JP2018017260A - Tuned mass damper - Google Patents

Tuned mass damper Download PDF

Info

Publication number
JP2018017260A
JP2018017260A JP2016145900A JP2016145900A JP2018017260A JP 2018017260 A JP2018017260 A JP 2018017260A JP 2016145900 A JP2016145900 A JP 2016145900A JP 2016145900 A JP2016145900 A JP 2016145900A JP 2018017260 A JP2018017260 A JP 2018017260A
Authority
JP
Japan
Prior art keywords
weight member
springs
spring
dampers
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016145900A
Other languages
Japanese (ja)
Other versions
JP6682393B2 (en
Inventor
翼 谷
Tsubasa Tani
翼 谷
龍大 欄木
Ryota Maseki
龍大 欄木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2016145900A priority Critical patent/JP6682393B2/en
Publication of JP2018017260A publication Critical patent/JP2018017260A/en
Application granted granted Critical
Publication of JP6682393B2 publication Critical patent/JP6682393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a TMD [tuned mass damper] in which both a spring and a damper can follow under a smaller displacement than that of a weight member to cause their designs to become easy and at the same time a stopper function against the weight member can be attained.SOLUTION: There are provided a weight member 1 having a square shape as seen from a top plan view that is arranged to be movable in a horizontal direction on a floor surface 3 of a structure through slide bearings or roller bearings 2; springs 5a, 5b and dampers 6a, 6b arranged to be oblique in respect to the floor surface as seen from a front elevational view between the four side surfaces 4a, 4b of the weight member 1 and the floor surface 3. Each of the springs and the dampers is arranged at symmetrical positions in respect to center lines of opposite sides 1a, 1b of the weight member 1 as seen from the top plan view, upper ends are fixed to the side surfaces 4a, 4b and lower ends are movably connected to the floor surface 3 in such a direction as crossing with extending directions of the springs and dampers.SELECTED DRAWING: Figure 2

Description

本発明は、高層建物等の屋上などの床面に設置されて地震時等における揺れを抑制するためのチューンド・マス・ダンパーに関するものである。   The present invention relates to a tuned mass damper that is installed on a floor surface such as a rooftop of a high-rise building or the like and suppresses shaking during an earthquake or the like.

近年、強風時や地震時における揺れを抑制するために、屋上にパッシブ制振の一種であるチューンド・マス・ダンパー(Tuned Mass Damper、以下、TMDと略す。)を設置した高層建物等が多く建設されている。   In recent years, many high-rise buildings with a tuned mass damper (hereinafter abbreviated as TMD), which is a type of passive vibration suppression, are constructed on the roof to suppress shaking during strong winds and earthquakes. Has been.

このTMDは、例えば下記特許文献1に見られるように、上記高層建物等の屋上に錘部材をスプリングおよびダンパーを介して連結するとともに、これらを高層建物等の固有周期に同調するように調整したものである。   This TMD was adjusted so that a weight member was connected to the rooftop of the above-mentioned high-rise building etc. via a spring and a damper, and these were tuned to the natural period of the high-rise building etc. Is.

上記TMDによれば、電力等のエネルギーを要することなく、安定的に広帯域の振動数範囲の揺れに対して、制振効果を発揮することができるという利点がある。   According to the TMD, there is an advantage that it is possible to stably exhibit a damping effect against a vibration in a wide frequency range without requiring energy such as electric power.

特開2001−141026号公報JP 2001-141026 A

しかしながら、上記TMDにあっては、大地震時に錘部材が非常に大きく変位するために、これに追従できるスプリングおよびダンパーを設計することが難しいという問題点があった。   However, the TMD has a problem that it is difficult to design a spring and a damper that can follow the weight member because the weight member is displaced greatly during a large earthquake.

本発明は、上記事情に鑑みてなされたものであり、スプリングおよびダンパーが錘部材の変位よりも小さな変位によって追従することができ、よってこれらの設計が容易になるとともに、錘部材のストッパー機能も果たすことが可能になるTMDを提供することを課題とするものである。   The present invention has been made in view of the above circumstances, and the spring and the damper can be followed by a displacement smaller than the displacement of the weight member. Therefore, these designs are facilitated, and the stopper function of the weight member is also achieved. It is an object to provide a TMD that can be fulfilled.

上記課題を解決するため、請求項1に記載の本発明に係るTMDは、構造物の床面上に滑り支承または転がり支承を介して水平方向に移動自在に設けられた平面視方形の錘部材と、この錘部材の4側面と上記床面との間に正面視において上記床面に対して傾斜して設けられたスプリングおよびダンパーとを備えてなり、上記スプリングおよび上記ダンパーは、各々上記平面視において上記錘部材の対辺の中心線に対して対称となる位置に配置されるとともに、上端部が上記側面に連結され、かつ下端部が上記スプリングおよび上記ダンパーの延在方向と交差する方向に移動自在に上記床面側に連結されていることを特徴とするものである。   In order to solve the above-mentioned problem, the TMD according to the present invention as set forth in claim 1 is a weight member having a square shape in a plan view provided on a floor surface of a structure so as to be movable in a horizontal direction via a sliding bearing or a rolling bearing. And a spring and a damper provided to be inclined with respect to the floor surface in a front view between the four side surfaces of the weight member and the floor surface. When viewed from the center of the opposite side of the weight member, the upper end is connected to the side surface, and the lower end is in a direction intersecting the extending direction of the spring and the damper. It is connected to the floor surface side so as to be freely movable.

また、請求項2に記載の発明は、請求項1に記載の発明において、上記対称となる位置に配置された上記スプリングは、上記床面との間の傾斜角度が同一になるように設けられ、上記対称となる位置に配置された上記ダンパーは、上記床面との間の傾斜角度が同一になるように設けられていることを特徴とするものである。   According to a second aspect of the present invention, in the first aspect of the present invention, the springs arranged at the symmetrical positions are provided such that the inclination angles with the floor surface are the same. The dampers disposed at the symmetrical positions are provided so as to have the same inclination angle with the floor surface.

請求項1または2に記載の発明によれば、スプリングおよびダンパーを錘部材と床面との間に、床面(水平面)に対して傾斜させて配置しているために、地震時等に錘部材が水平移動する際の移動量よりもスプリングおよびダンパーに生じる伸縮量が小さくなる。このため、上記スプリングやダンパーとしてストロークが小さい汎用のものを用いることができ、設計が容易になるとともに経済性にも優れる。   According to the first or second aspect of the present invention, since the spring and the damper are disposed between the weight member and the floor surface so as to be inclined with respect to the floor surface (horizontal plane), the weight is reduced during an earthquake or the like. The amount of expansion and contraction that occurs in the spring and damper is smaller than the amount of movement when the member moves horizontally. Therefore, a general-purpose spring having a small stroke can be used as the spring or the damper, and the design becomes easy and the economy is excellent.

また、上記スプリングおよびダンパーを、各々平面視において錘部材に対して対称となる位置に配置しているために、錘部材の水平変位が大きくなると、一方の側面に設置したスプリング等は伸びが大きくなるとともに傾きが水平に近づいて反力が上昇し、他方の側面に設置したスプリング等は、縮みつつ鉛直に近づいて反力が低下するために、全体としての反力の大きさの変化が小さく、よって線形と見なせる範囲が大きくなって特性に影響を及ぼすおそれがない。   Further, since the spring and the damper are arranged at positions that are symmetrical with respect to the weight member in plan view, if the horizontal displacement of the weight member is increased, the spring or the like installed on one side has a large elongation. At the same time, the reaction force rises as the inclination approaches horizontal, and the spring installed on the other side shrinks closer to the vertical while shrinking and the reaction force decreases, so the overall change in reaction force is small. Therefore, there is no possibility that the range that can be regarded as linear is increased and the characteristics are not affected.

加えて、上記傾斜角度を適宜設定することにより、剛性や線形域を自由に設定することができる。しかも、錘部材の水平変位がさらに大きくなって、両側のスプリング等の等価周期が非線形域になると、上記スプリング等の反力は増加するために、上記錘部材に対するストッパー機能を奏することも可能になる。   In addition, the rigidity and the linear range can be freely set by appropriately setting the tilt angle. In addition, when the horizontal displacement of the weight member is further increased and the equivalent period of the springs on both sides becomes a non-linear range, the reaction force of the springs and the like increases, so that it is possible to provide a stopper function for the weight member. Become.

また、上記スプリング等の下端部を、当該スプリング等の延在方向と交差するする方向に移動自在となるように床面に連結しているために、上記スプリング等を錘部材の水平X−Y方向の各々の変位に対して個別に調整することができ、よってTMDを建物の水平X−Y方向の各周期に同調するように調整することができる。   In addition, since the lower end of the spring or the like is connected to the floor so as to be movable in a direction intersecting the extending direction of the spring or the like, the spring or the like is connected to the horizontal XY of the weight member. It can be adjusted individually for each displacement in direction, so that the TMD can be adjusted to tune to each period in the horizontal XY direction of the building.

さらに、請求項2に記載の発明のように、対称となる位置に配置されたスプリング同士の傾斜角度を等しくし、また上記対称となる位置に配置されたダンパー同士の傾斜角度を等しくすれば、上記線形域の範囲を最も広く確保することが可能になる。   Furthermore, as in the invention described in claim 2, if the inclination angles of the springs arranged at symmetrical positions are made equal, and the inclination angles of the dampers arranged at the symmetrical positions are made equal, It becomes possible to secure the widest range of the linear region.

本発明に係るTMDの一実施形態を示す平面図である。It is a top view which shows one Embodiment of TMD which concerns on this invention. 図1の正面図である。It is a front view of FIG. 錘部材が水平変位した際の対称位置のスプリングの伸びを示すグラフである。It is a graph which shows the elongation of the spring of the symmetrical position when a weight member carries out horizontal displacement. 錘部材が水平変位した際の対称位置のスプリングの等価周期の変化を示すグラフである。It is a graph which shows the change of the equivalent period of the spring of the symmetrical position when a weight member carries out horizontal displacement. 本発明に係るTMDの他の実施形態を示す正面図である。It is a front view which shows other embodiment of TMD which concerns on this invention.

図1および図2は、本発明に係るTMDの一実施形態を示すもので、図中符号1が錘部材である。
この錘部材1は、平面視方形の板状に形成されたもので、本実施形態においてはキャスター(転がり支承)2によって高層建物の屋上(床面)3にX−Y方向に移動自在に設けられている。なお、上記キャスター2に代えて、滑り支承によって錘部材1を屋上3に移動自在に設けてもよい。
1 and 2 show an embodiment of a TMD according to the present invention, and reference numeral 1 in the drawing denotes a weight member.
The weight member 1 is formed in a plate shape having a square shape in plan view. In this embodiment, the weight member 1 is provided on a roof (floor surface) 3 of a high-rise building by a caster (rolling support) 2 so as to be movable in the XY directions. It has been. Instead of the caster 2, the weight member 1 may be movably provided on the roof 3 by sliding support.

そして、この錘部材1のX方向に沿う2側面4aおよびY方向に沿う2側面4bと屋上3との間に、それぞれスプリング5a、5bが配設されている。ここで、X方向に沿う2側面4aには、各々の角隅部の近傍に2本のスプリング5aが設けられており、これら2側面4aに設けられた各2本のプリング5aは、当該側面4aに隣接する側面4bの対辺1bの中心線Cに対して線対称となる位置に配置されている。 Then, springs 5a and 5b are respectively disposed between the two side surfaces 4a along the X direction and the two side surfaces 4b along the Y direction of the weight member 1 and the rooftop 3. Here, the two side surfaces 4a along the X direction are provided with two springs 5a in the vicinity of each corner, and each of the two pullings 5a provided on the two side surfaces 4a is connected to the side surface 4a. is arranged a line symmetry position with respect to the center line C Y opposite sides 1b of adjacent sides 4b to 4a.

また、Y方向に沿う2側面4bにも、各々の角隅部の近傍に2本のスプリング5bが設けられている。そして、これら2本のスプリング5bも、同様に当該側面4bに隣接する側面4aの対辺1aの中心線Cに対して線対称となる位置に配置されている。 Also, two springs 5b are provided in the vicinity of each corner of the two side surfaces 4b along the Y direction. The two springs 5b are also arranged at positions that are symmetrical with respect to the center line CX of the opposite side 1a of the side surface 4a adjacent to the side surface 4b.

そして、側面4a、4bと屋上3との間には、これらスプリング5a、5bの内側に隣接して、各々2本のダンパー6a、6bが配置されている。これらダンパー6a、6bも、各々対辺1b、1aの中心線C、Cに対して線対称となるように配置されている。 Two dampers 6a and 6b are disposed between the side surfaces 4a and 4b and the rooftop 3 so as to be adjacent to the inside of the springs 5a and 5b. The dampers 6a and 6b are also arranged so as to be line symmetric with respect to the center lines C Y and C X of the opposite sides 1b and 1a, respectively.

上記スプリング5a、5bおよびダンパー6a、6bは、図2に示すように、正面視において床面3との間に同じ角度θを挟んで傾斜して設けられている。そして、これらスプリング5a、5bおよびダンパー6a、6bの上端部は、それぞれ側面4a、4bに連結されている。   As shown in FIG. 2, the springs 5 a and 5 b and the dampers 6 a and 6 b are inclined with the same angle θ between the spring 5 a and 5 b and the dampers 6 a and 6 b when viewed from the front. The upper ends of the springs 5a and 5b and the dampers 6a and 6b are connected to the side surfaces 4a and 4b, respectively.

他方、床面3上の錘部材1から所定間隔をおいた位置には、X方向およびY方向に沿ってレール7a、7bが固定されており、各レール7a、7bにスライダー8a、8bが各レール7に沿ったX方向およびY方向のみに移動自在に設けられている。そして、これらスライダー8a、8bに、スプリング5a、5bおよびダンパー6a、6bの下端部が連結されている。   On the other hand, rails 7a and 7b are fixed along the X and Y directions at positions spaced from the weight member 1 on the floor surface 3, and the sliders 8a and 8b are respectively attached to the rails 7a and 7b. It is movably provided only in the X direction and the Y direction along the rail 7. The sliders 8a and 8b are connected to the lower ends of the springs 5a and 5b and the dampers 6a and 6b.

以上の構成からなるTMDにおいては、スプリング5a、5bおよびダンパー6a、6bを錘部材1と屋上3との間に、屋上3に対して傾斜角度θとなるように傾斜させて配置しているために、地震時等に錘部材1がX−Y方向に移動する際の移動量よりもスプリング5a、5bおよびダンパー6a、6bに生じる伸縮量が小さくなる。このため、上記スプリング5a、5bやダンパー6a、6bとして、ストロークが短い汎用のものを用いることができ、設計が容易になるとともに経済性にも優れる。   In the TMD configured as described above, the springs 5a and 5b and the dampers 6a and 6b are disposed between the weight member 1 and the rooftop 3 so as to be inclined at an inclination angle θ with respect to the rooftop 3. In addition, the amount of expansion and contraction generated in the springs 5a and 5b and the dampers 6a and 6b is smaller than the amount of movement when the weight member 1 moves in the XY direction during an earthquake or the like. For this reason, as the springs 5a and 5b and the dampers 6a and 6b, general-purpose ones having a short stroke can be used, and the design becomes easy and the economy is excellent.

また、スプリング5a、5bおよびダンパー6a、6bを、各々平面視において錘部材1の対辺1a、1bの中心線C、Cに対して対称となる位置に配置しているために、図2(b)に示すように、錘部材1の変位が大きくなると、図中左方の側面4bに設置したスプリング5b等は伸びが大きくなるとともに傾斜角度が水平に近づいて反力が上昇し、図中右方の側面4bに設置したスプリング5b等は、縮みつつ鉛直に近づいて反力が低下するために、全体としての反力の大きさの変化が小さく、よって線形と見なせる範囲が大きくなって特性に影響を及ぼすおそれがない。 Further, since the springs 5a and 5b and the dampers 6a and 6b are arranged at positions symmetrical with respect to the center lines C Y and C X of the opposite sides 1a and 1b of the weight member 1 in plan view, respectively. As shown in (b), when the displacement of the weight member 1 increases, the springs 5b and the like installed on the left side surface 4b in the drawing increase in elongation and the inclination angle approaches horizontal, increasing the reaction force. The springs 5b and the like installed on the middle right side surface 4b approach the vertical while shrinking, and the reaction force decreases, so that the change in the magnitude of the reaction force as a whole is small, and therefore the range that can be regarded as linear becomes large. There is no risk of affecting the properties.

加えて、上記傾斜角度を適宜設定することにより、剛性や線形域を自由に設定することができる。しかも、錘部材の水平変位がさらに大きくなって、両側のスプリング等の等価周期が非線形域になると、上記スプリング等の反力は増加するために、上記錘部材に対するストッパー機能を奏することも可能になる。   In addition, the rigidity and the linear range can be freely set by appropriately setting the tilt angle. In addition, when the horizontal displacement of the weight member is further increased and the equivalent period of the springs on both sides becomes a non-linear range, the reaction force of the springs and the like increases, so that it is possible to provide a stopper function for the weight member. Become.

また、スプリング5a、5bおよびダンパー6a、6bの下端部を、スライダー8a、8bによって屋上3に固定したレール7a、7bに沿って当該スプリング5a、5b等の延在方向と直交する方向に移動自在に設けているために、錘部材1のX−Y方向の各々の変位に対してスプリング5a、5bおよびダンパー6a、6bを個別に調整することができる。   The lower ends of the springs 5a and 5b and the dampers 6a and 6b are movable in a direction orthogonal to the extending direction of the springs 5a and 5b along rails 7a and 7b fixed to the rooftop 3 by sliders 8a and 8b. Therefore, the springs 5a and 5b and the dampers 6a and 6b can be individually adjusted with respect to each displacement of the weight member 1 in the XY direction.

すなわち、錘部材1のX方向の変位に対しては、これによって伸縮するスプリング5bおよびダンパー6bを調整し、錘部材1のY方向の変位に対しては、これによって伸縮するスプリング5aおよびダンパー6aを調整することができ、この結果、TMDを高層建物のX−Y方向の各周期に同調するように調整することができる。   That is, the spring 5b and the damper 6b that are expanded and contracted thereby are adjusted with respect to the displacement of the weight member 1 in the X direction, and the spring 5a and the damper 6a that are expanded and contracted with respect to the displacement of the weight member 1 in the Y direction are adjusted. As a result, the TMD can be adjusted to be tuned to each period in the XY direction of the high-rise building.

特に、本実施形態においては、対称となる位置に配置されたスプリング5a、5b同士およびダンパー6a、6b同士の傾きを、いずれも角度θに設定しているために、上述した線形域の範囲を最も広く確保することができる。ただし、本発明においては、必ずしもスプリングとダンパーとの傾斜角度を同じにしなくてもよい。   In particular, in this embodiment, since the inclinations of the springs 5a and 5b and the dampers 6a and 6b arranged at symmetrical positions are both set to the angle θ, the above-described linear range is set. The most widely secured. However, in the present invention, the inclination angles of the spring and the damper do not necessarily have to be the same.

図3は、錘部材の両側面にH=3.0m、W=1.5mのスプリングを設けて、錘部材を±2000mm水平変位させた際の上記スプリングの引張側および圧縮側の伸縮量を解析した結果を示すものである。図中実線は一方の側面に設けたスプリングの伸縮変化を、点線は他方の側面に設けたスプリングの伸縮変化を示すものである。   FIG. 3 shows the amount of expansion / contraction on the tension side and the compression side of the spring when a spring of H = 3.0 m and W = 1.5 m is provided on both sides of the weight member and the weight member is horizontally displaced by ± 2000 mm. The result of analysis is shown. In the figure, the solid line indicates the expansion / contraction change of the spring provided on one side surface, and the dotted line indicates the expansion / contraction change of the spring provided on the other side surface.

同図に見られるように、錘部材が2000mm変位したときのスプリングの伸び量は約1200mmであり、よって錘部材の変位量よりも伸びが小さい規格のスプリングを用いることができる。   As seen in the figure, the extension amount of the spring when the weight member is displaced by 2000 mm is about 1200 mm. Therefore, a standard spring having a smaller extension than the displacement amount of the weight member can be used.

また、図4は、同様の錘部材が2000mm変位したときの等価周期の変化を示すもので、図中実線は一方の側面に設けたスプリングの伸縮変化を、点線は他方の側面に設けたスプリングの伸縮変化を、太実線は両者を合成した変化を示すものである。
同図によれば、合成した等価周期は、錘部材の約±1400mmの変位の範囲内において線形を示すことが判る。
FIG. 4 shows the change in equivalent period when a similar weight member is displaced by 2000 mm. In the figure, the solid line indicates the expansion / contraction change of the spring provided on one side, and the dotted line indicates the spring provided on the other side. The thick solid line indicates the combined change of the two.
According to the figure, it can be seen that the synthesized equivalent period is linear within a range of displacement of about ± 1400 mm of the weight member.

なお、上記実施形態においては、床面3上のX方向およびY方向に沿ってレール7a、7bを固定し、各レール7a、7bにスライダー8a、8bを各レール7に沿ったX方向およびY方向のみに移動自在に設けるとともに、これらスライダー8a、8bに、スプリング5a、5bおよびダンパー6a、6bの下端部を連結した場合についてのみ説明したが、本発明はこれに限定されるものではない。   In the above embodiment, the rails 7a and 7b are fixed along the X direction and the Y direction on the floor surface 3, and the sliders 8a and 8b are fixed to the rails 7a and 7b. Although only the case where the lower ends of the springs 5a and 5b and the dampers 6a and 6b are connected to the sliders 8a and 8b has been described, the present invention is not limited to this.

すなわち、図5は、本発明の他の実施形態を示すもので、このTMDにおいては、床面3上の錘部材1から所定間隔をおいた位置に複数本の支柱10がX方向およびY方向に間隔をおいて立設され、これら支柱10上にX方向およびY方向に沿ってレール7a、7bが固定されている。   That is, FIG. 5 shows another embodiment of the present invention. In this TMD, a plurality of support columns 10 are arranged at a predetermined distance from the weight member 1 on the floor surface 3 in the X direction and the Y direction. The rails 7a and 7b are fixed on these columns 10 along the X and Y directions.

これらのレール7a、7bは、上下面にX方向またはY方向に沿って溝部が形成された角筒状の部材で、各レール7a、7b内にスライダー8a、8bが各レール7に沿ったX方向およびY方向のみに移動自在に設けられている。ここで、レール7a、7bは、スライダー8a、8bの軸線が錘部材1の重心Gと同レベルとなる高さに配置されている。   These rails 7a and 7b are rectangular tube-shaped members in which grooves are formed on the upper and lower surfaces along the X direction or the Y direction. The sliders 8a and 8b are arranged along the rails 7 in the rails 7a and 7b. It is movably provided only in the direction and the Y direction. Here, the rails 7 a and 7 b are arranged at a height at which the axes of the sliders 8 a and 8 b are at the same level as the gravity center G of the weight member 1.

そして、これらスライダー8a、8bの上面側に、スプリング5a、5bおよびダンパー6a、6bの下端部が連結されている。さらに、スライダー8a、8bの下面側に、他のスプリング5a、5bおよびダンパー6a、6bの上端部が連結され、これらスプリング5a、5bおよびダンパー6a、6bの下端部が錘部材1の側面4a、4bの下部に連結されている。   And the lower end part of spring 5a, 5b and damper 6a, 6b is connected with the upper surface side of these sliders 8a, 8b. Furthermore, the upper ends of the other springs 5a and 5b and the dampers 6a and 6b are connected to the lower surface side of the sliders 8a and 8b. It is connected to the lower part of 4b.

上記構成からなるTMDによれば、図1および図2に示したものと同様の作用効果が得られることに加えて、レール7a、7bが錘部材1の重心Gと同レベルに配置されているために、錘部材1の変位に対応して、円滑にスプリング5a、5bおよびダンパー6a、6bを作動させることができるという効果も得られる。   According to the TMD configured as described above, the same effects as those shown in FIGS. 1 and 2 can be obtained, and the rails 7 a and 7 b are arranged at the same level as the gravity center G of the weight member 1. Therefore, the effect that the springs 5a and 5b and the dampers 6a and 6b can be operated smoothly in accordance with the displacement of the weight member 1 is also obtained.

1 錘部材
1a、1b 対辺
2 キャスター(転がり支承)
3 屋上(床面)
4a、4b 側面
5a、5b スプリング
6a、6b ダンパー
7a、7b レール
8a、8b スライダー
θ 傾斜角度
1 Weight member 1a, 1b Opposite side 2 Caster (rolling support)
3 Rooftop (floor surface)
4a, 4b Side surface 5a, 5b Spring 6a, 6b Damper 7a, 7b Rail 8a, 8b Slider θ Inclination angle

Claims (2)

構造物の床面上に滑り支承または転がり支承を介して水平方向に移動自在に設けられた平面視方形の錘部材と、この錘部材の4側面と上記床面との間に正面視において上記床面に対して傾斜して設けられたスプリングおよびダンパーとを備えてなり、
上記スプリングおよび上記ダンパーは、各々上記平面視において上記錘部材の対辺の中心線に対して対称となる位置に配置されるとともに、上端部が上記側面に連結され、かつ下端部が上記スプリングおよび上記ダンパーの延在方向と交差する方向に移動自在に上記床面側に連結されていることを特徴とするチューンド・マス・ダンパー。
A planar weight member provided on the floor of the structure so as to be movable in a horizontal direction via a sliding bearing or a rolling bearing, and the front surface between the four side surfaces of the weight member and the floor surface. Comprising springs and dampers that are inclined with respect to the floor,
The spring and the damper are each disposed at a position that is symmetric with respect to the center line of the opposite side of the weight member in the plan view, the upper end portion is connected to the side surface, and the lower end portion is the spring and the A tuned mass damper, wherein the tuned mass damper is connected to the floor surface so as to be movable in a direction crossing the extending direction of the damper.
上記対称となる位置に配置された上記スプリングは、上記床面との間の傾斜角度が同一になるように設けられ、上記対称となる位置に配置された上記ダンパーは、上記床面との間の傾斜角度が同一になるように設けられていることを特徴とする請求項1に記載のチューンド・マス・ダンパー。   The spring arranged at the symmetrical position is provided so that the inclination angle with the floor is the same, and the damper arranged at the symmetrical position is between the floor and the floor. 2. The tuned mass damper according to claim 1, wherein the tuned mass dampers are provided so as to have the same inclination angle.
JP2016145900A 2016-07-26 2016-07-26 Tuned Mass Damper Active JP6682393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016145900A JP6682393B2 (en) 2016-07-26 2016-07-26 Tuned Mass Damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016145900A JP6682393B2 (en) 2016-07-26 2016-07-26 Tuned Mass Damper

Publications (2)

Publication Number Publication Date
JP2018017260A true JP2018017260A (en) 2018-02-01
JP6682393B2 JP6682393B2 (en) 2020-04-15

Family

ID=61075939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016145900A Active JP6682393B2 (en) 2016-07-26 2016-07-26 Tuned Mass Damper

Country Status (1)

Country Link
JP (1) JP6682393B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111853454A (en) * 2020-07-24 2020-10-30 南京协奏网络科技有限公司 Adjustable video monitoring system
CN113309813A (en) * 2021-06-01 2021-08-27 大连理工大学 Semi-active vibration absorption and energy dissipation control system for restraining vortex-induced vibration of bridge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341068U (en) * 1989-08-28 1991-04-19
JPH04157233A (en) * 1990-10-18 1992-05-29 Tokico Ltd Dynamic vibration damper
JPH09189144A (en) * 1996-01-11 1997-07-22 Shimizu Corp Stroke-adaptable nonlinear mass damper system
JP2005207521A (en) * 2004-01-23 2005-08-04 Ishikawajima Harima Heavy Ind Co Ltd Vibration suppression device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341068U (en) * 1989-08-28 1991-04-19
JPH04157233A (en) * 1990-10-18 1992-05-29 Tokico Ltd Dynamic vibration damper
JPH09189144A (en) * 1996-01-11 1997-07-22 Shimizu Corp Stroke-adaptable nonlinear mass damper system
JP2005207521A (en) * 2004-01-23 2005-08-04 Ishikawajima Harima Heavy Ind Co Ltd Vibration suppression device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111853454A (en) * 2020-07-24 2020-10-30 南京协奏网络科技有限公司 Adjustable video monitoring system
CN111853454B (en) * 2020-07-24 2021-06-29 视昀科技(深圳)有限公司 Adjustable video monitoring system
CN113309813A (en) * 2021-06-01 2021-08-27 大连理工大学 Semi-active vibration absorption and energy dissipation control system for restraining vortex-induced vibration of bridge
CN113309813B (en) * 2021-06-01 2022-03-04 大连理工大学 Semi-active vibration absorption and energy dissipation control system for restraining vortex-induced vibration of bridge

Also Published As

Publication number Publication date
JP6682393B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
JPH10169709A (en) Large base isolation device having high yield strength
JP6558747B2 (en) Seismic isolation support with gravity control using gravity negative stiffness
JP2020101081A (en) Vibration control device and architectural structure having this
CN105308247A (en) Vibration damper device for prefabricated warehouses and similar buildings
JP2015055293A (en) Vibration control device
CN106522634A (en) Low-rigidity multi-dimensional shock insulation device
JP2018017260A (en) Tuned mass damper
JP6796817B2 (en) Seismic isolation mechanism
KR102350187B1 (en) panel support assembly with earthquake-resistant base module
KR20010074179A (en) Multi-directional Seismic Isolation Devices
JPH10169710A (en) Base isolation device for structure
JP6274172B2 (en) Seismic isolation table device
JP2000104786A (en) Floating preventive mechanism of base isolation device
KR101267134B1 (en) A equipment to preventing earthquake
JP2017101794A (en) Seism base isolation mechanism
JP6590209B2 (en) Seismic isolation building
JP4660722B2 (en) Vibration control device
JP6914407B2 (en) Seismic isolation mechanism
JP6590210B2 (en) Seismic isolation mechanism
JP2019070432A (en) Sliding seismic isolation mechanism
JP7421983B2 (en) Seismic isolation building
JP7286904B2 (en) building
JP2019100021A (en) building
JP7475296B2 (en) Sliding bearing device
JP6748930B2 (en) Seismic isolation mechanism

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200325

R150 Certificate of patent or registration of utility model

Ref document number: 6682393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150