JP2018009065A - Epoxy resin composition, prepreg, metal-clad laminate and printed wiring board - Google Patents

Epoxy resin composition, prepreg, metal-clad laminate and printed wiring board Download PDF

Info

Publication number
JP2018009065A
JP2018009065A JP2016137135A JP2016137135A JP2018009065A JP 2018009065 A JP2018009065 A JP 2018009065A JP 2016137135 A JP2016137135 A JP 2016137135A JP 2016137135 A JP2016137135 A JP 2016137135A JP 2018009065 A JP2018009065 A JP 2018009065A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
curing
cured product
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016137135A
Other languages
Japanese (ja)
Other versions
JP6830191B2 (en
Inventor
李歩子 頓部
Rihoko Tonbe
李歩子 頓部
元部 英次
Eiji Motobe
英次 元部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016137135A priority Critical patent/JP6830191B2/en
Publication of JP2018009065A publication Critical patent/JP2018009065A/en
Application granted granted Critical
Publication of JP6830191B2 publication Critical patent/JP6830191B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin composition that makes it possible to obtain a semiconductor device that secures reliable wire bonding between a gold wire and an aluminum pad part even under a high temperature environment.SOLUTION: An epoxy resin composition contains an epoxy resin, a curing agent, and a curing accelerator as essential components. In the epoxy resin composition, a butanol content after curing is a level below the limit of detection by gas chromatography mass (GC-MS) analysis, and a chlorine content after curing is 900 ppm or less, and a bromine content after curing is 900 ppm or less.SELECTED DRAWING: None

Description

本発明は、エポキシ樹脂組成物、プリプレグ、金属張積層板及びプリント配線板に関する。   The present invention relates to an epoxy resin composition, a prepreg, a metal-clad laminate, and a printed wiring board.

従来から、半導体装置は高密度化、高集積化及び動作の高速化の傾向にあり、パッケージ形態はピン挿入方式から表面実装方式に移行するとともに小型、薄型化が積極的に行われている。   2. Description of the Related Art Conventionally, semiconductor devices tend to have higher density, higher integration, and higher speed of operation, and the package form has shifted from a pin insertion method to a surface mounting method and has been actively reduced in size and thickness.

表面実装方式として、ベアチップ(半導体)を基板上に直接搭載してワイヤーボンディングにより接続する、チップオンボード(COB:Chip On Board)が広く用いられている(特許文献1)。特に、高温に長時間曝されてもワイヤーボンディングの接合信頼性や、耐熱性が要求される場面では、図4に示す半導体装置100が用いられている。半導体装置100は、接合体130を介してセラミック基板110上に半導体120を搭載し、金製の金属ワイヤー(以下、金ワイヤー140という)で半導体120とセラミック基板110のアルミニウム製のボンドパッド部(以下、アルミパッド部111という)とを電気的に接続し、封止樹脂体150で封止してなる。   As a surface mounting method, a chip on board (COB) in which a bare chip (semiconductor) is directly mounted on a substrate and connected by wire bonding is widely used (Patent Document 1). In particular, the semiconductor device 100 shown in FIG. 4 is used in a scene where bonding reliability and heat resistance of wire bonding are required even when exposed to a high temperature for a long time. In the semiconductor device 100, the semiconductor 120 is mounted on the ceramic substrate 110 through the bonded body 130, and an aluminum bond pad portion (a metal 120 (hereinafter referred to as a gold wire 140)) between the semiconductor 120 and the ceramic substrate 110. (Hereinafter referred to as an aluminum pad portion 111) and electrically sealed with a sealing resin body 150.

近年、コスト削減のため、セラミック基板110をより安価な有機基板に置き換える動向がある。   In recent years, there is a trend to replace the ceramic substrate 110 with a cheaper organic substrate for cost reduction.

特開2008−060309号公報JP 2008-060309 A

しかしながら、セラミック基板110を有機基板に置き換えた半導体装置100が高温(160℃)環境下に長時間(2000時間)曝されると、例えばアルミパッド部111と金ワイヤー140とのワイヤー接合部Aの接合強度が低下して十分ではなくなるおそれがあった。すなわち、有機基板を備える半導体装置100が高温環境下に長時間曝されると、金ワイヤーとアルミパッド部とのワイヤーボンディングの接合信頼性が十分ではなくなるおそれがあった。   However, when the semiconductor device 100 in which the ceramic substrate 110 is replaced with an organic substrate is exposed to a high temperature (160 ° C.) environment for a long time (2000 hours), for example, the wire bonding portion A of the aluminum pad portion 111 and the gold wire 140 There was a possibility that the bonding strength would decrease and become insufficient. That is, when the semiconductor device 100 including the organic substrate is exposed to a high temperature environment for a long time, there is a possibility that the bonding reliability of the wire bonding between the gold wire and the aluminum pad portion is not sufficient.

そこで、高温環境下に長時間曝されても、金ワイヤーとアルミパッド部とのワイヤーボンディングの接合信頼性に優れる半導体装置とすることができるエポキシ樹脂組成物、プリプレグ、金属張積層板及びプリント配線板を提供することを目的とする。   Accordingly, an epoxy resin composition, a prepreg, a metal-clad laminate, and a printed wiring that can be made into a semiconductor device having excellent bonding reliability in wire bonding between a gold wire and an aluminum pad even when exposed to a high temperature environment for a long time. The purpose is to provide a board.

本発明のエポキシ樹脂組成物は、エポキシ樹脂、硬化剤及び硬化促進剤を含む有機成分を含有し、硬化後のブタノール含有量が、ガスクロマトグラフィー質量(GC−MS)分析法にて測定検出限界未満であり、硬化後の塩素含有量が900ppm以下、且つ、硬化後の臭素含有量が900ppm以下であることを特徴とする。   The epoxy resin composition of the present invention contains an organic component containing an epoxy resin, a curing agent, and a curing accelerator, and the butanol content after curing is a detection limit by gas chromatography mass (GC-MS) analysis. The chlorine content after curing is 900 ppm or less, and the bromine content after curing is 900 ppm or less.

本発明のプリプレグは、繊維基材と、前記繊維基材に含浸された、前記エポキシ樹脂組成物の半硬化物と、を備えることを特徴とする。   The prepreg of the present invention includes a fiber base material and a semi-cured product of the epoxy resin composition impregnated in the fiber base material.

本発明の金属張積層板は、前記プリプレグの1枚の硬化物又は複数枚の積層物の硬化物と、前記硬化物の片面または両面に接着された金属箔と、を備えることを特徴とする。   The metal-clad laminate of the present invention comprises one cured product of the prepreg or a cured product of a plurality of laminates, and a metal foil bonded to one or both sides of the cured product. .

本発明のプリント配線板は、前記プリプレグの1枚の硬化物又は複数枚の積層物の硬化物と、前記硬化物の片面または両面に接着された導体配線と、を備えることを特徴とする。   The printed wiring board of the present invention is characterized by comprising one cured product of the prepreg or a cured product of a plurality of laminates, and a conductor wiring bonded to one or both sides of the cured product.

本発明によれば、高温環境下に長時間曝されても、金ワイヤーとアルミパッド部とのワイヤーボンディングの接合信頼性に優れる半導体装置とすることができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it exposes to a high temperature environment for a long time, it can be set as the semiconductor device which is excellent in the joining reliability of the wire bonding of a gold wire and an aluminum pad part.

本発明の実施形態に係る半導体装置の、プリント配線板の厚み方向における概略断面図である。It is a schematic sectional drawing in the thickness direction of a printed wiring board of the semiconductor device which concerns on embodiment of this invention. 図2Aは、熱衝撃試験に用いる評価用基板の4層階段デイジーチェーンパターンの形成部位の概略断面図であり、図2Bは、熱衝撃試験に用いる評価用基板の外層デイジーチェーンパターンの形成部位の概略断面図である。FIG. 2A is a schematic cross-sectional view of a formation portion of a four-layer staircase daisy chain pattern of an evaluation substrate used in a thermal shock test, and FIG. 2B is a diagram of a formation portion of an outer layer daisy chain pattern of an evaluation substrate used in a thermal shock test It is a schematic sectional drawing. 図3Aは格子パターンの一部に形成された中抜け部を示す、4層板成型性の評価試験で用いるコア基板の概略正面図であり、図3Bは図3A中のP部の拡大正面図である。FIG. 3A is a schematic front view of a core substrate used in a four-layer plate moldability evaluation test showing a hollow portion formed in a part of a lattice pattern, and FIG. 3B is an enlarged front view of a P portion in FIG. 3A. It is. 従来の半導体装置の、セラミック基板の厚み方向における概略断面図である。It is a schematic sectional drawing in the thickness direction of a ceramic substrate of the conventional semiconductor device.

以下、本発明の実施形態を説明する。   Embodiments of the present invention will be described below.

[本実施形態に係るエポキシ樹脂組成物]
図1は、本実施形態に係る半導体装置1の、プリント配線板10の厚み方向に切断した概略断面図である。図1中、1は半導体装置、10はプリント配線板、11はアルミニウム製のボンドパッド部(以下、アルミパッド部という)、20は半導体、30は金製の金属ワイヤー(以下、金ワイヤーという)、40は接合体、50は封止樹脂体である。なお、図1において、プリント配線板1の導体配線、スルーホール、半田付け用電子部品などは省略している。
[Epoxy resin composition according to this embodiment]
FIG. 1 is a schematic cross-sectional view of the semiconductor device 1 according to the present embodiment cut in the thickness direction of the printed wiring board 10. In FIG. 1, 1 is a semiconductor device, 10 is a printed wiring board, 11 is an aluminum bond pad portion (hereinafter referred to as an aluminum pad portion), 20 is a semiconductor, and 30 is a gold metal wire (hereinafter referred to as a gold wire). , 40 is a joined body, and 50 is a sealing resin body. In FIG. 1, conductor wiring, through holes, soldering electronic components, and the like of the printed wiring board 1 are omitted.

本実施形態に係るエポキシ樹脂組成物(以下、単にエポキシ樹脂組成物という場合がある)は、COBタイプの半導体装置1に用いられるプリント配線板10の構成材料として好適に用いられ、エポキシ樹脂、硬化剤及び硬化促進剤を含む有機成分を含有する。さらにエポキシ樹脂組成物は、硬化後のブタノール含有量が、ガスクロマトグラフィー質量(GC−MS)分析法にて測定検出限界未満(以下、単に測定検出限界未満という場合がある)であり、硬化後の塩素含有量が900ppm以下、且つ、硬化後の臭素含有量が900ppm以下である。これにより、高温(160℃)の環境下に長時間(2000時間)曝されても、金ワイヤー30とアルミパッド部11とのワイヤーボンディングの接合信頼性に優れる半導体装置1とすることができる。これは、プリント配線板10のアルミパッド部11と金ワイヤー30とのワイヤー接合部Aの腐食の進行を加速させる要素が少なくなったためと推測される。腐食とは、例えば、ボイドが発生することなどをいう。さらに、従来のセラミック基板110に代えてプリント配線板10を用いることができるので、コスト面で有利である。   The epoxy resin composition according to the present embodiment (hereinafter may be simply referred to as an epoxy resin composition) is suitably used as a constituent material of the printed wiring board 10 used in the COB type semiconductor device 1, and is epoxy resin, cured Contains organic components including an agent and a curing accelerator. Furthermore, the epoxy resin composition has a butanol content after curing that is less than the measurement detection limit (hereinafter sometimes simply referred to as measurement detection limit) by gas chromatography mass (GC-MS) analysis. Has a chlorine content of 900 ppm or less and a bromine content after curing of 900 ppm or less. Thereby, even if it exposes to a high temperature (160 degreeC) environment for a long time (2000 hours), it can be set as the semiconductor device 1 excellent in the joining reliability of the wire bonding of the gold wire 30 and the aluminum pad part 11. FIG. This is presumed to be because the number of elements that accelerate the progress of corrosion of the wire joint portion A between the aluminum pad portion 11 of the printed wiring board 10 and the gold wire 30 is reduced. Corrosion refers to the generation of voids, for example. Furthermore, the printed wiring board 10 can be used in place of the conventional ceramic substrate 110, which is advantageous in terms of cost.

硬化後のブタノール含有量とは、エポキシ樹脂組成物を用いて実施例と同様にして金属張積層板を作製し、実施例に記載のブタノール含有量の測定方法と同一の測定方法により測定した値である。測定検出限界未満とは、実施例に記載のブタノール含有量の測定方法と同一の測定方法により測定した値が0.16ppm未満であることをいう。硬化後の塩素含有量とは、エポキシ樹脂組成物を用いて実施例と同様にして金属張積層板を作製し、実施例に記載の塩素含有量の測定方法と同一の測定方法により測定した値である。硬化後の臭素含有量とは、エポキシ樹脂組成物を用いて実施例と同様にして金属張積層板を作製し、実施例に記載の臭素含有量の測定方法と同一の測定方法により測定した値である。   Butanol content after curing is a value obtained by preparing a metal-clad laminate using an epoxy resin composition in the same manner as in the Examples and measuring the same measurement method as the butanol content described in the Examples. It is. The measurement below the detection limit means that the value measured by the same measurement method as the butanol content measurement method described in the Examples is less than 0.16 ppm. The chlorine content after curing is a value measured by the same measurement method as the measurement method of chlorine content described in the examples by using the epoxy resin composition to prepare a metal-clad laminate in the same manner as in the examples. It is. The bromine content after curing is a value measured by the same measurement method as the bromine content measurement method described in the examples, using the epoxy resin composition to prepare a metal-clad laminate in the same manner as in the examples. It is.

エポキシ樹脂組成物は、硬化後のブタノール含有量が、ガスクロマトグラフィー質量(GC−MS)分析法にて測定検出限界未満である。ブタノール含有量が測定検出限界を超えると、塩素含有量及び臭素含有量が上記範囲内であっても、エポキシ樹脂組成物の硬化物中に含まれる微量の塩素又は臭素(以下、まとめてハロゲンという場合がある)と、ブタノールとが反応して、ハロブタンが生成しやすくなる。これによりワイヤー接合部Aにボイドが発生しやすくなり、半導体装置1はワイヤーボンディングの接合信頼性が不十分となるおそれがある。これは、ハロブタンが、ワイヤー接合部Aの外周部から内部に入り込み、カーケンドール現象の進行を加速させるためと推測される。特に、ブタノールが直鎖状のn−ブチルアルコールの場合、ハロゲン化合物が生成しやすい。なお、ブタノールは、エポキシ樹脂組成物を構成する材料として用いられていなくとも、半導体装置1を製造する過程、特にエポキシ樹脂組成物を硬化させる過程においてエポキシ樹脂組成物の分解等によってブタノールが生成することがある。このような材料として、例えば、ダウ・ケミカル日本株式会社製の品名「XZ92741」などが挙げられる。ここで、カーケンドール現象とは、異なる2つの金属が相互拡散により接合される場合、各々の材料がもつ固有拡散係数に差があると、拡散係数の大きい材料側にボイドが生じる現象である。この現象は特に高温時に起こりやすい。ハロブタンとしては、ブタノールの水酸基がハロゲン原子に置換したハロゲン化合物等が挙げられる。   The epoxy resin composition has a butanol content after curing that is less than the detection limit of measurement by gas chromatography mass (GC-MS) analysis. When the butanol content exceeds the detection limit, even if the chlorine content and bromine content are within the above ranges, a trace amount of chlorine or bromine contained in the cured product of the epoxy resin composition (hereinafter collectively referred to as halogen) In some cases) and butanol react with each other, and halobutane is easily generated. As a result, voids are easily generated in the wire bonding portion A, and the semiconductor device 1 may have insufficient bonding reliability in wire bonding. This is presumed to be because halobutane enters the inside from the outer peripheral portion of the wire joint A and accelerates the progress of the Kirkendall phenomenon. In particular, when butanol is linear n-butyl alcohol, a halogen compound is likely to be generated. Even if butanol is not used as a material constituting the epoxy resin composition, butanol is generated by decomposition of the epoxy resin composition in the process of manufacturing the semiconductor device 1, particularly in the process of curing the epoxy resin composition. Sometimes. An example of such a material is a product name “XZ92741” manufactured by Dow Chemical Japan Co., Ltd. Here, the Kirkendall phenomenon is a phenomenon in which, when two different metals are joined by mutual diffusion, if there is a difference in the intrinsic diffusion coefficient of each material, a void is generated on the material side having a large diffusion coefficient. This phenomenon is particularly likely to occur at high temperatures. Examples of halobutane include halogen compounds in which the hydroxyl group of butanol is substituted with a halogen atom.

エポキシ樹脂組成物は、硬化後の塩素含有量が900ppm以下、好ましくは450ppm以下、より好ましくは300ppm以下である。エポキシ樹脂組成物は、硬化後の臭素含有量が900ppm以下、好ましくは450ppm以下、より好ましくは300ppm以下である。エポキシ樹脂組成物は、硬化後の塩素含有量及び硬化後の臭素含有量の少なくとも一方が900ppmを超えると、硬化後のブタノール含有量が測定検出限界未満であっても、ワイヤー接合部Aにボイドやクラックが発生しやすくなり、半導体装置1はワイヤーボンディングの接合信頼性が不十分となるおそれがある。これは、このエポキシ樹脂組成物由来のハロゲンがワイヤー接合部Aの外周部から内部に入り込み、ハロゲンが触媒となってワイヤー接合部Aの腐食の進行を加速させるためと推測される。なお、塩素及び臭素は、エポキシ樹脂組成物を構成する材料がハロゲンフリーであっても、半導体装置1を製造する過程でエポキシ樹脂組成物に不可避的に混入してしまうことがある。   The epoxy resin composition has a chlorine content after curing of 900 ppm or less, preferably 450 ppm or less, more preferably 300 ppm or less. The epoxy resin composition has a bromine content after curing of 900 ppm or less, preferably 450 ppm or less, more preferably 300 ppm or less. When at least one of the chlorine content after curing and the bromine content after curing exceeds 900 ppm, the epoxy resin composition has voids in the wire joint A even if the butanol content after curing is less than the detection limit. And cracks are likely to occur, and the semiconductor device 1 may have insufficient wire bonding reliability. This is presumably because the halogen derived from the epoxy resin composition enters the inside from the outer periphery of the wire joint A, and the halogen acts as a catalyst to accelerate the progress of corrosion of the wire joint A. In addition, even if the material which comprises an epoxy resin composition is halogen-free, chlorine and bromine may be inevitably mixed in an epoxy resin composition in the process of manufacturing the semiconductor device 1.

エポキシ樹脂組成物は、硬化後の塩素含有量及び硬化後の臭素含有量の合計は、好ましくは900ppm以下、より好ましくは600ppm以下である。硬化後の塩素含有量及び硬化後の臭素含有量の合計が上記範囲内であれば、高温環境下に長時間曝されてもワイヤーボンディングの接合信頼性により優れる半導体装置1とすることができる。   In the epoxy resin composition, the total of the chlorine content after curing and the bromine content after curing is preferably 900 ppm or less, more preferably 600 ppm or less. If the total of the chlorine content after curing and the bromine content after curing is within the above range, the semiconductor device 1 can be made excellent in bonding reliability of wire bonding even when exposed to a high temperature environment for a long time.

<有機成分>
エポキシ樹脂組成物は有機成分を含有する。有機成分としては、エポキシ樹脂、硬化剤及び硬化促進剤を含有し、必要に応じて、ゴム粒子、熱可塑性樹脂、熱硬化性樹脂などをさらに含有してもよい。
<Organic component>
The epoxy resin composition contains an organic component. The organic component contains an epoxy resin, a curing agent, and a curing accelerator, and may further contain rubber particles, a thermoplastic resin, a thermosetting resin, and the like as necessary.

(エポキシ樹脂)
エポキシ樹脂組成物は有機成分としてエポキシ樹脂を含有する。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ビフェニルジメチレン型エポキシ樹脂、トリスフェノールメタンノボラック型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等のアリールアルキレン型エポキシ樹脂、4官能ナフタレン型エポキシ樹脂などのナフタレン型エポキシ樹脂、ナフタレン骨格変性クレゾールノボラック型エポキシ樹脂、ナフタレンジオールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、メトキシナフタレン変性クレゾールノボラック型エポキシ樹脂、メトキシナフタレンジメチレン型エポキシ樹脂等のナフタレン骨格変性エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、アントラセン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、フルオレン型エポキシ樹脂などを用いることができる。これらのうちの1種のみを用いてもよいし、これら2種以上を組み合わせて用いてもよい。なかでも、エポキシ樹脂がナフタレン骨格を有すること、すなわちエポキシ樹脂としてナフタレン型エポキシ樹脂を含むことが好ましい。これにより、プリント配線板10や後述する本実施形態に係る金属張積層板(以下、まとめてプリント配線板10等という)のガラス転移温度(Tg)を、ナフタレン型エポキシ樹脂を用いない場合に比べて、より高くすることができる。さらにプリント配線板10等の抵抗変化率を±5%以内に抑制することができる。プリント配線板10等の抵抗変化率は、実施例に記載の熱衝撃試験の測定方法と同一の測定方法により測定した値である。
(Epoxy resin)
The epoxy resin composition contains an epoxy resin as an organic component. Examples of the epoxy resin include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol type epoxy resins such as bisphenol S type epoxy resins, phenol novolac type epoxy resins, novolak type epoxy resins such as cresol novolac type epoxy resins, and biphenyl. Type epoxy resin, xylylene type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, biphenyl novolac type epoxy resin, biphenyl dimethylene type epoxy resin, trisphenol methane novolak type epoxy resin, tetramethyl biphenyl type epoxy resin, etc. Arylalkylene type epoxy resin, naphthalene type epoxy resin such as tetrafunctional naphthalene type epoxy resin, naphthalene skeleton modified cresol Naphthalene skeleton-modified epoxy resins such as borak type epoxy resin, naphthalene diol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, methoxynaphthalene modified cresol novolak type epoxy resin, methoxy naphthalene dimethylene type epoxy resin, triphenylmethane type epoxy resin, anthracene Type epoxy resin, dicyclopentadiene type epoxy resin, norbornene type epoxy resin, fluorene type epoxy resin, and the like can be used. Only one of these may be used, or two or more of these may be used in combination. Especially, it is preferable that an epoxy resin has a naphthalene skeleton, ie, a naphthalene type epoxy resin is included as an epoxy resin. As a result, the glass transition temperature (Tg) of the printed wiring board 10 and the metal-clad laminate (hereinafter collectively referred to as the printed wiring board 10 etc.) according to the present embodiment to be described later is compared with the case where no naphthalene type epoxy resin is used. Can be higher. Furthermore, the resistance change rate of the printed wiring board 10 or the like can be suppressed to within ± 5%. The resistance change rate of the printed wiring board 10 or the like is a value measured by the same measurement method as that of the thermal shock test described in the examples.

エポキシ樹脂の含有量は、エポキシ樹脂組成物中の有機成分100質量部に対して、好ましくは75質量部以上125質量部以下、より好ましくは85質量部以上100質量部以下である。なかでもナフタレン型エポキシ樹脂の含有量は、エポキシ樹脂組成物中の有機成分100質量部に対して、好ましくは20質量部以上70質量部以下、より好ましくは30質量部以上60質量部以下である。   The content of the epoxy resin is preferably 75 parts by mass or more and 125 parts by mass or less, more preferably 85 parts by mass or more and 100 parts by mass or less, with respect to 100 parts by mass of the organic component in the epoxy resin composition. Among them, the content of the naphthalene type epoxy resin is preferably 20 parts by mass or more and 70 parts by mass or less, more preferably 30 parts by mass or more and 60 parts by mass or less, with respect to 100 parts by mass of the organic component in the epoxy resin composition. .

(硬化剤)
エポキシ樹脂組成物は、有機成分として硬化剤を含有する。硬化剤としては、例えば、フェノール系硬化剤、アミン系硬化剤、酸無水物、イミダゾール系化合物、スルフィド樹脂、ジシアンジアミドなどを用いることができる。これらのうちの1種のみを用いてもよいし、これら2種以上を組み合わせて用いてもよい。なかでも、硬化剤がフェノール骨格を有すること、すなわち硬化剤としてフェノール型硬化剤を含むことが好ましい。これにより、より吸湿しにくいプリント配線板10等とすることができる。
(Curing agent)
The epoxy resin composition contains a curing agent as an organic component. As the curing agent, for example, a phenol curing agent, an amine curing agent, an acid anhydride, an imidazole compound, a sulfide resin, dicyandiamide, and the like can be used. Only one of these may be used, or two or more of these may be used in combination. Especially, it is preferable that a hardening | curing agent has a phenol skeleton, ie, contains a phenol type hardening | curing agent as a hardening | curing agent. Thereby, it can be set as the printed wiring board 10 etc. which are hard to absorb moisture more.

(硬化促進剤)
エポキシ樹脂組成物は、有機成分として硬化促進剤を含有する。硬化促進剤としては、例えば、イミダゾール化合物、アミン系化合物、チオール化合物、金属石鹸などの有機酸金属塩などを用いることができる。
(Curing accelerator)
The epoxy resin composition contains a curing accelerator as an organic component. As the curing accelerator, for example, imidazole compounds, amine compounds, thiol compounds, organic acid metal salts such as metal soaps, and the like can be used.

<無機成分>
エポキシ樹脂組成物は、無機成分をさらに含有してもよい。無機成分を構成する材料としては、例えば、シリカ、ベーマイト、水酸化アルミニウム、水酸化マグネシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、タルク、クレー、マイカなどを用いることができる。これらのうちの1種のみを用いてもよいし、2種以上を組み合わせて用いてもよい。無機成分の形状は、特に限定されず、例えば、球状、破砕状などが挙げられる。無機成分の平均粒子径は、好ましくは0.1μm以上5μm以下、より好ましくは0.1μm以上2.5μm以下である。なかでも、無機成分は球状シリカ粒子を含み、この球状シリカ粒子の平均粒子径が0.1μm以上3μm以下であることが好ましい。これにより、4層板成型性に優れるプリント配線板10等とすることができる。球状シリカ粒子の平均粒子径は、好ましくは0.1μm以上3μm以下、より好ましくは0.1μm以上2.5μm以下である。ここで、平均粒子径とは、体積累積平均径(D50)を意味する。平均粒子径の測定には、例えば、レーザ回折式粒度分布測定装置MT−3300(日機装(株)製)を用いることができる。
<Inorganic component>
The epoxy resin composition may further contain an inorganic component. As a material constituting the inorganic component, for example, silica, boehmite, aluminum hydroxide, magnesium hydroxide, aluminum silicate, magnesium silicate, talc, clay, mica and the like can be used. Only one of these may be used, or two or more may be used in combination. The shape of the inorganic component is not particularly limited, and examples thereof include a spherical shape and a crushed shape. The average particle size of the inorganic component is preferably 0.1 μm or more and 5 μm or less, more preferably 0.1 μm or more and 2.5 μm or less. Especially, an inorganic component contains a spherical silica particle, It is preferable that the average particle diameter of this spherical silica particle is 0.1 micrometer or more and 3 micrometers or less. Thereby, it can be set as the printed wiring board 10 etc. which are excellent in 4 layer board moldability. The average particle diameter of the spherical silica particles is preferably from 0.1 μm to 3 μm, more preferably from 0.1 μm to 2.5 μm. Here, the average particle diameter means a volume cumulative average diameter (D50). For the measurement of the average particle size, for example, a laser diffraction particle size distribution measuring device MT-3300 (manufactured by Nikkiso Co., Ltd.) can be used.

無機成分の含有量は、有機成分100質量部に対して、好ましくは150質量部以上220質量部以下、より好ましくは160質量部以上210質量部以下である。これにより、プリント配線板10等の熱膨張係数(Coefficient of Thermal Expansion)を20ppm以下に抑制することができる。プリント配線板10等の熱膨張係数は、実施例に記載の熱膨張係数(CTE(α1))の測定方法と同一の測定方法により測定した値である。   The content of the inorganic component is preferably 150 parts by mass or more and 220 parts by mass or less, more preferably 160 parts by mass or more and 210 parts by mass or less with respect to 100 parts by mass of the organic component. Thereby, the coefficient of thermal expansion (Coefficient of Thermal Expansion) of the printed wiring board 10 etc. can be suppressed to 20 ppm or less. The thermal expansion coefficient of the printed wiring board 10 or the like is a value measured by the same measurement method as the measurement method of the thermal expansion coefficient (CTE (α1)) described in the examples.

[エポキシ樹脂組成物の調製方法]
エポキシ樹脂組成物の調製方法としては、例えば、有機成分、その他必要に応じて配合する成分を、それぞれ所定の配合量準備し、これらを溶媒中で配合し、さらに攪拌、混合する方法などが挙げられる。溶媒としては、例えば、エチレングリコールモノメチルエーテルなどのエーテル類、アセトン、メチルエチルケトン(MEK)、ジメチルホルムアミド、ベンゼン、トルエンなどを用いることができる。
[Method for preparing epoxy resin composition]
As a preparation method of the epoxy resin composition, for example, a method of preparing an organic component and other components to be blended according to necessity, respectively, preparing respective blending amounts, blending these in a solvent, further stirring and mixing, etc. It is done. As the solvent, for example, ethers such as ethylene glycol monomethyl ether, acetone, methyl ethyl ketone (MEK), dimethylformamide, benzene, toluene and the like can be used.

[本実施形態に係るプリプレグ]
本実施形態に係るプリプレグ(以下、単にプリプレグという場合がある)は、繊維基材と、繊維基材に含浸された、エポキシ樹脂組成物の半硬化物と、を備える。
[Prepreg according to this embodiment]
A prepreg according to the present embodiment (hereinafter sometimes simply referred to as prepreg) includes a fiber base material and a semi-cured product of an epoxy resin composition impregnated in the fiber base material.

プリプレグは上記のエポキシ樹脂組成物の半硬化物を備えるので、プリプレグの硬化後のブタノール含有量、硬化後の塩素含有量及び硬化後の臭素含有量は、エポキシ樹脂組成物の硬化後のブタノール含有量、硬化後の塩素含有量及び硬化後の臭素含有量とそれぞれ同一である。また、プリプレグの硬化後のブタノール含有量、硬化後の塩素含有量及び硬化後の臭素含有量の測定方法は、エポキシ樹脂組成物の硬化後のブタノール含有量、硬化後の塩素含有量及び硬化後の臭素含有量の測定方法と同一である。   Since the prepreg comprises a semi-cured product of the above epoxy resin composition, the butanol content after curing of the prepreg, the chlorine content after curing, and the bromine content after curing include the butanol after curing of the epoxy resin composition. The amount, the chlorine content after curing, and the bromine content after curing are the same. Moreover, the butanol content after hardening of a prepreg, the chlorine content after hardening, and the bromine content after hardening are the butanol content after hardening of an epoxy resin composition, the chlorine content after hardening, and after hardening. This is the same as the method for measuring bromine content.

繊維基材を構成する繊維としては、例えば、ガラス繊維、芳香族ポリアミド繊維、液晶ポリエステル繊維、ポリ(パラフェニレンベンゾビスオキサゾール)(PBO)繊維、ポリフェニレンサルファイド樹脂(PPS)繊維などを用いることができ、なかでもガラス繊維を用いることが好ましい。   As the fiber constituting the fiber substrate, for example, glass fiber, aromatic polyamide fiber, liquid crystal polyester fiber, poly (paraphenylenebenzobisoxazole) (PBO) fiber, polyphenylene sulfide resin (PPS) fiber, etc. can be used. Of these, glass fiber is preferably used.

ガラス繊維としては、例えば、Eガラス繊維、Dガラス繊維、Sガラス繊維、Tガラス繊維、NEガラス繊維、石英繊維(Qガラス)などを用いることができる。これにより、電気絶縁性、誘電特性により優れるプリプレグの硬化物とすることができる。   As glass fiber, E glass fiber, D glass fiber, S glass fiber, T glass fiber, NE glass fiber, quartz fiber (Q glass) etc. can be used, for example. Thereby, it can be set as the hardened | cured material of a prepreg which is more excellent in electrical insulation and dielectric characteristics.

繊維基材の表面はカップリング剤で改質されていてもよい。カップリング剤としては、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシランなどを用いることができる。   The surface of the fiber substrate may be modified with a coupling agent. As the coupling agent, for example, γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane and the like can be used.

繊維基材の形態としては、例えば、平織などのように縦糸及び横糸がほぼ直交するように織られた織布;不織布などが挙げられる。繊維基材の厚みは、好ましくは10〜200μmである。   Examples of the form of the fiber base material include a woven fabric and a non-woven fabric woven so that warp and weft are almost orthogonal to each other, such as plain weave. The thickness of the fiber base material is preferably 10 to 200 μm.

プリプレグの製造方法としては、連続式製法、バッチ式製法などが挙げられる。連続式製法は、走行する長尺状の繊維基材を、溶媒を含むエポキシ樹脂組成物(以下、ワニスという場合がある)に含浸させて樹脂含浸基材を得、得られる樹脂含浸基材を加熱乾燥し、溶媒を除去することにより、エポキシ樹脂組成物を半硬化させ、必要な大きさに切断する方法である。バッチ式製法は、必要な大きさに切断した繊維基材を、ワニスに含浸させて樹脂含浸基材を得、得られる樹脂含浸基材を加熱乾燥し、溶媒を除去することにより、エポキシ樹脂組成物を半硬化させる方法である。加熱乾燥する温度は、好ましくは110℃以上150℃以下である。   Examples of the prepreg production method include a continuous production method and a batch production method. The continuous production method involves impregnating a traveling long fiber base material with an epoxy resin composition containing a solvent (hereinafter sometimes referred to as a varnish) to obtain a resin-impregnated base material. In this method, the epoxy resin composition is semi-cured by heat drying and removing the solvent, and then cut into a required size. The batch-type manufacturing method involves impregnating a varnish with a fiber base material cut to a required size to obtain a resin-impregnated base material, drying the resulting resin-impregnated base material by heating, and removing the solvent to obtain an epoxy resin composition. This is a method of semi-curing an object. The temperature for drying by heating is preferably 110 ° C. or higher and 150 ° C. or lower.

[本実施形態に係る金属張積層板]
本実施形態に係る金属張積層板(以下、単に金属張積層板という場合がある)は、プリプレグの1枚の硬化物又は複数枚の積層物の硬化物(以下、第一絶縁層という場合がある)と、この硬化物の片面または両面に接着された金属箔と、を備える。すなわち、金属張積層板の構成は、第一絶縁層と、この第一絶縁層の片面に接着された金属箔との2層構成、又は第一絶縁層と、この第一絶縁層の両面に接着された金属箔との3層構成である。
[Metal-clad laminate according to this embodiment]
The metal-clad laminate according to the present embodiment (hereinafter sometimes simply referred to as a metal-clad laminate) is a cured product of one prepreg or a cured product of a plurality of laminates (hereinafter sometimes referred to as a first insulating layer). And a metal foil bonded to one side or both sides of the cured product. That is, the configuration of the metal-clad laminate is a two-layer configuration of a first insulating layer and a metal foil bonded to one side of the first insulating layer, or a first insulating layer and both sides of the first insulating layer. It is a three-layer configuration with a bonded metal foil.

金属張積層板を構成する第一絶縁層は上記のエポキシ樹脂組成物の硬化物を備えるので、金属張積層板のブタノール含有量、塩素含有量及び臭素含有量は、エポキシ樹脂組成物の硬化後のブタノール含有量、硬化後の塩素含有量及び硬化後の臭素含有量とそれぞれ同一である。金属張積層板のブタノール含有量、塩素含有量及び臭素含有量の測定方法は、実施例に記載のブタノール含有量の測定方法、塩素含有量の測定方法及び臭素含有量の測定方法とそれぞれ同一である。   Since the first insulating layer constituting the metal-clad laminate is provided with a cured product of the above epoxy resin composition, the butanol content, the chlorine content and the bromine content of the metal-clad laminate are determined after the epoxy resin composition is cured. The butanol content, the chlorine content after curing, and the bromine content after curing are the same. The measuring method of butanol content, chlorine content and bromine content of the metal-clad laminate is the same as the measuring method of butanol content, the measuring method of chlorine content and the measuring method of bromine content described in Examples. is there.

金属張積層板の製造方法としては、例えば、プリプレグを複数枚重ね合わせて積層物を得、得られた積層物の片側又は両側に金属箔を配置して金属箔付きの積層物を得、この金属箔付きの積層物を加熱加圧成形して、積層一体化する方法;1枚のプリプレグの片面又は両面に金属箔を配置して金属箔付きのプリプレグを得、この金属箔付きのプリプレグを加熱加圧成形して、積層一体化する方法などが挙げられる。加熱加圧成形をする方法としては、例えば、多段真空プレス法、ダブルベルトプレス法などが挙げられる。多段真空プレス法の条件は、例えば、140〜200℃、0.5〜5.0MPa、40〜240分間である。   As a method for producing a metal-clad laminate, for example, a plurality of prepregs are stacked to obtain a laminate, and a metal foil is disposed on one or both sides of the obtained laminate to obtain a laminate with metal foil. A method of heat-pressing and forming a laminate with a metal foil and integrating the layers; arranging a metal foil on one or both sides of one prepreg to obtain a prepreg with a metal foil; For example, a method of heat and pressure forming and stacking and integrating may be used. Examples of the method for heat and pressure molding include a multistage vacuum press method and a double belt press method. The conditions of the multistage vacuum press method are, for example, 140 to 200 ° C., 0.5 to 5.0 MPa, and 40 to 240 minutes.

[本実施形態に係るプリント配線板10]
本実施形態のプリント配線板10(以下、単にプリント配線板10という場合がある)は、プリプレグの1枚の硬化物又は複数枚の積層物の硬化物(以下、第二絶縁層という場合がある)と、この硬化物の片面又は両面に設けられた導体配線とを備える。プリント配線板10は、第二絶縁層と、この第二絶縁層の片面又は両面に導体配線とからなる単層構造のプリント配線板(以下、コア基板という場合がある);コア基板の導体配線が形成された面上に、第二絶縁層(以下、層間絶縁層という場合がある)と内層の導体配線(以下、内層導体配線という場合がある)とが交互に形成されて構成され、最外層に導体配線が形成された多層構造のプリント配線板などを含む。多層構造のプリント配線板の層数は特に限定されない。
[Printed Wiring Board 10 According to this Embodiment]
The printed wiring board 10 of the present embodiment (hereinafter may be simply referred to as a printed wiring board 10) may be a cured product of one prepreg or a cured product of a plurality of laminates (hereinafter referred to as a second insulating layer). ) And conductor wiring provided on one side or both sides of the cured product. The printed wiring board 10 includes a second insulating layer and a printed wiring board having a single layer structure (hereinafter sometimes referred to as a core substrate) including a conductive wiring on one or both sides of the second insulating layer; A second insulating layer (hereinafter sometimes referred to as an interlayer insulating layer) and an inner layer conductor wiring (hereinafter also referred to as an inner layer conductor wiring) are alternately formed on the surface on which is formed. It includes a printed wiring board having a multilayer structure in which conductor wiring is formed on the outer layer. The number of layers of the multilayer printed wiring board is not particularly limited.

プリント配線板10を構成する第二絶縁層は上記のエポキシ樹脂組成物の硬化物を備えるので、プリント配線板10のブタノール含有量、塩素含有量及び臭素含有量は、エポキシ樹脂組成物の硬化後のブタノール含有量、硬化後の塩素含有量及び硬化後の臭素含有量とそれぞれ同一である。プリント配線板10のブタノール含有量、塩素含有量及び臭素含有量の測定方法は、実施例に記載のブタノール含有量の測定方法、塩素含有量の測定方法及び臭素含有量の測定方法とそれぞれ同一である。   Since the 2nd insulating layer which comprises the printed wiring board 10 is equipped with the hardened | cured material of said epoxy resin composition, the butanol content, chlorine content, and bromine content of the printed wiring board 10 are after hardening of an epoxy resin composition. The butanol content, the chlorine content after curing, and the bromine content after curing are the same. The measuring method of butanol content, chlorine content and bromine content of the printed wiring board 10 is the same as the measuring method of butanol content, the measuring method of chlorine content and the measuring method of bromine content described in Examples. is there.

単層構造のプリント配線板の製造方法としては、特に限定されず、例えば、上記の金属張積層板の金属箔の一部をエッチングにより除去して導体配線を形成するサブトラクティブ法;上記の金属張積層板の金属箔の全てをエッチングにより除去して積層体の硬化物を得、得られた積層体の硬化物の片面又は両面に無電解めっきによる薄い無電解めっき層を形成し、めっきレジストにより非回路形成部を保護した後、電解めっきにより回路形成部に電解めっき層を厚付けし、その後めっきレジストを除去し、回路形成部以外の無電解めっき層をエッチングにより除去して導体配線を形成するセミアディティブ法などが挙げられる。多層構造のプリント配線板の製造方法としては、特に限定されず、例えば、ビルドアッププロセスなどが挙げられる。   A method for producing a printed wiring board having a single-layer structure is not particularly limited. For example, a subtractive method in which a part of the metal foil of the metal-clad laminate is removed by etching to form a conductor wiring; All of the metal foil of the tension laminate is removed by etching to obtain a cured product of the laminate, and a thin electroless plating layer is formed by electroless plating on one or both sides of the cured product of the obtained laminate. After the non-circuit forming part is protected by the above, the electrolytic plating layer is thickened on the circuit forming part by electrolytic plating, and then the plating resist is removed, and the electroless plating layer other than the circuit forming part is removed by etching, and the conductor wiring is formed. For example, a semi-additive method is formed. A method for producing a printed wiring board having a multilayer structure is not particularly limited, and examples thereof include a build-up process.

プリント配線板10はCOBタイプの半導体装置1に好適に用いられる。半導体装置1は、図1に示すように、プリント配線板10と、半導体20と、金ワイヤー30と、接合体40と、封止樹脂体50とを備える。プリント配線板10の導体配線はアルミパッド部11を有する。半導体20は、素子面20aを有し、この素子面20aに電極パッド部(図示せず)を有する。半導体20は、接合体40を介してプリント配線板10上に、素子面20aがプリント配線板10側とは反対側となるように載置されている。半導体20の電極パッド部とプリント配線板10のアルミパッド部11とは、金ワイヤー30により電気的に接続されている。半導体20、金ワイヤー30及びアルミパッド部11は、封止樹脂体50によって封止されている。また、半導体装置1のプリント配線板10上には、チップ抵抗、チップコンデンサなどの半田付け用電子部品が搭載されていてもよい。   The printed wiring board 10 is suitably used for the COB type semiconductor device 1. As shown in FIG. 1, the semiconductor device 1 includes a printed wiring board 10, a semiconductor 20, a gold wire 30, a joined body 40, and a sealing resin body 50. The conductor wiring of the printed wiring board 10 has an aluminum pad portion 11. The semiconductor 20 has an element surface 20a, and an electrode pad portion (not shown) on the element surface 20a. The semiconductor 20 is placed on the printed wiring board 10 through the bonded body 40 so that the element surface 20a is on the side opposite to the printed wiring board 10 side. The electrode pad portion of the semiconductor 20 and the aluminum pad portion 11 of the printed wiring board 10 are electrically connected by a gold wire 30. The semiconductor 20, the gold wire 30 and the aluminum pad portion 11 are sealed with a sealing resin body 50. Moreover, on the printed wiring board 10 of the semiconductor device 1, electronic components for soldering such as a chip resistor and a chip capacitor may be mounted.

以下、本発明を実施例によって具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

[実施例1〜6、比較例1〜6]
(エポキシ樹脂組成物)
エポキシ樹脂組成物の原料として、以下のものを用意した。有機成分、無機成分及び溶媒を表1及び表2に示す割合で配合して、これを撹拌、混合して均一化することにより、エポキシ樹脂組成物を調製した。なお、表1及び表2中の各製品の質量部の記載について、「(固形分)」の記載があるものは製品の固形分の質量部を指し、「(固形分)」の記載がないものは製品自体の質量部を指す。
[Examples 1-6, Comparative Examples 1-6]
(Epoxy resin composition)
The following were prepared as raw materials for the epoxy resin composition. An epoxy resin composition was prepared by blending the organic component, the inorganic component, and the solvent in the proportions shown in Tables 1 and 2, and stirring and mixing them to make uniform. In addition, about description of the mass part of each product in Table 1 and Table 2, what has "(solid content)" refers to the mass part of the solid content of a product, and there is no description of "(solid content)". The thing refers to the mass part of the product itself.

<有機成分>
(エポキシ樹脂)
・品名「EPPN502H」(トリスフェノールメタン型エポキシ樹脂、日本化薬株式会社製、エポキシ当量:170g/eq)
・品名「HP4710」(4官能ナフタレン型エポキシ樹脂、DIC株式会社製、エポキシ当量240g/eq)
・品名「5046B80」(臭素化ビスフェノールA型エポキシ樹脂、三菱化学株式会社、溶剤:MEK(メチルエチルケトン)、臭素含有量:21%、固形分:80%(MEKカット)、エポキシ当量:470g/eq)
・品名「NC3000」(ビフェニルアラルキル型エポキシ樹脂、日本化薬株式会社製、エポキシ当量:230g/eq)
(硬化剤)
・品名「TD−2090 60M」(ノボラック型フェノール樹脂、DIC株式会社製、固形分:60%、溶剤:MEK、水酸基当量:105g/eq)
・品名「XZ92741」(リンフェノール樹脂、ダウ・ケミカル日本株式会社製)
・品名「LA−7052」(ATN(アミノトリアジンノボラック)、DIC株式会社製、溶剤:MEK、窒素含有量:8%、固形分:60%、水酸基当量:120g/eq)
(硬化促進剤)
・品名「2E4MZ」(イミダゾール、四国化成工業株式会社製)
<無機成分>
・品名「SC2500−SQ」(球状シリカ粒子、株式会社アドマテックス製、平均粒子径:0.5μm)
・品名「SC5500−SQ」(球状シリカ粒子、株式会社アドマテックス製、平均粒子径:1.5μm)
・品名「AC9000−SI」(アルミニウム粒子、株式会社アドマテックス製、平均粒子径:10μm)。
<Organic component>
(Epoxy resin)
・ Product name “EPPN502H” (Trisphenolmethane type epoxy resin, Nippon Kayaku Co., Ltd., epoxy equivalent: 170 g / eq)
-Product name “HP4710” (tetrafunctional naphthalene type epoxy resin, manufactured by DIC Corporation, epoxy equivalent 240 g / eq)
-Product name "5046B80" (brominated bisphenol A type epoxy resin, Mitsubishi Chemical Corporation, solvent: MEK (methyl ethyl ketone), bromine content: 21%, solid content: 80% (MEK cut), epoxy equivalent: 470 g / eq)
-Product name "NC3000" (biphenyl aralkyl type epoxy resin, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent: 230 g / eq)
(Curing agent)
-Product name "TD-2090 60M" (Novolak type phenolic resin, manufactured by DIC Corporation, solid content: 60%, solvent: MEK, hydroxyl equivalent: 105 g / eq)
-Product name "XZ92741" (phosphorus phenol resin, manufactured by Dow Chemical Japan Co., Ltd.)
-Product name "LA-7052" (ATN (aminotriazine novolak), manufactured by DIC Corporation, solvent: MEK, nitrogen content: 8%, solid content: 60%, hydroxyl group equivalent: 120 g / eq)
(Curing accelerator)
・ Product name "2E4MZ" (Imidazole, manufactured by Shikoku Chemicals Co., Ltd.)
<Inorganic component>
-Product name “SC2500-SQ” (spherical silica particles, manufactured by Admatechs Co., Ltd., average particle size: 0.5 μm)
-Product name “SC5500-SQ” (spherical silica particles, manufactured by Admatechs Co., Ltd., average particle size: 1.5 μm)
-Product name “AC9000-SI” (aluminum particles, manufactured by Admatechs, average particle size: 10 μm).

<溶媒>
・MEK
・ブタノール
なお、上記のエポキシ当量、臭素含有量、固形分、水酸基当量、窒素含有量及び平均粒子径はカタログ値である。
<Solvent>
・ MEK
-Butanol In addition, said epoxy equivalent, bromine content, solid content, hydroxyl equivalent, nitrogen content, and average particle diameter are catalog values.

(プリプレグ)
得られたエポキシ樹脂組成物を用いて、下記の連続式製法により、第一プリプレグと、第二プリプレグの2種類のプリプレグを得た。第一プリプレグは後述する金属張積層板の材料として用いられる。第二プリプレグは後述する熱衝撃試験及び4層板成型性の評価試験に用いられる。
(Prepreg)
Using the obtained epoxy resin composition, two types of prepregs, a first prepreg and a second prepreg, were obtained by the following continuous production method. The first prepreg is used as a material for a metal-clad laminate described later. The second prepreg is used in a thermal shock test and a four-layer plate moldability evaluation test described later.

<第一プリプレグ>
走行する長尺状のガラスクロス(日東紡績株式会社製の♯2116タイプ、WEA116E、Eガラス)を、プリプレグの硬化物の厚みが0.1mmとなるようにエポキシ樹脂組成物に含浸させた。次いで、ガラスクロスに含浸されたエポキシ樹脂組成物を半硬化状態となるまで非接触タイプの加熱ユニットによって加熱乾燥した。これにより、エポキシ樹脂組成物中の溶媒を除去した。加熱温度は110〜160℃、乾燥時間は約1.5〜5分であった。次いで、必要な長さに切断して、ガラスクロスと、このガラスクロスに含浸されたエポキシ樹脂組成物の半硬化物とを備える第一プリプレグを得た。第一プリプレグのレジンコンテント(樹脂量)は、第一プリプレグ100質量部に対して55質量部であった。
<First prepreg>
A running long glass cloth (# 2116 type, WEA116E, E glass manufactured by Nitto Boseki Co., Ltd.) was impregnated in the epoxy resin composition so that the thickness of the cured prepreg was 0.1 mm. Next, the epoxy resin composition impregnated in the glass cloth was heated and dried by a non-contact type heating unit until it was in a semi-cured state. Thereby, the solvent in the epoxy resin composition was removed. The heating temperature was 110 to 160 ° C., and the drying time was about 1.5 to 5 minutes. Subsequently, it cut | disconnected to required length and obtained the 1st prepreg provided with the glass cloth and the semi-hardened | cured material of the epoxy resin composition impregnated in this glass cloth. The resin content (resin amount) of the first prepreg was 55 parts by mass with respect to 100 parts by mass of the first prepreg.

<第二プリプレグ>
ガラスクロス(日東紡績株式会社製の#1078タイプ、WEA1078、Eガラス)を用い、このガラスクロスを第二のプリプレグの厚さが0.06mmとなるようにエポキシ樹脂組成物を含有させた他は第一プリプレグの連続式製法と同様にして、0.06mm厚さの第二プリプレグを得た。
<Second prepreg>
A glass cloth (# 1078 type, WEA1078, E glass manufactured by Nitto Boseki Co., Ltd.) was used, and this glass cloth was incorporated with an epoxy resin composition so that the thickness of the second prepreg was 0.06 mm. A second prepreg having a thickness of 0.06 mm was obtained in the same manner as the continuous production method of the first prepreg.

(金属張積層板)
得られた第一プリプレグを用いて、下記の方法により、0.4mm厚さの両面金属張積層板(以下、第一金属張積層板という)と、0.8mm厚さの両面金属張積層板(以下、第二金属張積層板という)との2種類の金属張積層板を得た。第一金属張積層板は、後述するブタノール含有量、塩素含有量、臭素含有量、ガラス転移温度(Tg)及び熱膨張係数(CTE(α1))の測定試験、4層板成型性の評価試験に用いられる。第二金属張積層板は、後述する熱衝撃試験、吸水率の測定試験及びワイヤーボンディングの接合信頼性の評価試験に用いられる。
(Metal-clad laminate)
Using the obtained first prepreg, a 0.4 mm thick double-sided metal-clad laminate (hereinafter referred to as first metal-clad laminate) and a 0.8 mm-thick double-sided metal-clad laminate by the following method Two types of metal-clad laminates (hereinafter referred to as second metal-clad laminates) were obtained. The first metal-clad laminate has a butanol content, a chlorine content, a bromine content, a glass transition temperature (Tg) and a thermal expansion coefficient (CTE (α1)) measurement test described below, and a four-layer plate moldability evaluation test. Used for. The second metal-clad laminate is used in a thermal shock test, a water absorption measurement test, and a bonding reliability evaluation test described later.

<第一金属張積層板>
まず、第一プリプレグを4枚重ねて積層物を得、得られた積層物の両面に金属箔として第一銅箔(厚み:12μm)を重ねて、銅箔付きの積層物を得た。次いで、この銅箔付きの積層物を、加熱加圧成形することによって、0.4mm厚さの第一金属張積層板を得た。加熱加圧成形の条件は、210℃、4MPa、120分間であった。
<First metal-clad laminate>
First, four first prepregs were stacked to obtain a laminate, and a first copper foil (thickness: 12 μm) was stacked as a metal foil on both sides of the obtained laminate to obtain a laminate with a copper foil. Next, the laminate with copper foil was heated and pressed to obtain a first metal-clad laminate having a thickness of 0.4 mm. The conditions for the heat and pressure molding were 210 ° C., 4 MPa, and 120 minutes.

<第二金属張積層板>
第一プリプレグを8枚重ねた他は第一金属張積層板の製造方法と同様にして、0.8mm厚さの第二金属張積層板を得た。
<Second metal-clad laminate>
A second metal-clad laminate having a thickness of 0.8 mm was obtained in the same manner as the first metal-clad laminate, except that eight first prepregs were stacked.

[材料特性の測定及び評価]
下記方法により、ブタノール含有量、塩素含有量、臭素含有量、ガラス転移温度(Tg)、抵抗変化率、吸水率及び熱膨張係数(CTE(α1))を測定した。さらに、4層板成形性及びワイヤーボンディングの接合信頼性の評価を行った。材料特性の測定及び評価の結果を表1及び表2に示す。なお、表1及び表2中、「<0.16(n.d.)」とは、測定検出限界未満であることを意味する。
[Measurement and evaluation of material properties]
By the following method, butanol content, chlorine content, bromine content, glass transition temperature (Tg), resistance change rate, water absorption rate and coefficient of thermal expansion (CTE (α1)) were measured. Further, the evaluation of the four-layer plate formability and the bonding reliability of wire bonding was performed. Tables 1 and 2 show the results of measurement and evaluation of material properties. In Tables 1 and 2, “<0.16 (nd)” means less than the detection limit.

(ブタノール含有量)
0.4mm厚さの第一金属張積層板の両面に接着された第一銅箔ごと表面に位置するプリプレグの硬化物を表裏各1枚はがして、0.2mm厚さの硬化物のみの試料を得た。得られた試料のブタノール含有量を、ガスクロマトグラフィー質量分析計(「PerkinElmer, Inc.社製TurboMatrix650ATD/Clarus600/Clarus600T、カラム:SPB-1、吸着加熱条件:130℃・60分加熱、カラム昇温条件:35℃・5分〜(10℃/分)〜100℃〜(20℃/分)〜290℃・24分」、キャリアガス:ヘリウム(1mL/分)、注入量:14.3%)、測定モード:スキャン(m/z=24〜400)SIR(m/z=31、41、56))を用いて定量した。
(Butanol content)
A sample of only a cured product of 0.2 mm thickness is obtained by peeling off the cured product of the prepreg located on the surface together with the first copper foil adhered to both surfaces of the 0.4 mm thick first metal-clad laminate. Got. The butanol content of the obtained sample was measured using a gas chromatography mass spectrometer (“TurboMatrix650ATD / Clarus600 / Clarus600T manufactured by PerkinElmer, Inc., column: SPB-1, adsorption heating condition: 130 ° C./60 minutes heating, column heating Conditions: 35 ° C., 5 minutes to (10 ° C./minute) to 100 ° C. to (20 ° C./minute) to 290 ° C., 24 minutes ”, carrier gas: helium (1 mL / minute), injection amount: 14.3%) , Measurement mode: quantified using scan (m / z = 24-400) SIR (m / z = 31, 41, 56)).

(塩素含有量、臭素含有量)
0.4mm厚さの第一金属張積層板の両面に接着された第一銅箔ごと表面に位置するプリプレグの硬化物を表裏各1枚はがして、0.2mm厚さの硬化物のみの試料を得た。得られた試料の塩素含有量を、JISK 7229に規定のフラスコ燃焼法に準拠して、硝酸銀滴定法によって定量した。得られた試料の臭素含有量を、JIS K 7229に規定のフラスコ燃焼法に準拠して、硝酸銀滴定法によって定量した。
(Chlorine content, bromine content)
A sample of only a cured product of 0.2 mm thickness is obtained by peeling off the cured product of the prepreg located on the surface together with the first copper foil adhered to both surfaces of the 0.4 mm thick first metal-clad laminate. Got. The chlorine content of the obtained sample was quantified by a silver nitrate titration method according to the flask combustion method defined in JISK 7229. The bromine content of the obtained sample was quantified by a silver nitrate titration method according to the flask combustion method defined in JIS K 7229.

(ガラス転移温度 Tg)
0.4mm厚さの第一金属張積層板の両面に接着された第一銅箔をエッチングにより除去して、積層物の硬化物を得た。上記ガラスクロスは縦糸及び横糸がほぼ直交するように織られた織布からなる。この縦糸又は横糸に対して斜め45°方向に、この積層物の硬化物を切断して、サイズが50mm×5mmの試料を作製した。この試料のガラス転移温度Tgを、JIS C 6481に規定のDMA法(Dynamin-mechanical analysis)に準拠し、動的粘弾性測定装置(Seiko Instruments Inc.社製「DMA/DMS6100」)を用いて測定した。
(Glass transition temperature Tg)
The first copper foil adhered to both sides of the 0.4 mm thick first metal-clad laminate was removed by etching to obtain a cured product of the laminate. The glass cloth is made of a woven fabric woven so that warp and weft are almost orthogonal. The cured product of the laminate was cut in a 45 ° oblique direction with respect to the warp or weft to prepare a sample having a size of 50 mm × 5 mm. The glass transition temperature Tg of this sample is measured using a dynamic viscoelasticity measuring device (“DMA / DMS6100” manufactured by Seiko Instruments Inc.) in accordance with the DMA method (Dynamin-mechanical analysis) specified in JIS C 6481. did.

(熱衝撃試験)
図2Aは、評価用基板の4層階段デイジーチェーンパターンの形成部位の概略断面図である。図2Bは、評価用基板の外層デイジーチェーンパターンを形成部位の概略断面図である。図2A及び図2B中、60は評価用基板、60Aは4層階段デイジーチェーンパターンが形成された第一部位、60Bは外層デイジーチェーンパターンが形成された第二部位、70はコア基板、71は積層体の硬化物、72A,72Bは内層配線、73は第二プリプレグの硬化物、74A,74Bは貫通穴、75A,75Bは外層配線、76A,76Bはスルーホールめっきを指す。
(Thermal shock test)
FIG. 2A is a schematic cross-sectional view of a portion where a four-layer staircase daisy chain pattern is formed on the evaluation substrate. FIG. 2B is a schematic cross-sectional view of a portion where the outer layer daisy chain pattern of the evaluation substrate is formed. 2A and 2B, 60 is an evaluation substrate, 60A is a first portion where a four-layer staircase daisy chain pattern is formed, 60B is a second portion where an outer layer daisy chain pattern is formed, 70 is a core substrate, and 71 is The cured product of the laminate, 72A and 72B are inner layer wirings, 73 is the cured product of the second prepreg, 74A and 74B are through holes, 75A and 75B are outer layer wirings, and 76A and 76B are through hole plating.

下記方法により、4層階段デイジーチェーンパターンが形成された第一部位60Aと、外層デイジーチェーンパターンが形成された第二部位60Bとを有し、4層階段デイジーチェーンパターンの始点と、外層デイジーチェーンパターンの終点とがリード線で接続された評価用基板60を得た。4層階段デイジーチェーンパターンにおける電流Eは、図2Aに示すように階段状の経路で流れる。外層デイジーチェーンパターンにおける電流Eは、図2Bに示すように、矩形状の経路で流れる。   The following method has a first part 60A in which a four-layer staircase daisy chain pattern is formed and a second part 60B in which an outer layer daisy chain pattern is formed, and a starting point of the four-layer staircase daisy chain pattern, and an outer layer daisy chain An evaluation substrate 60 in which the end point of the pattern was connected by a lead wire was obtained. The current E in the four-layer staircase daisy chain pattern flows through a staircase path as shown in FIG. 2A. The current E in the outer layer daisy chain pattern flows in a rectangular path as shown in FIG. 2B.

まず、0.8mm厚さの第二金属張積層板の両面に接着された第一銅箔の一部をエッチング除去し、第一内層配線72A及び第二内層配線72Bを形成して、コア基板70を得た。   First, a part of the first copper foil adhered to both surfaces of the second metal-clad laminate having a thickness of 0.8 mm is removed by etching to form the first inner layer wiring 72A and the second inner layer wiring 72B. 70 was obtained.

次いで、このコア基板70の両面に0.06mm厚さの第二プリプレグ及び第二銅箔(厚み:12μm)をこの順で積層し、加熱加圧成形することによって、多層積層板を得た。加熱加圧成形の条件は、210℃、3MPa、90分間であった。   Next, a 0.06 mm-thick second prepreg and a second copper foil (thickness: 12 μm) were laminated in this order on both surfaces of the core substrate 70, and a multilayer laminate was obtained by heating and pressing. The conditions for the heat and pressure molding were 210 ° C., 3 MPa, and 90 minutes.

多層積層板にドリル加工を施し、デスミア処理を行った。これにより、第一部位60Aには、直径0.30mmの第一貫通穴74Aを2.0mmピッチで480穴を形成した。さらに、第二部位60Bには、直径0.30mmの第二貫通穴74Bを2.0mmピッチで500穴を形成した。   The multi-layer laminate was drilled and desmeared. Thereby, 480 holes were formed in the first portion 60A with the first through holes 74A having a diameter of 0.30 mm at a pitch of 2.0 mm. Further, in the second portion 60B, 500 holes were formed in the second through holes 74B having a diameter of 0.30 mm at a pitch of 2.0 mm.

次いで、多層積層板の両面に接着された第二銅箔の一部をエッチング除去し、第一外層配線75A及び第二外層配線75Bを形成した。   Next, a part of the second copper foil adhered to both surfaces of the multilayer laminate was removed by etching to form the first outer layer wiring 75A and the second outer layer wiring 75B.

次いで、第一貫通穴74A及び第二貫通穴74Bの内壁にめっき処理を施し、20〜30mm厚さの第一スルーホールめっき76A及び第二スルーホールめっき76Bを形成した。これにより第一部位60Aには4層階段デイジーチェーンパターンを形成し、第二部位60Bには外層デイジーチェーンパターンを形成した。   Next, the inner walls of the first through hole 74A and the second through hole 74B were plated to form a first through hole plating 76A and a second through hole plating 76B having a thickness of 20 to 30 mm. As a result, a four-layer staircase daisy chain pattern was formed in the first portion 60A, and an outer layer daisy chain pattern was formed in the second portion 60B.

次いで、4層階段デイジーチェーンパターンの始点と、外層デイジーチェーンパターンの終点とをはんだによりリード線で接続し、980穴のデイジーチェーンパターンを有する評価用基板60を得た。   Next, the starting point of the four-layer staircase daisy chain pattern and the end point of the outer layer daisy chain pattern were connected by a lead wire with solder to obtain an evaluation substrate 60 having a 980-hole daisy chain pattern.

この評価用基板60のデイジーチェーンパターンの初期の電気抵抗値を二端子法により測定した。次いで、この評価用基板を温度サイクル試験機内に投入し、−40℃を15分間保持し、−40℃から185℃まで1.5分間で昇温し、185℃を15分間保持し、185℃から−40℃まで1.5分間で降温するサイクルを1サイクルとする処理を2000サイクル行った。熱衝撃試験後の電気抵抗値を測定し、下記式より抵抗変化率を求めた。   The initial electrical resistance value of the daisy chain pattern of this evaluation substrate 60 was measured by the two-terminal method. Next, this evaluation substrate was put into a temperature cycle tester, held at -40 ° C for 15 minutes, heated from -40 ° C to 185 ° C in 1.5 minutes, held at 185 ° C for 15 minutes, and 185 ° C. A cycle in which the temperature was lowered from 1.5 to -40 ° C. over 1.5 minutes was 1 cycle. The electrical resistance value after the thermal shock test was measured, and the resistance change rate was obtained from the following formula.

抵抗変化率(%)=100×(熱衝撃試験後の電気抵抗値−初期の電気抵抗値)/初期の電気抵抗値   Resistance change rate (%) = 100 × (electric resistance value after thermal shock test−initial electric resistance value) / initial electric resistance value

(吸水率)
0.8mm厚さの第二金属張積層板の両面に接着された第一銅箔をエッチングにより除去して、積層物の硬化物を得た。得られた積層物の硬化物を用いて、JIS C6481に準拠して試料を作製した。この試料の、エポキシ樹脂組成物の硬化物のガラス転移温度未満の温度における吸水率を、JIS C 6481に準拠して測定した。
(Water absorption)
The first copper foil adhered to both surfaces of the 0.8 mm thick second metal-clad laminate was removed by etching to obtain a cured product of the laminate. A sample was prepared according to JIS C6481 using the cured product of the obtained laminate. The water absorption rate of this sample at a temperature lower than the glass transition temperature of the cured product of the epoxy resin composition was measured in accordance with JIS C 6481.

(熱膨張係数(CTE(α1))
0.4mm厚さの第一金属張積層板の両面に接着された第一銅箔をエッチングにより除去して、積層物の硬化物を得た。得られた積層物の硬化物の、エポキシ樹脂組成物の硬化物のガラス転移温度未満の温度におけるタテ方向の熱膨張係数を測定した。測定はJIS C6481に規定のTMA法(Termo-mechanical analysis)に準拠し、熱分析装置(Seiko Instruments Inc.社製「TMA/SS6000」)を用いた。ここで、タテ方向とは、積層物の硬化物の面において、プリプレグを連続式製法により製造する際のガラスクロスの走行方向に平行な方向をいう。
(Coefficient of thermal expansion (CTE (α1))
The first copper foil adhered to both sides of the 0.4 mm thick first metal-clad laminate was removed by etching to obtain a cured product of the laminate. The thermal expansion coefficient in the vertical direction of the cured product of the obtained laminate was measured at a temperature lower than the glass transition temperature of the cured product of the epoxy resin composition. The measurement was based on the TMA method (Termo-mechanical analysis) defined in JIS C6481, and a thermal analyzer (“TMA / SS6000” manufactured by Seiko Instruments Inc.) was used. Here, the vertical direction means a direction parallel to the traveling direction of the glass cloth when the prepreg is manufactured by a continuous manufacturing method on the surface of the cured product of the laminate.

(4層板成型性)
図3Aは格子パターン81の一部に形成された中抜け部81Aを示す、4層板成型性の評価試験で用いるコア基板80の概略正面図である。図3Bは図3A中のP部の拡大正面図である。図3Aでは、金属細線82を略している。
(4-layer plate formability)
FIG. 3A is a schematic front view of the core substrate 80 used in the four-layer plate moldability evaluation test showing the hollow portions 81A formed in a part of the lattice pattern 81. FIG. 3B is an enlarged front view of a portion P in FIG. 3A. In FIG. 3A, the thin metal wire 82 is omitted.

0.4mm厚さの第一金属張積層板の両面に接着された第一銅箔の一部をエッチングにより除去して、コア基板80(サイズ:340mm×510mm)を得た。コア基板80は、その両面に格子パターン81が形成されている。この格子パターン81は、図3Aに示すように、中抜け部81Aと、格子部81Bとを有する。中抜け部81Aは、図3Aに示すように、金属細線82が形成されていない正方形状(一辺の長さ:15mm)の部位であり、各中抜け部81Aは100mmおきに規則的に形成されている。格子部81Bは、図3Bに示すように、金属細線82(線幅:1.5mm)からなる正方形状の格子83(一辺の長さ:3.0mm)が連続的に形成されている部位である。   A part of the first copper foil adhered to both surfaces of the 0.4 mm-thick first metal-clad laminate was removed by etching to obtain a core substrate 80 (size: 340 mm × 510 mm). The core substrate 80 has a lattice pattern 81 formed on both sides thereof. As shown in FIG. 3A, the lattice pattern 81 includes a hollow portion 81A and a lattice portion 81B. As shown in FIG. 3A, the hollow portions 81A are square-shaped portions (length of one side: 15 mm) where the fine metal wires 82 are not formed, and the hollow portions 81A are regularly formed every 100 mm. ing. As shown in FIG. 3B, the lattice portion 81B is a portion where a square lattice 83 (length of one side: 3.0 mm) composed of fine metal wires 82 (line width: 1.5 mm) is continuously formed. is there.

次いで、このコア基板80の両面に0.06mm厚さの第二プリプレグ及び銅箔(厚み:12μm)をこの順で積層し、加熱加圧成形することによって、4層板を得た。   Next, a 0.06 mm-thick second prepreg and copper foil (thickness: 12 μm) were laminated in this order on both surfaces of the core substrate 80, and heat-pressed to obtain a four-layer plate.

この加熱加圧成形は下記の条件で行った。4層板に掛ける単位圧力は、加熱加圧成形の開始から20〜30分間は0.49〜0.98MPa(5〜10kg/cm)(一次圧力)とし、次いで、4層板に掛ける温度(以下、製品温度)が3℃/分の昇温速度で120℃となるまでに昇圧して2.94MPa(30kg/cm)(二次圧力)とした。その後、加熱加圧成形の処理が終わるまで、二次圧力を維持した。製品温度は、加熱加圧成形の開始から製品温度が160℃になるまで3℃/分の昇温速度で加熱し、その後、製品温度が160℃以上の状態を50分維持した。このときの製品温度の最高温度は170〜180℃であった。その後、2〜6℃/分の冷却速度で、4層板の温度が室温となるまで冷却した。雰囲気は、製品温度が130〜140℃になるまで13.3kPa(100Torr)以下の雰囲気を維持し、その後、大気開放した。 This hot pressing was performed under the following conditions. The unit pressure to be applied to the four-layer plate is 0.49 to 0.98 MPa (5 to 10 kg / cm 2 ) (primary pressure) for 20 to 30 minutes from the start of heating and pressing, and then the temperature to be applied to the four-layer plate. The pressure was increased to 120 ° C. at a rate of temperature increase of 3 ° C./min (hereinafter referred to as product temperature) to 2.94 MPa (30 kg / cm 2 ) (secondary pressure). Thereafter, the secondary pressure was maintained until the heat pressing process was completed. The product temperature was heated at a rate of temperature increase of 3 ° C./min until the product temperature reached 160 ° C. from the start of heat and pressure molding, and then the product temperature was maintained at 160 ° C. or higher for 50 minutes. The maximum product temperature at this time was 170 to 180 ° C. Then, it cooled until the temperature of a 4-layer board became room temperature with the cooling rate of 2-6 degreeC / min. The atmosphere was maintained at 13.3 kPa (100 Torr) or lower until the product temperature reached 130 to 140 ° C., and then released to the atmosphere.

この4層板の両面に接着された第二銅箔の全てをエッチングにより除去して、両面を目視にてカスレの有無を確認し、下記判断基準により、4層板成型性を評価した。
○:両面にカスレが確認できなかった。
△:中抜け部81Aのみにカスレが確認できた。
×:両面の格子部81B、中抜け部81Aの両方にカスレが確認できた。
All of the second copper foil adhered to both surfaces of the four-layer plate was removed by etching, and both surfaces were visually checked for the presence or absence of blurring, and the four-layer plate moldability was evaluated according to the following criteria.
○: Scratch could not be confirmed on both sides.
Δ: Scratch was confirmed only in the hollow portion 81A.
X: Scratch was confirmed in both the lattice portions 81B and the hollow portions 81A on both sides.

ここで、カスレとは、加熱加圧成形を行った際、第二プリプレグを構成するエポキシ樹脂組成物が格子パターン81全体を埋め尽くすように十分に行き渡らず、第二プリプレグの硬化物中や、第二プリプレグの硬化物と格子パターン81との間に気泡残りが発生していることをいう。このような気泡残りが発生している部位は、白色に見える。   Here, the scrap is not sufficiently spread so that the epoxy resin composition constituting the second prepreg fills the entire lattice pattern 81 when performing heat and pressure molding, and in the cured product of the second prepreg, It means that bubbles remain between the cured product of the second prepreg and the lattice pattern 81. The part where such bubble residue is generated appears white.

(ワイヤーボンディングの接合信頼性)
0.8mm厚さの第二金属張積層板の片面に接着された第一銅箔の一部をエッチングにより除去して、導体配線を形成した。さらに、この導体配線上にスパッタリング法によりアルミニウム薄膜(組成:Al98.5質量%、Si 1.0質量%、Cu 0.5質量%)を形成し、アルミパッド部を有するプリント配線板を得た。
(Joint reliability of wire bonding)
A part of the first copper foil adhered to one surface of the second metal-clad laminate having a thickness of 0.8 mm was removed by etching to form a conductor wiring. Further, an aluminum thin film (composition: Al 98.5% by mass, Si 1.0% by mass, Cu 0.5% by mass) was formed on the conductor wiring by a sputtering method to obtain a printed wiring board having an aluminum pad portion. .

半導体ウェハ裏面に、FH−900−25(日立化成工業製)を貼付け、ダイサー(DISCO製 DFD−6361)を用いて7.5mm×7.5mmにダイシングし、プリント配線板上にフレキシブルダイボンダ((株)ルネサス東日本セミコンダクタ製DB730SP)にて150℃/0.04MPa/1秒にて熱圧着した。   FH-900-25 (manufactured by Hitachi Chemical Co., Ltd.) is pasted on the backside of the semiconductor wafer, dicing into 7.5 mm × 7.5 mm using a dicer (DFD-6361 made by DISCO), and a flexible die bonder (( Thermocompression bonding was performed at 150 ° C./0.04 MPa / 1 second using DB730SP manufactured by Renesas East Japan Semiconductor.

次いで、超音波熱圧着(サーモソニック)方式ワイヤボンダ(カイジョー製の「FB−988」)を用いて、金ワイヤー(田中電子工業製の「GSB」、線径:20μm)を用いて、半導体と、プリント配線板のアルミパッド部とを電気的に接続し、半導体装置を得た。   Next, using an ultrasonic thermocompression (thermosonic) system wire bonder (“FB-988” manufactured by Kaijo), using a gold wire (“GSB” manufactured by Tanaka Denshi Kogyo, wire diameter: 20 μm), a semiconductor, The semiconductor device was obtained by electrically connecting the aluminum pad portion of the printed wiring board.

この半導体装置を乾燥機内に導入し、160℃の環境下で2000時間放置した。次いで、乾燥機内から半導体装置を取り出し、その後、パット部とワイヤーとの接続部分を1000ポイント断面観察した。下記判断基準により、ワイヤーボンディングの接合信頼性を評価した。
OK:4μm以上のクラックが観察されなかった。
NG:4μm以上のクラックが観察された。
This semiconductor device was introduced into a dryer and left in an environment of 160 ° C. for 2000 hours. Next, the semiconductor device was taken out from the dryer, and then, a 1000-point cross-sectional observation was performed on the connection portion between the pad portion and the wire. The bonding reliability of wire bonding was evaluated according to the following criteria.
OK: Cracks of 4 μm or more were not observed.
NG: Cracks of 4 μm or more were observed.

Figure 2018009065
Figure 2018009065

Figure 2018009065
Figure 2018009065

1 半導体装置
10 プリント配線板
11 ボンドパッド部
20 半導体
30 金属ワイヤー
40 接合体
50 封止樹脂体
60 評価用基板
60A 4層階段デイジーチェーンパターンが形成された第一部位
60B 外層デイジーチェーンパターンが形成された第二部位
70 コア基板
71 積層体の硬化物
72A,72B 内層配線
73 第二プリプレグの硬化物
74A,74B 貫通穴
75A,75B 外層配線
76A,76B スルーホールめっき
DESCRIPTION OF SYMBOLS 1 Semiconductor device 10 Printed wiring board 11 Bond pad part 20 Semiconductor 30 Metal wire 40 Junction body 50 Sealing resin body 60 Evaluation board 60A The 1st site | part in which the 4 layer staircase daisy chain pattern was formed 60B The outer layer daisy chain pattern was formed Second part 70 Core substrate 71 Hardened product 72A, 72B of inner layer wiring 73 Hardened product of second prepreg 74A, 74B Through hole 75A, 75B Outer layer wiring 76A, 76B Through-hole plating

Claims (8)

エポキシ樹脂、硬化剤及び硬化促進剤を含む有機成分を含有し、
硬化後のブタノール含有量が、ガスクロマトグラフィー質量(GC−MS)分析法にて測定検出限界未満であり、硬化後の塩素含有量が900ppm以下、且つ、硬化後の臭素含有量が900ppm以下であることを特徴とするエポキシ樹脂組成物。
Contains organic components including epoxy resins, curing agents and curing accelerators,
The butanol content after curing is less than the detection limit by gas chromatography mass (GC-MS) analysis, the chlorine content after curing is 900 ppm or less, and the bromine content after curing is 900 ppm or less. An epoxy resin composition characterized by being.
前記エポキシ樹脂がナフタレン骨格を有することを特徴とする請求項1に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1, wherein the epoxy resin has a naphthalene skeleton. 前記硬化剤がフェノール骨格を有することを特徴とする請求項1又は2に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1, wherein the curing agent has a phenol skeleton. 無機成分の含有量が、前記有機成分100質量部に対して、150質量部以上220質量部以下であることを特徴とする請求項1〜3のいずれか1項に記載のエポキシ樹脂組成物。   Content of an inorganic component is 150 to 220 mass parts with respect to 100 mass parts of said organic components, The epoxy resin composition of any one of Claims 1-3 characterized by the above-mentioned. 前記無機成分が球状シリカ粒子を含み、
前記球状シリカ粒子の平均粒子径が0.1μm以上3μm以下であることを特徴とする請求項4に記載のエポキシ樹脂組成物。
The inorganic component includes spherical silica particles;
The epoxy resin composition according to claim 4, wherein the spherical silica particles have an average particle size of 0.1 μm or more and 3 μm or less.
繊維基材と、
前記繊維基材に含浸された、請求項1〜5のいずれか1項に記載のエポキシ樹脂組成物の半硬化物と、を備えることを特徴とするプリプレグ。
A fiber substrate;
A prepreg comprising the epoxy resin composition semi-cured product according to any one of claims 1 to 5, which is impregnated in the fiber base material.
請求項6に記載のプリプレグの1枚の硬化物又は複数枚の積層物の硬化物と、
前記硬化物の片面または両面に接着された金属箔と、
を備えることを特徴とする金属張積層板。
One cured product of the prepreg according to claim 6 or a cured product of a plurality of laminates;
A metal foil bonded to one or both sides of the cured product;
A metal-clad laminate, comprising:
請求項6に記載のプリプレグの1枚の硬化物又は複数枚の積層物の硬化物と、
前記硬化物の片面または両面に接着された導体配線と、
を備えることを特徴とするプリント配線板。
One cured product of the prepreg according to claim 6 or a cured product of a plurality of laminates;
Conductor wiring bonded to one or both sides of the cured product,
A printed wiring board comprising:
JP2016137135A 2016-07-11 2016-07-11 Epoxy resin composition, prepreg, metal-clad laminate and printed wiring board Active JP6830191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016137135A JP6830191B2 (en) 2016-07-11 2016-07-11 Epoxy resin composition, prepreg, metal-clad laminate and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016137135A JP6830191B2 (en) 2016-07-11 2016-07-11 Epoxy resin composition, prepreg, metal-clad laminate and printed wiring board

Publications (2)

Publication Number Publication Date
JP2018009065A true JP2018009065A (en) 2018-01-18
JP6830191B2 JP6830191B2 (en) 2021-02-17

Family

ID=60994958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016137135A Active JP6830191B2 (en) 2016-07-11 2016-07-11 Epoxy resin composition, prepreg, metal-clad laminate and printed wiring board

Country Status (1)

Country Link
JP (1) JP6830191B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241288A1 (en) * 2020-05-27 2021-12-02 住友化学株式会社 Epoxy resin composition and cured object obtained therefrom
JP7466248B1 (en) 2023-09-08 2024-04-12 株式会社The MOT Company Press molding member, its manufacturing method, and manufacturing method of battery case using press molding member

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121263A (en) * 2000-10-17 2002-04-23 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003096273A (en) * 2001-09-25 2003-04-03 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003253018A (en) * 2002-03-06 2003-09-10 Sumitomo Bakelite Co Ltd Prepreg and printed wiring board using the same
JP2008297373A (en) * 2007-05-29 2008-12-11 Somar Corp Underfill material comprising liquid epoxy resin composition, and flip chip type semiconductor device
JP2011207932A (en) * 2010-03-29 2011-10-20 Mitsubishi Chemicals Corp Epoxy resin and epoxy resin composition
WO2012070387A1 (en) * 2010-11-25 2012-05-31 旭化成イーマテリアルズ株式会社 Epoxy resin and resin composition
WO2013145607A1 (en) * 2012-03-27 2013-10-03 住友ベークライト株式会社 Resin composition for reflecting light, substrate for mounting optical semiconductor element, and optical semiconductor device
JP2015157885A (en) * 2014-02-21 2015-09-03 日本化薬株式会社 Epoxy resin, curable resin composition and cured product
JP2015189834A (en) * 2014-03-27 2015-11-02 パナソニックIpマネジメント株式会社 Prepreg, metal-clad laminate, and printed wiring board

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121263A (en) * 2000-10-17 2002-04-23 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003096273A (en) * 2001-09-25 2003-04-03 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003253018A (en) * 2002-03-06 2003-09-10 Sumitomo Bakelite Co Ltd Prepreg and printed wiring board using the same
JP2008297373A (en) * 2007-05-29 2008-12-11 Somar Corp Underfill material comprising liquid epoxy resin composition, and flip chip type semiconductor device
JP2011207932A (en) * 2010-03-29 2011-10-20 Mitsubishi Chemicals Corp Epoxy resin and epoxy resin composition
WO2012070387A1 (en) * 2010-11-25 2012-05-31 旭化成イーマテリアルズ株式会社 Epoxy resin and resin composition
WO2013145607A1 (en) * 2012-03-27 2013-10-03 住友ベークライト株式会社 Resin composition for reflecting light, substrate for mounting optical semiconductor element, and optical semiconductor device
JP2015157885A (en) * 2014-02-21 2015-09-03 日本化薬株式会社 Epoxy resin, curable resin composition and cured product
JP2015189834A (en) * 2014-03-27 2015-11-02 パナソニックIpマネジメント株式会社 Prepreg, metal-clad laminate, and printed wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241288A1 (en) * 2020-05-27 2021-12-02 住友化学株式会社 Epoxy resin composition and cured object obtained therefrom
JP7466248B1 (en) 2023-09-08 2024-04-12 株式会社The MOT Company Press molding member, its manufacturing method, and manufacturing method of battery case using press molding member

Also Published As

Publication number Publication date
JP6830191B2 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
CN101647327B (en) Multilayered circuit board and semiconductor device
KR101141902B1 (en) Epoxy resin composition, prepreg, laminate board, multilayer printed wiring board, semiconductor device, insulating resin sheet, and process for manufacturing multilayer printed wiring board
KR101115108B1 (en) Multilayered wiring board and semiconductor device
JP6217165B2 (en) Prepreg with primer layer, metal foil with primer layer, metal-clad laminate, printed wiring board, semiconductor package and semiconductor device
TWI405523B (en) Laminated article, method for making substrate board, substrate board and semiconductor device
KR20100134017A (en) Multilayer circuit board, insulating sheet, and semiconductor package using multilayer circuit board
JPWO2003018675A1 (en) Resin composition, prepreg, laminate and semiconductor package
KR101502653B1 (en) Laminate, circuit board and semiconductor device
JP6186977B2 (en) Resin composition, resin sheet, prepreg, laminate, printed wiring board, and semiconductor device
KR20130133199A (en) Insulating substrate, metal-clad laminate, printed wiring board, and semiconductor device
KR101409048B1 (en) Circuit board manufacturing method, semiconductor manufacturing apparatus, circuit board and semiconductor device
KR101574907B1 (en) Prepreg, laminated plate, semiconductor package and method for manufacturing laminated plate
JP2008038066A (en) Prepreg, substrate and semiconductor device
JP6428638B2 (en) Metal-clad laminate, circuit board, and electronic device
JP6830191B2 (en) Epoxy resin composition, prepreg, metal-clad laminate and printed wiring board
JP2010238907A (en) Laminated board, multilayer printed wiring board, and semiconductor device
WO2015072261A1 (en) Resin-layer-equipped carrier material, laminate, circuit board, and electronic device
JP2012131946A (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP5256681B2 (en) Semiconductor device, printed wiring board for semiconductor device, and copper-clad laminate
TWI419636B (en) Multiple circuit board and semiconductor device
JP2009067852A (en) Insulation resin sheet impregnated with glass fiber woven fabric, laminated plate, multilayered printed wiring board, and semiconductor device
EP3512315B1 (en) Printed wiring board and printed circuit board
JP4385555B2 (en) Interposer, semiconductor package and manufacturing method thereof
JP5935314B2 (en) Manufacturing method of semiconductor device
JP5105030B2 (en) Substrate, semiconductor device and substrate manufacturing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210106

R151 Written notification of patent or utility model registration

Ref document number: 6830191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151