JP2018017540A - Gas sampling device for expired gas analysis - Google Patents

Gas sampling device for expired gas analysis Download PDF

Info

Publication number
JP2018017540A
JP2018017540A JP2016146258A JP2016146258A JP2018017540A JP 2018017540 A JP2018017540 A JP 2018017540A JP 2016146258 A JP2016146258 A JP 2016146258A JP 2016146258 A JP2016146258 A JP 2016146258A JP 2018017540 A JP2018017540 A JP 2018017540A
Authority
JP
Japan
Prior art keywords
gas
unit
sampling
section
gas sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016146258A
Other languages
Japanese (ja)
Other versions
JP6782482B2 (en
Inventor
吉田功
Isao Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minato Medical Science Co Ltd
Original Assignee
Minato Medical Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minato Medical Science Co Ltd filed Critical Minato Medical Science Co Ltd
Priority to JP2016146258A priority Critical patent/JP6782482B2/en
Publication of JP2018017540A publication Critical patent/JP2018017540A/en
Application granted granted Critical
Publication of JP6782482B2 publication Critical patent/JP6782482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas sampling device which, when analyzing an expired gas, concentrates the gas concentration of sample gas that hitherto existed in a minute amount and improves the accuracy of gas concentration measurement, as well as prevents contamination with the residual gases of other examinees.SOLUTION: Provided is a gas sampling device comprising: a sensor unit for measuring the flow rate of the respiratory air of an examinee; a control unit for calculating various data relating to the respiratory air; a detachable gas sampling unit for sampling a portion of the respiratory air of the examinee; a sampling circuit unit; a main pump unit for drawing in an exhalation sample; a sub-pump unit; a bypass unit; a branch unit; a gas pressure measurement unit; and a control unit for controlling gas sampling by one of the branch unit, the main pump unit and the sub-pump unit or a combination of these units in accordance with the various data relating to the respiratory air.SELECTED DRAWING: Figure 1

Description

本発明は呼気ガス分析におけるサンプルガスの採取装置に関するものである。    The present invention relates to an apparatus for collecting sample gas in breath gas analysis.

呼気ガス分析は、被験者が呼吸する際に排出し吸収される呼吸気中の測定対象ガスのガス濃度やガス量等を分析するものであり、呼吸気において採取されるサンプルガスは、生体機能の評価や各種疾患の診断、治療効果の評価等に用いられ、例えば、呼吸代謝に関する指標を求める測定や、肺の洗い出し検査等をおこなう肺機能検査、ピロリ菌の存在を検査するピロリ菌検査等、各種の測定・検査に用いられる。
手法は、ガス交換(酸素消費量、二酸化炭素生産量)と基礎代謝との関係から、炭水化物酸化及び脂質酸化のその都度の基質酸化速度が、呼吸時に接種した酸素の所定量と、それに続いて吐き出した二酸化炭素の比較量として求める方法がある。一般的に間接熱量測定法として知られている方法である。
Expiratory gas analysis is to analyze the gas concentration, gas amount, etc. of the measurement target gas in the respiratory air that is discharged and absorbed when the subject breathes. It is used for evaluation, diagnosis of various diseases, evaluation of therapeutic effect, etc., for example, measurement for obtaining an index relating to respiratory metabolism, lung function test for performing lung washout test, H. pylori test for examining the presence of H. pylori, etc. Used for various measurements and inspections.
The method is based on the relationship between gas exchange (oxygen consumption, carbon dioxide production) and basal metabolism, and the substrate oxidation rate for each of the carbohydrate oxidation and lipid oxidation is determined by the predetermined amount of oxygen inoculated during breathing, followed by There is a method of obtaining as a comparative amount of exhaled carbon dioxide. This is a method generally known as indirect calorimetry.

また、サンプルガスを用いた検査は、被験者のカロリー消費量及び基礎代謝量を求めるために肉体的な負荷が掛けられている間に身体に生じるエネルギー代謝を測定するために利用されている。客観的に被験者の動作中であってもカロリー消費量を求めることができることから、心臓病等の心疾患を持つ被験者の心肺系の仕事率を推量しながらリハビリをすることも可能となる。
一方、呼気終末時に得られる二酸化炭素濃度、つまり呼気終末炭酸ガス濃度は、血液中の二酸化炭素と相関するため、当該ガス濃度を測定することで、過換気障害、気道閉塞、肺閉塞、COPD、低換気などの診断にも用いることができる。
このように、健康の維持管理においては、ガス交換や酸素消費を含む呼吸機能からみた健康の維持管理についても、これら測定・検査は有用である。
近年、水素ガスが腸内細菌の活動を示す指標として着目され、健康・生活習慣との関係が明らかになっておきており、ガス種類の選択性に優れた熱電式水素センサ素子を用いて直接呼気中の水素ガス濃度を測定できる呼気水素検知器などが開発されている。
また、肺がんの早期発見のあらたな手段として、肺がん患者のがん切除手術前後の呼気ガス成分を統計学的に分析し、呼気中の揮発性有機化合物(VOC)から複数の肺がんマーカー物質の組み合わせが発見され、これら複数のマーカー物質の濃度から、肺がん患者と健常者とを高精度で識別できる検査装置の開発が進められている。
呼吸気を用いたガス分析方法では、被験者から自然に吸引排出される呼吸気を測定することができ、わざわざ血液を採血等して血中の二酸化炭素量等の濃度測定をする必要はなく、簡便で安全な被験者に負担をかけない非侵襲な測定であることに利点がある。
ただし、いずれも呼吸気中に含まれるガス濃度が非常に微量となるガス種の濃度測定をしなければならず、ガス濃度の高精度化が必須の技術となる。
Moreover, the test | inspection using a sample gas is utilized in order to measure the energy metabolism which arises in a body, while the physical load is applied in order to obtain | require a test subject's calorie consumption and basal metabolism. Since the calorie consumption can be obtained objectively even during the movement of the subject, it is possible to perform rehabilitation while estimating the cardiopulmonary work rate of the subject having a heart disease such as heart disease.
On the other hand, the carbon dioxide concentration obtained at the end of expiration, that is, the end-tidal carbon dioxide concentration correlates with the carbon dioxide in the blood, so by measuring the gas concentration, hyperventilation disorder, airway obstruction, lung obstruction, COPD, It can also be used for diagnosis such as hypoventilation.
Thus, in the maintenance and management of health, these measurements and tests are useful for the maintenance and management of health from the viewpoint of respiratory functions including gas exchange and oxygen consumption.
In recent years, hydrogen gas has been attracting attention as an indicator of intestinal bacterial activity, and its relationship with health and lifestyle habits has been elucidated. It has been directly used with a thermoelectric hydrogen sensor element with excellent gas type selectivity. An expiratory hydrogen detector that can measure the hydrogen gas concentration in the exhaled breath has been developed.
In addition, as a new means of early detection of lung cancer, a breath gas component before and after cancer resection surgery of a lung cancer patient is statistically analyzed, and a combination of a plurality of lung cancer marker substances from volatile organic compounds (VOC) in the breath. As a result, the development of an inspection apparatus that can distinguish a lung cancer patient and a healthy person with high accuracy from the concentration of the plurality of marker substances is underway.
In the gas analysis method using breathing air, it is possible to measure the breathing air that is naturally aspirated and discharged from the subject, and it is not necessary to measure the concentration of carbon dioxide in the blood by blood sampling etc. There is an advantage in non-invasive measurement that does not place a burden on a simple and safe subject.
However, in any case, it is necessary to measure the concentration of a gas species in which the concentration of gas contained in the respiratory air is extremely small, and high accuracy of the gas concentration is an essential technique.

従来から、サンプルガスを採取する際は、呼吸気を測定する流量センサで計測した呼気カーブを用いて、採取に必要なタイミングを計って通過するガスの一部を採取し、その少ないガス量の中から必要とする微量ガス種のガス濃度を測定する装置、又は、代謝測定においては、継続して呼吸するタイミングに合わせて断続的にガス採取及びガス濃度測定をし、呼気カーブと対比させて各種評価を行うなどして必要なガスを抽出して評価する装置は存在している。
しかし、タイミングを計って採取されたガスであっても不必要な他のガス、例えば、被験者自身の測定する目的以外ガスも当然に含まれており、ガス濃度測定においては、依然精度の高いガス濃度計が必須であった。
また、直前に検査した他の被験者の残留ガスとのコンタミネーション等も生じることから、ガス濃度測定自体の精度にも限界があった。
そこで、被験者の呼吸気中の目的とするガスのみが抽出できる機能を有する装置の開発が要望されていた。
Conventionally, when sampling a sample gas, using the expiration curve measured by a flow sensor that measures respiratory air, a part of the passing gas is sampled at the timing required for sampling, and the amount of gas that is small In the device for measuring the gas concentration of the trace gas species required from the inside, or in the metabolic measurement, gas sampling and gas concentration measurement are intermittently performed according to the timing of continuous breathing, and compared with the expiration curve. There are apparatuses that extract and evaluate necessary gases by performing various evaluations.
However, even if the gas is collected at the timing, other unnecessary gases, for example, gases other than the purpose of the subject's own measurement are naturally included, and the gas concentration measurement still has high accuracy. A densitometer was essential.
In addition, there is a limit to the accuracy of the gas concentration measurement itself due to contamination with the residual gas of other subjects examined immediately before.
Therefore, there has been a demand for the development of a device having a function of extracting only the target gas in the breathing air of the subject.

特許文献1では、これを改善するため、流量センサで排出量を計量し、死腔量つまりサンプリング回路中の余分なガスが排出された段階で、サンプリング回路を移動し切換えて分析する技術が開示されている。
図3に特許文献1で開示されたサンプリング回路のブロック図の一例を示す。
図3のブロック図は、流量センサ9、呼気排出経路2、呼気吸引経路3、呼吸測定経路4、吸引路12、秤量弁路14、吸引ポンプ15、検出器18からなる。
流量センサ9から得られたデータにより死腔量相当が排出されたと判断した後、秤量弁路14に収まったサンプルガスは、秤量弁路14がスライドすることで、別経路の呼気測定経路に移動され検出器18によってガス分析される。
当該機能により、死腔量相当を取り除きサンプルガスが抽出することができ、精度の良いガス分析ができるとされている。
しかし、当該機能であっても、死腔部分のガスが除去されているだけであり、サンプルガスに含まれる測定対象ガス量は微量のままであって、ガス濃度測定で必要とされる精度は依然変わらず、また、直前に測定を行った被験者の呼吸気とのコンタミネーションの防止は不十分であり、検出・採取回路中の残留ガスや、呼気経路中に付着した微量な残留ガス等の除去はできておらず、以前としてコンタミネーションの影響は大きいままであった。
In order to improve this, Patent Document 1 discloses a technique for measuring the amount of discharge with a flow sensor, and moving and switching the sampling circuit when dead volume, that is, excess gas in the sampling circuit is discharged. Has been.
FIG. 3 shows an example of a block diagram of the sampling circuit disclosed in Patent Document 1.
The block diagram of FIG. 3 includes a flow sensor 9, an exhalation discharge path 2, an exhalation suction path 3, a respiration measurement path 4, a suction path 12, a weighing valve path 14, a suction pump 15, and a detector 18.
After determining that the dead space amount equivalent is discharged from the data obtained from the flow sensor 9, the sample gas that has settled in the weighing valve path 14 moves to another breath measurement path as the weighing valve path 14 slides. The gas is analyzed by the detector 18.
With this function, sample gas can be extracted by removing the amount corresponding to the dead space amount, and accurate gas analysis can be performed.
However, even in this function, the gas in the dead space is only removed, and the amount of gas to be measured contained in the sample gas remains very small, and the accuracy required for gas concentration measurement is It has not changed, and the prevention of contamination with the breathing air of the subject who measured immediately before is insufficient, such as residual gas in the detection / collection circuit, trace residual gas attached to the exhalation route, etc. It has not been removed, and the influence of contamination has remained large.

特開2004−077467号公報JP 2004-077467 A

本発明の目的は、呼気ガス分析するにあたり、これまで微量であったサンプルガスのガス濃度を濃縮してガス濃度測定精度の向上を図ると共に、他の被験者の残留ガスとのコンタミネーションを防ぐガス採取装置を提供することにある。    The purpose of the present invention is to improve the gas concentration measurement accuracy by concentrating the gas concentration of the sample gas, which has been a trace amount so far, and to prevent contamination with residual gases of other subjects in the analysis of the breath gas To provide a collection device.

そこで、請求項1に記載のガス採取装置では、
被験者の呼吸気の流量を測定するセンサ部と、
前記センサ部から流量に関する信号を受け取り、呼吸気に関する各種データを算出する制御部と、
前記被験者の呼気サンプルの一部をサンプルガスとして採取し脱着可能とするガス採取部と、
前記ガス採取部に吸引導入するサンプリング回路部と、
前記サンプリング回路部と前記ガス採取部を通じて呼気サンプルを吸引する主ポンプ部と、
を備えるガス採取装置において、
前記サンプリング回路部と前記呼気ガス採取部との間に設けたサブポンプ部と、
前記呼気ガス採取部と並列に設けたバイパス部と、
前記呼気ガス採取部とバイパス部を切換え可能とする分岐部と、
前記呼気ガス採取部にかかるガス圧を測定するガス圧測定部と、
前記呼吸気に関する各種データに応じて、前記分岐部、前記主ポンプ部、前記サブポンプ部のうちいずれか一つ又はこれらの組合せによってガス採取を制御する制御部と、
を備えたことを特徴とする。
Therefore, in the gas sampling device according to claim 1,
A sensor unit that measures the flow rate of the subject's respiratory air;
A control unit that receives a signal related to the flow rate from the sensor unit and calculates various data related to respiratory air;
A gas collection part that allows a part of the breath sample of the subject to be collected as a sample gas and can be removed; and
A sampling circuit section for sucking and introducing into the gas sampling section;
A main pump section for sucking an exhaled breath sample through the sampling circuit section and the gas sampling section;
In a gas sampling device comprising:
A sub-pump unit provided between the sampling circuit unit and the expired gas sampling unit;
A bypass section provided in parallel with the exhalation gas sampling section;
A branching section that enables switching between the exhalation gas collection section and the bypass section;
A gas pressure measuring unit for measuring a gas pressure applied to the exhaled gas sampling unit;
According to various data related to the breathing air, a control unit that controls gas collection by any one or a combination of the branching unit, the main pump unit, and the sub-pump unit, and
It is provided with.

請求項2に記載の発明では、請求項1に記載のガス採取装置において、
呼吸気に関する各種データのうち、呼気終末時点に同期させて、分岐部、主ポンプ部、サブポンプ部のうちいずれか一つ又はこれらの組合せを制御する制御部、
を備えたことを特徴とする。
In invention of Claim 2, in the gas sampling device of Claim 1,
Among various data related to breathing air, a control unit that controls any one of a branching unit, a main pump unit, a sub pump unit, or a combination thereof in synchronization with the end of expiration.
It is provided with.

請求項3に記載の発明では、請求項1又は2に記載のガス採取装置において、
呼気ガス採取部と並列に設けた吸気ガス採取部と、
サンプリング回路部と吸気ガス採取部との間に設けたサブポンプ部と、
前記吸気ガス採取部、バイパス部及び前記呼気ガス採取部を切換え可能とする分岐部と、
前記吸気ガス採取部にかかるガス圧を測定するガス圧測定部と、
前記呼吸気に関する各種データに応じて、前記分岐部、主ポンプ部、前記サブポンプ部のうちいずれか一つ又はこれらの組合せによってガス採取を制御する制御部と、
を備えたことを特徴とする。
In the invention according to claim 3, in the gas sampling device according to claim 1 or 2,
An inspiratory gas collecting part provided in parallel with the expiratory gas collecting part;
A sub-pump section provided between the sampling circuit section and the intake gas sampling section;
A branching unit that allows switching between the inspiratory gas sampling unit, the bypass unit and the exhaled gas sampling unit;
A gas pressure measuring unit for measuring a gas pressure applied to the intake gas sampling unit;
According to various data related to the breathing air, a control unit that controls gas collection by any one or a combination of the branching unit, the main pump unit, the sub pump unit, and
It is provided with.

請求項4に記載の発明では、請求項3に記載のガス採取装置において、
呼吸気に関する各種データのうち、吸気終末時点に同期させて、分岐部、主ポンプ部、サブポンプ部のうちいずれか一つ又はこれらの組合せを制御する制御部、
を備えたことを特徴とする。
In the invention according to claim 4, in the gas sampling device according to claim 3,
Among various data related to breathing air, a control unit that controls any one of the branching unit, the main pump unit, the sub pump unit, or a combination thereof in synchronization with the end point of inspiration.
It is provided with.

本発明によれば、呼気ガス分析するにあたり、これまで微量であったサンプルガスの測定対象のガス種を濃縮してガス採取することが可能となるため、測定対象ガス種が容易に測定でき、ガス濃度測定精度の向上を図ることができる。また、他の被験者の残留ガスとのコンタミネーションを極力防ぐことができるようにもなる。    According to the present invention, when analyzing the breath gas, it is possible to concentrate and collect the gas species to be measured of the sample gas, which has been a trace amount, so that the gas species to be measured can be easily measured, The gas concentration measurement accuracy can be improved. In addition, contamination with residual gas of other subjects can be prevented as much as possible.

本発明によるガス採取装置の一例を示すブロック図である。It is a block diagram which shows an example of the gas sampling device by this invention. 本発明によるガス採取装置の一例を示すブロック図である。It is a block diagram which shows an example of the gas sampling device by this invention. 特許文献1に記載のガス分析装置の一例を示すブロック図である。10 is a block diagram illustrating an example of a gas analyzer described in Patent Literature 1. FIG.

本発明のガス採取装置では、被験者Mの呼吸気をサンプルガスとしてガス採取部1に採取する際、被験者Mの呼吸気の流量を、呼吸流量計センサ12で計測することで得られた呼吸気に関する各種データに応じて、分岐部A4、分岐部B5、サブポンプ部である排出ポンプ2、主ポンプ部である吸引ポンプ3を制御部6によって切換えられ、測定対象となるサンプルガスはサンプリング回路8を通じてガス採取部1に採取され、非測定対象のサンプルガスはサンプリング回路8を通じてバイパス部7を通じて排出されることで、測定対象となるサンプルガスのみが選別され抽出される。さらに、排出ポンプ2によって、サンプルガスがガス採取部1に圧入されることで、サンプルガスが濃縮され、ガス採取部1が脱着できることで、濃縮されたサンプルガスは持ち運び可能となり、また、ガス採取部1は被験者Mごとに常に新しいものに交換可能となる。    In the gas sampling device of the present invention, when the respiratory air of the subject M is collected as the sample gas in the gas sampling unit 1, the respiratory air obtained by measuring the flow rate of the respiratory air of the subject M with the respiratory flow meter sensor 12. In accordance with various data relating to the above, the branching part A4, the branching part B5, the discharge pump 2 as the sub-pump part, and the suction pump 3 as the main pump part are switched by the control part 6, and the sample gas to be measured passes through the sampling circuit 8 The sample gas which is sampled by the gas collecting unit 1 and is not measured is discharged through the bypass unit 7 through the sampling circuit 8, so that only the sample gas to be measured is selected and extracted. Further, the sample gas is pressed into the gas sampling unit 1 by the discharge pump 2, so that the sample gas is concentrated and the gas sampling unit 1 can be detached, so that the concentrated sample gas can be carried and the gas sampling is performed. Part 1 can always be replaced with a new one for each subject M.

これら機能により、これまで微量であったサンプルガスの測定対象のガス種を濃縮してガス採取することができ、容易に持ち運び可能となり、他のガス測定機においても評価可能となることから、様々な測定対象ガス種を容易に測定できるようになり、ガス濃度測定精度の向上も図ることができる。また、他の被験者の残留ガスとのコンタミネーションを防ぐことができるようにもなる。    With these functions, it is possible to concentrate the gas sample to be measured in sample gas, which has been a trace amount so far, and to collect the gas easily, so that it can be easily carried and evaluated with other gas measuring instruments. Therefore, it becomes possible to easily measure the gas species to be measured, and the gas concentration measurement accuracy can be improved. In addition, contamination with residual gas of other subjects can be prevented.

以下、本発明を実施するための形態について図面を参照して説明する。    Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1は、本発明のガス採取装置の一実施例である、呼気ガスのサンプルガスを採取するガス採取装置のブロック図を示すものである。
図2は、本発明のガス採取装置の一実施例である、吸気ガスのサンプルガスを採取するガス採取機構を呼気ガスのサンプルガスを採取するガス採取装置に加えたブロック図を示すものである。
FIG. 1 is a block diagram of a gas sampling apparatus that collects a sample gas of exhaled gas, which is an embodiment of the gas sampling apparatus of the present invention.
FIG. 2 shows a block diagram in which a gas sampling mechanism for sampling a sample gas of inspiratory gas is added to a gas sampling device for sampling a sample gas of exhaled gas, which is an embodiment of the gas sampling device of the present invention. .

本発明に係るガス採取装置の一実施例についてその構造を図1、図2に基づき説明する。
(1)構成・動作について
本発明に係るガス採取装置は、図1のブロック図において、呼気サンプルバッグ1、呼気排出ポンプ部2、吸引ポンプ部3、分岐部A4、分岐部B5、制御部6、バイパス部7、サンプリング回路部8、呼気バッグ脱着部9、10、センサ部11、呼吸流量センサ部12、流量センサ信号線13を有している。ここで、呼気バッグ脱着部9、10は、ガス圧測定部9、10が含まれている。
The structure of an embodiment of the gas sampling apparatus according to the present invention will be described with reference to FIGS.
(1) Configuration / Operation The gas sampling apparatus according to the present invention includes an exhalation sample bag 1, an exhalation discharge pump unit 2, a suction pump unit 3, a branching unit A4, a branching unit B5, and a control unit 6 in the block diagram of FIG. , Bypass unit 7, sampling circuit unit 8, exhalation bag detaching units 9 and 10, sensor unit 11, respiratory flow sensor unit 12, and flow sensor signal line 13. Here, the exhalation bag attaching / detaching units 9 and 10 include gas pressure measuring units 9 and 10.

被験者Mは、センサ部11を通じて呼吸気を排出吸入することで呼吸気流量センサ12において、流量に関するデータが電気信号として検出され流量センサ信号線13を通じて制御部6へ送られる。制御部6に送られたデータに応じて流量を始めとし、呼吸気に関する指標が算出され、呼吸気に関する呼気フローカーブも算出される。    The subject M discharges and inhales the respiratory air through the sensor unit 11, and the data related to the flow rate is detected as an electrical signal in the respiratory air flow sensor 12, and is sent to the control unit 6 through the flow sensor signal line 13. In accordance with the data sent to the control unit 6, an index relating to respiratory air is calculated starting from the flow rate, and an expiratory flow curve relating to respiratory air is also calculated.

呼気サンプルバッグ1は、呼気バッグ脱着部9、10によってサンプリング経路中に設置される。サンプルバック1の材質や形状には特段に注意を払う必要はないが、用途に応じて材質や形状等を使い分けるのが良い。
例えば、精度を要する場合は、不要なガスが混入しないよう、柔軟な高分子エラストマー、ゴム材や高分子樹脂材のシート材を2枚合わせて袋状にするが、シート材を密着さて内部に気体が入らないようにした一枚のシート状態のものを製作し、呼気バッグ脱着部9、10に装着後、内部にサンプルガスが封入された際に初めて膨らむような構造にしておく。
また、長期保存する必要がある場合や、ガス分析ができる場所まで距離が離れている場合、固定形状のガラスや高分子樹脂の容器などを使用したサンプルバッグ1で構成させることもできる。
The exhalation sample bag 1 is installed in the sampling path by the exhalation bag attaching / detaching portions 9 and 10. Although it is not necessary to pay particular attention to the material and shape of the sample bag 1, it is preferable to use different materials and shapes depending on the application.
For example, when accuracy is required, two sheets of flexible polymer elastomer, rubber material, or polymer resin material are combined into a bag shape so that unnecessary gas is not mixed. A sheet in which gas is prevented from entering is manufactured, and after mounting on the breathing bag detaching portions 9 and 10, the structure is such that it is inflated only when the sample gas is sealed inside.
Moreover, when it is necessary to preserve | save for a long period of time, or when distance is away to the place where gas analysis is possible, it can also be comprised with the sample bag 1 using the container of a fixed shape glass, a polymeric resin, etc.

サンプリング回路部8は、分岐部A4によって、サンプルバッグ1及びバイパス部7に接続され、吸引ポンプ部3によって回路内が負圧に制御されることで、センサ部11のガスの一部がサンプリング回路部8を通じてガス採取回路内に導入される。導入されたガスは、呼気フローカーブに応じて制御部6で制御された吸引ポンプ3と分岐部A4、B5によってバイパス部7、サンプルバッグ1に振り分けられる。    The sampling circuit unit 8 is connected to the sample bag 1 and the bypass unit 7 by the branch unit A4, and the suction pump unit 3 controls the inside of the circuit to a negative pressure, so that a part of the gas of the sensor unit 11 is a sampling circuit. It is introduced into the gas sampling circuit through the part 8. The introduced gas is distributed to the bypass section 7 and the sample bag 1 by the suction pump 3 controlled by the control section 6 and the branch sections A4 and B5 according to the exhalation flow curve.

前記例で挙げた密着状態で製作されたシート状のサンプルバッグ1の場合、サンプルバッグ1の呼気バック脱着部10の側は当初より密閉状態にしておき、脱着部10から取り外し、他のガス分析機等の測定機に取り付ける際に、初めて開封できるようにしておくと、より不要ガスの混入を防ぐことができる。かかる場合、サンプルバック1内のガス分析を行うガス分析機のガス導入部にもサンプルバッグ1が脱着できるように事前に専用アダプタなどを設けておく必要がある。    In the case of the sheet-like sample bag 1 manufactured in the close contact state mentioned in the above example, the exhalation back attaching / detaching part 10 side of the sample bag 1 is kept sealed from the beginning, removed from the attaching / detaching part 10, and other gas analysis. When it is opened for the first time when it is attached to a measuring machine such as a machine, it is possible to prevent further unnecessary gas from being mixed. In such a case, it is necessary to provide a dedicated adapter or the like in advance so that the sample bag 1 can be attached to and detached from the gas introduction part of the gas analyzer that performs gas analysis in the sample bag 1.

測定対象ガスは、サンプルバッグ1に振り分けられ封入されるが、当該サンプルバッグ1が測定対象ガスで満たされてしまった場合でも、さらに、排出ポンプ2の排気側にサンプルバッグ1を接続しているためサンプルガスをサンプルバッグ1にさらに押し込み封入することができる。
この際、サンプルバッグ1に加圧されながら圧入されるため、サンプルバッグ1の収容能力に応じて、サンプルバッグ1内のガスは濃縮された状態で封入されることとなる。
なお、サンプルバッグ1の前のサンプリング経路に不要ガスが僅かながら存在していることが考えられるため、バイパス部7を通じてサンプリング回路部8や分岐部A4に存在する気体を事前に排出しておく必要がある。
さらに、不要ガスを混入したくない場合は、排気ポンプ2と、図に記載は無いが排気ポンプ2の排気側にもさらに分岐部を設けて回路内部ガスを強制排気させる方法も可能である。
また、各部の陽圧、負圧が適正に動作しているか確認できるよう、吸気バッグ脱着部9、10には市販の圧力センサや圧力計を設けて、動作を制御部6で確認できるようにしておくと良い。
また、分岐部A4、B5については、電磁弁及び分岐管等を用いて制御部6の信号に応じてバイパス部7と呼気ガス採取部1に振り分けることができるよう必要な分岐切換機構を構成させておく。
また、バッグ脱着部9、10については、エアカップリング等の汎用のカプラーを使用した配管構造を設けても良い。
なお、サンプルバッグ1を封入する際は、サンプルバッグ1内は陽圧に加圧された状態にあるので、採取後の外来の不要ガスの混入はほぼ無いと考えることができ、サンプルバッグ1の脱着部9側の口をφ1程度の高空気抵抗の細管径にしておくと、サンプルバッグ1を取り外し後に通常の汎用の蓋で封止することもできる。または、サンプルバッグ1の両端をチューブ状に伸ばしておき、チューブを座屈若しくは縛ることでより不要なガスの混入は避けられる。また、当初よりサンプルバッグ1の脱着部9の側に逆止弁を設けておいても良い。
The measurement target gas is distributed and enclosed in the sample bag 1. Even when the sample bag 1 is filled with the measurement target gas, the sample bag 1 is further connected to the exhaust side of the discharge pump 2. Therefore, the sample gas can be further pushed into the sample bag 1 and sealed.
At this time, since the sample bag 1 is press-fitted while being pressurized, the gas in the sample bag 1 is sealed in a concentrated state according to the capacity of the sample bag 1.
In addition, since it is considered that a small amount of unnecessary gas is present in the sampling path in front of the sample bag 1, it is necessary to discharge the gas present in the sampling circuit unit 8 and the branching unit A4 through the bypass unit 7 in advance. There is.
Further, when it is not desired to mix unnecessary gas, there can be a method of forcibly exhausting the gas inside the circuit by providing a branch part on the exhaust side of the exhaust pump 2 and the exhaust pump 2 although not shown in the drawing.
In addition, in order to check whether the positive pressure and negative pressure of each part are operating properly, the intake bag attaching / detaching parts 9, 10 are provided with commercially available pressure sensors and pressure gauges so that the operation can be checked by the control part 6. It is good to keep.
In addition, for the branch portions A4 and B5, a necessary branch switching mechanism is configured so that it can be distributed to the bypass portion 7 and the exhalation gas sampling portion 1 in accordance with a signal from the control portion 6 using an electromagnetic valve, a branch pipe or the like. Keep it.
In addition, the bag detaching portions 9 and 10 may be provided with a piping structure using a general-purpose coupler such as an air coupling.
When the sample bag 1 is sealed, the sample bag 1 is in a state of being pressurized to a positive pressure, so that it can be considered that there is almost no extraneous unnecessary gas mixed after collection. If the mouth on the side of the detachable part 9 is made to have a high air resistance thin tube diameter of about φ1, it is possible to seal the sample bag 1 with a general-purpose lid after removal. Alternatively, both ends of the sample bag 1 are extended in a tube shape, and the tube is buckled or tied to avoid unnecessary gas contamination. Further, a check valve may be provided on the side of the attaching / detaching portion 9 of the sample bag 1 from the beginning.

一方、柔軟なサンプルバック1に代えて、ボトルやチャンバー形状を利用した固定形状容器のサンプルバッグ1を利用する場合は、サンプルバッグ1の両端を分岐部A4と分岐部B5に接続し、吸引ポンプ部3を通じて内部に充満しているガスを外部に排出する必要がある。
かかる場合は、呼吸流量センサ部12を使い、ある程度死腔量及び測定対象となるガスがサンプルバッグ1内に充填された段階で、分岐部B5を閉じ、その後、排出ポンプ部2によってサンプルガスをサンプルバッグ1内に封入する。
On the other hand, instead of the flexible sample bag 1, when using the sample bag 1 of a fixed shape container using a bottle or chamber shape, both ends of the sample bag 1 are connected to the branch part A4 and the branch part B5, and the suction pump It is necessary to discharge the gas filled inside through the part 3 to the outside.
In such a case, the respiratory flow sensor unit 12 is used, and when the amount of dead space and the gas to be measured are filled in the sample bag 1 to some extent, the branch B5 is closed, and then the sample gas is discharged by the discharge pump unit 2. The sample bag 1 is sealed.

以上に一例を挙げたが、このようなガス採取機構を用いることによって、例えば、呼気フローカーブから求められた、呼気終末時にサンプルバッグ1に測定対象ガスを採取し排出ポンプ2でサンプルバッグ1に圧入することにより、複数回のガス濃度を一つのサンプルバッグ1に濃縮することができる。これにより、これまで微量であったサンプルガスの測定対象のガス種を濃縮してガス採取することが可能となり、呼気終末時の酸素、二酸化炭素、その他水素ガスなどの揮発性有機化合物などの測定対象ガス種が容易に測定でき、ガス濃度測定精度の向上を図ることができる。
また、サンプルバッグ1を被験者毎に交換することが可能になることから、他の被験者の残留ガスとのコンタミネーションを防ぐことができるようにもなる。
An example has been given above, but by using such a gas sampling mechanism, for example, the measurement target gas is collected from the sample bag 1 at the end of the expiration, which is obtained from the expiration flow curve, and the sample bag 1 is collected by the discharge pump 2. By press-fitting, a plurality of gas concentrations can be concentrated in one sample bag 1. This makes it possible to collect gas samples by concentrating the gas species to be measured, which has been a trace amount, and measure volatile organic compounds such as oxygen, carbon dioxide, and other hydrogen gas at the end of expiration. The target gas type can be easily measured, and the gas concentration measurement accuracy can be improved.
Moreover, since it becomes possible to exchange the sample bag 1 for every test subject, contamination with the residual gas of another test subject can also be prevented.

図2は、本発明のガス採取装置の一実施例で呼気ガスのサンプルガスを採取するガス採取機構に併せて吸気ガスのサンプルガスを採取するガス採取機構を加えたものであり、
分岐部A4と分岐部B5にさらに吸気バッグ脱着部22、23を設け、吸気サンプルバッグ21を接続できるようにし、さらにサンプルバッグ21の前に吸気排出ポンプ部24を設けた。
動作は、図1の呼気ガス採取機構とほぼ同じであるが、呼吸気センサ部12から得られた吸気信号に同期させて、分岐部A4の回路が吸気サンプルバッグ21側に開き、吸気排気ポンプ部24によって、吸気サンプルバック21に圧入される。
その他のガス採取機構、及び動作原理自体は、図1の呼気ガス採取機構と同様である。
FIG. 2 shows an embodiment of the gas sampling apparatus according to the present invention, in which a gas sampling mechanism for sampling a sample gas of inhaled gas is added to a gas sampling mechanism for sampling a sample gas of exhaled gas,
Intake bag attaching / detaching portions 22 and 23 are further provided at the branch portion A4 and the branch portion B5 so that the intake sample bag 21 can be connected, and an intake exhaust pump portion 24 is provided in front of the sample bag 21.
The operation is almost the same as that of the exhalation gas sampling mechanism of FIG. 1, but in synchronism with the inspiration signal obtained from the inspiratory sensor unit 12, the circuit of the branch part A4 opens to the inspiratory sample bag 21 side, and the inspiratory exhaust pump The portion 24 is pressed into the intake sample bag 21.
Other gas collection mechanisms and the operation principle itself are the same as those of the exhalation gas collection mechanism of FIG.

当該機構を用いることによって、吸気ガスについてもサンプルバッグ21にサンプルガスが濃縮されたガスとして採取され、呼気サンプルバッグ1内の呼気ガスと吸気サンプルバッグ1内の吸気ガスとの差分を取ることで、周囲環境に含まれるガスの影響を排除することができ、より精度の良いガス濃度測定が可能になる。    By using the mechanism, the inspiratory gas is also collected as a gas in which the sample gas is concentrated in the sample bag 21, and the difference between the exhaled gas in the exhaled sample bag 1 and the inspired gas in the inspiratory sample bag 1 is obtained. The influence of the gas contained in the surrounding environment can be eliminated, and the gas concentration can be measured with higher accuracy.

1: 呼気サンプルバッグ、呼気ガス採取部
2: 呼気排出ポンプ部、呼気サブポンプ部
3: 吸引ポンプ部、主ポンプ部
4: 分岐部A
5: 分岐部B
6: 制御部
7: バイパス部
8: サンプリング回路部
9、10:呼気バッグ脱着部、ガス圧測定部
11: センサ部
12: 呼吸流量センサ部
13: 流量センサ信号線
21: 吸気サンプルバッグ、吸気ガス採取部
22、23:吸気バッグ脱着部、ガス圧測定部
24: 吸気排出ポンプ部、吸気サブポンプ部
M: 被験者
1: Exhalation sample bag, exhalation gas collection unit 2: Exhalation discharge pump unit, exhalation subpump unit 3: Suction pump unit, main pump unit 4: Branch A
5: Branch B
6: Control unit 7: Bypass unit 8: Sampling circuit unit 9, 10: Exhalation bag attaching / detaching unit, gas pressure measuring unit 11: Sensor unit 12: Respiratory flow sensor unit 13: Flow sensor signal line 21: Inspiratory sample bag, inspiratory gas Collection unit 22, 23: Intake bag attaching / detaching unit, gas pressure measuring unit 24: Intake exhaust pump unit, intake sub pump unit M: Subject

Claims (4)

被験者の呼吸気の流量を測定するセンサ部と、
前記センサ部から流量に関する信号を受け取り、呼吸気に関する各種データを算出する制御部と、
前記被験者の呼気サンプルの一部をサンプルガスとして採取し脱着可能とするガス採取部と、
前記ガス採取部に吸引導入するサンプリング回路部と、
前記サンプリング回路部と前記ガス採取部を通じて呼気サンプルを吸引する主ポンプ部と、
を備えるガス採取装置において、
前記サンプリング回路部と前記呼気ガス採取部との間に設けたサブポンプ部と、
前記呼気ガス採取部と並列に設けたバイパス部と、
前記呼気ガス採取部とバイパス部を切換え可能とする分岐部と、
前記呼気ガス採取部にかかるガス圧を測定するガス圧測定部と、
前記呼吸気に関する各種データに応じて、前記分岐部、前記主ポンプ部、前記サブポンプ部のうちいずれか一つ又はこれらの組合せによってガス採取を制御する制御部と、
を備えたことを特徴とするガス採取装置。
A sensor unit that measures the flow rate of the subject's respiratory air;
A control unit that receives a signal related to the flow rate from the sensor unit and calculates various data related to respiratory air;
A gas collection part that allows a part of the breath sample of the subject to be collected as a sample gas and can be removed; and
A sampling circuit section for sucking and introducing into the gas sampling section;
A main pump section for sucking an exhaled breath sample through the sampling circuit section and the gas sampling section;
In a gas sampling device comprising:
A sub-pump unit provided between the sampling circuit unit and the expired gas sampling unit;
A bypass section provided in parallel with the exhalation gas sampling section;
A branching section that enables switching between the exhalation gas collection section and the bypass section;
A gas pressure measuring unit for measuring a gas pressure applied to the exhaled gas sampling unit;
According to various data related to the breathing air, a control unit that controls gas collection by any one or a combination of the branching unit, the main pump unit, and the sub-pump unit, and
A gas sampling device comprising:
呼吸気に関する各種データのうち、呼気終末時点に同期させて、分岐部、主ポンプ部、サブポンプ部のうちいずれか一つ又はこれらの組合せを制御する制御部、
を備えたことを特徴とする請求項1に記載のガス採取装置。
Among various data related to breathing air, a control unit that controls any one of a branching unit, a main pump unit, a sub pump unit, or a combination thereof in synchronization with the end of expiration.
The gas sampling device according to claim 1, comprising:
呼気ガス採取部と並列に設けた吸気ガス採取部と、
サンプリング回路部と吸気ガス採取部との間に設けたサブポンプ部と、
前記吸気ガス採取部、バイパス部及び前記呼気ガス採取部を切換え可能とする分岐部と、
前記吸気ガス採取部にかかるガス圧を測定するガス圧測定部と、
前記呼吸気に関する各種データに応じて、前記分岐部、主ポンプ部、前記サブポンプ部のうちいずれか一つ又はこれらの組合せによってガス採取を制御する制御部と、
を備えたことを特徴とする請求項1又は2に記載のガス採取装置。
An inspiratory gas collecting part provided in parallel with the expiratory gas collecting part;
A sub-pump section provided between the sampling circuit section and the intake gas sampling section;
A branching unit that allows switching between the inspiratory gas sampling unit, the bypass unit and the exhaled gas sampling unit;
A gas pressure measuring unit for measuring a gas pressure applied to the intake gas sampling unit;
According to various data related to the breathing air, a control unit that controls gas collection by any one or a combination of the branching unit, the main pump unit, the sub pump unit, and
The gas sampling device according to claim 1 or 2, further comprising:
呼吸気に関する各種データのうち、吸気終末時点に同期させて、分岐部、主ポンプ部、サブポンプ部のうちいずれか一つ又はこれらの組合せを制御する制御部、
を備えたことを特徴とする請求項3に記載のガス採取装置。
Among various data related to breathing air, a control unit that controls any one of the branching unit, the main pump unit, the sub pump unit, or a combination thereof in synchronization with the end point of inspiration.
The gas sampling device according to claim 3, further comprising:
JP2016146258A 2016-07-26 2016-07-26 Gas sampling device for breath gas analysis Active JP6782482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016146258A JP6782482B2 (en) 2016-07-26 2016-07-26 Gas sampling device for breath gas analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016146258A JP6782482B2 (en) 2016-07-26 2016-07-26 Gas sampling device for breath gas analysis

Publications (2)

Publication Number Publication Date
JP2018017540A true JP2018017540A (en) 2018-02-01
JP6782482B2 JP6782482B2 (en) 2020-11-11

Family

ID=61081720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016146258A Active JP6782482B2 (en) 2016-07-26 2016-07-26 Gas sampling device for breath gas analysis

Country Status (1)

Country Link
JP (1) JP6782482B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114062056A (en) * 2021-10-09 2022-02-18 中核核电运行管理有限公司 Sampling device suitable for negative pressure and malleation gas pipeline

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363035A (en) * 1989-04-12 1991-03-19 Puritan Bennett Corp Metabolism monitoring and its device
JP2004077467A (en) * 2003-06-16 2004-03-11 Mitoreeben Kenkyusho:Kk Sampling method and device of end expiration
JP2009085857A (en) * 2007-10-02 2009-04-23 Koki Seikagaku Eiyo Taisha Kenkyusho:Kk Expiration sampling device
JP2015503962A (en) * 2011-12-21 2015-02-05 キャプニア, インク.Capnia, Inc. Collection and analysis of exhaled gas volume with compensation for frequency of breathing parameters
JP2016510107A (en) * 2013-02-12 2016-04-04 キャプニア, インク.Capnia, Inc. Sampling and storage registry device for breath analysis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363035A (en) * 1989-04-12 1991-03-19 Puritan Bennett Corp Metabolism monitoring and its device
JP2004077467A (en) * 2003-06-16 2004-03-11 Mitoreeben Kenkyusho:Kk Sampling method and device of end expiration
JP2009085857A (en) * 2007-10-02 2009-04-23 Koki Seikagaku Eiyo Taisha Kenkyusho:Kk Expiration sampling device
JP2015503962A (en) * 2011-12-21 2015-02-05 キャプニア, インク.Capnia, Inc. Collection and analysis of exhaled gas volume with compensation for frequency of breathing parameters
JP2016510107A (en) * 2013-02-12 2016-04-04 キャプニア, インク.Capnia, Inc. Sampling and storage registry device for breath analysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114062056A (en) * 2021-10-09 2022-02-18 中核核电运行管理有限公司 Sampling device suitable for negative pressure and malleation gas pipeline
CN114062056B (en) * 2021-10-09 2024-03-19 中核核电运行管理有限公司 Sampling device suitable for negative pressure and positive pressure gas pipeline

Also Published As

Publication number Publication date
JP6782482B2 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
EP2793699B1 (en) Method and device for measuring a component in exhaled breath
US5022406A (en) Module for determining diffusing capacity of the lungs for carbon monoxide and method
US8485984B2 (en) Portable breath collection system for use in breath tests
US7377901B2 (en) Apparatus for collection of airway gases
US20170303823A1 (en) Method for Collecting a Selective Portion of a Subject's Breath
CN105592791A (en) Universal breath analysis sampling device
JP3325673B2 (en) Method for correcting component concentration in breath and breath analyzer
EP3448256A1 (en) Systems and device for capturing breath samples
JP2019516442A (en) Breath analysis device
BG65874B1 (en) Device for measuring the temperature of exhaled air
CN106061381B (en) Detect the method for ARDS and the system for detecting ARDS
Silkoff et al. A method for the standardized offline collection of exhaled nitric oxide
EP1764035B1 (en) Device for the measurement of single-breath diffusing capacity (DLco) of the lung using ultrasound molar mass measurement
WO2019074922A1 (en) Breath analysis device
CN208988880U (en) A kind of cardiopulmonary exercise evaluating system
US11033202B2 (en) Method to determine indices of ventilation inhomogeneity e.g. lung clearance index (LCI) of a paediatric test subject
EP1764036A1 (en) Method for the determination of the time-delay between a main-stream ultrasonic flow sensor and a side-stream gas analyzer
JP3911519B2 (en) Method and apparatus for measuring toxic gas in intestinal gas
JP6782482B2 (en) Gas sampling device for breath gas analysis
JP2004077467A (en) Sampling method and device of end expiration
JP2004279228A (en) Method and apparatus for measuring concentration of component gas in exhalation
JP6120501B2 (en) Telemeter type breath gas analyzer
JPH10187A (en) Method and device of analyzing specified gas component in expired air
JPH1176203A (en) Stable isotope exhalation gas collecting method, and device to be used for the same
JP2014030501A (en) Medical equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201013

R150 Certificate of patent or registration of utility model

Ref document number: 6782482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250