JP2017524807A - Pickling-free continuous annealing furnace reducing gas circulation recycling system and its utilization method - Google Patents

Pickling-free continuous annealing furnace reducing gas circulation recycling system and its utilization method Download PDF

Info

Publication number
JP2017524807A
JP2017524807A JP2016570339A JP2016570339A JP2017524807A JP 2017524807 A JP2017524807 A JP 2017524807A JP 2016570339 A JP2016570339 A JP 2016570339A JP 2016570339 A JP2016570339 A JP 2016570339A JP 2017524807 A JP2017524807 A JP 2017524807A
Authority
JP
Japan
Prior art keywords
reducing gas
gas
stage
annealing furnace
steel strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016570339A
Other languages
Japanese (ja)
Other versions
JP6538088B2 (en
JP2017524807A5 (en
Inventor
俊 李
俊 李
寧 譚
寧 譚
新 建 馬
新 建 馬
闖 関
闖 関
Original Assignee
宝山鋼鉄股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山鋼鉄股▲分▼有限公司 filed Critical 宝山鋼鉄股▲分▼有限公司
Publication of JP2017524807A publication Critical patent/JP2017524807A/en
Publication of JP2017524807A5 publication Critical patent/JP2017524807A5/ja
Application granted granted Critical
Publication of JP6538088B2 publication Critical patent/JP6538088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/3005Details, accessories, or equipment peculiar to furnaces of these types arrangements for circulating gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/40Arrangements of controlling or monitoring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/04Circulating atmospheres by mechanical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

予熱段(2)、加熱段(3)、均熱段(4)、緩冷段(5)、速冷段(6)を備える連続焼鈍炉を含み、還元ガスの循環過程が、予熱段(2)の帯鋼入口から還元ガスを抽出して、抽出された低温還元ガスを換熱器(8)によって降温して、冷却された還元ガスがガス乾燥剤浄化装置(9)へ送られ、脱水乾燥され、不純物除去され、気体露点が−20℃以下になり、ガス混合装置(10)で乾燥後の還元ガスに還元ガスを補充して、混合後の気体が速冷段へ輸入され、帯鋼(1)を速く冷却して、帯鋼(1)に加熱されたガスが緩冷段(5)へ進入してさらに帯鋼(1)に予熱されて、焼鈍炉の均熱段へ進入して帯鋼(1)を還元して、還元ガスが加熱段(3)と予熱段(2)へ順次に入り、加熱後の還元ガスを冷態帯鋼(1)へ徐々に熱伝導させて、降温された還元ガスを帯鋼の入口から抽出して新しい循環を開始するものである酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統およびその利用方法。Including a continuous annealing furnace having a preheating stage (2), a heating stage (3), a soaking stage (4), a slow cooling stage (5), and a rapid cooling stage (6). The reducing gas is extracted from the steel strip inlet of 2), the temperature of the extracted low-temperature reducing gas is lowered by the heat exchanger (8), and the cooled reducing gas is sent to the gas desiccant purification device (9), It is dehydrated and dried, impurities are removed, the gas dew point is −20 ° C. or lower, the reducing gas is supplemented to the reducing gas after drying with the gas mixing device (10), and the mixed gas is imported to the rapid cooling stage, The steel strip (1) is rapidly cooled, and the gas heated by the steel strip (1) enters the slow cooling stage (5) and is further preheated to the steel strip (1) to the soaking stage of the annealing furnace. Enter and reduce the steel strip (1), the reducing gas enters the heating stage (3) and the preheating stage (2) in sequence, and the reducing gas after heating gradually heats the cold steel strip (1). By guiding, cooled been intended to start a new circulating extracted from the inlet is pickling free continuous annealing furnace reducing gas circulation recycling system of a reducing gas steel strip and its use.

Description

本発明は、酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統およびその利用方法に関する。   The present invention relates to a pickling-free continuous annealing furnace reducing gas circulation recycling system and a method of using the same.

熱延鋼板を後続加工或いは使用する時に、一般的に、まず、酸洗法を使用してその表面酸化膜を除去する。近年、酸洗を経由せず、熱延鋼板を直接的に還元・焼鈍して、還元ガスを利用して表面酸化膜を金属鉄に還元して直接的に利用することは提出された。該方案は、金属の収益率を向上するとともに、生産の過程をも簡化できたため、注目された。   When a hot-rolled steel sheet is subsequently processed or used, generally, the surface oxide film is first removed using a pickling method. In recent years, it has been submitted to directly reduce and anneal hot-rolled steel sheets without using pickling, and to reduce the surface oxide film to metallic iron using a reducing gas and use it directly. This method was noted because it improved the metal profitability and simplified the production process.

出願番号US6402852B2、US6588491B2、WO00/12233、WO0003815A1およびWO0191929A1の特許出願に、水素ガスで熱延鋼板帯鋼の表面酸化膜を還元して除去する方法および装置は公開された。還元媒体の水素ガスは、過剰量が少ないため、その大部分がミルスケールに消耗され、その少量が直接燃焼後に排出された。US6258186B1の出願は、水素ガスで熱延鋼板帯鋼のミルスケールを還元して亜鉛めっきをした方法を公開したが、還元ガスの使用について及ばない。公開号CN101956061とCN102653815の中国特許に、ベル型焼鈍炉の保護ガスを回収して循環利用する方法は公開された。保護ガスを凝結器によって凝結して除水をして、吸油器によって吸油して、深度乾燥で除水をした後に、ベル型焼鈍炉へ再び提供したが、保護ガスを高温から低温まで、低温から高温まで繰り替える能量の利用問題について及ばない。出願番号200710039842.8の中国特許に、焼鈍炉の保護ガスを回収して利用する方法は公開された。該方法は、方向性珪素鋼板の連続浸窒焼鈍炉内の雰囲気の回収についての方法であり、その基本過程が還元ガスを凝結し除水をして不純物を除去してから燃焼管路系統に入り、帯鋼を加熱することであり、単循環であるため、利用の効率が低いため、エネルギーを浪費した。   In the patent applications of application numbers US6402852B2, US6588491B2, WO00 / 12233, WO0003815A1 and WO0191929A1, methods and apparatuses for reducing and removing the surface oxide film of hot-rolled steel strip with hydrogen gas have been disclosed. Since the excess amount of hydrogen gas as the reducing medium was small, most of it was consumed to the mill scale, and a small amount was discharged after direct combustion. The application of US6258186B1 discloses a method of reducing the mill scale of hot-rolled steel strip with galvanizing with hydrogen gas, but it does not cover the use of reducing gas. A method for recovering and circulating the protective gas of the bell-type annealing furnace was disclosed in Chinese patents of the public numbers CN101956061 and CN1026353815. The protective gas was condensed by a condenser to remove water, absorbed by an oil absorber, dehydrated by depth drying, and then supplied again to the bell-type annealing furnace. The problem of utilization of ability to repeat from high to high temperature is not covered. A method for recovering and utilizing the protective gas of an annealing furnace was disclosed in a Chinese patent having an application number of 200710039842.8. This method is a method for recovering the atmosphere in a continuous nitriding annealing furnace for grain-oriented silicon steel sheets, and its basic process condenses reducing gas and removes water to remove impurities, and then into the combustion pipeline system. It is to heat up the steel strip, and because it is single-circulation, the efficiency of use is low, so energy is wasted.

本発明の目的は、能耗を節約でき、コストを減少できる酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統およびその利用方法を提供するものである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a pickling-free continuous annealing furnace reducing gas circulation regeneration system that can save wear and reduce costs, and a method for using the same.

本発明は、帯鋼の運送方向に順次に連結された予熱段、加熱段、均熱段、緩冷段、速冷段を備える連続焼鈍炉を含む酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統において、
予熱段の帯鋼入口に配置され、予熱段内の還元ガスを抽出する排気ファンと、
その輸入端がパイプによって排気ファンと連接され、抽出された還元ガスを換熱し降温する換熱器と、
その輸入端がパイプによって換熱器と連接され、還元ガスに対して帯鋼還元によって発生された少量の水蒸気を除去するガス乾燥剤浄化装置と、
その一つの輸入端がパイプによってガス乾燥剤浄化装置と連接され、そのもう一つの輸入端に還元ガス補充管が配置されており、その一つの輸出端がパイプによって速冷段と連接されており、乾燥後の還元ガスと補充された還元ガスを十分に混合して新しい還元ガスを形成した後に、速冷段から連続焼鈍炉に輸入して、帯鋼の運行方向と逆流して、順次に帯鋼を、速冷段で早く冷却して、緩冷段で予熱して、均熱段で焼鈍還元して、加熱段で加熱して、予熱段で予熱する熱交換の後に、排気ファンによって換熱器に送って、新しい循環を形成するガス混合装置をさらに備える酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統を提供する。
The present invention is a pickling-free continuous annealing furnace containing a continuous annealing furnace having a preheating stage, a heating stage, a soaking stage, a slow cooling stage, and a rapid cooling stage that are sequentially connected in the transport direction of the steel strip. In the system,
An exhaust fan arranged at the steel strip inlet of the preheating stage and extracting reducing gas in the preheating stage;
A heat exchanger whose import end is connected to an exhaust fan by a pipe, heats the extracted reducing gas and cools it,
A gas desiccant purifier that removes a small amount of water vapor generated by strip steel reduction with respect to the reducing gas, the import end of which is connected to a heat exchanger by a pipe;
One import end is connected to the gas desiccant purifier by a pipe, the other import end is connected to a reducing gas replenishment pipe, and one export end is connected to the rapid cooling stage by a pipe. Then, after thoroughly mixing the reducing gas after drying and the supplemented reducing gas to form a new reducing gas, import it from the rapid cooling stage to the continuous annealing furnace, and reversely flow in the direction of operation of the steel strip. The steel strip is cooled quickly in the fast cooling stage, preheated in the slow cooling stage, annealed and reduced in the soaking stage, heated in the heating stage, and preheated in the preheating stage, and then by an exhaust fan. A pickling-free continuous annealing furnace reducing gas circulation recycling system further provided with a gas mixing device that is sent to a heat exchanger to form a new circulation is provided.

二つの流量制御弁をさらに備え、その第一流量制御弁が換熱器と帯鋼予熱段との間のパイプに配置され、その第二流量制御弁がガス混合装置の還元ガス補充管に配置される。   Two flow control valves are further provided, the first flow control valve is arranged in the pipe between the heat exchanger and the steel strip preheating stage, and the second flow control valve is arranged in the reducing gas supplement pipe of the gas mixing device. Is done.

それぞれ第一流量制御弁と換熱器との間のパイプ、速冷段と緩冷段との間のパイプ、緩冷段がそれぞれ加熱段と均熱段との間のパイプに配置される多数の増圧ポンプをさらに備える。   A large number of pipes arranged between the first flow control valve and the heat exchanger, a pipe between the quick cooling stage and the slow cooling stage, and a pipe between the heating stage and the soaking stage, respectively. The pressure increasing pump is further provided.

焼鈍炉の均熱段内に配置される攪動装置をさらに備える。
パイプによって連続焼鈍炉の予熱段とガス混合装置とそれぞれ連接され、炉内圧力とガス混合装置の混合ガスの圧力を検出する二つ圧力検出装置をさらに備える。
A stirring device is further provided in the soaking stage of the annealing furnace.
The apparatus further includes two pressure detection devices connected to the preheating stage of the continuous annealing furnace and the gas mixing device by pipes to detect the pressure in the furnace and the mixed gas pressure of the gas mixing device.

還元ガス補充管に配置され、補充された還元ガスの濃度を検出する還元ガス濃度検出器をさらに備える。   A reducing gas concentration detector is provided that is disposed in the reducing gas replenishing pipe and detects the concentration of the replenished reducing gas.

パイプによってガス乾燥剤浄化装置とガス混合装置との間に連接される露点検出装置をさらに備える。   The apparatus further includes a dew point detection device connected between the gas desiccant purification device and the gas mixing device by a pipe.

ガス乾燥剤浄化装置と露点検出装置との間のパイプに配置される露点検出フィードバック装置をさらに備える。   A dew point detection feedback device is further provided in a pipe between the gas desiccant purification device and the dew point detection device.

前記連続焼鈍炉内の加熱段と均熱段との間、および均熱段と冷却段との間に、シールロールをさらに備える。   Seal rolls are further provided between the heating stage and the soaking stage in the continuous annealing furnace and between the soaking stage and the cooling stage.

ガス混合装置の一方の輸出端に配置され、過剰な還元ガスを逃す空気逃し弁をさらに備える。   An air relief valve is further provided at one export end of the gas mixing device to allow excess reducing gas to escape.

前記加熱段と前記均熱段は、抵抗加熱、放射線加熱、赤外線加熱或いは誘導加熱の補充加熱方式をさらに使用する。   The heating stage and the soaking stage further use a supplemental heating system such as resistance heating, radiation heating, infrared heating or induction heating.

前記ガス乾燥剤浄化装置が使用される乾燥媒体は、分子篩、シリカゲル、活性アルミナ、無水塩化カルシウム、酸化カルシウム、濃硫酸、五酸化二リンから選ばれる1種である。   The drying medium in which the gas desiccant purifier is used is one selected from molecular sieve, silica gel, activated alumina, anhydrous calcium chloride, calcium oxide, concentrated sulfuric acid, and diphosphorus pentoxide.

本発明は、請求項1〜12のいずれか1項記載の酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統で実施されており、
予熱段の帯鋼入口から帯鋼と予熱された後の還元ガスを抽出し、圧力検出装置によって測定された炉内圧力信号を排気ファンに送達して、排気ファンの回転速度をコントロールして、抽気の流量を調整する工程、
抽出された還元ガスが換熱器によって熱交換され、次のガス乾燥剤浄化装置が受け入れる温度まで降温される工程、
冷却された還元ガスがガス乾燥剤浄化装置へ送られ、深度的に脱水され、微量不純物を除去して、乾燥されて、ガス混合装置へ送られる工程、
成分検出後に、還元ガスを補充して、十分に混合して新しい還元ガスを形成した後に、該新しい還元ガスが連続焼鈍炉の速冷段から輸入され、連続焼鈍炉の全体で帯鋼の運送方向と逆流されて、順次に、速冷段で帯鋼を速く冷却して、速冷後、帯鋼に加熱されたガスが緩冷段へ進入して帯鋼を緩冷して、さらに帯鋼に予熱されて、予熱されたガスが均熱段へ進入して帯鋼を還元して、加熱段と予熱段を経由して熱態還元ガスを冷態帯鋼へ徐々に熱伝導させて、降温された還元ガスを帯鋼の入口から抽出して、新しい循環を開始する工程を含む酸洗いフリー連続焼鈍炉還元ガス循環再生利用方法を提供する。
The present invention is carried out in the pickling-free continuous annealing furnace reducing gas circulation recycling system according to any one of claims 1 to 12,
Extract the reducing gas after being preheated with the steel strip from the steel strip inlet of the preheating stage, deliver the furnace pressure signal measured by the pressure detector to the exhaust fan, and control the rotational speed of the exhaust fan, Adjusting the flow rate of the extraction air;
A process in which the extracted reducing gas is heat-exchanged by a heat exchanger and the temperature is lowered to a temperature accepted by the next gas desiccant purification device;
A process in which the cooled reducing gas is sent to the gas desiccant purification device, dehydrated in depth, removed trace impurities, dried, and sent to the gas mixing device;
After detecting the components, the reducing gas is replenished and mixed thoroughly to form a new reducing gas. Then, the new reducing gas is imported from the rapid cooling stage of the continuous annealing furnace, and the entire steel strip is transported through the continuous annealing furnace. In the reverse direction, the steel strip is cooled rapidly in the rapid cooling stage, and after the rapid cooling, the gas heated by the steel strip enters the slow cooling stage to slowly cool the steel strip. The steel is preheated and the preheated gas enters the soaking stage to reduce the steel strip, and the hot reducing gas is gradually conducted to the cold steel strip through the heating stage and the preheating stage. The present invention provides a pickling-free continuous annealing furnace reducing gas circulation recycling method including a step of extracting the reduced reducing gas from the inlet of the steel strip and starting a new circulation.

前記還元ガスは、ガス乾燥剤浄化装置によって処理され後に、その気体露点が−20℃以下になる。   After the reducing gas is processed by the gas desiccant purifier, the gas dew point becomes −20 ° C. or lower.

前記還元ガスは、ガス乾燥剤浄化装置によって処理された後に、その気体露点が−40℃以下になる。   After the reducing gas is processed by the gas desiccant purifier, the gas dew point becomes −40 ° C. or lower.

現有技術と比べて、本発明は下のようなメリットを有する。
1、反応と未参加する還元ガス中の過剰な還元媒体(水素ガス)を100%循環利用でき、資源を節約し、生産コストを減少できる。
2、能量をよい効率で利用できる。即ち、炉出口段の冷却と乾燥後のガスが還元後の熱帯鋼を冷却することに使用される。均熱後の高温ガスが帯鋼を順次加熱、予熱することに使用される。これによって、還元ガスと帯鋼との熱のいずれも有効に利用できる。
3、気体を循環利用でき、汚染物の排出が少なくなったため、零の排出を実現できる。
Compared with the existing technology, the present invention has the following advantages.
1. Excess reduction medium (hydrogen gas) in the reducing gas that has not participated in the reaction can be recycled 100%, saving resources and reducing production costs.
2. The capacity can be used with good efficiency. That is, the gas after cooling and drying the furnace outlet stage is used to cool the reduced tropical steel. High-temperature gas after soaking is used for heating and preheating the steel strip sequentially. As a result, both the heat of the reducing gas and the steel strip can be used effectively.
3. Since the gas can be circulated and the discharge of pollutants is reduced, zero discharge can be realized.

本発明の一つの実施例の酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統を示す概略図である。It is the schematic which shows the pickling free continuous annealing furnace reducing gas circulation recycling system of one Example of this invention.

本発明の前記目的、特徴およびメリットをよりやすく分かるために、図をみながら本発明の実施方式を詳細に説明する。まず、説明するのは、本発明が下の具体的な実施方式に限定されないことである。当業者は、下の実施方式が表現できた技術思想に基づいて本発明を理解すべきである。各技術用語について本発明の技術思想に基づいて最も広く理解する。図中の同様な記号は同様な部分を表現する。   In order to understand the objects, features and merits of the present invention more easily, an implementation method of the present invention will be described in detail with reference to the drawings. First, it is explained that the present invention is not limited to the specific implementation method below. A person skilled in the art should understand the present invention based on the technical idea that the following implementation method can express. Each technical term is most widely understood based on the technical idea of the present invention. Similar symbols in the figures represent similar parts.

図1は本発明の一つの実施例の酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統を示す概略図である。図のように、該系統は、予熱段2、加熱段3、均熱段4、緩冷段5、速冷段6を備える連続焼鈍炉、換熱器8、ガス乾燥剤浄化装置(深度乾燥塔を採用できる)9、ガス混合装置10を含む。予熱段2、加熱段3、均熱段4、緩冷段5および速冷段6は、帯鋼1の運送方向に順次互いに連結される。予熱段の帯鋼の入口に排気ファン(図に未表示)は配置される。該排気ファンは予熱段2内の還元ガスを抽出し、圧力センサーP1に得られた炉内の圧力信号によってその回転速度がコントロールされ、その抽気流量が調整される。換熱器8の輸入端がパイプによって排気ファンと連接される。該換熱器8は抽出された還元ガスに対して熱交換して降温する。ガス乾燥剤浄化装置9の輸入端がパイプによって換熱器8と連接される。ガス乾燥剤浄化装置9は、還元ガスに対して帯鋼を還元するによる少量の水蒸気を除去して、また、還元ガスを深度的に乾燥して除水して他の不純物を除去する。ガス混合装置10は、ガス乾燥剤浄化装置9と速冷段6とのパイプに配置され、一つの輸入端がパイプによってガス乾燥剤浄化装置9と連接され、そのもう一つの輸入端に還元ガス補充管16が配置されており、その一つの輸出端がパイプによって速冷段6と連接される。乾燥後の還元ガスを補充された還元ガス(例えば、HあるいはCO)と十分に混合して新しい還元ガスを形成した後に、該新しい還元ガスは、速冷段から連続焼鈍炉へ輸入され、帯鋼1の逆方向に流れ、帯鋼1を、速冷段6で速く冷却して緩冷段5で予熱して、均熱段4で焼鈍還元して、加熱段3で加熱して、予熱段2で予熱して、それらの熱交換の後に、排気ファンによって換熱器に送られ、新しい循環を形成する。該期間において、還元ガスは逆方向で帯鋼1と熱交換される。つまり、還元ガスは、速冷段6と緩冷段5で帯鋼の熱量を吸収して、その自身が熱を吸収して高温までなり、均熱段4で帯鋼を還元して、加熱段3と予熱段2で熱量を帯鋼に与え、その自身を降温する過程を経る。 FIG. 1 is a schematic diagram showing a pickling-free continuous annealing furnace reducing gas circulation recycling system according to one embodiment of the present invention. As shown in the figure, the system is composed of a continuous annealing furnace having a preheating stage 2, a heating stage 3, a soaking stage 4, a slow cooling stage 5, and a quick cooling stage 6, a heat exchanger 8, a gas desiccant purifier (depth drying). A tower can be employed) 9 and a gas mixing device 10 is included. The preheating stage 2, the heating stage 3, the soaking stage 4, the slow cooling stage 5 and the quick cooling stage 6 are sequentially connected to each other in the transport direction of the strip steel 1. An exhaust fan (not shown in the figure) is arranged at the entrance of the steel strip in the preheating stage. The exhaust fan extracts reducing gas in the preheating stage 2, and its rotational speed is controlled by the pressure signal in the furnace obtained by the pressure sensor P 1, and its extraction flow rate is adjusted. The import end of the heat exchanger 8 is connected to an exhaust fan by a pipe. The heat exchanger 8 lowers the temperature by exchanging heat with respect to the extracted reducing gas. The import end of the gas desiccant purification device 9 is connected to the heat exchanger 8 by a pipe. The gas desiccant purifying device 9 removes a small amount of water vapor by reducing the steel strip against the reducing gas, and also removes other gases by drying the reducing gas deeply to remove water. The gas mixing device 10 is arranged in a pipe of the gas desiccant purifying device 9 and the quick cooling stage 6, one import end is connected to the gas desiccant purifying device 9 by a pipe, and the other import end has a reducing gas. A replenishment pipe 16 is arranged, and one of its export ends is connected to the quick cooling stage 6 by a pipe. After the dry reducing gas is thoroughly mixed with a replenished reducing gas (eg, H 2 or CO) to form a new reducing gas, the new reducing gas is imported from the rapid cooling stage to a continuous annealing furnace, The steel strip 1 flows in the opposite direction, and the steel strip 1 is cooled quickly in the quick cooling stage 6 and preheated in the slow cooling stage 5, annealed and reduced in the soaking stage 4, and heated in the heating stage 3. Preheating in the preheating stage 2 and after these heat exchanges, it is sent to the heat exchanger by an exhaust fan to form a new circulation. During this period, the reducing gas is heat exchanged with the steel strip 1 in the reverse direction. That is, the reducing gas absorbs the amount of heat of the steel strip at the fast cooling stage 6 and the slow cooling stage 5 and absorbs heat to a high temperature, and reduces the steel strip at the soaking stage 4 to heat it. In stage 3 and preheating stage 2, heat is applied to the steel strip and the temperature is lowered.

本発明の酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統はさらに下の多数の部件を含む。   The pickling-free continuous annealing furnace reducing gas circulation recycling system of the present invention further includes a number of parts below.

二つの流量制御弁7:第一流量制御弁7は換熱器8と予熱段2との間のパイプに配置され、第二流量制御弁7はガス混合装置10の還元ガス補充管16に配置され、気体流量をコントロールする。   Two flow control valves 7: the first flow control valve 7 is arranged in the pipe between the heat exchanger 8 and the preheating stage 2, and the second flow control valve 7 is arranged in the reducing gas supplement pipe 16 of the gas mixing device 10. And control the gas flow rate.

多数の増圧ポンプM:それぞれ第一流量制御弁7と換熱器8との間のパイプ、速冷段6と緩冷段5との間のパイプ、緩冷段5と、加熱段3と均熱段4を連接するパイプに配置され、増圧するためである。   Multiple booster pumps M: pipes between the first flow control valve 7 and the heat exchanger 8, pipes between the quick cooling stage 6 and the slow cooling stage 5, the slow cooling stage 5, and the heating stage 3 This is because the pressure equalizing stage 4 is arranged in a pipe connected to increase the pressure.

攪動装置11:焼鈍炉の均熱段4内に配置され、気体を乱流にするようにする。
二つの圧力検出装置P:パイプによって焼鈍炉の予熱段2とガス混合装置10とそれぞれ連接され、炉内の圧力とガス混合装置の混合ガスの圧力を検出する。
Stirring device 11: It is arranged in the soaking stage 4 of the annealing furnace to make the gas turbulent.
Two pressure detection devices P: connected to the preheating stage 2 of the annealing furnace and the gas mixing device 10 by pipes, respectively, and detect the pressure in the furnace and the pressure of the mixed gas in the gas mixing device.

一つの還元ガス濃度検出器13:還元ガス補充管16に配置され、補充された還元ガスの濃度を検出する。   One reducing gas concentration detector 13: It is disposed in the reducing gas replenishing pipe 16 and detects the concentration of the replenishing reducing gas.

一つの露点検出装置DP:パイプによってガス乾燥剤浄化装置9とガス混合装置10との間に連接され、ガス乾燥剤浄化装置に処理された気体の露点を検出する。   One dew point detection device DP: connected to the gas desiccant purifying device 9 and the gas mixing device 10 by a pipe to detect the dew point of the gas processed by the gas desiccant purifying device.

一つの露点検出フィードバック装置:ガス乾燥剤浄化装置9と露点検出装置DPとの間のパイプに配置され、乾燥気体の露点が要求を達成するかどうかを判断する。122が要求を達成できなければ、気体を乾燥装置へ戻して、乾燥を再度して露点の設定値に達する。   One dew point detection feedback device: It is arranged in a pipe between the gas desiccant purification device 9 and the dew point detection device DP, and determines whether or not the dew point of the dry gas meets the requirement. If 122 cannot achieve the requirement, the gas is returned to the dryer and drying is resumed to reach the dew point set point.

両対のシールロール12は、それぞれ連続焼鈍炉内の加熱段13と均熱段4との間、および均熱段4と冷却段6との間に配置され、異なる区間段の冷熱気体を隔離して気体の交叉流動を防ぐ。   Both pairs of seal rolls 12 are arranged between the heating stage 13 and the soaking stage 4 and between the soaking stage 4 and the cooling stage 6 in the continuous annealing furnace, respectively, and isolate the cold gas in different section stages. To prevent gas cross-flow.

一つの空気逃し弁14:ガス混合装置10の他方の輸出端に配置され、圧力検出装置Pに検出されたガス混合装置10の圧力検出信号に基づいて、過剰量の乾燥後の還元ガスを逃すかどうかを判断して、安全を確保できる。   One air relief valve 14: disposed at the other export end of the gas mixing device 10, based on the pressure detection signal of the gas mixing device 10 detected by the pressure detection device P, releases an excessive amount of reducing gas after drying It can be determined whether it is safe or not.

また、加熱段3と均熱段4の加熱方式として、高温還元ガスで帯鋼1を加熱する以外、抵抗加熱、放射線加熱、赤外線加熱或いは誘導加熱などの補充加熱方式を使用する。
ガス乾燥剤浄化装置9が使用する乾燥媒体として、分子篩、シリカゲル、活性アルミナ、無水塩化カルシウム、酸化カルシウム、濃硫酸、五酸化二リンから選ばれる1種或いは多種の混合物である。
In addition, as a heating method for the heating stage 3 and the soaking stage 4, a supplementary heating system such as resistance heating, radiation heating, infrared heating or induction heating is used in addition to heating the steel strip 1 with a high-temperature reducing gas.
The drying medium used by the gas desiccant purifier 9 is one or a mixture selected from molecular sieve, silica gel, activated alumina, anhydrous calcium chloride, calcium oxide, concentrated sulfuric acid, and diphosphorus pentoxide.

本発明の酸洗いフリー連続焼鈍炉還元ガス循環再生利用方法は、図1のような前記酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統で実施され、下のような工程を含む。   The pickling-free continuous annealing furnace reducing gas circulation recycling method of the present invention is implemented in the pickling-free continuous annealing furnace reducing gas circulation recycling system as shown in FIG. 1 and includes the following steps.

連続焼鈍炉の全体において、還元ガスを帯鋼1の運行方向と逆流(連続焼鈍炉の全体において、還元ガスの流れの方向は帯鋼1の運行方向と逆である)させ、予熱段2の帯鋼入口から帯鋼1と予熱された後の還元ガスを抽出し、圧力検出装置Pによって測定された炉内の圧力信号を排気ファンに送達して、排気ファンの回転速度をコントロールして、抽気の流量を調整する工程、抽出される前の熱還元ガスが予熱段で帯鋼1を予熱して、予熱後の気体が降温された。   In the entire continuous annealing furnace, the reducing gas is made to flow backward from the operating direction of the steel strip 1 (in the entire continuous annealing furnace, the flow direction of the reducing gas is opposite to the operating direction of the steel strip 1). Extract the reducing gas after preheating with the steel strip 1 from the steel strip inlet, deliver the pressure signal in the furnace measured by the pressure detector P to the exhaust fan, and control the rotational speed of the exhaust fan, The step of adjusting the flow rate of the extraction air, the heat reducing gas before extraction preheats the steel strip 1 in the preheating stage, and the temperature after the preheating is lowered.

抽出された低温還元ガスが換熱器8によってさらに熱交換され、その後のガス乾燥剤浄化装置が受け入れる温度までさら降温される工程、
冷却された還元ガスがガス乾燥剤浄化装置9へ送られ、深度的に脱水され、微量不純物を除去して、乾燥されて、ガス乾燥剤浄化装置にて処理された還元ガスの気体露点が−20℃以下、好ましく−40℃以下になることを保証するように露点検出装置DPによって検出される工程、
成分検出後に、新鮮な還元ガスを適当に補充して、十分に混合して新しい還元ガスを形成してから、連続焼鈍炉の速冷段6から輸入して、連続焼鈍炉内で帯鋼1と逆流して、順次に、速冷段6内で帯鋼を速く冷却して、速冷後に帯鋼に加熱されたガスを緩冷段5へ進入して帯鋼1を緩冷して、さらに帯鋼に予熱され、予熱されたガスを均熱段4へ進入して帯鋼を還元して、加熱段3と予熱段2によって熱態の還元ガスを冷態の帯鋼1へ徐々に熱伝導して、降温された還元ガスを帯鋼の入口から抽出して、新しい循環を開始する工程。
A process in which the extracted low-temperature reducing gas is further subjected to heat exchange by the heat exchanger 8 and is further lowered to a temperature that is received by the gas desiccant purifying device;
The cooled reducing gas is sent to the gas desiccant purifier 9, dehydrated in depth, removed with a trace amount of impurities, dried, and the gas dew point of the reducing gas treated by the gas desiccant purifier is − A step detected by the dew point detection device DP to ensure that it is 20 ° C. or lower, preferably −40 ° C. or lower,
After detecting the components, fresh reducing gas is appropriately replenished and mixed thoroughly to form a new reducing gas, which is then imported from the rapid cooling stage 6 of the continuous annealing furnace, and the steel strip 1 in the continuous annealing furnace. And the steel strip is cooled quickly in the rapid cooling stage 6 and the gas heated by the steel strip enters the slow cooling stage 5 after the rapid cooling to slowly cool the steel strip 1. Further, the steel strip is preheated, the preheated gas enters the soaking stage 4 to reduce the steel strip, and the heating stage 3 and the preheating stage 2 gradually convert the hot reducing gas to the cold steel strip 1. A process of conducting a heat and extracting the reduced reducing gas from the steel strip inlet and starting a new circulation.

本発明の還元媒体はミルスケールに需要された理論値を遥かに高いである。その目的がミルスケールの還元速度と効率を向上するものである。本発明の前記還元ガスは循環再生されたものであるため、過剰な還元媒体が生産コストを顕著に増加できない。   The reduction medium of the present invention is much higher than the theoretical value required for mill scale. Its purpose is to improve mill scale reduction speed and efficiency. Since the reducing gas of the present invention is recirculated and regenerated, an excessive reducing medium cannot significantly increase the production cost.

本発明の系統と方法の特徴とメリットについてより明瞭に理解するために、例を挙げて、還元ガス循環再生の利用方式についての具体的な実施工程をさらに説明する。   In order to understand the features and merits of the system and method of the present invention more clearly, specific implementation steps for the utilization method of the recirculation of reductive gas will be further described by way of examples.

帯鋼1が右(入口)から左(出口)へ運行される。帯鋼入口から還元ガスを抽出し、炉圧センサーPが炉圧信号を排気ファン口に送達して、排気ファンの回転速度をコントロールして、流量制御弁7を調整して、炉圧(微正圧)の安定を確保する。その時の抽出された保護ガスに帯鋼表面ミルスケールとの反応によって発生された少量の水蒸気があり、一定の温度がある。換熱器8によって降温された後に、ガス乾燥剤浄化装置9に入り、水蒸気と不純物の成分が除去され、露点検出フィードバック装置15の調整作用によって気体の露点が−20℃以下になる。乾燥後の還元ガスはガス混合装置10に入り、還元ガス濃度検出器13に検出された成分の検出結果に基づいて新鮮な水素ガスを適当に補充する。ミルスケールが少量の還元媒体を消耗するため、水素ガス濃度を検出し続き、流量制御弁7へフィードバックして、濃度が設定値までなるようにコントロールする。空気逃し弁14は主にガス混合所の安全を確保するためである。ガス混合装置の圧力検出信号に基づいて空気逃し弁14の逃すことを決定する。混合された還元ガスは一つの増圧ポンプMにて速冷段6へ噴射・注入された。循環噴射方式を利用して一定な角度で帯鋼の表面へ傾いて噴射することで、早く帯鋼を冷却する。速冷後に帯鋼に加熱された還元ガスは他の増圧ポンプMにて緩冷段5へ注入され、帯鋼1にさらに予熱された。そして、熱気体は均熱段4と加熱段3に入る。炉内に入った還元ガスは左(出口)から右(入口)へ予熱段2に流入され、熱態の還元ガスを冷態の帯鋼へ徐徐に熱伝導して、帯鋼を加熱するときに還元ガスの自身の温度を低下した。降温された還元ガス(その時、水素ガス濃度が低下され、含水量が向上された)を帯鋼の入口から抽出して、新しい除水、浄化、再生(その還元性能を回復する)循環を開始する。   The steel strip 1 is operated from the right (entrance) to the left (exit). The reducing gas is extracted from the steel strip inlet, the furnace pressure sensor P delivers a furnace pressure signal to the exhaust fan port, the rotational speed of the exhaust fan is controlled, the flow control valve 7 is adjusted, and the furnace pressure (fine Ensures positive pressure stability. The extracted protective gas at that time has a small amount of water vapor generated by the reaction with the steel strip surface mill scale, and has a certain temperature. After the temperature is lowered by the heat exchanger 8, the gas desiccant purification device 9 is entered, the water vapor and impurities are removed, and the dew point of the dew point detection feedback device 15 adjusts the gas to −20 ° C. or less. The dried reducing gas enters the gas mixing device 10 and is appropriately replenished with fresh hydrogen gas based on the detection results of the components detected by the reducing gas concentration detector 13. Since the mill scale consumes a small amount of the reducing medium, the hydrogen gas concentration is continuously detected and fed back to the flow control valve 7 to control the concentration to the set value. The air relief valve 14 is mainly for ensuring the safety of the gas mixing station. Based on the pressure detection signal of the gas mixing device, it is determined that the air relief valve 14 is to be released. The mixed reducing gas was injected and injected into the rapid cooling stage 6 by one pressure increasing pump M. The steel strip is cooled quickly by inclining and injecting it to the surface of the steel strip at a constant angle using a circulating injection system. The reducing gas heated to the steel strip after rapid cooling was injected into the slow cooling stage 5 by another pressure-intensifying pump M, and further preheated to the steel strip 1. Then, the hot gas enters the soaking stage 4 and the heating stage 3. When the reducing gas entering the furnace flows into the preheating stage 2 from the left (exit) to the right (inlet) and heats the reducing gas gradually to the cold steel strip to heat the steel strip. Reduced the temperature of the reducing gas itself. The reduced reducing gas (at which time the hydrogen gas concentration is reduced and the water content is improved) is extracted from the steel strip inlet, and new water removal, purification, regeneration (recovering its reducing performance) circulation is started. To do.

現有技術と比べて、本発明は下のようなメリットを有する。
反応と参加できなかった還元ガス中の過剰な還元媒体は100%循環利用できるため、エネルギーを節約でき、生産コストを低下する。エネルギーを効率的に利用できる。均熱段を通過した高温気体は帯鋼を加熱・予熱することに応用できる。炉の出口段から流入された冷却・乾燥された還元ガスは熱帯鋼を冷却できる。還元ガスと帯鋼との熱能は有効に利用され、循環利用され、且つ汚染物の排出が少なくなり、零排出まででき、顕著な効果を実現できた。
Compared with the existing technology, the present invention has the following advantages.
Excess reduction medium in the reducing gas that could not participate in the reaction can be recycled 100%, thus saving energy and reducing production costs. Energy can be used efficiently. The high-temperature gas that has passed through the soaking stage can be applied to heating and preheating the steel strip. The cooled and dried reducing gas flowing in from the furnace exit stage can cool the tropical steel. The thermal power of the reducing gas and the steel strip was effectively utilized, recycled, and the discharge of contaminants was reduced, resulting in zero discharge, realizing a remarkable effect.

こう理解すべきである。つまり、本発明の前記内容を見た後に、当業者は、本発明について変化・補正してもよい。それらの相等形式も本発明の特許請求の範囲に限定された範囲に入る。   This should be understood. That is, after seeing the contents of the present invention, those skilled in the art may change or correct the present invention. Their equivalent forms fall within the scope of the claims of the present invention.

Claims (15)

帯鋼の運送方向に順次に連結された予熱段、加熱段、均熱段、緩冷段、速冷段を備える連続焼鈍炉を含む酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統において、
予熱段の帯鋼入口に配置され、予熱段内の還元ガスを抽出する排気ファンと、
その輸入端がパイプによって排気ファンと連接され、抽出された還元ガスを換熱し降温する換熱器と、
その輸入端がパイプによって換熱器と連接され、還元ガスに対して帯鋼還元によって発生された少量の水蒸気を除去するガス乾燥剤浄化装置と、
その一つの輸入端がパイプによってガス乾燥剤浄化装置と連接され、そのもう一つの輸入端に還元ガス補充管が配置されており、その一つの輸出端がパイプによって速冷段と連接されており、乾燥後の還元ガスと補充された還元ガスを十分に混合して新しい還元ガスを形成した後に、速冷段から連続焼鈍炉に輸入して、帯鋼の運行方向と逆流して、順次に帯鋼を、速冷段で早く冷却して、緩冷段で予熱して、均熱段で焼鈍還元して、加熱段で加熱して、予熱段で予熱する熱交換の後に、排気ファンによって換熱器に送って、新しい循環を形成するガス混合装置をさらに備える酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統。
In a pickling-free continuous annealing furnace reducing gas circulation regeneration system including a continuous annealing furnace having a preheating stage, a heating stage, a soaking stage, a slow cooling stage, and a quick cooling stage, which are sequentially connected in the transport direction of the steel strip,
An exhaust fan arranged at the steel strip inlet of the preheating stage and extracting reducing gas in the preheating stage;
A heat exchanger whose import end is connected to an exhaust fan by a pipe, heats the extracted reducing gas and cools it,
A gas desiccant purifier that removes a small amount of water vapor generated by strip steel reduction with respect to the reducing gas, the import end of which is connected to a heat exchanger by a pipe;
One import end is connected to the gas desiccant purifier by a pipe, the other import end is connected to a reducing gas replenishment pipe, and one export end is connected to the rapid cooling stage by a pipe. Then, after thoroughly mixing the reducing gas after drying and the supplemented reducing gas to form a new reducing gas, import it from the rapid cooling stage to the continuous annealing furnace, and reversely flow in the direction of operation of the steel strip. The steel strip is cooled quickly in the fast cooling stage, preheated in the slow cooling stage, annealed and reduced in the soaking stage, heated in the heating stage, and preheated in the preheating stage, and then by an exhaust fan. A pickling-free continuous annealing furnace reducing gas circulation recycling system further equipped with a gas mixing device that sends to the heat exchanger to form a new circulation.
二つの流量制御弁をさらに備え、その第一流量制御弁が換熱器と帯鋼予熱段との間のパイプに配置され、その第二流量制御弁がガス混合装置の還元ガス補充管に配置されることを特徴とする請求項1記載の酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統。   Two flow control valves are further provided, the first flow control valve is arranged in the pipe between the heat exchanger and the steel strip preheating stage, and the second flow control valve is arranged in the reducing gas supplement pipe of the gas mixing device. The pickling-free continuous annealing furnace reducing gas circulation recycling system according to claim 1. それぞれ第一流量制御弁と換熱器との間のパイプ、速冷段と緩冷段との間のパイプ、緩冷段がそれぞれ加熱段と均熱段との間のパイプに配置される多数の増圧ポンプをさらに備えることを特徴とする請求項2記載の酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統。   A large number of pipes arranged between the first flow control valve and the heat exchanger, a pipe between the quick cooling stage and the slow cooling stage, and a pipe between the heating stage and the soaking stage, respectively. 3. The pickling-free continuous annealing furnace reducing gas circulation regeneration system according to claim 2, further comprising a pressure-increasing pump. 焼鈍炉の均熱段内に配置される攪動装置をさらに備えることを特徴とする請求項1記載の酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統。   The pickling-free continuous annealing furnace reducing gas circulation recycling system according to claim 1, further comprising a stirring device disposed in the soaking stage of the annealing furnace. パイプによって連続焼鈍炉の予熱段とガス混合装置とそれぞれ連接され、炉内圧力とガス混合装置の混合ガスの圧力を検出する二つ圧力検出装置をさらに備えることを特徴とする請求項1記載の酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統。   2. The apparatus according to claim 1, further comprising two pressure detection devices connected to the preheating stage of the continuous annealing furnace and the gas mixing device by pipes to detect the pressure in the furnace and the mixed gas of the gas mixing device. Pickling free continuous annealing furnace reducing gas circulation recycling system. 還元ガス補充管に配置され、補充された還元ガスの濃度を検出する還元ガス濃度検出器をさらに備えることを特徴とする請求項1記載の酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統。   2. The pickling-free continuous annealing furnace reducing gas circulation recycling system according to claim 1, further comprising a reducing gas concentration detector disposed in the reducing gas replenishing pipe and detecting the concentration of the replenished reducing gas. パイプによってガス乾燥剤浄化装置とガス混合装置との間に連接される露点検出装置をさらに備えることを特徴とする請求項1記載の酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統。   The pickling-free continuous annealing furnace reducing gas circulation recycle system according to claim 1, further comprising a dew point detector connected between the gas desiccant purifier and the gas mixer by a pipe. ガス乾燥剤浄化装置と露点検出装置との間のパイプに配置される露点検出フィードバック装置をさらに備えることを特徴とする請求項7記載の酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統。   8. The pickling-free continuous annealing furnace reducing gas circulation regeneration system according to claim 7, further comprising a dew point detection feedback device disposed in a pipe between the gas desiccant purification device and the dew point detection device. 前記連続焼鈍炉内の加熱段と均熱段との間、および均熱段と冷却段との間に、シールロールをさらに備えることを特徴とする請求項1記載の酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統。   The pickling-free continuous annealing furnace reduction according to claim 1, further comprising a sealing roll between the heating stage and the soaking stage in the continuous annealing furnace and between the soaking stage and the cooling stage. Gas circulation recycling system. ガス混合装置の一方の輸出端に配置され、過剰の還元ガスを逃す空気逃し弁をさらに備えることを特徴とする請求項1記載の酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統。   The pickling-free continuous annealing furnace reducing gas circulation recycling system according to claim 1, further comprising an air relief valve disposed at one export end of the gas mixing device and configured to escape excess reducing gas. 前記加熱段と前記均熱段は、抵抗加熱、放射線加熱、赤外線加熱或いは誘導加熱の補充加熱方式をさらに使用することを特徴とする請求項1記載の酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統。   The pickling-free continuous annealing furnace reducing gas circulation recycle utilization according to claim 1, wherein the heating stage and the soaking stage further use a replenishing heating method of resistance heating, radiation heating, infrared heating or induction heating. system. 前記ガス乾燥剤浄化装置が使用される乾燥媒体は、分子篩、シリカゲル、活性アルミナ、無水塩化カルシウム、酸化カルシウム、濃硫酸、五酸化二リンから選ばれる1種であることを特徴とする請求項1記載の酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統。   The drying medium in which the gas desiccant purifier is used is one selected from molecular sieve, silica gel, activated alumina, anhydrous calcium chloride, calcium oxide, concentrated sulfuric acid, and diphosphorus pentoxide. The described pickling-free continuous annealing furnace reducing gas circulation recycling system. 請求項1〜12のいずれか1項記載の酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統で実施されており、
予熱段の帯鋼入口から帯鋼と予熱された後の還元ガスを抽出し、圧力検出装置によって測定された炉内圧力信号を排気ファンに送達して、排気ファンの回転速度をコントロールして、抽気の流量を調整する工程、
抽出された還元ガスが換熱器によって熱交換され、次のガス乾燥剤浄化装置が受け入れる温度まで降温される工程、
冷却された還元ガスがガス乾燥剤浄化装置へ送られ、深度的に脱水され、微量不純物を除去して、乾燥されて、ガス混合装置へ送られる工程、
成分検出後に、還元ガスを補充して、十分に混合して新しい還元ガスを形成した後に、該新しい還元ガスが連続焼鈍炉の速冷段から輸入され、連続焼鈍炉の全体で帯鋼の運送方向と逆流されて、順次に、速冷段で帯鋼を速く冷却して、速冷後、帯鋼に加熱されたガスが緩冷段へ進入して帯鋼を緩冷して、さらに帯鋼に予熱されて、予熱されたガスが均熱段へ進入して帯鋼を還元して、加熱段と予熱段を経由して熱態還元ガスを冷態帯鋼へ徐々に熱伝導させて、降温された還元ガスを帯鋼の入口から抽出して、新しい循環を開始する工程を含む酸洗いフリー連続焼鈍炉還元ガス循環再生利用方法。
It is carried out in the pickling-free continuous annealing furnace reducing gas circulation recycling system according to any one of claims 1 to 12,
Extract the reducing gas after being preheated with the steel strip from the steel strip inlet of the preheating stage, deliver the furnace pressure signal measured by the pressure detector to the exhaust fan, and control the rotational speed of the exhaust fan, Adjusting the flow rate of the extraction air;
A process in which the extracted reducing gas is heat-exchanged by a heat exchanger and the temperature is lowered to a temperature accepted by the next gas desiccant purification device;
A process in which the cooled reducing gas is sent to the gas desiccant purification device, dehydrated in depth, removed trace impurities, dried, and sent to the gas mixing device;
After detecting the components, the reducing gas is replenished and mixed thoroughly to form a new reducing gas. Then, the new reducing gas is imported from the rapid cooling stage of the continuous annealing furnace, and the entire steel strip is transported through the continuous annealing furnace. In the reverse direction, the steel strip is cooled rapidly in the rapid cooling stage, and after the rapid cooling, the gas heated by the steel strip enters the slow cooling stage to slowly cool the steel strip. The steel is preheated and the preheated gas enters the soaking stage to reduce the steel strip, and the hot reducing gas is gradually conducted to the cold steel strip through the heating stage and the preheating stage. A method for recirculating and recycling a reducing gas in a pickling-free continuous annealing furnace, including a step of extracting the reduced reducing gas from the steel strip inlet and starting a new circulation.
前記還元ガスは、ガス乾燥剤浄化装置によって処理され後に、その気体露点が−20℃以下になることを特徴とする請求項13記載の酸洗いフリー連続焼鈍炉還元ガス循環再生利用方法。   The method of claim 13, wherein the reducing gas has a gas dew point of -20 ° C or lower after being processed by a gas desiccant purifier. 前記還元ガスは、ガス乾燥剤浄化装置によって処理された後に、その気体露点が−40℃以下になることを特徴とする請求項14記載の酸洗いフリー連続焼鈍炉還元ガス循環再生利用方法。   The method of claim 14, wherein the reducing gas has a gas dew point of -40 ° C or lower after being processed by a gas desiccant purifier.
JP2016570339A 2014-05-30 2015-01-19 Acid wash free continuous annealing furnace reducing gas circulation recycling system and method of using the same Active JP6538088B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201410240695.0 2014-05-30
CN201410240695.0A CN105132666A (en) 2014-05-30 2014-05-30 Pickling-free continuous annealing furnace reducing gas recycle use system and use method thereof
PCT/CN2015/070984 WO2015180501A1 (en) 2014-05-30 2015-01-19 Reducing gas circulation recycling system for pickling-free continuous annealing furnace and utilisation method therefor

Publications (3)

Publication Number Publication Date
JP2017524807A true JP2017524807A (en) 2017-08-31
JP2017524807A5 JP2017524807A5 (en) 2018-10-25
JP6538088B2 JP6538088B2 (en) 2019-07-03

Family

ID=54698042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016570339A Active JP6538088B2 (en) 2014-05-30 2015-01-19 Acid wash free continuous annealing furnace reducing gas circulation recycling system and method of using the same

Country Status (5)

Country Link
JP (1) JP6538088B2 (en)
KR (1) KR20170009903A (en)
CN (1) CN105132666A (en)
RU (1) RU2684465C2 (en)
WO (1) WO2015180501A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108507343A (en) * 2018-03-30 2018-09-07 楚天科技股份有限公司 A kind of pressure balance control method and device in dryer machine system
CN113899187A (en) * 2021-11-18 2022-01-07 楚天科技股份有限公司 Tunnel type sterilization dryer air pressure balance control method and tunnel type sterilization dryer
CN114645120A (en) * 2022-03-23 2022-06-21 熊建 Camshaft high-frequency quenching device capable of effectively absorbing water vapor

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106018317A (en) * 2016-05-30 2016-10-12 中国石油集团东北炼化工程有限公司吉林设计院 System used for monitoring content of gas component, and method thereof
CN107099651A (en) * 2017-05-16 2017-08-29 浙江久立特材科技股份有限公司 A kind of method and system of perhydro protection gas roller bottom stove hydrogen flowing quantity control
CN107299216B (en) * 2017-06-21 2021-05-14 华北理工大学 Steel rolling heating furnace
CN107557563A (en) * 2017-08-30 2018-01-09 天津市宇润德金属制品有限公司 High energy-saving reducing furnace
CN107964643A (en) * 2017-12-27 2018-04-27 安德里茨(中国)有限公司 Hot-strip continuous hot galvanizing device and method
CN108151544A (en) * 2018-01-17 2018-06-12 广东中鹏热能科技有限公司 A kind of energy saving roller kiln of adverse currentcooling system
CN108180764A (en) * 2018-01-22 2018-06-19 卢爱玲 A kind of ceramic kiln folds warm formula oxygenation and takes out hot systems
CN108588374A (en) * 2018-02-06 2018-09-28 冷水江天宝实业有限公司 A kind of continuous heat treating furnace and its sealing device and method
CN110172565B (en) * 2018-06-28 2021-02-09 镕凝精工新材料科技(上海)有限公司 Waste heat recycling system of cover-type annealing furnace
CN109652639B (en) * 2018-12-29 2024-02-09 佛山市诚德新材料有限公司 Annealing furnace for stainless steel strip
CN110595221A (en) * 2019-10-08 2019-12-20 江苏维麦气体科技有限公司 Tail gas recycling device and process for galvanizing continuous annealing furnace
CN112710160B (en) * 2019-10-25 2023-06-23 中冶长天国际工程有限责任公司 Control method and device for hot air blower during cold start of analytical tower
CN111218627A (en) * 2019-11-11 2020-06-02 山西中磁尚善科技有限公司 High-temperature metal annealing process
CN111926171B (en) * 2020-08-31 2022-04-29 武汉钢铁有限公司 Continuous annealing cooling control method for cold-rolled non-oriented silicon steel strip
CN112609059A (en) * 2020-12-10 2021-04-06 浙江海亮股份有限公司 Chain type annealing furnace and pipe conveying control method
CN112725597B (en) * 2020-12-21 2021-10-08 燕山大学 Device and method for recycling nitrogen of annealing furnace
CN113667802B (en) * 2021-07-31 2023-05-12 浙江明泰控股发展股份有限公司 Continuous annealing device
CN114480831B (en) * 2022-02-15 2023-09-22 宝钢湛江钢铁有限公司 Automatic control method for annealing speed of strip steel
CN114438289A (en) * 2022-02-18 2022-05-06 光丰(肇庆)钢业有限公司 Steel band annealing system
CN116793098B (en) * 2023-08-29 2023-10-20 山西华茂智能新材料有限公司 Waste heat recycling method for annealing process slow cooling section of spheroidal graphite cast tube

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU996837A1 (en) * 1981-03-18 1983-02-15 Сибирский Филиал Научно-Производственного Объединения По Техническому Обслуживанию И Энергетическому Оборудованию Предприятий Химической Промышленности Unit for flue gas recirculation
DE3307071C2 (en) * 1983-03-01 1986-05-22 Joachim Dr.-Ing. 7250 Leonberg Wünning Continuous furnace for the heat treatment of metallic workpieces
JPS62177126A (en) * 1986-01-31 1987-08-04 Nisshin Steel Co Ltd Method for continuously annealing strip
RU2127324C1 (en) * 1997-11-18 1999-03-10 Открытое акционерное общество "Ювэнергочермет" Method of utilizing protective gas in heat treatment of metal in department of bell-type furnaces
AU4309699A (en) * 1998-07-14 2000-02-07 Ut-Battelle, Llc Continuous reduction of mill scale on hot rolled strip steel
US6217666B1 (en) * 1998-08-31 2001-04-17 Danieli Technology, Inc. Countercurrent reduction of oxides on moving metal
US6622778B1 (en) * 2000-07-12 2003-09-23 Danieli Technology, Inc. Method for the direct production of scale-free thin metal strip
CN101294239B (en) * 2007-04-24 2010-09-08 宝山钢铁股份有限公司 Reutilization method for annealing oven protective atmosphere
DE102008005259B4 (en) * 2008-01-18 2011-12-08 Carl Kramer Process for saving energy in heat treatment plants with moved by heating and cooling part Good
RU2386712C1 (en) * 2008-08-05 2010-04-20 Открытое акционерное общество "Уралэлектромедь" Waste heat recovery method of copper purification furnace
CN201386116Y (en) * 2009-03-25 2010-01-20 耿凯 Preheating system of high-speed walking steel plate in continuous annealing furnace
CN102653815A (en) * 2012-05-30 2012-09-05 苏州苏净保护气氛有限公司 Mirror face plate annealing furnace shielding gas reclamation and cyclic utilization device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108507343A (en) * 2018-03-30 2018-09-07 楚天科技股份有限公司 A kind of pressure balance control method and device in dryer machine system
CN108507343B (en) * 2018-03-30 2020-07-17 楚天科技股份有限公司 Method and device for controlling balance of air pressure in whole dryer system
CN113899187A (en) * 2021-11-18 2022-01-07 楚天科技股份有限公司 Tunnel type sterilization dryer air pressure balance control method and tunnel type sterilization dryer
CN113899187B (en) * 2021-11-18 2023-03-28 楚天科技股份有限公司 Air pressure balance control method for tunnel type sterilization dryer and tunnel type sterilization dryer
CN114645120A (en) * 2022-03-23 2022-06-21 熊建 Camshaft high-frequency quenching device capable of effectively absorbing water vapor

Also Published As

Publication number Publication date
WO2015180501A1 (en) 2015-12-03
CN105132666A (en) 2015-12-09
RU2016151999A3 (en) 2018-10-26
JP6538088B2 (en) 2019-07-03
RU2016151999A (en) 2018-07-03
KR20170009903A (en) 2017-01-25
RU2684465C2 (en) 2019-04-09

Similar Documents

Publication Publication Date Title
JP2017524807A (en) Pickling-free continuous annealing furnace reducing gas circulation recycling system and its utilization method
JP2017524807A5 (en)
CN101537303B (en) Solution dehumidification device driven by low-temperature smoke gas
CN103418360B (en) A kind of desulphurization denitration active coke regeneration device and method
EP2944369B1 (en) Dehydration device, gas compression system, and dehydration method
KR102172275B1 (en) Furnace equipment and heat treatment method for heat treatment of metal strip
CN101871042A (en) Method and device for reusing flue gas waste heat of annealing furnace of continuous annealing unit
JP5742950B2 (en) Method for reducing dew point of atmospheric gas in annealing furnace, apparatus therefor, and method for producing cold-rolled annealed steel sheet
CN204509407U (en) A kind of quenching furnance heat reclamation device
CN103225007B (en) Power generation system and method by blast furnace hot-blast stove flue gas waste heat
CN113930602A (en) Annealing stove waste heat utilization and air purification system
US9657366B2 (en) Method of reducing dew point of atmosphere gas in annealing furnace, apparatus for the same and method of producing cold-rolled and annealed steel sheet
CN208586341U (en) A kind of device of iron oxide red tunnel oven production metallized pellet
CN203568958U (en) Low-temperature band type drying device using residual heat of flue gas
CN116294651A (en) Glass production line waste heat power generation system and control method
CN216237182U (en) Annealing stove waste heat utilization and air purification system
CN212769886U (en) Equipment for preparing activated carbon by high-pressure steam
CN105289220B (en) The cyclic drying system and method for high-temperature reductibility protective gas
CN111392725A (en) Process for preparing activated carbon by high-pressure steam
CN105586060A (en) Non-gas coke dry quenching method
CN106643100A (en) Heat treatment circulation system for automobile air conditioner pipeline
CN105927963B (en) A kind of chemical industry boiler efficient waste heat recovery process flow
JPS5873727A (en) Preheating method of strip in continuous heat treatment equipment
CN117781715A (en) System and process for efficiently utilizing waste heat of rotary hearth furnace
CN204461118U (en) Copper pipe heat-treatment furnace residual heat using device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20180911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190605

R150 Certificate of patent or registration of utility model

Ref document number: 6538088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250