JP2018006076A - Transparent conductive sheet and production method thereof - Google Patents

Transparent conductive sheet and production method thereof Download PDF

Info

Publication number
JP2018006076A
JP2018006076A JP2016128969A JP2016128969A JP2018006076A JP 2018006076 A JP2018006076 A JP 2018006076A JP 2016128969 A JP2016128969 A JP 2016128969A JP 2016128969 A JP2016128969 A JP 2016128969A JP 2018006076 A JP2018006076 A JP 2018006076A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
transparent
hydrophobic resin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016128969A
Other languages
Japanese (ja)
Other versions
JP6716366B2 (en
Inventor
智久 西本
Tomohisa Nishimoto
智久 西本
涼 野村
Ryo Nomura
涼 野村
土井 秀軽
Shukei Doi
秀軽 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Holdings Ltd filed Critical Maxell Holdings Ltd
Priority to JP2016128969A priority Critical patent/JP6716366B2/en
Priority to CN201610773400.5A priority patent/CN107545949B/en
Priority to TW105127874A priority patent/TWI619785B/en
Priority to KR1020160111974A priority patent/KR20180002470A/en
Publication of JP2018006076A publication Critical patent/JP2018006076A/en
Priority to KR1020180172894A priority patent/KR20190002411A/en
Application granted granted Critical
Publication of JP6716366B2 publication Critical patent/JP6716366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/76Hydrophobic and oleophobic coatings

Abstract

PROBLEM TO BE SOLVED: To provide a transparent conductive sheet having excellent electric characteristics, optical characteristics, physical properties and moisture thermal resistance.SOLUTION: A transparent conductive sheet 10 of the present invention includes: a transparent base material 11; and a transparent conductive film 12 formed on a main surface of the transparent base material 11, the transparent conductive film 12 including a conductive polymer 12b and a hydrophobic resin 12a, the hydrophobic resin 12a forming a plurality of lumpy bodies, the conductive polymer 12b being arranged between the lumpy bodies and being three-dimensionally connected, and a part of the conductive polymer 12b reaching a surface of the transparent conductive film 12.SELECTED DRAWING: Figure 1

Description

本発明は、透明導電性シート及びその製造方法に関する。   The present invention relates to a transparent conductive sheet and a method for producing the same.

近年、チオフェン系やアニリン系の高分子は優れた安定性及び導電性を有することから、有機導電性材料としてその活用が期待されている。その活用の一つとして、液晶ディスプレイ、透明タッチパネル等の各種デバイスに用いられる透明電極の形成に、導電性高分子を溶媒に分散させたコーティング組成物が用いられている。   In recent years, thiophene-based and aniline-based polymers have excellent stability and conductivity, and are expected to be used as organic conductive materials. As one of the applications, a coating composition in which a conductive polymer is dispersed in a solvent is used for forming transparent electrodes used in various devices such as liquid crystal displays and transparent touch panels.

特許文献1では、「導電性高分子と、樹脂と、溶媒とを含む透明導電性コーティング組成物であって、前記樹脂は、ポリフッ化ビニリデンを含み、前記溶媒は、プロトン性極性溶媒と、非プロトン性極性溶媒とを含み、前記コーティング組成物中における前記ポリフッ化ビニリデンの分散粒子径は、0.3μm以下であり、前記導電性高分子の含有量は、前記コーティング組成物に含まれる全固形成分の質量に対して3質量%以上45質量%以下であり、前記非プロトン性極性溶媒の含有量は、前記溶媒の全質量に対して25質量%以上50質量%以下」である透明導電性コーティング組成物が提案されている。   In Patent Document 1, “a transparent conductive coating composition containing a conductive polymer, a resin, and a solvent, wherein the resin contains polyvinylidene fluoride, the solvent includes a protic polar solvent, and a non-polar solvent. And a dispersion particle diameter of the polyvinylidene fluoride in the coating composition is 0.3 μm or less, and the content of the conductive polymer is all solids contained in the coating composition. The transparent conductivity is 3% by mass or more and 45% by mass or less with respect to the mass of the component, and the content of the aprotic polar solvent is 25% by mass or more and 50% by mass or less based on the total mass of the solvent Coating compositions have been proposed.

特開2016−3312号公報Japanese Unexamined Patent Publication No. 2016-3312

しかし、特許文献1に記載のコーティング組成物を用いて透明導電性シートを製造する場合、透明導電性シートの硬度が十分でなく、製造過程で透明導電性シートが破損又は損傷する可能性があり、物理特性に問題があることが判明した。   However, when producing a transparent conductive sheet using the coating composition described in Patent Document 1, the hardness of the transparent conductive sheet is not sufficient, and the transparent conductive sheet may be damaged or damaged during the production process. It turns out that there is a problem with the physical properties.

本発明は、上記問題を解消するためになされたものであり、特に物理特性に優れた透明導電性膜を有する透明導電性シート及びその製造方法を提供する。   The present invention has been made to solve the above problems, and provides a transparent conductive sheet having a transparent conductive film particularly excellent in physical properties and a method for producing the same.

本発明の一例によれば、透明導電性シートは、透明基材と、前記透明基材の主面に形成された透明導電性膜とを含む透明導電性シートであって、前記透明導電性膜は、導電性高分子と、疎水性樹脂とを含み、前記疎水性樹脂は、複数の塊状体を形成し、前記導電性高分子は、前記塊状体の間に配置されて、三次元的に連結し、前記導電性高分子の一部が、前記透明導電性膜の表面にまで達する構成を有する。   According to an example of the present invention, the transparent conductive sheet is a transparent conductive sheet including a transparent base material and a transparent conductive film formed on a main surface of the transparent base material, the transparent conductive film Includes a conductive polymer and a hydrophobic resin, and the hydrophobic resin forms a plurality of lumps, and the conductive polymer is disposed between the lumps in a three-dimensional manner. It is connected, and a part of the conductive polymer reaches the surface of the transparent conductive film.

本発明によれば、物理特性に優れた透明導電性膜を有する透明導電性シートを提供することができる。   According to the present invention, a transparent conductive sheet having a transparent conductive film excellent in physical properties can be provided.

図1は、本発明の一実施形態による透明導電性シートの模式断面図である。FIG. 1 is a schematic cross-sectional view of a transparent conductive sheet according to an embodiment of the present invention. 図2は、従来の透明導電性シートの模式断面図である。FIG. 2 is a schematic cross-sectional view of a conventional transparent conductive sheet. 図3は、実施例1の透明導電性シートの断面の電界放射形走査電子顕微鏡写真を示す図である。3 is a view showing a field emission scanning electron micrograph of a cross section of the transparent conductive sheet of Example 1. FIG. 図4は、実施例1の透明導電性シートの表面のAFM/電流同時測定によるAFM電流像を示す図である。4 is a diagram showing an AFM current image obtained by simultaneous AFM / current measurement on the surface of the transparent conductive sheet of Example 1. FIG. 図5は、実施例1の透明導電性シートの断面のAFM/電流同時測定によるAFM電流像を示す図である。FIG. 5 is a diagram showing an AFM current image obtained by simultaneous AFM / current measurement of the cross section of the transparent conductive sheet of Example 1. FIG.

(透明導電性シート)
本発明の一実施形態による透明導電性シートは、透明基材と、上記透明基材の主面に形成された透明導電性膜とを備え、上記透明導電性膜は、導電性高分子と、疎水性樹脂とを含み、上記疎水性樹脂は、複数の塊状体を形成し、上記導電性高分子は、上記塊状体の間に配置されて、三次元的に連結し、上記導電性高分子の一部が、上記透明導電性膜の表面にまで達している。
(Transparent conductive sheet)
A transparent conductive sheet according to an embodiment of the present invention includes a transparent base material and a transparent conductive film formed on a main surface of the transparent base material, and the transparent conductive film includes a conductive polymer, A hydrophobic resin, and the hydrophobic resin forms a plurality of lumps, and the conductive polymer is disposed between the lumps and is three-dimensionally connected to the conductive polymer. A part of reaches the surface of the transparent conductive film.

より具体的には、本発明の一実施形態による透明導電性シートは、透明基材と、上記透明基材の主面に形成された透明導電性膜とを備え、上記透明導電性膜は、導電性高分子と、疎水性樹脂とを含み、上記透明導電性膜の鉛筆硬度が、B以上であり、上記透明導電性膜の表面電気抵抗値が、50Ω/スクエア以上200Ω/スクエア以下であり、上記透明導電性シートの全光線透過率が、85%以上となる。   More specifically, the transparent conductive sheet according to an embodiment of the present invention includes a transparent substrate and a transparent conductive film formed on the main surface of the transparent substrate, and the transparent conductive film includes: A conductive polymer and a hydrophobic resin are included, the pencil hardness of the transparent conductive film is B or more, and the surface electrical resistance value of the transparent conductive film is 50Ω / square or more and 200Ω / square or less. The total light transmittance of the transparent conductive sheet is 85% or more.

本発明の一実施形態による透明導電性シートの透明導電性膜においては、上記疎水性樹脂が複数の塊状体を形成し、上記導電性高分子が上記塊状体の間に配置されて三次元的に連結することにより、三次元的導電パスを形成し、三次元的導電パスを形成した導電性高分子の一部が上記透明導電性膜の表面にまで達しているため、電気特性、光学特性、物理特性及び耐湿熱性に優れている。   In the transparent conductive film of the transparent conductive sheet according to an embodiment of the present invention, the hydrophobic resin forms a plurality of lumps, and the conductive polymer is disposed between the lumps so as to be three-dimensional. By connecting to the surface, a three-dimensional conductive path is formed, and a part of the conductive polymer that has formed the three-dimensional conductive path reaches the surface of the transparent conductive film. Excellent physical properties and heat and humidity resistance.

上記塊状体は、上記疎水性樹脂の単一粒子からなるか、又は、上記疎水性樹脂の単一粒子の集合体からなり、また、単一粒子からなる塊状体と、単一粒子の集合体からなる塊状体とが混在していてもよい。   The agglomerate is composed of a single particle of the hydrophobic resin or an aggregate of single particles of the hydrophobic resin, and the agglomerate of single particles and an aggregate of single particles The lump which consists of may be mixed.

また、上記疎水性樹脂は、上記透明導電性膜のバインダとして機能するため、上記透明導電性膜と上記透明基材との密着性を向上できる。特に、上記透明基材として樹脂フィルム等のフレキシブル基材を用いる場合に、上記透明導電性膜が疎水性樹脂を含むことは、上記透明導電性膜と上記透明基材との密着性や追従性の観点で好ましい。   Moreover, since the said hydrophobic resin functions as a binder of the said transparent conductive film, it can improve the adhesiveness of the said transparent conductive film and the said transparent base material. In particular, when a flexible base material such as a resin film is used as the transparent base material, the fact that the transparent conductive film contains a hydrophobic resin means that the adhesiveness and followability between the transparent conductive film and the transparent base material From the viewpoint of

上記導電性高分子とは、Conductive Polymers(CPs)と呼ばれる高分子であり、ドーパントによるドーピングによって、ポリラジカルカチオニック塩又はポリラジカルアニオニック塩が形成された状態で、それ自体が導電性を発揮し得る高分子をいう。具体的には、ポリチオフェン、ポリアニリン、ポリピロール及びこれらの誘導体等のπ共役系導電性高分子が挙げられる。   The conductive polymer is a polymer called Conductive Polymers (CPs), and it exhibits conductivity in a state where a polyradical cationic salt or a polyradical anionic salt is formed by doping with a dopant. Refers to a polymer that can. Specific examples include π-conjugated conductive polymers such as polythiophene, polyaniline, polypyrrole, and derivatives thereof.

本発明の一実施形態では、上記導電性高分子として、ポリチオフェン系化合物とドーパントとを含むものを用いることができる。上記導電性高分子としては、ポリチオフェン系化合物としてポリ(3,4−エチレンジオキシチオフェン)と、ドーパントとしてポリスチレンスルホン酸とを含む混合物(PEDOT/PSSともいう。)を用いることができるが、これに限定されない。   In one embodiment of the present invention, a polymer containing a polythiophene compound and a dopant can be used as the conductive polymer. As the conductive polymer, a mixture (also referred to as PEDOT / PSS) containing poly (3,4-ethylenedioxythiophene) as a polythiophene compound and polystyrene sulfonic acid as a dopant can be used. It is not limited to.

上記PEDOT/PSSとしては、例えば、PEDOTとPSSとの組成比は、PEDOT100質量部に対しPSSは300質量部以下が好ましい。このような組み合わせのものとしては、例えば、ヘレウス社製のクレビオスシリーズで“PH1000”、“PH750”、“PH500”、“PHCV4”等が挙げられる。   As said PEDOT / PSS, for example, as for the composition ratio of PEDOT and PSS, 300 mass parts or less of PSS is preferable with respect to 100 mass parts of PEDOT. As such a combination, for example, “PH1000”, “PH750”, “PH500”, “PHCV4”, etc., are available in the Crevius series manufactured by Heraeus.

続いて、上記PEDOT/PSSの形態を説明する。先ず、PEDOTの分子量は1000〜2500程度のオリゴマーであり、PSSの分子量は10000〜500000程度の高分子であり、これらからPEDOT/PSSの一次構造が形成される。次に、アニオニックのPSS鎖に対して、多数のカチオニックのPEDOT分子が吸着して塩となる二次構造を取る。更に、PSS鎖が相互に絡み合うことでゲル状に凝集した3次構造を形成し、水中に分散した場合、コロイド状態を形成する。また、導電性高分子であるPEDOT/PSSの形態は、透明導電性膜の形成時には疎水性樹脂の存在により、コロイド状態から一定の体積を保持しながら変形する。   Next, the form of the PEDOT / PSS will be described. First, the molecular weight of PEDOT is an oligomer having a molecular weight of about 1000 to 2500, and the molecular weight of PSS is a polymer having a molecular weight of about 10,000 to 500,000. From these, the primary structure of PEDOT / PSS is formed. Next, a secondary structure is formed in which a large number of cationic PEDOT molecules are adsorbed onto anionic PSS chains to form a salt. Furthermore, a PSS chain is entangled with each other to form a tertiary structure aggregated in a gel state, and when dispersed in water, forms a colloidal state. The form of PEDOT / PSS, which is a conductive polymer, is deformed while maintaining a constant volume from the colloidal state due to the presence of the hydrophobic resin when the transparent conductive film is formed.

上記導電性高分子の水分散液における平均粒子径は10nm〜500nm程度であることが好ましく、電気特性、光学特性、物理特性及び耐湿熱性を向上させる観点から、10nm〜100nmがより好ましい。   The average particle diameter in the aqueous dispersion of the conductive polymer is preferably about 10 nm to 500 nm, and more preferably 10 nm to 100 nm from the viewpoint of improving electrical characteristics, optical characteristics, physical characteristics, and heat and humidity resistance.

上記導電性高分子の平均粒子径は、次のようにして測定する。先ず、導電性高分子の水分散液を分取して凍結後、破断面を作製する。その後、FEI社製の電界放射形走査電子顕微鏡(FE−SEM)を用いて、加速電圧:1.0kV、倍率:50000倍で観察して、二次電子像を得る。得られた二次電子像について画像処理を施し、個々の粒子の最大長軸径を算出する。その後、算出した最大長軸径の算術平均値を求めて、導電性高分子の平均粒子径とする。   The average particle diameter of the conductive polymer is measured as follows. First, an aqueous dispersion of a conductive polymer is collected and frozen, and then a fracture surface is prepared. Thereafter, using a field emission scanning electron microscope (FE-SEM) manufactured by FEI, observation is made at an acceleration voltage of 1.0 kV and a magnification of 50000 times to obtain a secondary electron image. The obtained secondary electron image is subjected to image processing, and the maximum major axis diameter of each particle is calculated. Thereafter, an arithmetic average value of the calculated maximum long axis diameter is obtained and set as the average particle diameter of the conductive polymer.

上記導電性高分子の一部は、上記透明導電性膜の表面にまで達していることが必要であり、これにより、本発明の一実施形態による透明導電性シートの透明導電性膜の表面電気抵抗値を確実に低下させることができる。   It is necessary that a part of the conductive polymer reaches the surface of the transparent conductive film, and thereby the surface electricity of the transparent conductive film of the transparent conductive sheet according to the embodiment of the present invention. The resistance value can be reliably reduced.

ここで上記透明導電性膜の電気特性及び物理特性が向上する理由について、従来の透明導電性膜と比較して、図面に基づき説明する。   Here, the reason why the electrical characteristics and physical characteristics of the transparent conductive film are improved will be described based on the drawings as compared with the conventional transparent conductive film.

図1は、本発明の一実施形態による透明導電性シートの模式断面図である。図1において、本発明の一実施形態による透明導電性シート10は、透明基材11と、透明基材11の上に形成された透明導電性膜12とを備えている。また、透明導電性膜12は、バインダとして機能する疎水性樹脂12aと、導電性高分子12bとから形成されている。疎水性樹脂12aは、塊状体を形成し、導電性高分子12bは、塊状体を形成した疎水性樹脂12aの間に配置されている。また、上記塊状体は、上記疎水性樹脂の単一粒子からなるか、又は、上記疎水性樹脂の単一粒子の集合体からなると考えられる。また、上記塊状体は、単一粒子からなる塊状体と、単一粒子の集合体からなる塊状体とが混在していてもよい。   FIG. 1 is a schematic cross-sectional view of a transparent conductive sheet according to an embodiment of the present invention. In FIG. 1, a transparent conductive sheet 10 according to an embodiment of the present invention includes a transparent substrate 11 and a transparent conductive film 12 formed on the transparent substrate 11. The transparent conductive film 12 is formed of a hydrophobic resin 12a that functions as a binder and a conductive polymer 12b. The hydrophobic resin 12a forms a lump, and the conductive polymer 12b is disposed between the hydrophobic resins 12a that form the lump. Further, it is considered that the lump is composed of a single particle of the hydrophobic resin or an aggregate of single particles of the hydrophobic resin. Moreover, the said lump may be mixed with the lump which consists of a single particle, and the lump which consists of an aggregate | assembly of a single particle.

また、導電性高分子12bは、透明導電性膜12の中で三次元的に連結することにより、三次元的導電パスを形成し、三次元的導電パスを形成した導電性高分子の一部が、透明導電性膜12の表面にまで達している。ここで、三次元的導電パスを形成することとは、導電性高分子が三次元方向に導通している状態をいう。上記三次元的導電パスを形成した導電性高分子は、透明導電性膜12の中において、完全に一体化されていてもよいし、三次元的導電パスを形成した導電性高分子が複数の集合を形成して連結して相互に電気的に接続していてもよい。即ち、透明導電性膜12の中で、導電性高分子12bが導電パス、即ち、導電性ネットワークを形成していればよい。これにより、透明導電性シート10の導電性を向上できると考えられる。   The conductive polymer 12b is three-dimensionally connected in the transparent conductive film 12 to form a three-dimensional conductive path, and a part of the conductive polymer that has formed the three-dimensional conductive path. However, it reaches the surface of the transparent conductive film 12. Here, the formation of a three-dimensional conductive path means a state in which a conductive polymer is conducted in a three-dimensional direction. The conductive polymer forming the three-dimensional conductive path may be completely integrated in the transparent conductive film 12, or a plurality of conductive polymers forming the three-dimensional conductive path may be included. A set may be formed and connected to be electrically connected to each other. That is, it is only necessary that the conductive polymer 12b forms a conductive path, that is, a conductive network in the transparent conductive film 12. Thereby, it is thought that the electroconductivity of the transparent conductive sheet 10 can be improved.

導電性高分子12bが、透明導電性膜12の中で三次元的に連結し、上記導電性高分子の一部が、透明導電性膜12の表面にまで達していることは、透明導電性膜12の表面及び断面について、原子間力顕微鏡(Atomic Force Microscope:AFM)を用いて、AFM/電流同時測定を行い、導電部を可視化することにより確認できる。   The conductive polymer 12b is three-dimensionally connected in the transparent conductive film 12, and a part of the conductive polymer reaches the surface of the transparent conductive film 12. The surface and cross section of the film 12 can be confirmed by performing AFM / current simultaneous measurement using an atomic force microscope (AFM) and visualizing the conductive part.

透明導電性膜12の表面には、導電性高分子と疎水性樹脂とが一定の比率で存在する。透明導電性膜12の表面近傍にも疎水性樹脂12aが存在し、強度的に弱い導電性高分子12bを補うことで、透明導電性膜12の表面硬度が向上できると考えられる。一方、表面の導電性高分子12bは、三次元的導電パスを形成する導電性高分子と、三次元的導電パスを形成しない導電性高分子とに二分されることが分かっている。三次元的導電パスを形成する導電性高分子は、疎水性樹脂12aに保護されているため、例え、表面摩擦を加えたとしても、透明導電性膜として機能する。また、透明導電性膜12の内部には、疎水性樹脂12aの塊状体が充填され、導電性高分子12bが疎水性樹脂12aの塊状体の間に散在する状態となる。このため、立体的構造として疎水性樹脂12aの塊状体同士がお互いに化学的相互作用と物理的相互作用とを与えながら、整然と配列するため、透明導電性膜12の内部硬度も向上すると考えられる。   On the surface of the transparent conductive film 12, the conductive polymer and the hydrophobic resin are present at a certain ratio. It is considered that the hydrophobic resin 12a is also present near the surface of the transparent conductive film 12, and the surface hardness of the transparent conductive film 12 can be improved by supplementing the weakly conductive polymer 12b. On the other hand, it is known that the conductive polymer 12b on the surface is divided into a conductive polymer that forms a three-dimensional conductive path and a conductive polymer that does not form a three-dimensional conductive path. Since the conductive polymer forming the three-dimensional conductive path is protected by the hydrophobic resin 12a, it functions as a transparent conductive film even if surface friction is applied. The transparent conductive film 12 is filled with a block of hydrophobic resin 12a, and the conductive polymer 12b is scattered between the blocks of the hydrophobic resin 12a. For this reason, it is considered that the internal hardness of the transparent conductive film 12 is improved because the bulky bodies of the hydrophobic resin 12a are arranged in order while giving a chemical interaction and a physical interaction to each other as a three-dimensional structure. .

一方、図2は、疎水性樹脂に代えて親水性樹脂を用いた従来の透明導電性シートの模式断面図である。図2において、従来の透明導電性シート20は、透明基材21と、透明基材21の上に形成された透明導電性膜22とを備えている。また、透明導電性膜22は、親水性樹脂22aと、導電性高分子22bとから形成されている。導電性高分子と、疎水性樹脂と、溶媒とを含む透明導電性膜形成用塗布液において、溶媒が水の場合、疎水性樹脂は溶媒中でエマルジョン型の形態となるが、親水性樹脂22aはエマルジョン型の形態はとらず溶媒中に溶解する。また、親水性樹脂22aは、ほぼランダムに透明導電性膜22の中に分散し、導電性高分子22bは、親水性樹脂22aの間に配置されていると考えられる。   On the other hand, FIG. 2 is a schematic cross-sectional view of a conventional transparent conductive sheet using a hydrophilic resin instead of a hydrophobic resin. In FIG. 2, a conventional transparent conductive sheet 20 includes a transparent base material 21 and a transparent conductive film 22 formed on the transparent base material 21. The transparent conductive film 22 is formed from a hydrophilic resin 22a and a conductive polymer 22b. In a transparent conductive film forming coating solution containing a conductive polymer, a hydrophobic resin, and a solvent, when the solvent is water, the hydrophobic resin is in an emulsion type form in the solvent, but the hydrophilic resin 22a. Does not take the form of an emulsion and dissolves in a solvent. In addition, it is considered that the hydrophilic resin 22a is dispersed in the transparent conductive film 22 almost randomly, and the conductive polymer 22b is disposed between the hydrophilic resins 22a.

また、導電性高分子22bは、透明導電性膜22の中でほぼ孤立しており、導電性高分子22bは、透明導電性膜22の中で三次元的導電パスを形成していないか、又はその形成が不十分であると考えられる。このため、導電性高分子22bが導電パスとして十分には機能せず、透明導電性シート20の導電性が向上できないと考えられる。即ち、親水性樹脂を用いた従来の透明導電性シートにおいて、導電パスを形成するためには、導電性高分子の含有率を上げるか、透明導電性膜の膜厚を増加させる必要があり、その場合の欠点として光学特性の悪化が考えられる。   The conductive polymer 22b is substantially isolated in the transparent conductive film 22, and the conductive polymer 22b does not form a three-dimensional conductive path in the transparent conductive film 22, Or its formation is considered insufficient. For this reason, it is considered that the conductive polymer 22b does not function sufficiently as a conductive path, and the conductivity of the transparent conductive sheet 20 cannot be improved. That is, in the conventional transparent conductive sheet using a hydrophilic resin, in order to form a conductive path, it is necessary to increase the content of the conductive polymer or increase the film thickness of the transparent conductive film, In such a case, the optical characteristics may be deteriorated.

更に、透明導電性膜22の内部には、親水性樹脂22aと導電性高分子22bとがランダムに絡み合って存在すると考えられるため、透明導電性膜22の外部応力に対する抵抗力が低下し、透明導電性膜22の硬度が低下すると考えられる。   Further, since it is considered that the hydrophilic resin 22a and the conductive polymer 22b are randomly entangled inside the transparent conductive film 22, the resistance of the transparent conductive film 22 to external stress is reduced, and the transparent conductive film 22b is transparent. It is considered that the hardness of the conductive film 22 decreases.

上記疎水性樹脂としては、ポリフッ化ビニリデン樹脂(PVDF)、フッ化ビニリデン−アクリル共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリオレフィン樹脂、ポリエチレングリコール(PEG)、ポリエチレンオキサイド、ポリプロピレンオキサイド等の樹脂が使用できる。本発明で疎水性樹脂とは、上記導電性高分子と比較して、水に対する溶解度が小さい樹脂を意味し、特に、好ましくは、樹脂骨格中に疎水性基を有する樹脂である。   Examples of the hydrophobic resin include polyvinylidene fluoride resin (PVDF), vinylidene fluoride-acrylic copolymer, vinylidene fluoride-hexafluoropropylene copolymer, acrylic resin, polyester resin, polyamide resin, polycarbonate resin, polyurethane resin, Resins such as polystyrene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl acetate resin, polyolefin resin, polyethylene glycol (PEG), polyethylene oxide, and polypropylene oxide can be used. In the present invention, the hydrophobic resin means a resin having a lower solubility in water than the conductive polymer, and is particularly preferably a resin having a hydrophobic group in the resin skeleton.

また、上記疎水性樹脂の使用形態としては、エマルジョン型が使用できる。特に、PVDFエマルジョン、フッ化ビニリデン−アクリル共重合体エマルジョン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体エマルジョン、アクリル樹脂エマルジョン、ポリエステルエマルジョン、ポリオレフィンエマルジョン等が好ましい。また、上記エマルジョンにおける樹脂粒子の平均粒子径は、10〜300nmであることが好ましく、その平均粒子径は既知の粒度分布計で測定することができる。   Moreover, an emulsion type can be used as a usage form of the hydrophobic resin. In particular, PVDF emulsion, vinylidene fluoride-acrylic copolymer emulsion, vinylidene fluoride-hexafluoropropylene copolymer emulsion, acrylic resin emulsion, polyester emulsion, polyolefin emulsion and the like are preferable. Moreover, it is preferable that the average particle diameter of the resin particle in the said emulsion is 10-300 nm, The average particle diameter can be measured with a known particle size distribution meter.

また、上記導電性高分子と上記疎水性樹脂との体積比は、1:99〜70:30とすることができる。上記導電性高分子と上記疎水性樹脂との体積比が上記範囲内であれば、透明導電性膜の立体的構造の形成において、導電性高分子と疎水性樹脂とが整然と配列するため、上記透明導電性膜の電気特性、光学特性、物理特性及び耐湿熱性を向上できる。特に、透明電極の形成において、より好ましい体積比は10:90〜35:65である。   The volume ratio of the conductive polymer to the hydrophobic resin can be 1:99 to 70:30. If the volume ratio of the conductive polymer and the hydrophobic resin is within the above range, the conductive polymer and the hydrophobic resin are arranged in an orderly manner in the formation of the three-dimensional structure of the transparent conductive film. The electrical characteristics, optical characteristics, physical characteristics, and heat and humidity resistance of the transparent conductive film can be improved. In particular, in the formation of the transparent electrode, a more preferable volume ratio is 10:90 to 35:65.

上記透明導電性シートの透明導電性膜の鉛筆硬度は、B以上であることが好ましく、HB以上であることがより好ましい。鉛筆硬度が高いほど良好な物理特性を示す。   The pencil hardness of the transparent conductive film of the transparent conductive sheet is preferably B or more, and more preferably HB or more. The higher the pencil hardness, the better the physical properties.

上記透明導電性シートの透明導電性膜の表面電気抵抗値は、50Ω/スクエア以上10000Ω/スクエア以下であることが好ましい。更に、上記透明導電性膜をタッチパネル用電極として用いる場合には、上記透明導電性膜の表面抵抗値は、50Ω/スクエア以上200Ω/スクエア以下が好ましい。表面電気抵抗値が小さいほど良好な電気特性を示す。   The surface electrical resistance value of the transparent conductive film of the transparent conductive sheet is preferably 50 Ω / square or more and 10000 Ω / square or less. Furthermore, when using the said transparent conductive film as an electrode for touch panels, the surface resistance value of the said transparent conductive film has preferable 50 ohms / square or more and 200 ohms / square or less. The smaller the surface electrical resistance value, the better the electrical characteristics.

上記透明導電性シートの全光線透過率は、85%以上であることが好ましく、より好ましくは90%以上である。全光線透過率が高いほど良好な光学特性を示す。上記全光線透過率は、分光光度計、例えば、日本分光社製の“V−570”により測定可能である。   The total light transmittance of the transparent conductive sheet is preferably 85% or more, and more preferably 90% or more. The higher the total light transmittance, the better the optical properties. The total light transmittance can be measured with a spectrophotometer, for example, “V-570” manufactured by JASCO Corporation.

上記透明導電性膜の膜厚は、用途に応じて適宜設定されるものであるが、通常、0.01〜10μm程度である。膜厚が薄すぎても厚すぎても、均一な透明導電性膜を形成することが困難となる。上記導電性高分子の割合にもよるが、膜厚が薄いと、表面電気抵抗値が増加する傾向にあり、膜厚が厚すぎると、全光線透過率が低下する傾向にある。本実施形態では、150〜300nmが好ましい。   Although the film thickness of the said transparent conductive film is suitably set according to a use, it is about 0.01-10 micrometers normally. If the film thickness is too thin or too thick, it becomes difficult to form a uniform transparent conductive film. Although depending on the proportion of the conductive polymer, the surface electrical resistance value tends to increase when the film thickness is thin, and the total light transmittance tends to decrease when the film thickness is too thick. In this embodiment, 150 to 300 nm is preferable.

上記透明基材としては、例えば、プラスチック、ゴム、ガラス、セラミックス等の種々のものが使用できる。   As said transparent base material, various things, such as a plastics, rubber | gum, glass, ceramics, can be used, for example.

(透明導電性シートの製造方法)
本発明の一実施形態による透明導電性シートの製造方法は、導電性高分子と、疎水性樹脂と、溶媒とを含む透明導電性膜形成用塗布液を作製する工程と、上記透明導電性膜形成用塗布液を透明基材の上に塗布して加熱することにより、上記透明基材の上に透明導電性膜を形成する工程とを備える。
(Transparent conductive sheet manufacturing method)
A method for producing a transparent conductive sheet according to an embodiment of the present invention includes a step of preparing a coating liquid for forming a transparent conductive film containing a conductive polymer, a hydrophobic resin, and a solvent, and the transparent conductive film. And a step of forming a transparent conductive film on the transparent substrate by applying and heating the forming coating solution on the transparent substrate.

本発明の一実施形態による透明導電性シートの製造方法によれば、電気特性、光学特性、物理特性及び耐湿熱性に優れた透明導電性膜を備えた透明導電性シートを製造できる。   According to the manufacturing method of the transparent conductive sheet by one Embodiment of this invention, the transparent conductive sheet provided with the transparent conductive film excellent in an electrical property, an optical characteristic, a physical characteristic, and heat-and-moisture resistance can be manufactured.

<透明導電性膜形成用塗布液>
上記導電性高分子としては、前述のポリチオフェン系化合物としてポリ(3,4−エチレンジオキシチオフェン)と、ドーパントとしてポリスチレンスルホン酸とを含む混合物(PEDOT/PSS)を用いることができるが、これらに限定されない。通常、上記導電性高分子は、導電性高分子の水分散液の形態で供給される。
<Coating liquid for forming transparent conductive film>
As the conductive polymer, a mixture (PEDOT / PSS) containing poly (3,4-ethylenedioxythiophene) as a polythiophene compound and polystyrene sulfonic acid as a dopant can be used. It is not limited. Usually, the conductive polymer is supplied in the form of an aqueous dispersion of the conductive polymer.

上記透明導電性膜形成用塗布液における上記導電性高分子の含有量は、上記透明導電性膜形成用塗布液に含まれる全固形成分の質量に対して0.7質量%以上70.0質量%以下であることが好ましい。上記導電性高分子の含有量が、上記透明導電性膜形成用塗布液に含まれる全固形成分の質量に対して0.7質量%を下回ると透明導電性膜の導電性が低下し、70.0質量%を超えると透明導電性膜の物理特性や耐湿熱性が低下する傾向にある。   Content of the said conductive polymer in the said coating liquid for transparent conductive film formation is 0.7 to 70.0 mass% with respect to the mass of all the solid components contained in the said coating liquid for transparent conductive film formation. % Or less is preferable. When the content of the conductive polymer is less than 0.7% by mass with respect to the mass of all solid components contained in the coating liquid for forming a transparent conductive film, the conductivity of the transparent conductive film is reduced, and 70 If it exceeds 0.0 mass%, the physical properties and heat-and-moisture resistance of the transparent conductive film tend to decrease.

上記疎水性樹脂は、前述の透明導電性シートで説明した疎水性樹脂と同じ樹脂が使用できるが、その使用形態は、疎水性樹脂水系エマルジョンとして用いることが好ましい。上記導電性高分子は通常、導電性高分子水分散液として用いるため、上記疎水性樹脂水系エマルジョンを用いることにより、上記導電性高分子水分散液との混合性が向上する。   As the hydrophobic resin, the same resin as the hydrophobic resin described in the above-mentioned transparent conductive sheet can be used, but the use form is preferably used as a hydrophobic resin aqueous emulsion. Since the conductive polymer is usually used as a conductive polymer aqueous dispersion, the use of the hydrophobic resin aqueous emulsion improves the mixing property with the conductive polymer aqueous dispersion.

また、上記疎水性樹脂は、元々非水溶性樹脂であるため、疎水性樹脂水系エマルジョンとして用いることにより、上記透明導電性膜形成用塗布液を作製した際に、疎水性樹脂と導電性高分子とが分離して、疎水性樹脂が複数の塊状体を形成し、導電性高分子を上記疎水性樹脂の塊状体の間に配置させることができる。   Further, since the hydrophobic resin is originally a water-insoluble resin, the hydrophobic resin and the conductive polymer can be obtained when the transparent conductive film-forming coating liquid is prepared by using the hydrophobic resin as a hydrophobic resin aqueous emulsion. And the hydrophobic resin forms a plurality of lumps, and the conductive polymer can be disposed between the lumps of the hydrophobic resin.

上記疎水性樹脂の含有量は、上記透明導電性膜形成用塗布液に含まれる全固形成分の質量に対して30.0質量%以上99.3質量%以下が好ましく、より好ましくは65.0質量%以上95.0質量%以下である。上記疎水性樹脂の含有量が少なすぎると、十分な硬度を有する透明導電性膜が得られにくい傾向にあり、上記疎水性樹脂の含有量が多すぎると、透明導電性膜が白濁化し、光学特性が悪化する傾向にある。   The content of the hydrophobic resin is preferably 30.0% by mass or more and 99.3% by mass or less, more preferably 65.0% by mass with respect to the mass of all solid components contained in the coating liquid for forming a transparent conductive film. It is not less than mass% and not more than 95.0 mass%. If the content of the hydrophobic resin is too small, a transparent conductive film having a sufficient hardness tends to be difficult to obtain. If the content of the hydrophobic resin is too large, the transparent conductive film becomes cloudy and optical Characteristics tend to deteriorate.

上記溶媒は、プロトン性極性溶媒と非プロトン性極性溶媒とを含んでいることが好ましい。プロトン性溶媒は、塗布液の状態において導電性高分子を均一に分散する効果を持つとともに、疎水性樹脂を均一に分散、もしくは溶解する効果がある。また、非プロトン性溶媒は、基材に塗布液を塗布した後、溶媒を乾燥により除去して導電性膜を形成する乾燥工程において、導電性高分子を配向、結晶化させ、導電性ネットワークを形成する効果がある。また、プロトン性極性溶媒と非プロトン性極性溶媒とを併用することにより、塗布液の作製から導電性膜の形成までを通して、それぞれの溶媒は導電性高分子と疎水性樹脂とに対して効果的に作用するため、比較的低い乾燥温度で透明性に優れた透明導電性膜を得ることができる。   The solvent preferably contains a protic polar solvent and an aprotic polar solvent. The protic solvent has the effect of uniformly dispersing the conductive polymer in the state of the coating solution, and also has the effect of uniformly dispersing or dissolving the hydrophobic resin. In addition, the aprotic solvent is formed by applying a coating solution to a substrate and then removing the solvent by drying to form a conductive film, thereby orienting and crystallizing the conductive polymer to form a conductive network. Has the effect of forming. Also, by using a combination of a protic polar solvent and an aprotic polar solvent, each solvent is effective against conductive polymers and hydrophobic resins from the preparation of the coating solution to the formation of the conductive film. Therefore, a transparent conductive film excellent in transparency can be obtained at a relatively low drying temperature.

上記プロトン性極性溶媒としては、例えば、水、エチルアルコール、メチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、エチレングリコール、プロピレングリコール、酢酸等が挙げられ、上記非プロトン性極性溶媒としては、ジメチルスルホキシド、N−メチルピロリドン、N−エチルピロリドン、N,N−ジメチルホルムアミド、アセトニトリル、アセトン、テトラヒドロフラン等が挙げられる。   Examples of the protic polar solvent include water, ethyl alcohol, methyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, ethylene glycol, propylene glycol, acetic acid, and the like. Examples of the polar solvent include dimethyl sulfoxide, N-methylpyrrolidone, N-ethylpyrrolidone, N, N-dimethylformamide, acetonitrile, acetone, tetrahydrofuran and the like.

上記非プロトン性極性溶媒の含有量は、上記溶媒の全質量に対して1.0質量%以上50.0質量%以下であることが好ましい。上記非プロトン性極性溶媒の含有量が、上記溶媒の全質量に対して1.0質量%を下回ると、導電性高分子の配向、結晶化が起こりにくいため、透明導電性膜の電気特性が低下する傾向にあり、50.0質量%を超えると、導電性高分子や疎水性樹脂の凝集が発生しやすくなるため、透明導電性膜の光学特性が低下する傾向にある。   The content of the aprotic polar solvent is preferably 1.0% by mass or more and 50.0% by mass or less with respect to the total mass of the solvent. When the content of the aprotic polar solvent is less than 1.0% by mass with respect to the total mass of the solvent, the conductive polymer is less likely to be oriented and crystallized. If the amount exceeds 50.0% by mass, aggregation of the conductive polymer or the hydrophobic resin is likely to occur, so that the optical characteristics of the transparent conductive film tend to be reduced.

上記溶媒の含有量は特に限定されないが、上記透明導電性膜形成用塗布液の全質量に対して、50.0質量%以上99.5質量%以下とすればよい。また、上記溶媒には、無極性溶媒を含んでいてもよい。   Although content of the said solvent is not specifically limited, What is necessary is just to be 50.0 mass% or more and 99.5 mass% or less with respect to the total mass of the said coating liquid for transparent conductive film formation. The solvent may contain a nonpolar solvent.

上記透明導電性膜形成用塗布液は、上記導電性高分子、上記疎水性樹脂、上記溶媒を混合することにより製造できる。また、上記透明導電性膜形成用塗布液は、更に分散機を用いて分散処理することが好ましい。上記分散機を用いて分散処理することにより、確実に疎水性樹脂が複数の塊状体を形成し、導電性高分子が上記塊状体の間に配置して三次元的に連結して三次元的導電パスを形成し、三次元的導電パスを形成する導電性高分子の一部を上記透明導電性膜の表面にまで到達させることができる。   The coating liquid for forming a transparent conductive film can be produced by mixing the conductive polymer, the hydrophobic resin, and the solvent. Moreover, it is preferable that the said coating liquid for transparent conductive film formation is further disperse-processed using a disperser. By dispersing using the disperser, the hydrophobic resin surely forms a plurality of lumps, and the conductive polymer is arranged between the lumps and three-dimensionally connected to form a three-dimensional A conductive path is formed, and a part of the conductive polymer forming the three-dimensional conductive path can reach the surface of the transparent conductive film.

上記分散機としては、ボールミル、サンドミル、ピコミル、ペイントコンディショナー等のメディアを介在させたメディア分散機、及び超音波分散機、高圧ホモジナイザー、ホモミキサー、ディスパー、ジェットミル等のメディアレス分散機が使用できる。特に好ましいのは、高圧ホモジナイザーである。   As the disperser, media dispersers with media such as ball mill, sand mill, pico mill, paint conditioner, and medialess dispersers such as ultrasonic dispersers, high pressure homogenizers, homomixers, dispersers, jet mills can be used. . Particularly preferred is a high pressure homogenizer.

更に、上記透明導電性膜形成用塗布液は、レベリング剤を含んでいることが好ましい。これにより、確実に疎水性樹脂が複数の塊状体を形成し、導電性高分子が上記塊状体の間に配置して三次元的に連結して三次元的導電パスを形成し、三次元的導電パスを形成する導電性高分子の一部を上記透明導電性膜の表面にまで到達させることができる。   Furthermore, it is preferable that the coating liquid for forming the transparent conductive film contains a leveling agent. This ensures that the hydrophobic resin forms a plurality of lumps, and the conductive polymer is arranged between the lumps and connected three-dimensionally to form a three-dimensional conductive path. A part of the conductive polymer forming the conductive path can reach the surface of the transparent conductive film.

上記レベリング剤としては、例えば、ポリジメチルシロキサン構造を有するシリコーン系化合物が挙げられる。具体的には、ビックケミー社製のBYK−300、BYK−302、BYK−306、BYK−307、BYK−310、BYK−315、BYK−320、BYK−322、BYK−323、BYK−325、BYK−330、BYK−331、BYK−333、BYK−337、BYK−344、BYK−370、BYK−375、BYK−377、BYK−UV3500、BYK−UV3510、BYK−UV3570;デグサ社製のTEGO−RAD2100、TEGO−RAD2200N、TEGO−RAD2250、TEGO−RAD2300、TEGO−RAD2500、TEGO−RAD2600、TEGO−RAD2700;共栄社化学社製のグラノール100、グラノール115、グラノール400、グラノール410、グラノール435、グラノール440、グラノール450、B−1484、ポリフローATF−2、KL−600、UCR−L72、UCR−L93等が挙げられる。これらは単独で又は複数混合して使用してもよい。これらの中でも、ビックケミー社製のBYK−337やBYK−377がより好ましい。上記レベリング剤の含有量は、上記透明導電性膜形成用塗布液の全質量に対して0.01〜5.0質量%程度とすればよい。   Examples of the leveling agent include silicone compounds having a polydimethylsiloxane structure. Specifically, BYK-300, BYK-302, BYK-306, BYK-307, BYK-310, BYK-315, BYK-320, BYK-322, BYK-325, BYK manufactured by BYK-Chemie Corporation -330, BYK-331, BYK-333, BYK-337, BYK-344, BYK-370, BYK-375, BYK-377, BYK-UV3500, BYK-UV3510, BYK-UV3570; TEGO-RAD2100 manufactured by Degussa , TEGO-RAD2200N, TEGO-RAD2250, TEGO-RAD2300, TEGO-RAD2500, TEGO-RAD2600, TEGO-RAD2700; granol 100, granol 115, granol 400, granol 410 made by Kyoeisha Chemical Co. Granol 435, Granol 440, Granol 450, B-1484, Polyflow ATF-2, KL-600, UCR-L72, UCR-L93, and the like. These may be used alone or in combination. Among these, BYK-337 and BYK-377 manufactured by Big Chemie are more preferable. The content of the leveling agent may be about 0.01 to 5.0% by mass with respect to the total mass of the coating liquid for forming a transparent conductive film.

<透明導電性膜の形成>
上記透明導電性膜形成用塗布液を透明基材の上に塗布する方法としては、例えば、バーコート法、リバース法、グラビアコート法、マイクログラビアコート法、ダイコート法、ディッピング法、スピンコート法、スリットコート法、スプレーコート法等の塗布方法を用いることができる。
<Formation of transparent conductive film>
Examples of the method for applying the transparent conductive film-forming coating solution on the transparent substrate include a bar coating method, a reverse method, a gravure coating method, a micro gravure coating method, a die coating method, a dipping method, a spin coating method, A coating method such as a slit coating method or a spray coating method can be used.

上記塗布後の加熱は、上記透明導電性膜形成用塗布液の溶媒成分が蒸発する条件であればよく、100〜150℃で1〜60分間行うことが好ましい。溶媒が透明導電性膜に残っていると強度が劣る傾向にある。加熱方法としては、例えば、熱風乾燥法、加熱乾燥法、真空乾燥法、自然乾燥等により行うことができる。また、必要に応じて、塗膜にUV光やEB光を照射して塗膜を硬化させたりして、透明導電性膜を形成してもよい。   The heating after the coating may be performed under the condition that the solvent component of the coating liquid for forming a transparent conductive film evaporates, and is preferably performed at 100 to 150 ° C. for 1 to 60 minutes. If the solvent remains in the transparent conductive film, the strength tends to be inferior. As the heating method, for example, a hot air drying method, a heating drying method, a vacuum drying method, natural drying, or the like can be used. Further, if necessary, the transparent conductive film may be formed by irradiating the coating film with UV light or EB light to cure the coating film.

<導電パターンの形成工程>
本発明の一実施形態による透明導電性シートの製造方法は、上記透明導電性膜上の導電パターンを形成する位置にレジスト膜を形成する工程と、導電性を失活させる不活性剤を用いて、上記レジスト膜をマスクとして、上記透明導電性膜の露出部の導電性を失活させる工程とを更に備えることができる。これにより、簡単且つ安価に高精度の導電パターンを透明基材の上に形成できる。
<Process for forming conductive pattern>
The manufacturing method of the transparent conductive sheet by one Embodiment of this invention uses the process which forms a resist film in the position which forms the conductive pattern on the said transparent conductive film, and the inactive agent which deactivates electroconductivity. And a step of deactivating the conductivity of the exposed portion of the transparent conductive film using the resist film as a mask. Thereby, a highly accurate conductive pattern can be easily and inexpensively formed on a transparent substrate.

上記レジスト膜は、例えば、レジスト剤を上記透明導電性膜上にスクリーン印刷することにより形成できる。上記レジスト剤は特に限定されず、適宜選択できる。   The resist film can be formed, for example, by screen printing a resist agent on the transparent conductive film. The said resist agent is not specifically limited, It can select suitably.

上記不活性剤としては、上記導電性高分子を失活できるものであればよく、例えば、酸化性化合物、塩基性化合物が挙げられる。   The inactive agent is not particularly limited as long as it can deactivate the conductive polymer, and examples thereof include an oxidizing compound and a basic compound.

上記酸化性化合物としては、例えば、過酸化水素系化合物、過塩素酸系化合物、次亜塩素酸系化合物、過酢酸系化合物、メタクロロ安息香酸系化合物、亜硫酸系化合物等が挙げられる。   Examples of the oxidizing compound include hydrogen peroxide compounds, perchloric acid compounds, hypochlorous acid compounds, peracetic acid compounds, metachlorobenzoic acid compounds, sulfite compounds, and the like.

また、上記塩基性化合物としては、例えば、アンモニア、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、ピリジン、4−メチルピリジン、水酸化テトラメチルアンモニウム等が挙げられる。   Examples of the basic compound include ammonia, monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, pyridine, 4-methylpyridine, and tetramethylammonium hydroxide.

以下、本発明の実施例を述べる。但し、本発明は以下の実施例に限定されるものではない。特に指摘がない場合、下記において、「部」は「質量部」を意味する。   Examples of the present invention will be described below. However, the present invention is not limited to the following examples. Unless otherwise indicated, in the following, “part” means “part by mass”.

(実施例1)
<透明導電性膜形成用塗布液の調製>
先ず、以下の成分を添加、混合して透明導電性膜形成用混合液を調製した。
(1)導電性高分子水分散液(ヘレウス社製、商品名“クレビオスPH1000”、導電性高分子:PEDOT−PSS、固形分濃度:1.2質量%、PEDOT−PSSの平均粒子径:70nm):40.00部
(2)疎水性樹脂エマルジョン(アルケマ社製のPVDFエマルジョン、固形分濃度:24質量%、溶媒:水):6.00部
(3)非プロトン性極性溶媒(ジメチルスルホキシド):12.70部
(4)プロトン性極性溶媒(エチルアルコール):33.20部
(5)プロトン性極性溶媒(イオン交換水):8.10部
Example 1
<Preparation of coating liquid for forming transparent conductive film>
First, the following components were added and mixed to prepare a mixed liquid for forming a transparent conductive film.
(1) Conductive polymer aqueous dispersion (manufactured by Heraeus, trade name “Clevios PH1000”, conductive polymer: PEDOT-PSS, solid content concentration: 1.2 mass%, average particle size of PEDOT-PSS: 70 nm ): 40.00 parts (2) Hydrophobic resin emulsion (PVDF emulsion manufactured by Arkema, solid concentration: 24% by mass, solvent: water): 6.00 parts (3) Aprotic polar solvent (dimethyl sulfoxide) : 12.70 parts (4) Protic polar solvent (ethyl alcohol): 33.20 parts (5) Protic polar solvent (ion-exchanged water): 8.10 parts

次に、上記透明導電性膜形成用混合液を、高圧ホモジナイザーを用いて80MPaの圧力で分散処理して透明導電性膜形成用塗布液を作製した。   Next, the transparent conductive film forming coating solution was prepared by dispersing the above mixed liquid for forming a transparent conductive film at a pressure of 80 MPa using a high-pressure homogenizer.

<透明導電性シートの形成>
次に、厚さ100μmのポリエチレンテレフタレート(PET)フィルム(東洋紡社製、商品名“コスモシャインA4300”、全光線透過率:92.3%)を基板として用い、その基板の一方の主面の全面に上記透明導電性膜形成用塗布液をバーコート法により塗布し、その後120℃で2分間加熱した。これにより、一方の主面に透明導電性膜が形成された実施例1の透明導電性シートを作製した。上記透明導電性膜の膜厚は、290nmであった。
<Formation of transparent conductive sheet>
Next, a 100 μm-thick polyethylene terephthalate (PET) film (trade name “Cosmo Shine A4300”, total light transmittance: 92.3%, manufactured by Toyobo Co., Ltd.) was used as the substrate, and the entire surface of one main surface of the substrate was used. The transparent conductive film-forming coating solution was applied by a bar coating method, and then heated at 120 ° C. for 2 minutes. This produced the transparent conductive sheet of Example 1 in which the transparent conductive film was formed on one main surface. The film thickness of the transparent conductive film was 290 nm.

<透明導電性膜の表面及び断面の観察>
作製した透明導電性シートの透明導電性膜の断面構造の観察を次にようにして行った。先ず、作製した透明導電性シートの透明導電性膜の上にエポキシ樹脂を塗布して包埋して、そのエポキシ樹脂面を機械研磨法にて整面した。その後、日本電子社製の断面試料作製装置“SM−09010”(商品名)を用いてイオンポリッシングにより断面を作製し、フラットミリング処理して断面観察用試料を得た。その断面観察用試料を日立製作所製の電界放射形走査電子顕微鏡(FE−SEM)を用いて、加速電圧:2.0kV、倍率:100000倍で観察して、二次・反射電子混成像を得た。その観察像を図3に示す。
<Observation of surface and cross section of transparent conductive film>
The cross-sectional structure of the transparent conductive film of the produced transparent conductive sheet was observed as follows. First, an epoxy resin was applied and embedded on the transparent conductive film of the produced transparent conductive sheet, and the epoxy resin surface was leveled by a mechanical polishing method. Thereafter, a cross section was prepared by ion polishing using a cross-section sample preparation apparatus “SM-09010” (trade name) manufactured by JEOL Ltd., and subjected to flat milling to obtain a cross-section observation sample. The sample for cross-sectional observation was observed with a field emission scanning electron microscope (FE-SEM) manufactured by Hitachi, Ltd. at an acceleration voltage of 2.0 kV and a magnification of 100,000, thereby obtaining a secondary / reflected electron hybrid image. It was. The observation image is shown in FIG.

図3から、透明導電性シート30において、PETフィルム31の上には、透明導電性膜32が形成され、透明導電性膜32の上には、エポキシ樹脂層33が形成され、疎水性樹脂32aは、複数の層状の連続膜を形成し、導電性高分子32bは、複数の層状の膜を形成し、導電性高分子32bの膜が疎水性樹脂32aの連続膜の間に配置されていることが確認できる。また、図3から、疎水性樹脂32aの連続膜の厚さは、約20〜100nmであった。   From FIG. 3, in the transparent conductive sheet 30, a transparent conductive film 32 is formed on the PET film 31, an epoxy resin layer 33 is formed on the transparent conductive film 32, and a hydrophobic resin 32a. Forms a plurality of layered continuous films, the conductive polymer 32b forms a plurality of layered films, and the film of the conductive polymer 32b is disposed between the continuous films of the hydrophobic resin 32a. I can confirm that. From FIG. 3, the thickness of the continuous film of the hydrophobic resin 32a was about 20 to 100 nm.

<透明導電性膜の表面及び断面で三次元的導電パスを形成する導電性高分子の可視化>
上記透明導電性シートの透明導電性膜の加工面の周囲に導電性材料として銀ペーストを塗布した後、透明導電性シートの表面と断面に対してAFM/電流同時測定を行い、三次元的導電パスを形成する導電性高分子(導電性ネットワーク)の可視化を行った。
<Visualization of conductive polymer forming three-dimensional conductive path on the surface and cross section of transparent conductive film>
After applying a silver paste as a conductive material around the processed surface of the transparent conductive film of the transparent conductive sheet, the AFM / current simultaneous measurement is performed on the surface and cross section of the transparent conductive sheet to obtain a three-dimensional conductive Visualization of the conductive polymer (conductive network) forming the path was performed.

具体的には、日立ハイテクサイエンス社製の原子間力顕微鏡“Nano NaviII/E−Sweep”を用い、SIS(サンプルインテリジェンススキャン)モードで電流同時測定を行った。表面分析においては、探針は表面AuコートSi34製のもの(バネ定数0.1N/m)を使用し、スキャン面積を1μm2、印加電圧を0.3Vとし、アンプはナノアンプを使用した。また、断面分析においては、探針はPtコートSi製のもの(バネ定数3N/m)を使用し、スキャン面積は2μm2、印加電圧を0.7Vとし、アンプはピコアンプを使用した。 Specifically, using an atomic force microscope “Nano NaviII / E-Sweep” manufactured by Hitachi High-Tech Science Co., Ltd., simultaneous current measurement was performed in a SIS (sample intelligence scan) mode. In the surface analysis, the probe is made of Au-coated Si 3 N 4 (spring constant 0.1 N / m), the scan area is 1 μm 2 , the applied voltage is 0.3 V, and the amplifier is a nanoamplifier did. In the cross-sectional analysis, a probe made of Pt-coated Si (spring constant 3 N / m) was used, the scan area was 2 μm 2 , the applied voltage was 0.7 V, and a pico amplifier was used as the amplifier.

図4に透明導電性膜の表面のAFM/電流同時測定によるAFM電流像を示す。図4から、透明導電性膜の表面には、非導電部41と、点状の導電部42とが確認できる。非導電部41は、PVDFから形成され、導電部42は、三次元的導電パスを形成する導電性高分子の一部が透明導電性膜の表面にまで達した状態を示している。但し、表面に存在するすべての導電性高分子が三次元的導電パスを形成している訳ではないと考えられる。   FIG. 4 shows an AFM current image obtained by simultaneous AFM / current measurement on the surface of the transparent conductive film. From FIG. 4, the non-conductive part 41 and the dotted | punctate conductive part 42 can be confirmed on the surface of a transparent conductive film. The non-conductive part 41 is made of PVDF, and the conductive part 42 shows a state in which a part of the conductive polymer forming the three-dimensional conductive path reaches the surface of the transparent conductive film. However, it is considered that not all conductive polymers existing on the surface form a three-dimensional conductive path.

また、図5に透明導電性膜の断面のAFM/電流同時測定によるAFM電流像を示す。図5から、透明導電性膜40は、非導電部41と導電部42とから形成され、導電部42が、三次元的導電パスを形成する導電性高分子により、透明導電性膜40の内部に導電性ネットワークを形成していることが確認できる。   FIG. 5 shows an AFM current image by simultaneous AFM / current measurement of the cross section of the transparent conductive film. From FIG. 5, the transparent conductive film 40 is formed of a non-conductive part 41 and a conductive part 42, and the conductive part 42 is formed inside the transparent conductive film 40 by a conductive polymer that forms a three-dimensional conductive path. It can be confirmed that a conductive network is formed.

図3〜図5から、上記透明導電性膜において、疎水性樹脂は複数の塊状体を形成し、上記導電性高分子は上記塊状体の間に配置されて三次元的に連結して三次元的導電パスを形成し、三次元的導電パスを形成する導電性高分子の一部が、上記透明導電性膜の表面にまで達していることが分かる。   3 to 5, in the transparent conductive film, the hydrophobic resin forms a plurality of lumps, and the conductive polymer is arranged between the lumps and three-dimensionally connected to the three-dimensional It can be seen that a part of the conductive polymer that forms a three-dimensional conductive path reaches the surface of the transparent conductive film.

(実施例2)
以下の成分を添加、混合して透明導電性膜形成用混合液を調製し、その透明導電性膜形成用混合液を実施例1と同様にして高圧ホモジナイザーを用いて分散処理して透明導電性膜形成用塗布液を作製し、その透明導電性膜形成用塗布液を用い、透明導電性膜の膜厚を180nmとした以外は、実施例1と同様にして実施例2の透明導電性シートを作製した。
(1)導電性高分子水分散液(ヘレウス社製、商品名“クレビオスPH1000”、導電性高分子:PEDOT−PSS、固形分濃度:1.2質量%、PEDOT−PSSの平均粒子径:70nm):60.00部
(2)疎水性樹脂エマルジョン(ダイセルファインケム社製のアクリル樹脂エマルジョン、商品名“AST499”固形分濃度:41.7質量%、溶媒:水):3.00部
(3)レベリング剤(ビックケミージャパン社製、商品名“BYK−337”、ポリエーテル変性ポリジメチルシロキサン15質量%とジプロピレングリコールモノメチルエーテル85質量%との混合液):0.20部
(4)非プロトン性極性溶媒(エチレングリコール):10.00部
(5)プロトン性極性溶媒(n−プロピルアルコール):20.00部
(6)プロトン性極性溶媒(イオン交換水):6.80部
(Example 2)
The following components are added and mixed to prepare a mixed liquid for forming a transparent conductive film, and the mixed liquid for forming a transparent conductive film is dispersed using a high-pressure homogenizer in the same manner as in Example 1 to obtain a transparent conductive film. A transparent conductive sheet of Example 2 was prepared in the same manner as in Example 1 except that a coating liquid for film formation was prepared, the coating liquid for forming the transparent conductive film was used, and the film thickness of the transparent conductive film was changed to 180 nm. Was made.
(1) Conductive polymer aqueous dispersion (manufactured by Heraeus, trade name “Clevios PH1000”, conductive polymer: PEDOT-PSS, solid content concentration: 1.2 mass%, average particle size of PEDOT-PSS: 70 nm ): 60.00 parts (2) Hydrophobic resin emulsion (acrylic resin emulsion manufactured by Daicel Finechem, trade name “AST499” solid content concentration: 41.7% by mass, solvent: water): 3.00 parts (3) Leveling agent (trade name “BYK-337” manufactured by Big Chemie Japan, mixed liquid of 15% by mass of polyether-modified polydimethylsiloxane and 85% by mass of dipropylene glycol monomethyl ether): 0.20 part (4) aprotic Polar solvent (ethylene glycol): 10.00 parts (5) Protic polar solvent (n-propyl alcohol): 20.00 (6) a protic polar solvent (deionized water): 6.80 parts

作製した透明導電性シートの透明導電性膜の断面の観察を実施例1と同様にして行ったところ、図3と同様の観察像を得て、その観察像から疎水性樹脂の連続膜の厚さは、約30〜150nmであった。また、上記透明導電性膜の表面及び断面で三次元的導電パスを形成する導電性高分子の可視化を実施例1と同様にして行ったところ、図4及び図5と同様のAFM電流像を得た。   When the cross section of the transparent conductive film of the produced transparent conductive sheet was observed in the same manner as in Example 1, an observation image similar to FIG. 3 was obtained, and the thickness of the continuous film of hydrophobic resin was obtained from the observation image. The thickness was about 30 to 150 nm. Further, visualization of the conductive polymer that forms a three-dimensional conductive path on the surface and cross section of the transparent conductive film was performed in the same manner as in Example 1. As a result, AFM current images similar to those in FIGS. 4 and 5 were obtained. Obtained.

(実施例3)
高圧ホモジナイザーを用いた分散処理をせずに透明導電性膜形成用混合液をそのまま透明導電性膜形成用塗布液として用いた以外は、実施例1と同様にして実施例3の透明導電性シートを作製した。
(Example 3)
The transparent conductive sheet of Example 3 is the same as Example 1 except that the liquid mixture for forming a transparent conductive film is used as it is as a coating liquid for forming a transparent conductive film without performing a dispersion treatment using a high-pressure homogenizer. Was made.

作製した透明導電性シートの透明導電性膜の断面の観察を実施例1と同様にして行ったところ、図3と同様の観察像を得て、その観察像から疎水性樹脂の連続膜の厚さは、約40〜200nmであった。また、上記透明導電性膜の表面及び断面の三次元的導電パスを形成する導電性高分子の可視化を実施例1と同様にして行ったところ、図4及び図5と同様のAFM電流像を得た。   When the cross section of the transparent conductive film of the produced transparent conductive sheet was observed in the same manner as in Example 1, an observation image similar to FIG. 3 was obtained, and the thickness of the continuous film of hydrophobic resin was obtained from the observation image. The thickness was about 40 to 200 nm. Further, when visualization of the conductive polymer forming the three-dimensional conductive path on the surface and cross section of the transparent conductive film was performed in the same manner as in Example 1, AFM current images similar to those in FIGS. 4 and 5 were obtained. Obtained.

(実施例4)
レベリング剤(ビックケミージャパン社製、商品名“BYK−337”)を0.20部添加し、プロトン性極性溶媒(イオン交換水)の添加量を7.90部に変更し、高圧ホモジナイザーを用いた分散処理をしなかった以外は、実施例1と同様にして透明導電性膜形成用塗布液を作製し、この透明導電性膜形成用塗布液を用いた以外は、実施例1と同様にして実施例4の透明導電性シートを作製した。
Example 4
Add 0.20 parts of leveling agent (BIC Chemie Japan, trade name “BYK-337”), change the amount of protonic polar solvent (ion-exchanged water) to 7.90 parts, and use a high-pressure homogenizer. A coating solution for forming a transparent conductive film was prepared in the same manner as in Example 1 except that the dispersion treatment was not performed, and the same procedure as in Example 1 was performed except that this coating solution for forming a transparent conductive film was used. Thus, a transparent conductive sheet of Example 4 was produced.

作製した透明導電性シートの透明導電性膜の断面の観察を実施例1と同様にして行ったところ、図3と同様の観察像を得て、その観察像から疎水性樹脂の連続膜の厚さは、約30〜175nmであった。また、上記透明導電性膜の表面及び断面の三次元的導電パスを形成する導電性高分子の可視化を実施例1と同様にして行ったところ、図4及び図5と同様のAFM電流像を得た。   When the cross section of the transparent conductive film of the produced transparent conductive sheet was observed in the same manner as in Example 1, an observation image similar to FIG. 3 was obtained, and the thickness of the continuous film of hydrophobic resin was obtained from the observation image. The thickness was about 30 to 175 nm. Further, when visualization of the conductive polymer forming the three-dimensional conductive path on the surface and cross section of the transparent conductive film was performed in the same manner as in Example 1, AFM current images similar to those in FIGS. 4 and 5 were obtained. Obtained.

(比較例1)
以下の成分を添加、混合して透明導電性膜形成用混合液を調製し、その透明導電性膜形成用混合液を実施例1と同様にして高圧ホモジナイザーを用いて分散処理し、透明導電性膜形成用塗布液を作製し、その透明導電性膜形成用塗布液を用い、透明導電性膜の膜厚を389nmとした以外は、実施例1と同様にして比較例1の透明導電性シートを作製した。
(1)導電性高分子水分散液(ヘレウス社製、商品名“クレビオスPH1000”、導電性高分子:PEDOT−PSS、固形分濃度:1.2質量%、PEDOT−PSSの平均粒子径:70nm):39.20部
(2)親水性樹脂(クラレ社製のポリビニルアルコール、商品名“PVA−217”):1.41部
(3)非プロトン性極性溶媒(ジメチルスルホキシド):12.70部
(4)プロトン性極性溶媒(エチルアルコール):33.20部
(5)プロトン性極性溶媒(イオン交換水):13.49部
(Comparative Example 1)
The following components are added and mixed to prepare a mixed liquid for forming a transparent conductive film, and the mixed liquid for forming a transparent conductive film is dispersed using a high-pressure homogenizer in the same manner as in Example 1 to obtain a transparent conductive film. A transparent conductive sheet of Comparative Example 1 was prepared in the same manner as in Example 1 except that a coating liquid for film formation was prepared, the coating liquid for transparent conductive film formation was used, and the thickness of the transparent conductive film was changed to 389 nm. Was made.
(1) Conductive polymer aqueous dispersion (manufactured by Heraeus, trade name “Clevios PH1000”, conductive polymer: PEDOT-PSS, solid content concentration: 1.2 mass%, average particle size of PEDOT-PSS: 70 nm ): 39.20 parts (2) Hydrophilic resin (polyvinyl alcohol manufactured by Kuraray Co., Ltd., trade name “PVA-217”): 1.41 parts (3) Aprotic polar solvent (dimethyl sulfoxide): 12.70 parts (4) Protic polar solvent (ethyl alcohol): 33.20 parts (5) Protic polar solvent (ion-exchanged water): 13.49 parts

作製した透明導電性シートの透明導電性膜の断面の観察を実施例1と同様にして行ったところ、図3とは異なり、透明導電性膜の断面構造は均一な単層構造であることを確認した。また、上記透明導電性膜の表面及び断面の三次元的導電パスを形成する導電性高分子の可視化を実施例1と同様にして行ったところ、図4及び図5とは異なり、導電性高分子による導電性ネットワークの形成が不十分であることが分かった。   When the cross section of the transparent conductive film of the produced transparent conductive sheet was observed in the same manner as in Example 1, it was found that the cross sectional structure of the transparent conductive film was a uniform single layer structure unlike FIG. confirmed. Further, when visualization of the conductive polymer forming the three-dimensional conductive path on the surface and cross section of the transparent conductive film was performed in the same manner as in Example 1, the conductive high polymer was different from FIG. 4 and FIG. It was found that the formation of a conductive network by molecules was insufficient.

(比較例2)
<透明導電性膜形成用塗布液の調製>
先ず、以下の成分を添加、混合して透明導電性膜形成用塗布液を調製した。本比較例2では、高圧ホモジナイザーを用いた分散処理は行わなかった。
(1)導電性高分子水分散液(ヘレウス社製、商品名“PH−500”、導電性高分子:PEDOT−PSS、固形分濃度:1.0質量%、PEDOT−PSSの平均粒子径:120nm):2.5部
(2)疎水性樹脂エマルジョン(アルケマ社製のPVDFエマルジョン、固形分濃度:20質量%、溶媒:水):2.4部
(3)非プロトン性極性溶媒(ジメチルスルホキシド):3.9部
(4)プロトン性極性溶媒(エチルアルコール):1.2部
(Comparative Example 2)
<Preparation of coating liquid for forming transparent conductive film>
First, the following components were added and mixed to prepare a coating liquid for forming a transparent conductive film. In Comparative Example 2, the dispersion treatment using a high-pressure homogenizer was not performed.
(1) Conductive polymer aqueous dispersion (manufactured by Heraeus, trade name “PH-500”, conductive polymer: PEDOT-PSS, solid content concentration: 1.0 mass%, average particle diameter of PEDOT-PSS: 120 nm): 2.5 parts (2) Hydrophobic resin emulsion (PVDF emulsion manufactured by Arkema, solid concentration: 20% by mass, solvent: water): 2.4 parts (3) Aprotic polar solvent (dimethyl sulfoxide) ): 3.9 parts (4) Protic polar solvent (ethyl alcohol): 1.2 parts

<透明導電性シートの形成>
次に、厚さ0.7mmの10cm角の無アルカリガラス(全光線透過率:91.2%)を基板として用い、基板の一方の主面に上記透明導電性膜形成用塗布液をスピンコーティング法により回転速度800rpmで、30秒間塗布し、その後100℃で5分間加熱した。これにより、一方の主面に透明導電膜性膜が形成された比較例2の透明導電性シートを作製した。上記透明導電性膜の膜厚は、500nmであった。
<Formation of transparent conductive sheet>
Next, 10 cm square non-alkali glass (total light transmittance: 91.2%) having a thickness of 0.7 mm is used as a substrate, and the coating liquid for forming a transparent conductive film is spin-coated on one main surface of the substrate. The coating was carried out at a rotational speed of 800 rpm by the method for 30 seconds, and then heated at 100 ° C. for 5 minutes. This produced the transparent conductive sheet of the comparative example 2 in which the transparent conductive film was formed in one main surface. The film thickness of the transparent conductive film was 500 nm.

次に、上記で得られた実施例1〜4及び比較例1〜2の透明導電性シートについて、下記に示す各評価を行った。   Next, each evaluation shown below was performed about the transparent conductive sheet of Examples 1-4 and Comparative Examples 1-2 obtained above.

<電気特性>
透明導電性シートの電気特性は、下記のように透明導電性シートの透明導電性膜の表面電気抵抗値を測定することで評価した。
<Electrical characteristics>
The electrical characteristics of the transparent conductive sheet were evaluated by measuring the surface electrical resistance value of the transparent conductive film of the transparent conductive sheet as follows.

透明導電性シートの透明導電性膜の表面電気抵抗値は、三菱化学アナリテック社製の抵抗率測定装置“Loresta−GP”(MCP−T610型)とLSPプローブを用いて測定した。   The surface electrical resistance value of the transparent conductive film of the transparent conductive sheet was measured using a resistivity measuring device “Loresta-GP” (MCP-T610 type) manufactured by Mitsubishi Chemical Analytech Co., Ltd. and an LSP probe.

<光学特性>
透明導電性シートの光学特性は、下記のように透明導電性シートの全光線透過率を測定することで評価した。
<Optical characteristics>
The optical characteristics of the transparent conductive sheet were evaluated by measuring the total light transmittance of the transparent conductive sheet as follows.

透明導電性シートの全光線透過率は、日本電色工業社製のヘイズメータ"NDH2000"を用いて測定した。   The total light transmittance of the transparent conductive sheet was measured using a haze meter “NDH2000” manufactured by Nippon Denshoku Industries Co., Ltd.

<物理特性>
透明導電性シートの物理特性は、下記のように透明導電性シートの透明導電性膜の鉛筆硬度を測定することで評価した。
<Physical properties>
The physical properties of the transparent conductive sheet were evaluated by measuring the pencil hardness of the transparent conductive film of the transparent conductive sheet as follows.

透明導電性シートの透明導電性膜の鉛筆硬度は、日本工業規格(JIS)K5400に規定された鉛筆硬度の測定方法に基づき、新東科学社製の表面性試験機“HEIDON−14DR”を用いて測定した。   The pencil hardness of the transparent conductive film of the transparent conductive sheet is based on a pencil hardness measurement method defined in Japanese Industrial Standard (JIS) K5400, using a surface property tester “HEIDON-14DR” manufactured by Shinto Kagaku Co., Ltd. Measured.

<耐湿熱性>
透明導電性シートの耐湿熱性は、下記のように透明導電性シートの保存試験を行うことで評価した。
<Heat and heat resistance>
The moisture and heat resistance of the transparent conductive sheet was evaluated by conducting a storage test of the transparent conductive sheet as follows.

先ず、透明導電性シートの透明導電性膜の初期の表面電気抵抗値を前述の電気特性の評価と同様にして測定した。次に、透明導電性シートを恒温恒湿槽に入れて65℃、相対湿度90%で500時間保存した。続いて、保存後の透明導電性シートの透明導電性膜の表面電気抵抗値を上記と同様にして測定した。最後に、下記式(1)により表面電気抵抗値の変化度を算出した。
表面電気抵抗値の変化度=保存後の表面電気抵抗値/初期の表面電気抵抗値 (1)
First, the initial surface electrical resistance value of the transparent conductive film of the transparent conductive sheet was measured in the same manner as in the evaluation of the electrical characteristics described above. Next, the transparent conductive sheet was placed in a constant temperature and humidity chamber and stored at 65 ° C. and a relative humidity of 90% for 500 hours. Subsequently, the surface electrical resistance value of the transparent conductive film of the transparent conductive sheet after storage was measured in the same manner as described above. Finally, the degree of change in the surface electrical resistance value was calculated by the following formula (1).
Change in surface electrical resistance value = surface electrical resistance value after storage / initial surface electrical resistance value (1)

上記測定の結果、表面電気抵抗値の変化度が1.2以下の場合、耐湿熱性は良好と判断し、表面抵抗値の変化度が1.2を上回った場合、耐湿熱性は不良と判断した。   As a result of the above measurement, when the degree of change in the surface electrical resistance value is 1.2 or less, it is judged that the moisture and heat resistance is good, and when the degree of change in the surface resistance value exceeds 1.2, the moisture and heat resistance is judged as poor. .

上記評価の結果を表1に示す。   The results of the evaluation are shown in Table 1.

表1から、本発明の実施例1〜4の透明導電性シートは、透明導電性膜の表面電気抵抗値が全て180Ω/スクエアを下回って電気特性が良好であり、全光線透過率が全て85%以上となって光学特性が良好であり、また耐湿熱性も全て良好との評価を得ることができ、更に物理特性である鉛筆硬度も全てB以上を得たことが分かる。特に、高圧ホモジナイザーを用いて分散処理した透明導電性膜形成用塗布液を用いた実施例1及び2は、分散処理していない透明導電性膜形成用塗布液を用いた実施例3及び4に比べて電気特性がより向上することが分かる。また、いずれも高圧ホモジナイザーを用いて分散処理を行わなかった実施例3及び4では、透明導電性膜形成用塗布液にレベリング剤を添加した実施例4は、レベリング剤を添加しなかった実施例3に比べて電気特性が向上した。   From Table 1, the transparent conductive sheets of Examples 1 to 4 of the present invention have good electrical properties because the surface electrical resistance values of the transparent conductive films are all below 180 Ω / square, and the total light transmittance is 85. It can be seen that the optical properties are good and the heat and humidity resistance is all good, and that the pencil hardness, which is a physical property, is also B or more. In particular, Examples 1 and 2 using a coating solution for forming a transparent conductive film dispersed using a high-pressure homogenizer are examples 3 and 4 using a coating solution for forming a transparent conductive film not subjected to a dispersion treatment. It can be seen that the electrical characteristics are further improved. Also, in Examples 3 and 4 in which none of the dispersion treatment was performed using a high-pressure homogenizer, Example 4 in which a leveling agent was added to the coating solution for forming a transparent conductive film was an example in which no leveling agent was added. Compared with 3, electrical characteristics were improved.

一方、親水性樹脂を用いた比較例1では光学特性及び耐湿熱性が劣り、鉛筆硬度も5B以下となり物理特性も劣ることが分かる。また、特許文献1の実施例3に相当する比較例2では、電気特性及び鉛筆硬度が劣ることが分かる。   On the other hand, it can be seen that Comparative Example 1 using a hydrophilic resin is inferior in optical properties and heat-and-moisture resistance, has a pencil hardness of 5B or less, and inferior in physical properties. Moreover, in the comparative example 2 equivalent to Example 3 of patent document 1, it turns out that an electrical property and pencil hardness are inferior.

続いて、上記で得られた透明導電性シートについて、下記とおりパターニング適性の評価を行った。   Subsequently, the patterning suitability of the transparent conductive sheet obtained above was evaluated as follows.

<レジスト膜の形成>
先ず、透明導電性シートの透明導電性膜側の主面の中央部の5cm角の面積にスクリーン印刷法によりレジスト剤(ヘレウス社製、商品名“Clvious SET S”)を印刷し、その後100℃で5分間加熱した。これにより、透明導電性膜上にレジスト膜を形成した。
<Formation of resist film>
First, a resist agent (manufactured by Heraeus, trade name “Clvious SET S”) is printed on a 5 cm square area at the center of the main surface on the transparent conductive film side of the transparent conductive sheet, and then 100 ° C. For 5 minutes. Thereby, a resist film was formed on the transparent conductive film.

<導電性の低下>
次に、透明導電性膜上にレジスト膜が形成された透明導電性シートを、塩素系不活性剤(ヘレウス社製、商品名“Clvious Etch”)を10%水溶液に調製した溶液に20分間浸漬した後、蒸留水で洗浄し、100℃で5分間加熱した。これにより、透明導電性膜の露出部の導電性を低下させた。
<Decrease in conductivity>
Next, the transparent conductive sheet in which a resist film is formed on the transparent conductive film is immersed in a solution prepared by preparing a 10% aqueous solution of a chlorine-based inert agent (trade name “Clvious Etch” manufactured by Heraeus) for 20 minutes. Then, it was washed with distilled water and heated at 100 ° C. for 5 minutes. Thereby, the conductivity of the exposed portion of the transparent conductive film was lowered.

<レジスト膜の剥離>
次に、上記透明導電性シートをトルエンに3分間浸漬し、レジスト膜を剥離した後、蒸留水で洗浄し、100℃で5分間乾燥した。
<Removal of resist film>
Next, the transparent conductive sheet was immersed in toluene for 3 minutes, the resist film was peeled off, washed with distilled water, and dried at 100 ° C. for 5 minutes.

次に、得られた透明導電性シートの電気特性を評価した。評価方法については以下に説明する。   Next, the electrical characteristics of the obtained transparent conductive sheet were evaluated. The evaluation method will be described below.

<電気特性>
先ず、透明導電性シートの導電パターン形成面において、導電パターンが形成されている導電部の表面電気抵抗値を、三菱化学アナリテック社製の抵抗率測定計“Loresta−GP”(MCP−T610型)とLSPプローブを用いて測定した。また、透明導電性シートの導電パターン形成面において、導電パターンが形成されていない非導電部の表面電気抵抗値を、三菱化学アナリテック社製の抵抗率測定計“Hiresta−UP”(MCP−HT450型)とURSプローブを用いて測定した。ここでは、導電部と非導電部の表面電気抵抗値の差が、1×106Ω/スクエア以上である場合は、良好な電気的コントラストが得られていると評価する。
<Electrical characteristics>
First, on the conductive pattern forming surface of the transparent conductive sheet, the surface electrical resistance value of the conductive part on which the conductive pattern is formed is measured by a resistivity meter “Loresta-GP” (MCP-T610 type manufactured by Mitsubishi Chemical Analytech Co., Ltd.). ) And an LSP probe. In addition, on the conductive pattern forming surface of the transparent conductive sheet, the surface electrical resistance value of the non-conductive portion where the conductive pattern is not formed is measured by a resistivity meter “Hiresta-UP” (MCP-HT450) manufactured by Mitsubishi Chemical Analytech. Type) and a URS probe. Here, when the difference in surface electrical resistance between the conductive portion and the non-conductive portion is 1 × 10 6 Ω / square or more, it is evaluated that good electrical contrast is obtained.

その結果、実施例1〜4の透明導電性シートでは、良好な電気的コントラストが得られたことが分かり、比較例1及び2の透明導電性シートでは、良好な電気的コントラストが得られなかったことが分かった。   As a result, in the transparent conductive sheets of Examples 1 to 4, it was found that good electrical contrast was obtained, and in the transparent conductive sheets of Comparative Examples 1 and 2, good electrical contrast was not obtained. I understood that.

10、20、30 透明導電性シート
11、21 透明基材
31 PETフィルム
12、22、32、40 透明導電性膜
12a、22a、32a 疎水性樹脂
12b、22b、32b 導電性高分子
33 エポキシ樹脂層
41 非導電部
42 導電部
10, 20, 30 Transparent conductive sheet 11, 21 Transparent substrate 31 PET film 12, 22, 32, 40 Transparent conductive film 12a, 22a, 32a Hydrophobic resin 12b, 22b, 32b Conductive polymer 33 Epoxy resin layer 41 Non-conductive part 42 Conductive part

Claims (8)

透明基材と、前記透明基材の主面に形成された透明導電性膜とを含む透明導電性シートであって、
前記透明導電性膜は、導電性高分子と、疎水性樹脂とを含み、
前記疎水性樹脂は、複数の塊状体を形成し、
前記導電性高分子は、前記塊状体の間に配置されて、三次元的に連結し、
前記導電性高分子の一部が、前記透明導電性膜の表面にまで達していることを特徴とする透明導電性シート。
A transparent conductive sheet comprising a transparent substrate and a transparent conductive film formed on the main surface of the transparent substrate,
The transparent conductive film includes a conductive polymer and a hydrophobic resin,
The hydrophobic resin forms a plurality of lumps,
The conductive polymer is disposed between the masses and three-dimensionally connected,
A part of said conductive polymer reaches the surface of said transparent conductive film, The transparent conductive sheet characterized by the above-mentioned.
透明基材と、前記透明基材の主面に形成された透明導電性膜とを含む透明導電性シートであって、
前記透明導電性膜は、導電性高分子と、疎水性樹脂とを含み、
前記透明導電性膜の鉛筆硬度が、B以上であり、
前記透明導電性膜の表面電気抵抗値が、50Ω/スクエア以上200Ω/スクエア以下であり、
前記透明導電性シートの全光線透過率が、85%以上であることを特徴とする透明導電性シート。
A transparent conductive sheet comprising a transparent substrate and a transparent conductive film formed on the main surface of the transparent substrate,
The transparent conductive film includes a conductive polymer and a hydrophobic resin,
The transparent conductive film has a pencil hardness of B or more,
The surface electrical resistance value of the transparent conductive film is 50Ω / square or more and 200Ω / square or less,
The transparent conductive sheet, wherein the transparent conductive sheet has a total light transmittance of 85% or more.
前記導電性高分子は、ポリチオフェン系化合物とポリスチレンスルホン酸とを含む請求項1又は2に記載の透明導電性シート。   The transparent conductive sheet according to claim 1, wherein the conductive polymer includes a polythiophene compound and polystyrene sulfonic acid. 前記透明導電性膜における前記導電性高分子と前記疎水性樹脂との体積比が、1:99〜70:30である請求項1又は2に記載の透明導電性シート。   The transparent conductive sheet according to claim 1 or 2, wherein a volume ratio of the conductive polymer and the hydrophobic resin in the transparent conductive film is 1:99 to 70:30. 前記透明基材は、プラスチック、ゴム、ガラス又はセラミックスからなる請求項1又は2に記載の透明導電性シート。   The transparent conductive sheet according to claim 1, wherein the transparent substrate is made of plastic, rubber, glass, or ceramics. 請求項1又は2に記載の透明導電性シートの製造方法であって、
導電性高分子と、疎水性樹脂と、溶媒とを含む透明導電性膜形成用塗布液を作製する工程と、
前記透明導電性膜形成用塗布液を透明基材の上に塗布して加熱することにより、前記透明基材の上に透明導電性膜を形成する工程とを含むことを特徴とする透明導電性シートの製造方法。
It is a manufacturing method of the transparent conductive sheet according to claim 1 or 2,
Producing a coating liquid for forming a transparent conductive film containing a conductive polymer, a hydrophobic resin, and a solvent;
Forming a transparent conductive film on the transparent substrate by applying the coating liquid for forming the transparent conductive film on the transparent substrate and heating the transparent conductive film. Sheet manufacturing method.
前記導電性高分子と、前記疎水性樹脂と、前記溶媒とを含む透明導電性膜形成用塗布液を作製した後、前記透明導電性膜形成用塗布液を、分散機を用いて分散処理する工程を更に含む請求項6に記載の透明導電性シートの製造方法。   After preparing a transparent conductive film forming coating solution containing the conductive polymer, the hydrophobic resin, and the solvent, the transparent conductive film forming coating solution is dispersed using a disperser. The manufacturing method of the transparent conductive sheet of Claim 6 which further includes a process. 前記透明導電性膜形成用塗布液が、レベリング剤を更に含む請求項6に記載の透明導電性シートの製造方法。   The manufacturing method of the transparent conductive sheet of Claim 6 in which the said coating liquid for transparent conductive film formation further contains a leveling agent.
JP2016128969A 2016-06-29 2016-06-29 Transparent conductive sheet and method for manufacturing the same Active JP6716366B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016128969A JP6716366B2 (en) 2016-06-29 2016-06-29 Transparent conductive sheet and method for manufacturing the same
CN201610773400.5A CN107545949B (en) 2016-06-29 2016-08-30 Transparent conductive sheet and method for producing same
TW105127874A TWI619785B (en) 2016-06-29 2016-08-30 Transparent conductive sheet and manufacturing method thereof
KR1020160111974A KR20180002470A (en) 2016-06-29 2016-08-31 Transparent conductive sheet and method for producing the same
KR1020180172894A KR20190002411A (en) 2016-06-29 2018-12-28 Transparent conductive sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016128969A JP6716366B2 (en) 2016-06-29 2016-06-29 Transparent conductive sheet and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2018006076A true JP2018006076A (en) 2018-01-11
JP6716366B2 JP6716366B2 (en) 2020-07-01

Family

ID=60949423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016128969A Active JP6716366B2 (en) 2016-06-29 2016-06-29 Transparent conductive sheet and method for manufacturing the same

Country Status (4)

Country Link
JP (1) JP6716366B2 (en)
KR (2) KR20180002470A (en)
CN (1) CN107545949B (en)
TW (1) TWI619785B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020111647A (en) * 2019-01-09 2020-07-27 信越ポリマー株式会社 Conductive polymer aqueous dispersion, method for producing conductive polymer composite, method for producing conductive polymer-containing solution and method for producing conductive film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019150638A1 (en) * 2018-02-05 2021-02-04 マクセルホールディングス株式会社 Transparent conductive film and its manufacturing method
JP7395244B2 (en) * 2018-06-12 2023-12-11 日東電工株式会社 Hard coat film and transparent conductive film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006040989A1 (en) * 2004-10-08 2006-04-20 Toray Industries, Inc. Conductive film
CA2734864A1 (en) * 2008-08-21 2010-02-25 Innova Dynamics, Inc. Enhanced surfaces, coatings, and related methods
CN102952423B (en) * 2011-08-17 2017-05-10 长濑化成株式会社 Organic conductive film
US20140065400A1 (en) * 2012-08-29 2014-03-06 Eastman Chemical Company Electrically conductive polymer compositions and films
KR101564587B1 (en) * 2013-09-13 2015-11-02 영남대학교 산학협력단 A composition comprising PEDOT/PSS and fluorinated polymer and a transparent electrode film using the same
JP2015187979A (en) * 2014-03-13 2015-10-29 ナガセケムテックス株式会社 Method for repairing and regenerating transparent conductive film, and transparent conductive laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020111647A (en) * 2019-01-09 2020-07-27 信越ポリマー株式会社 Conductive polymer aqueous dispersion, method for producing conductive polymer composite, method for producing conductive polymer-containing solution and method for producing conductive film
JP7190357B2 (en) 2019-01-09 2022-12-15 信越ポリマー株式会社 Method for producing conductive polymer composite, method for producing liquid containing conductive polymer, and method for producing conductive film

Also Published As

Publication number Publication date
KR20190002411A (en) 2019-01-08
TWI619785B (en) 2018-04-01
CN107545949A (en) 2018-01-05
CN107545949B (en) 2020-08-21
KR20180002470A (en) 2018-01-08
JP6716366B2 (en) 2020-07-01
TW201800509A (en) 2018-01-01

Similar Documents

Publication Publication Date Title
TWI499647B (en) Transparent conductive ink and production method of transparent conductive pattern
KR101759180B1 (en) Polymer compositions containing graphene sheets and graphite
US9117568B2 (en) Polymer compositions containing carbonaceous fillers
JP2014526117A (en) Transparent conductive laminated electrode and method for producing the same
JP6417621B2 (en) Ink composition and transparent electrode
KR102026594B1 (en) Mixtures, methods and compositions pertaining to conductive materials
JP5473148B2 (en) Transparent conductive film with improved conductivity and method for producing the same
TWI682405B (en) Conductive silver paste
US20110133134A1 (en) Crosslinkable and Crosslinked Compositions of Olefin Polymers and Graphene Sheets
US20120277360A1 (en) Graphene Compositions
KR20130133766A (en) Novel composition for conductive transparent film
KR20150085523A (en) Film forming composition comprising graphene material and conducting polymer
CN106661354A (en) Composition comprising silver nanowires and fibers of crystalline cellulose for the preparation of electroconductive transparent layers
JP6716366B2 (en) Transparent conductive sheet and method for manufacturing the same
JP6690528B2 (en) Conductive film
KR20130104867A (en) Transparent conductive films by graphene oxide/silver nanowire having high flexibilities
JP6325364B2 (en) Transparent conductive coating composition, transparent conductive sheet and method for producing the same, and transparent conductive pattern forming method
TWI713705B (en) Metal nanowire ink, transparent conductive substrate and transparent antistatic substrate
JP6371769B2 (en) Transparent electrode and manufacturing method thereof
TWI608643B (en) Conductive transparent electrode and associated manufacturing process
TW201840752A (en) Silver paste for flexible substrate
JP6491910B2 (en) Transparent conductive sheet and method for producing the same
US10723902B2 (en) Conductive ink
JP6746276B2 (en) Transparent conductive sheet and method for manufacturing the same
CN111830618A (en) Laminate body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200610

R150 Certificate of patent or registration of utility model

Ref document number: 6716366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250