main bearing 2 is fixed and the positions of the auxiliary bearing 3 and the cylinder 1 with respect to the main bearing 2 are determined. However, the auxiliary bearing 3 is fixed as a reference member, and the main bearing for the auxiliary bearing 3 is fixed. Even if the positions of 2 and cylinder 1 are determined, the same effect can be obtained. In short, in the present invention, only one member of the three members consisting of the main bearing, the cylinder, and the sub-bearing is fixed to the base 61, and the other two members are respectively fixed to the one member fixed to the 61 base. When the main shaft 4 is tilted with respect to the axial direction and rotated in such a state that it can be swung only in the direction orthogonal to the axial direction at the arrangement position, it is orthogonal to the axial direction of the other two members. Each of the direction deflections is measured, and after positioning the other two members with respect to the center position of the measured deflection width, the three members are fastened and fixed together with through bolts. The ideal positions of the main bearing and the sub-bearing with respect to the cylinder can be detected at the same time, and distortion of the cylinder, which is a fixed part due to bolt fastening, can be suppressed.

実施の形態3.
図10は本発明の実施の形態3の製造方法における圧縮機の要部構成部材を説明する図である。本実施の形態3は、圧縮機の組立予定数などに応じて製作された所定数のシリンダ1、主軸4、及びローラ42の各構成部品の全数について、シリンダ内径J、ローラ外径Kとローラ内径L、主軸4の偏芯部外径Mと偏芯量Nを、それぞれ予め測定しておき、シリンダ内径Jとローラ外径Kの目標隙間量Tを確保するように、圧縮機構部を組立てる前に下記計算式を用いて各部品を選別して組み合わせられるように寸法毎に区分しておくようにしたものである。
T=J−((K−L)/2+M/2+N)
それらの部材を用いて、例えば実施の形態1、2の軸受位置決め装置にてシリンダ1をベース61に固定し、主軸4を傾斜させた状態で回転運動させ、主軸受2と副軸受3の振れ幅を基に得られた回転中心位置にそれぞれを位置決めして主軸受2に設けられたネジ穴21を用いてシリンダ1と副軸受3を通しボルト5の締結により固定する。
Embodiment 3 FIG.
FIG. 10 is a diagram for explaining main constituent members of the compressor in the manufacturing method according to the third embodiment of the present invention. In the third embodiment, the cylinder inner diameter J, the roller outer diameter K, and the roller for all the components of the predetermined number of cylinders 1, the main shaft 4, and the roller 42 manufactured in accordance with the number of compressors to be assembled. The compression mechanism is assembled so that the inner diameter L, the outer diameter M and the eccentric amount N of the spindle 4 are measured in advance, and the target gap amount T between the cylinder inner diameter J and the roller outer diameter K is secured. Previously, each part is classified by dimension so as to be selected and combined using the following calculation formula.
T = J-((KL) / 2 + M / 2 + N)
Using these members, for example, the cylinder 1 is fixed to the base 61 by the bearing positioning device of the first and second embodiments, and the main shaft 4 is rotated while being tilted. The cylinders 1 and the sub-bearings 3 are fixed by fastening the bolts 5 using the screw holes 21 provided in the main bearing 2 by positioning each at the rotation center position obtained based on the width.

このような構成によれば、シリンダ1の歪が低減した状態にて主軸4の回転時に全ての回転位相に対してローラ42外周とシリンダ1内周の隙間を均一に、かつ最小にすることができるため、冷媒を圧縮する際のローラ外周とシリンダ内周からの冷媒の漏れ量を抑制することができ、圧縮機の効率を向上させることができる。   According to such a configuration, the gap between the outer periphery of the roller 42 and the inner periphery of the cylinder 1 can be made uniform and minimum with respect to all the rotation phases when the main shaft 4 is rotated in a state where the distortion of the cylinder 1 is reduced. Therefore, the amount of refrigerant leakage from the roller outer periphery and the cylinder inner periphery when compressing the refrigerant can be suppressed, and the efficiency of the compressor can be improved.

なお、組み合わせする部品が多い場合、各部品それぞれを測定した結果、数ミクロンごとに大きさが異なる部品を保管するために必要なスペースが増大するため、調整する部品は例えば1部品に絞っても良い。例えば、ローラは圧縮機構部の構成部品の内最も小さく、また内周と外周を切削加工後、研磨して精度を出すため、容易に数ミクロンごとに外周の異なるローラを準備できる。そこで、シリンダ内径J、主軸4の偏芯部外径Mと偏芯量Nを予め測定していた部品を組み立て、最後に必要な目標隙間に対して、隙間寸法を満足するようなローラ外周・内周の組み合わせを調べて、数ミクロンごとにストックされたローラを選択して組立てることで、シリンダ内周とローラ外周の隙間を管理することができ、効率の高い圧縮機を得ることができる。   When there are many parts to be combined, as a result of measuring each part, the space required for storing parts having different sizes every several microns increases, so even if the parts to be adjusted are limited to one part, for example. good. For example, the roller is the smallest of the constituent parts of the compression mechanism, and the inner periphery and the outer periphery are cut and then polished to improve accuracy. Therefore, a roller having a different outer periphery can be easily prepared every several microns. Therefore, the cylinder inner diameter J, the outer diameter M of the eccentric part M of the main shaft 4 and the parts for which the eccentricity amount N were measured in advance are assembled. By checking the inner circumference combination and selecting and assembling the rollers stocked every several microns, the gap between the cylinder inner circumference and the roller outer circumference can be managed, and a highly efficient compressor can be obtained.

実施の形態4.
図11は本発明の実施の形態4の製造方法における圧縮機の要部構成部分を示す図である。なお、本実施の形態4は、実施の形態1、2に例示された方法によって同時に得られた主軸受2と副軸受3の中心位置に対し、圧縮機効率が最も向上する位置、例えばベーン13の溝を時計の文字盤の12時の位相に配置したときの10時の位相に、図示されていない主軸受2と副軸受3をオフセットして組立てるようにしたものである。例えば、組立前に予め測定した図10に示すシリンダ内径J、ローラ外径Kとローラ内径L、主軸4の偏芯部外径Mと偏芯量Nを基に、主軸4を傾斜した状態で回転させて得られた主軸受2と副軸受3の振れ幅を用いてシリンダ1に対してそれぞれ求められた理想的な中心位置を基準として、圧縮時にローラ42とベーン13とシリンダ1と主軸受2、副軸受3で構成される最も冷媒を圧縮する主軸4の位相、例えば図11にて時計回りに主軸が回転するときの10時の位相にて、シリンダ内径Jとローラ外径Kの間隙が最も狭くなるように、主軸受2と副軸受3の固定位置をオフセットして位置決めし、主軸受2に設けられたネジ穴を用いてシリンダ1と副軸受3を固定する。
Embodiment 4 FIG.
FIG. 11 is a diagram showing the main components of the compressor in the manufacturing method according to Embodiment 4 of the present invention. The fourth embodiment is a position where the compressor efficiency is most improved with respect to the center position of the main bearing 2 and the sub-bearing 3 obtained simultaneously by the method illustrated in the first and second embodiments, for example, the vane 13. The main bearing 2 and the sub-bearing 3 (not shown) are offset and assembled to the 10 o'clock phase when the grooves are arranged at the 12 o'clock phase of the dial of the watch. For example, in a state where the main shaft 4 is inclined based on the cylinder inner diameter J, the roller outer diameter K and the roller inner diameter L, and the eccentric portion outer diameter M and the eccentric amount N shown in FIG. The roller 42, the vane 13, the cylinder 1, and the main bearing at the time of compression with reference to the ideal center positions respectively obtained for the cylinder 1 using the swing widths of the main bearing 2 and the sub-bearing 3 obtained by rotating. 2. The gap between the cylinder inner diameter J and the roller outer diameter K at the phase of the main shaft 4 that compresses the refrigerant most comprised of the auxiliary bearing 3, for example, the phase at 10 o'clock when the main shaft rotates clockwise in FIG. The main bearing 2 and the sub-bearing 3 are offset and positioned so as to be the narrowest, and the cylinder 1 and the sub-bearing 3 are fixed using the screw holes provided in the main bearing 2.

このような構成になる実施の形態4によれば、圧縮機の運転時に冷媒を圧縮する際に最も高圧となり、ローラ外周とシリンダ内周からの冷媒の漏れ量が多い主軸の回転位相にて、ローラ外周とシリンダ内周の間隙を最小にできるため、ローラ外周とシリンダ内周からの冷媒の漏れ量を抑制でき、圧縮機の効率を向上させることができる。   According to the fourth embodiment having such a configuration, when the refrigerant is compressed during operation of the compressor, the highest pressure is obtained, and the rotational phase of the main shaft has a large amount of refrigerant leakage from the roller outer periphery and the cylinder inner periphery. Since the gap between the roller outer periphery and the cylinder inner periphery can be minimized, the amount of refrigerant leakage from the roller outer periphery and the cylinder inner periphery can be suppressed, and the efficiency of the compressor can be improved.

なお、本発明は、その発明の範囲内において、各実施の形態を自由に組合わせたり、各実施の形態を適宜、変形、省略することが可能である。   It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

1 シリンダ、2 主軸受、3 副軸受、4 主軸、5 通しボルト、11 貫通穴、12 内周面、13 ベーン、14 バネ、15 吸入口、16 吐出口、
21 ネジ穴、31 貫通穴、41 偏芯部、42 ローラ、61 ベース、
61a 挿通孔、62 基準部材固定手段、63 保持手段、
63A、63B エアシリンダ、64 変位センサ、65、66、67 移動手段、
65a、66a、67a 弾性部材、68 主軸傾斜回転手段、69 ボルト締結装置、
611 上側支持部材、612 下側支持部材、621 係止プレート、
622、623 エアシリンダ、681 駆動モータ、682 オルダム継手、
683 錘、A 固定面、B ネジ部、D 回転中心(主軸受)、
E 回転中心(副軸受)、J シリンダ内径、K ローラ外径、L ローラ内径、
M 偏芯部外径、N 偏芯量、T 目標隙間量。
1 cylinder, 2 main bearing, 3 sub bearing, 4 spindle, 5 through bolt, 11 through hole, 12 inner peripheral surface, 13 vane, 14 spring, 15 suction port, 16 discharge port,
21 Screw hole, 31 Through hole, 41 Eccentric part, 42 Roller, 61 Base,
61a insertion hole, 62 reference member fixing means, 63 holding means,
63A, 63B Air cylinder, 64 Displacement sensor, 65, 66, 67 Moving means,
65a, 66a, 67a elastic member, 68 spindle rotation means, 69 bolt fastening device,
611 Upper support member, 612 Lower support member, 621 Locking plate,
622, 623 Air cylinder, 681 Drive motor, 682 Oldham coupling,
683 weight, A fixed surface, B thread, D rotation center (main bearing),
E Rotation center (sub bearing), J cylinder inner diameter, K roller outer diameter, L roller inner diameter,
M eccentricity outer diameter, N eccentricity, T target gap amount.

Claims (6)

シリンダと、前記シリンダに対してその軸方向に挿通して設けられ該軸方向の中央部にローラが嵌装された偏芯部を有し、両端部が前記シリンダの外方に突出された主軸と、前記シリンダの一側部に配設され前記主軸の一端部を回転自在に支持する主軸受と、前記シリンダの他側部に配設されて前記主軸の他端部を回転自在に支持する副軸受と、を備え、前記主軸受、前記シリンダ、及び前記副軸受を、通しボルトによって共締め固定するようにした圧縮機の製造方法であって、前記主軸受、前記シリンダ、及び前記副軸受からなる三部材の何れか一部材のみをベースに対して固定し、他の二部材を、前記ベースに固定された前記一部材に対するそれぞれの配設位置において前記軸方向に直交する方向にのみ揺動可能に保持し、その状態で前記主軸を前記軸方向に対して傾斜させて回転させたときの、前記他の二部材の前記軸方向に直交する方向の振れをそれぞれ計測し、計測された振れ幅の中心位置に対して前記他の二部材をそれぞれ位置決めした後、前記通しボルトによって、前記主軸受、前記シリンダ、及び前記副軸受を固定することを特徴とする圧縮機の製造方法。   A main shaft having a cylinder and an eccentric portion that is provided so as to be inserted in the axial direction with respect to the cylinder and in which a roller is fitted in the central portion of the axial direction, and whose both end portions protrude outward from the cylinder A main bearing disposed on one side of the cylinder and rotatably supporting one end of the main shaft; and a main bearing disposed on the other side of the cylinder and rotatably supporting the other end of the main shaft. And a sub-bearing, wherein the main bearing, the cylinder, and the sub-bearing are fastened together with a through-bolt and the compressor manufacturing method, wherein the main bearing, the cylinder, and the sub-bearing Only one of the three members is fixed to the base, and the other two members are rocked only in the direction perpendicular to the axial direction at the respective arrangement positions with respect to the one member fixed to the base. Hold it movable and in that state before When the main shaft is rotated while being inclined with respect to the axial direction, the other two members are each measured in the direction perpendicular to the axial direction, and the other is measured with respect to the center position of the measured deflection width. After the two members are respectively positioned, the main bearing, the cylinder, and the sub-bearing are fixed by the through bolts. 前記ベースに対して前記シリンダを固定することを特徴とする請求項1記載の圧縮機の製造方法。   The method for manufacturing a compressor according to claim 1, wherein the cylinder is fixed to the base. 前記ベースに対して前記主軸受を固定することを特徴とする請求項1記載の圧縮機の製造方法。   The method for manufacturing a compressor according to claim 1, wherein the main bearing is fixed to the base. 圧縮機の組立予定数に応じて製作された所定数の前記シリンダ、前記主軸、及び前記ローラの各構成部品について、前記シリンダの内径、前記ローラの外径及び内径、並びに前記主軸の偏芯部の外径及び偏芯量を個々に予め測定し、少なくとも1種類の前記各構成部品については測定された寸法に応じて区分して保管しておき、組立時に前記シリンダ内周と前記ローラ外周の最小隙間が確保されるように保管された前記構成部品を前記区分された集団から選択して組合わせ組立てることを特徴とする請求項1から請求項3までの何れかに記載の圧縮機の製造方法。   About the predetermined number of the cylinders, the main shaft, and the roller components manufactured according to the planned assembly number of the compressor, the inner diameter of the cylinder, the outer diameter and inner diameter of the roller, and the eccentric portion of the main shaft The outer diameter and eccentricity of each of the components are measured in advance individually, and at least one type of each of the components is stored separately according to the measured dimensions. 4. The compressor manufacturing method according to claim 1, wherein the component parts stored so as to secure a minimum clearance are selected from the divided group and assembled. Method. 前記主軸受と前記副軸受の前記シリンダに対する固定位置を、計測された前記振れ幅の中心位置に対して、前記シリンダの周方向における前記主軸の回転位相が圧縮機の運転時冷媒を最も圧縮する状態となる角度の方向に、前記ローラと前記シリンダとの間隙が最小となるようにオフセットして固定することを特徴とする請求項1から請求項4までの何れかに記載の圧縮機の製造方法。   The rotation position of the main shaft in the circumferential direction of the cylinder compresses the refrigerant most during the operation of the compressor, with respect to the fixed position of the main bearing and the sub-bearing with respect to the cylinder. The compressor according to any one of claims 1 to 4, wherein the compressor is offset and fixed so that a gap between the roller and the cylinder is minimized in a direction of an angle to be in a state. Method. シリンダと、前記シリンダに対してその軸方向に挿通して設けられ該軸方向の中央部にローラが嵌装された偏芯部を有し、両端部が前記シリンダの外方に突出された主軸と、前記シリンダの一側部に配設され前記主軸の一端部を回転自在に支持する主軸受と、前記シリンダの他側部に配設されて前記主軸の他端部を回転自在に支持する副軸受と、を備え、前記主軸受、前記シリンダ、及び前記副軸受を、通しボルトによって共締め固定するようにした圧縮機の軸受位置決め装置であって、ベースと、前記主軸受、前記主軸が挿通された前記シリンダ、及び前記副軸受からなる三部材の何れか一部材のみを基準部材として前記ベースに対して固定する基準部材固定手段と、他の二部材を前記ベースに固定された前記一部材に対するそれぞれの配設位置において前記軸方向に直交する径方向にのみ揺動可能に保持する保持手段と、前記主軸を前記軸方向に対して傾斜させて回転させる主軸傾斜回転手段と、前記主軸傾斜回転手段によって前記主軸を回転させたときの前記他の二部材の振れをそれぞれ計測する二組の変位センサと、前記変位センサによって計測された振れ幅の中心位置に対して前記他の二部材をそれぞれ移動させる移動手段と、を備えた圧縮機の軸受位置決め装置。   A main shaft having a cylinder and an eccentric portion that is provided so as to be inserted in the axial direction with respect to the cylinder and in which a roller is fitted in the central portion of the axial direction, and whose both end portions protrude outward from the cylinder A main bearing disposed on one side of the cylinder and rotatably supporting one end of the main shaft; and a main bearing disposed on the other side of the cylinder and rotatably supporting the other end of the main shaft. A bearing positioning device for a compressor, wherein the main bearing, the cylinder, and the sub-bearing are fastened and fixed together by a through-bolt, wherein the base, the main bearing, and the main shaft are Reference member fixing means for fixing only one member of the inserted three members of the cylinder and the auxiliary bearing to the base as a reference member, and the other two members fixed to the base. Each arrangement for a member A holding means that holds the main shaft so as to be swingable only in a radial direction orthogonal to the axial direction at a position; a main shaft tilt rotating means that rotates the main shaft while tilting the main shaft with respect to the axial direction; and Two sets of displacement sensors for measuring the deflection of the other two members when the two members are rotated, and a moving means for moving the other two members with respect to the center position of the deflection width measured by the displacement sensor And a compressor bearing positioning device.
JP2016165204A 2016-08-26 2016-08-26 Method for manufacturing compressor and bearing positioning device for compressor Active JP6673605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016165204A JP6673605B2 (en) 2016-08-26 2016-08-26 Method for manufacturing compressor and bearing positioning device for compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016165204A JP6673605B2 (en) 2016-08-26 2016-08-26 Method for manufacturing compressor and bearing positioning device for compressor

Publications (2)

Publication Number Publication Date
JP2018031323A true JP2018031323A (en) 2018-03-01
JP6673605B2 JP6673605B2 (en) 2020-03-25

Family

ID=61302934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016165204A Active JP6673605B2 (en) 2016-08-26 2016-08-26 Method for manufacturing compressor and bearing positioning device for compressor

Country Status (1)

Country Link
JP (1) JP6673605B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110539161A (en) * 2019-09-04 2019-12-06 日本电产东测(浙江)有限公司 compressor assembly assembling apparatus and compressor manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110539161A (en) * 2019-09-04 2019-12-06 日本电产东测(浙江)有限公司 compressor assembly assembling apparatus and compressor manufacturing method
CN110539161B (en) * 2019-09-04 2021-06-18 日本电产东测(浙江)有限公司 Compressor assembly assembling apparatus and compressor manufacturing method

Also Published As

Publication number Publication date
JP6673605B2 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
WO2017166911A1 (en) Magnetic levitation bearing assembly and compressor
EP3470810B1 (en) Vibration isolation member and imbalance detector equipped with vibration isolation member
US7066652B2 (en) Externally pressurized gas bearing and spindle equipment using this
EP1659302B1 (en) Connection means between rod and crosshead for a reciprocating machine
US20090031802A1 (en) Rotor alignment system and method
JP2006183562A (en) Scroll fluid machine
US8581527B2 (en) Mechanism for converting rotary motion into linear motion and lifting device
US20050097976A1 (en) Index table assembly
JP6673605B2 (en) Method for manufacturing compressor and bearing positioning device for compressor
JPS6138189A (en) Axial gap regulator for scroll type compressor
JP4613442B2 (en) Multi-cylinder rotary compressor, its assembling method, and its assembling apparatus
JPH02277984A (en) Scroll fluid machine
JP5171164B2 (en) Rotary compressor, method for manufacturing rotary compressor, and refrigeration cycle apparatus
JP5574999B2 (en) Method for assembling compression elements of a rotary compressor
JP2562581B2 (en) Oil-free scroll compressor
JP4053416B2 (en) Scroll compressor and manufacturing method thereof
CN109309428B (en) Rotary generator
JP4002651B2 (en) Scroll compressor
JP6992569B2 (en) Vacuum pump and balance adjustment method
JP6739961B2 (en) Method of aligning and assembling parts, method of assembling rotary compressor, and jig used therefor
JP2021164217A (en) Axial gap type motor
JPS618404A (en) Scroll type hydraulic machine
JP2003074470A (en) Aligning assembling apparatus and aligning assembling method
JP2005133693A (en) Scroll fluid-machinery wherein gap is easily adjustable
JP2811968B2 (en) Mounting structure of balance shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190322

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200303

R151 Written notification of patent or utility model registration

Ref document number: 6673605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250