JP2017225235A - Single-phase inverter device - Google Patents

Single-phase inverter device Download PDF

Info

Publication number
JP2017225235A
JP2017225235A JP2016118429A JP2016118429A JP2017225235A JP 2017225235 A JP2017225235 A JP 2017225235A JP 2016118429 A JP2016118429 A JP 2016118429A JP 2016118429 A JP2016118429 A JP 2016118429A JP 2017225235 A JP2017225235 A JP 2017225235A
Authority
JP
Japan
Prior art keywords
conductor
semiconductor element
positive
semiconductor
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016118429A
Other languages
Japanese (ja)
Inventor
英伸 楠本
Hidenobu Kusumoto
英伸 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2016118429A priority Critical patent/JP2017225235A/en
Publication of JP2017225235A publication Critical patent/JP2017225235A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a single-phase inverter device in which the occurrence of a surge voltage on a DC side is suppressed.SOLUTION: A single-phase inverter comprises: DC capacitors C1 to C4 connected in parallel: and semiconductor devices TRU, TRY, TRV, and TRX bridge-connected. In the single-phase inverter, the semiconductor devices TRU and TRY are closely provided, the TRV and the TRX are alternately closely provided so as to be separated from the TRU and the TRY. When turning on the semiconductor devices the TRU and the TRY or the TRV and the TRX, a P conductor 101 and an N conductor 102 are oppositely arranged, and an U conductor 103 and a V conductor 104 are oppositely arranged so that a magnetic flux caused by a current flowing from positive potential poles Pto Pof the DC capacitors C1 to C4 to the semiconductor device TRU or TRV and the magnetic flux caused by the current inflowing to negative potential poles Nto Nfrom the semiconductor device TRY or TRX are cancelled. Thus, a surge voltage on the DC side generated at a turn off of the semiconductor device is suppressed, and each semiconductor device is prevented from damage.SELECTED DRAWING: Figure 2

Description

本発明は、自己消弧型半導体素子を用いた電圧型インバータにおいて、素子が電流を遮断するときのサージ電圧を抑制する技術に関する。   The present invention relates to a technology for suppressing a surge voltage when an element cuts off a current in a voltage-type inverter using a self-extinguishing semiconductor element.

自己消弧型半導体素子、例えばIGBTを用いた単相インバータの構成例を図6、図7に示す。単相インバータの電気的接続を示す図6において、直流コンデンサCの正電位極P,負電位極Nは、図示省略の直流電源の正極、負極に各々接続されている。   6 and 7 show a configuration example of a single-phase inverter using a self-extinguishing semiconductor element, for example, an IGBT. In FIG. 6 showing the electrical connection of the single-phase inverter, the positive potential pole P and the negative potential pole N of the DC capacitor C are respectively connected to the positive electrode and the negative electrode of a DC power supply (not shown).

直流コンデンサCの正、負電位極P,N間には、半導体素子TRU(第1の半導体素子)およびTRX(第2の半導体素子)が直列に接続されるとともに、半導体素子TRV(第3の半導体素子)およびTRY(第4の半導体素子)が直列に接続されている。   Between the positive and negative potential poles P and N of the DC capacitor C, a semiconductor element TRU (first semiconductor element) and TRX (second semiconductor element) are connected in series, and a semiconductor element TRV (third semiconductor element) is connected. A semiconductor element) and TRY (fourth semiconductor element) are connected in series.

半導体素子TRU,TRV,TRX,TRYは自己消弧型の半導体素子、例えばIGBTで構成されている。尚、直流コンデンサCは、例えば図7に示すように、分割した4つの直流コンデンサC1〜C4を並列接続して構成されている。   The semiconductor elements TRU, TRV, TRX, TRY are constituted by self-extinguishing type semiconductor elements, for example, IGBTs. For example, as shown in FIG. 7, the DC capacitor C is configured by connecting four divided DC capacitors C1 to C4 in parallel.

半導体素子TRUおよびTRYと、半導体素子TRVおよびTRXを交互にオン、オフ制御することにより、半導体素子TRUおよびTRXの共通接続点と、半導体素子TRVおよびTRYの共通接続点との間に接続された負荷(図示省略)に交流電力が供給される。   By alternately turning on and off the semiconductor elements TRU and TRY and the semiconductor elements TRV and TRX, they are connected between the common connection point of the semiconductor elements TRU and TRX and the common connection point of the semiconductor elements TRV and TRY. AC power is supplied to a load (not shown).

図6の単相インバータの物理的接続を示す図7において、1は、平板状の平面導体からなるP導体であり、平板の長手方向一端側に、平板の長辺から直交する方向に突出して正極端子P1が設けられ、平板の長手方向他端側に、平板の長辺から直交する方向に突出して正極端子P2が設けられている。このP導体1は図示省略の直流電源の正極に接続されている。   In FIG. 7 showing the physical connection of the single-phase inverter of FIG. 6, reference numeral 1 denotes a P conductor made of a flat plate-like conductor, and protrudes in the direction perpendicular to the long side of the flat plate at one end side in the longitudinal direction of the flat plate. A positive electrode terminal P1 is provided, and a positive electrode terminal P2 is provided on the other end in the longitudinal direction of the flat plate so as to protrude in a direction orthogonal to the long side of the flat plate. The P conductor 1 is connected to the positive electrode of a DC power supply (not shown).

2は、平板状の平面導体からなるN導体であり、平板の長手方向一端側に、平板の長辺から直交する方向に突出して負極端子N1が設けられ、平板の長手方向他端側に、平板の長辺から直交する方向に突出して負極端子N2が設けられている。このN導体2は図示省略の直流電源の負極に接続されている。   2 is an N conductor made of a flat planar conductor, and is provided with a negative electrode terminal N1 projecting in a direction orthogonal to the long side of the flat plate on one end side in the longitudinal direction of the flat plate, and on the other longitudinal end side of the flat plate, A negative electrode terminal N2 is provided so as to protrude in a direction perpendicular to the long side of the flat plate. The N conductor 2 is connected to the negative electrode of a DC power supply (not shown).

N導体2はP導体1に対して、所定厚みを有した絶縁物5を介して対向配設されており、図7では、P導体1が奥側に配置され、N導体2が手前側に配置され、P導体1とN導体2の間に絶縁物5が介在する配置関係となっている。   The N conductor 2 is disposed opposite to the P conductor 1 via an insulator 5 having a predetermined thickness. In FIG. 7, the P conductor 1 is disposed on the back side, and the N conductor 2 is on the near side. The arrangement relationship is such that the insulator 5 is interposed between the P conductor 1 and the N conductor 2.

また正極端子P1,P2と負極端子N1,N2は各々対向しない位置に配設されており、負極端子N1,N2は、正極端子P1,P2の配設位置に対してP導体1の長手方向一端から他端へ向かう方向に所定距離ずれた位置に各々配設されている。   Further, the positive terminals P1, P2 and the negative terminals N1, N2 are arranged at positions not facing each other, and the negative terminals N1, N2 are one end in the longitudinal direction of the P conductor 1 with respect to the arrangement positions of the positive terminals P1, P2. Are respectively disposed at positions shifted by a predetermined distance in the direction from one end to the other end.

また、図7における、前記P導体1のさらに奥側の部位(P導体1の、絶縁物5と反対側に対向する部位)には、P導体1の長辺に沿って直流コンデンサC1〜C4が順次配設されている。   Further, in FIG. 7, DC capacitors C <b> 1 to C <b> 4 are disposed along the long side of the P conductor 1 at a portion on the further back side of the P conductor 1 (a portion facing the opposite side of the insulator 5 of the P conductor 1). Are sequentially arranged.

直流コンデンサC1〜C4の各正電位極PC1〜PC4は、該コンデンサに対向するP導体1に直接、接続固定されている。直流コンデンサC1〜C4の各負電位極NC1〜NC4は、当該負電位極の大きさよりやや大きい範囲で対向するP導体1および絶縁物5の部位を切り欠くか又は貫通させて、N導体2に接続固定されている。 The positive potential electrodes P C1 to P C4 of the DC capacitors C1 to C4 are directly connected and fixed to the P conductor 1 facing the capacitors. The negative potential electrodes N C1 to N C4 of the DC capacitors C1 to C4 are formed by cutting out or penetrating the portions of the P conductor 1 and the insulator 5 facing each other in a range slightly larger than the size of the negative potential electrode. 2 is connected and fixed.

尚、図7ではN導体2および絶縁物5にはハッチングを付与していない。また、P導体1とN導体2が絶縁物5を介して重なっている部位のP導体1にはハッチングを付与せず、重なっていない部位のP導体1にのみハッチングを付与している。   In FIG. 7, the N conductor 2 and the insulator 5 are not hatched. Further, the P conductor 1 in the portion where the P conductor 1 and the N conductor 2 overlap with each other through the insulator 5 is not given hatching, and the hatching is given only to the P conductor 1 in the portion not overlapping.

前記正極端子P1の配設位置に相当し、且つP導体1の長辺に直交する部位には半導体素子TRUが配設され、半導体素子TRUのコレクタは正極端子P1に接続されている。   A semiconductor element TRU is disposed at a position corresponding to the position where the positive electrode terminal P1 is disposed and orthogonal to the long side of the P conductor 1, and the collector of the semiconductor element TRU is connected to the positive electrode terminal P1.

前記負極端子N1の配設位置に相当し、且つN導体2の長辺に直交する部位には半導体素子TRXが配設され、半導体素子TRXのエミッタは負極端子N1に接続されている。   A semiconductor element TRX is disposed in a portion corresponding to the position where the negative electrode terminal N1 is disposed and orthogonal to the long side of the N conductor 2, and the emitter of the semiconductor element TRX is connected to the negative electrode terminal N1.

前記正極端子P2の配設位置に相当し、且つP導体1の長辺に直交する部位には半導体素子TRVが配設され、半導体素子TRVのコレクタは正極端子P2に接続されている。   A semiconductor element TRV is disposed at a position corresponding to the position where the positive terminal P2 is disposed and orthogonal to the long side of the P conductor 1, and the collector of the semiconductor element TRV is connected to the positive terminal P2.

前記負極端子N2の配設位置に相当し、且つN導体2の長辺に直交する部位には半導体素子TRYが配設され、半導体素子TRYのエミッタは負極端子N2に接続されている。   A semiconductor element TRY is disposed at a portion corresponding to the position where the negative electrode terminal N2 is disposed and orthogonal to the long side of the N conductor 2, and the emitter of the semiconductor element TRY is connected to the negative electrode terminal N2.

11は、導電性の部材からなり、隣接配置された半導体素子TRU,TRXに跨って配設されたU導体であり、半導体素子TRUのエミッタ、半導体素子TRXのコレクタおよび図示省略の負荷の一端が各々接続されている。   Reference numeral 11 denotes a U conductor made of a conductive member and disposed across adjacent semiconductor elements TRU and TRX. The emitter of the semiconductor element TRU, the collector of the semiconductor element TRX, and one end of a load (not shown) Each is connected.

12は、導電性の部材からなり、隣接配置された半導体素子TRV,TRYに跨って配設されたV導体であり、半導体素子TRVのエミッタ、半導体素子TRYのコレクタおよび図示省略の負荷の他端が各々接続されている。   Reference numeral 12 denotes a V conductor made of a conductive member and disposed across the adjacently arranged semiconductor elements TRV and TRY. The emitter of the semiconductor element TRV, the collector of the semiconductor element TRY, and the other end of the load (not shown) Are connected to each other.

上記のように、物理的に半導体素子TRUとTRX、半導体素子TRVとTRYをペアで構成することで、P導体1、N導体2、U導体11、V導体12および絶縁物5の構成を容易なものとしている。   As described above, by physically configuring the semiconductor elements TRU and TRX and the semiconductor elements TRV and TRY as a pair, the configuration of the P conductor 1, the N conductor 2, the U conductor 11, the V conductor 12, and the insulator 5 is easy. It is supposed to be.

上記構成において、例えば半導体素子TRUおよびTRYがオンされた場合、各直流コンデンサC1〜C4の正電位極PC1〜PC4→P導体1→正極端子P1→半導体素子TRUのコレクタ、エミッタ→U導体11→負荷→V導体12→半導体素子TRYのコレクタ、エミッタ→負極端子N2→N導体2→各直流コンデンサC1〜C4の負電位極NC1〜NC4の経路で電流が流れる。 In the above configuration, for example, when the semiconductor elements TRU and TRY are turned on, the positive potential electrodes P C1 to P C4 of the DC capacitors C1 to C4P conductor 1 → positive terminal P1 → collector and emitter of the semiconductor element TRU → U conductor 11 → Load → V conductor 12 → Collector and emitter of semiconductor element TRY → Negative electrode N2 → N conductor 2 → Current flows through the path of the negative potential electrodes N C1 to N C4 of the DC capacitors C1 to C4 .

また、半導体素子TRVおよびTRXがオンされた場合、各直流コンデンサC1〜C4の正電位極PC1〜PC4→P導体1→正極端子P2→半導体素子TRVのコレクタ、エミッタ→V導体12→負荷→U導体11→半導体素子TRXのコレクタ、エミッタ→負極端子N1→N導体2→各直流コンデンサC1〜C4の負電位極NC1〜NC4の経路で電流が流れる。 Further, when the semiconductor elements TRV and TRX are turned on, the positive potential electrodes P C1 to P C4 of the DC capacitors C1 to C4P conductor 1 → positive electrode terminal P2 → collector and emitter of the semiconductor element TRV → V conductor 12 → load → U conductor 11 → collector and emitter of semiconductor element TRX → negative electrode terminal N1 → N conductor 2 → current flows through the path of negative potential electrodes N C1 to N C4 of DC capacitors C1 to C4 .

尚、電力変換器の主回路配線におけるインダクタンスの低減を図る技術は、例えば特許文献1に記載されている。   A technique for reducing inductance in the main circuit wiring of the power converter is described in Patent Document 1, for example.

特開2006−280191号公報JP 2006-280191 A

図6、図7のように構成された単相インバータにおいて、サージ電圧を発生させるインダクタンスは、例えば半導体素子TRUおよびTRXの直列回路側では、各直流コンデンサC1〜C4内部のインダクタンス、各直流コンデンサC1〜C4の正電位極PC1〜PC4と半導体素子TRUのコレクタ間のP導体1のインダクタンス、半導体素子の内部のインダクタンス、半導体素子TRUのエミッタと半導体素子TRXのコレクタ間のU導体11のインダクタンス、半導体素子TRXのエミッタと各直流コンデンサC1〜C4の負電位極NC1〜NC4間のN導体2のインダクタンスである。 In the single-phase inverter configured as shown in FIGS. 6 and 7, the inductance that generates the surge voltage is, for example, the inductance inside each DC capacitor C1 to C4 and each DC capacitor C1 on the series circuit side of the semiconductor elements TRU and TRX. The inductance of the P conductor 1 between the positive potential electrodes P C1 to P C4 of .about.C4 and the collector of the semiconductor element TRU, the inductance inside the semiconductor element, and the inductance of the U conductor 11 between the emitter of the semiconductor element TRU and the collector of the semiconductor element TRX. , The inductance of the N conductor 2 between the emitter of the semiconductor element TRX and the negative potential electrodes N C1 to N C4 of the DC capacitors C1 to C4 .

前記U導体11は、隣接配置された半導体素子TRU,TRXに跨る比較的小さい面積で構成されるため、該U導体11を通る電流によるインダクタンスは大きい。これはV導体12においても同様である。   Since the U conductor 11 is configured with a relatively small area straddling adjacent semiconductor elements TRU and TRX, the inductance due to the current passing through the U conductor 11 is large. The same applies to the V conductor 12.

このように直流側の電流ループのインダクタンスが大きいため、半導体素子TRU,TRYのターンオフ時、半導体素子TRV,TRXのターンオフ時に発生するサージ電圧が大きくなり、各半導体素子が破損しやすくなる。   Thus, since the inductance of the current loop on the DC side is large, the surge voltage generated when the semiconductor elements TRU and TRY are turned off and when the semiconductor elements TRV and TRX are turned off becomes large, and each semiconductor element is easily damaged.

本発明は上記課題を解決するものであり、その目的は、直流側でのサージ電圧の発生を抑制した単相インバータ装置を提供することにある。   The present invention solves the above-described problems, and an object of the present invention is to provide a single-phase inverter device that suppresses generation of a surge voltage on the DC side.

上記課題を解決するための請求項1に記載の単相インバータ装置は、直流電源の正、負極端間に並列に接続した複数の直流コンデンサと、前記直流電源の正、負極端間に第1および第2の半導体素子を順次直列に接続した第1の直列回路と、前記直流電源の正、負極端間に第3および第4の半導体素子を順次直列に接続した第2の直列回路と、を備え、
前記第1の直列回路の第1および第2の半導体素子の共通接続点と、前記第2の直列回路の第3および第4の半導体素子の共通接続点との間に交流出力を得る単相インバータにおいて、
第1の半導体素子および第4の半導体素子を互いに近設し、第3の半導体素子および第2の半導体素子を前記第1および第4の半導体素子から離間して互いに近設し、
前記直流電源の正極および前記各直流コンデンサの正電位極が接続される平面導体であって、該平面導体の一端側に設けられ、前記第1の半導体素子のコレクタが接続された第1の正極端子と、該平面導体の他端側に設けられ、前記第3の半導体素子のコレクタが接続された第2の正極端子とを有した第1の導体と、
前記第1の導体に対して所定距離隔てて対向配設され、前記直流電源の負極および前記各直流コンデンサの負電位極が接続される平面導体であって、該平面導体の一端側で且つ前記第1の正極端子の近傍に設けられ、前記第4の半導体素子のエミッタが接続された第1の負極端子と、該平面導体の他端側で且つ前記第2の正極端子の近傍に設けられ、前記第2の半導体素子のエミッタが接続された第2の負極端子と、を有した第2の導体と、
を備えたことを特徴している。
The single-phase inverter device according to claim 1 for solving the above-described problem is a plurality of DC capacitors connected in parallel between the positive and negative ends of a DC power supply, and a first between the positive and negative ends of the DC power supply. And a first series circuit in which the second semiconductor elements are sequentially connected in series, and a second series circuit in which the third and fourth semiconductor elements are sequentially connected in series between the positive and negative ends of the DC power supply, With
A single phase that obtains an AC output between a common connection point of the first and second semiconductor elements of the first series circuit and a common connection point of the third and fourth semiconductor elements of the second series circuit In the inverter,
A first semiconductor element and a fourth semiconductor element are placed close to each other; a third semiconductor element and a second semiconductor element are spaced apart from the first and fourth semiconductor elements;
A planar conductor to which a positive electrode of the DC power source and a positive potential electrode of each DC capacitor are connected, the first positive electrode being provided on one end side of the planar conductor and connected to the collector of the first semiconductor element A first conductor having a terminal and a second positive electrode terminal provided on the other end side of the planar conductor and connected to a collector of the third semiconductor element;
A planar conductor disposed opposite to the first conductor at a predetermined distance to which a negative electrode of the DC power source and a negative potential electrode of each DC capacitor are connected, on one end side of the planar conductor and A first negative electrode terminal provided near the first positive electrode terminal, to which the emitter of the fourth semiconductor element is connected, and provided at the other end of the planar conductor and in the vicinity of the second positive electrode terminal. A second conductor having a second negative electrode terminal to which an emitter of the second semiconductor element is connected;
It is characterized by having.

上記構成において、前記第1および第2の半導体素子の共通接続点と、第3および第4の半導体素子の共通接続点との間に接続される、例えば負荷に交流電力を供給するために、第1および第4の半導体素子と、第3および第2の半導体素子は交互にオン制御される。   In the above configuration, for example, to supply alternating current power to a load connected between the common connection point of the first and second semiconductor elements and the common connection point of the third and fourth semiconductor elements, The first and fourth semiconductor elements and the third and second semiconductor elements are on-controlled alternately.

例えば第1および第4の半導体素子がオンされた場合、各直流コンデンサの正電位極→第1の導体→第1の正極端子→第1の半導体素子のコレクタ、エミッタ→第1および第2の半導体素子の共通接続点→負荷→第3および第4の半導体素子の共通接続点→第4の半導体素子のコレクタ、エミッタ→第1の負極端子→第2の導体→各直流コンデンサの負電位極の経路で電流が流れる。   For example, when the first and fourth semiconductor elements are turned on, the positive potential electrode of each DC capacitor → the first conductor → the first positive terminal → the collector and emitter of the first semiconductor element → the first and second elements Common connection point of semiconductor element → load → common connection point of third and fourth semiconductor elements → collector and emitter of fourth semiconductor element → first negative electrode terminal → second conductor → negative potential electrode of each DC capacitor Current flows through the path.

この際、各直流コンデンサの正電位極から第1の導体(正極側の導体)を通して、第1の半導体素子のコレクタが接続されている第1の正極端子に流出する電流と、第4の半導体素子のエミッタが接続されている第1の負極端子から第2の導体(負極側の導体)を通して各直流コンデンサの負電位極に流入する電流は、互いに逆方向であることと、第1の半導体素子と第4の半導体素子が互いに近設され、且つ第1の導体と第2の導体が対向配設されていることとから、前記各直流コンデンサの正電位極から第1の導体を通して流出する電流と、第2の導体を通して負電位極へ流入する電流とが生成する磁束は打ち消される。   At this time, the current flowing out from the positive potential electrode of each DC capacitor to the first positive electrode terminal to which the collector of the first semiconductor element is connected through the first conductor (conductor on the positive electrode side), and the fourth semiconductor The currents flowing from the first negative terminal to which the emitter of the element is connected to the negative potential electrode of each DC capacitor through the second conductor (negative-side conductor) are in opposite directions, and the first semiconductor Since the element and the fourth semiconductor element are disposed close to each other, and the first conductor and the second conductor are disposed opposite to each other, the first conductor flows out from the positive potential electrode of each DC capacitor. The magnetic flux generated by the current and the current flowing into the negative potential electrode through the second conductor is canceled out.

このため、第1の半導体素子および第4の半導体素子のターンオフ時に直流側でのサージ電圧の発生は抑制される。   For this reason, the generation of a surge voltage on the DC side is suppressed when the first semiconductor element and the fourth semiconductor element are turned off.

また、第3および第2の半導体素子がオンされた場合、各直流コンデンサの正電位極→第1の導体→第2の正極端子→第3の半導体素子のコレクタ、エミッタ→第3および第4の半導体素子の共通接続点→負荷→第1および第2の半導体素子の共通接続点→第2の半導体素子のコレクタ、エミッタ→第2の負極端子→第2の導体→各直流コンデンサの負電位極の経路で電流が流れる。   Further, when the third and second semiconductor elements are turned on, the positive potential electrode of each DC capacitor → the first conductor → the second positive terminal → the collector and emitter of the third semiconductor element → the third and fourth Common connection point of the semiconductor element → Load → Common connection point of the first and second semiconductor elements → Collector and emitter of the second semiconductor element → Second negative terminal → Second conductor → Negative potential of each DC capacitor Current flows through the pole path.

この際、各直流コンデンサの正電位極から第1の導体(正極側の導体)を通して、第3の半導体素子のコレクタが接続されている第2の正極端子に流出する電流と、第2の半導体素子のエミッタが接続されている第2の負極端子から第2の導体(負極側の導体)を通して各直流コンデンサの負電位極に流入する電流は、互いに逆方向であることと、第3の半導体素子と第2の半導体素子が互いに近設され、且つ第1の導体と第2の導体が対向配設されていることとから、前記各直流コンデンサの正電位極から第1の導体を通して流出する電流と、第2の導体を通して負電位極へ流入する電流とが生成する磁束は打ち消される。   At this time, the current flowing out from the positive potential electrode of each DC capacitor through the first conductor (positive conductor) to the second positive terminal to which the collector of the third semiconductor element is connected, and the second semiconductor The current flowing from the second negative terminal to which the emitter of the element is connected to the negative potential electrode of each DC capacitor through the second conductor (negative-side conductor) is opposite to each other, and the third semiconductor Since the element and the second semiconductor element are disposed close to each other and the first conductor and the second conductor are disposed to face each other, the positive potential electrode of each DC capacitor flows out through the first conductor. The magnetic flux generated by the current and the current flowing into the negative potential electrode through the second conductor is canceled out.

このため、第3の半導体素子および第2の半導体素子のターンオフ時に直流側でのサージ電圧の発生は抑制される。   For this reason, the generation of a surge voltage on the DC side is suppressed when the third semiconductor element and the second semiconductor element are turned off.

また、請求項2に記載の単相インバータ装置は、請求項1において、一端が前記第1の半導体素子のエミッタに接続され、他端が前記第2の半導体素子のコレクタに接続され、前記一端と他端の間の中間点を第1交流出力端子とした第3の導体と、
前記第3の導体に対して所定距離隔てて対向配設され、一端が前記第4の半導体素子のコレクタに接続され、他端が前記第3の半導体素子のエミッタに接続され、前記一端と他端の間の中間点を第2交流出力端子とした第4の導体と、
を備えたこと特徴としている。
The single-phase inverter device according to claim 2 is the single-phase inverter device according to claim 1, wherein one end is connected to an emitter of the first semiconductor element, and the other end is connected to a collector of the second semiconductor element. A third conductor having a middle point between the first and second ends as a first AC output terminal;
It is disposed opposite to the third conductor at a predetermined distance, one end is connected to the collector of the fourth semiconductor element, the other end is connected to the emitter of the third semiconductor element, and the other end is connected to the other end. A fourth conductor having a middle point between the ends as a second AC output terminal;
It is characterized by having.

上記構成において、前記第1および第2の半導体素子の共通接続点である第1交流出力端子と、第3および第4の半導体素子の共通接続点である第2交流出力端子との間に接続される、例えば負荷に交流電力を供給するために、第1および第4の半導体素子と、第3および第2の半導体素子は交互にオン制御される。   In the above configuration, a connection is made between a first AC output terminal that is a common connection point of the first and second semiconductor elements and a second AC output terminal that is a common connection point of the third and fourth semiconductor elements. For example, in order to supply AC power to a load, the first and fourth semiconductor elements and the third and second semiconductor elements are alternately turned on.

例えば第1および第4の半導体素子がオンされた場合、各直流コンデンサの正電位極→第1の導体→第1の正極端子→第1の半導体素子のコレクタ、エミッタ→第3の導体の一端→第3の導体の中間点の第1の交流出力端子→負荷→第4の導体の中間点の第2の交流出力端子→第4の導体の一端→第4の半導体素子のコレクタ、エミッタ→第1の負極端子→第2の導体→各直流コンデンサの負電位極の経路で電流が流れる。   For example, when the first and fourth semiconductor elements are turned on, the positive potential electrode of each DC capacitor → the first conductor → the first positive terminal → the collector and emitter of the first semiconductor element → one end of the third conductor → first AC output terminal at the midpoint of the third conductor → load → second AC output terminal at the midpoint of the fourth conductor → one end of the fourth conductor → collector and emitter of the fourth semiconductor element → A current flows through a path of the first negative electrode terminal → the second conductor → the negative potential electrode of each DC capacitor.

この際、各直流コンデンサの正電位極から第1の導体(正極側の導体)を通して、第1の半導体素子のコレクタが接続されている第1の正極端子に流出する電流と、第4の半導体素子のエミッタが接続されている第1の負極端子から第2の導体(負極側の導体)を通して各直流コンデンサの負電位極に流入する電流は、互いに逆方向であることと、第1の半導体素子と第4の半導体素子が互いに近設され、且つ第1の導体と第2の導体が対向配設されていることとから、前記各直流コンデンサの正電位極から第1の導体を通して流出する電流と、第2の導体を通して負電位極へ流入する電流とが生成する磁束は打ち消される。   At this time, the current flowing out from the positive potential electrode of each DC capacitor to the first positive electrode terminal to which the collector of the first semiconductor element is connected through the first conductor (conductor on the positive electrode side), and the fourth semiconductor The currents flowing from the first negative terminal to which the emitter of the element is connected to the negative potential electrode of each DC capacitor through the second conductor (negative-side conductor) are in opposite directions, and the first semiconductor Since the element and the fourth semiconductor element are disposed close to each other, and the first conductor and the second conductor are disposed opposite to each other, the first conductor flows out from the positive potential electrode of each DC capacitor. The magnetic flux generated by the current and the current flowing into the negative potential electrode through the second conductor is canceled out.

このため、第1の半導体素子および第4の半導体素子のターンオフ時に直流側でのサージ電圧の発生は抑制される。   For this reason, the generation of a surge voltage on the DC side is suppressed when the first semiconductor element and the fourth semiconductor element are turned off.

また、第1の半導体素子のエミッタから第3の導体を通して、第1交流出力端子へ流れる電流と、第2交流出力端子から第4の導体を通して第4の半導体素子のコレクタへ流れる電流は互いに逆方向であることと、第1の半導体素子と第4の半導体素子が互いに近設され、且つ第3の導体と第4の導体が対向配設されていることとから、前記第3の導体を通して流れる電流と、第4の導体を通して流れる電流とが生成する磁束は打ち消される。   Also, the current flowing from the emitter of the first semiconductor element through the third conductor to the first AC output terminal and the current flowing from the second AC output terminal through the fourth conductor to the collector of the fourth semiconductor element are opposite to each other. The first conductor element and the fourth semiconductor element are arranged close to each other, and the third conductor and the fourth conductor are disposed opposite to each other, so that the third conductor is passed through the third conductor. The magnetic flux generated by the flowing current and the current flowing through the fourth conductor is canceled out.

このため、第1の半導体素子および第4の半導体素子のターンオフ時にサージ電圧の発生は抑制される。   For this reason, generation | occurrence | production of a surge voltage is suppressed at the time of turn-off of a 1st semiconductor element and a 4th semiconductor element.

さらに、第1の半導体素子および第4の半導体素子と、第3の半導体素子および第2の半導体素子とは離間して配設しているため、その分の距離だけ第3、第4の導体の各々の両端間距離は長い。このため、第3の導体、第4の導体を通して流れる前記電流経路における表面積が広いので、高周波であるサージ電圧は表皮効果も含めたインダクタンス低減によって抑制される。   Further, since the first semiconductor element and the fourth semiconductor element and the third semiconductor element and the second semiconductor element are spaced apart from each other, the third and fourth conductors are provided by that distance. The distance between both ends of each is long. For this reason, since the surface area in the said current path which flows through the 3rd conductor and the 4th conductor is large, the surge voltage which is a high frequency is suppressed by inductance reduction including a skin effect.

また、第3および第2の半導体素子がオンされた場合、各直流コンデンサの正電位極→第1の導体→第2の正極端子→第3の半導体素子のコレクタ、エミッタ→第4の導体の他端→第4の導体の中間点の第2の交流出力端子→負荷→第3の導体の中間点の第1の交流出力端子→第3の導体の他端→第2の半導体素子のコレクタ、エミッタ→第2の負極端子→第2の導体→各直流コンデンサの負電位極の経路で電流が流れる。   Further, when the third and second semiconductor elements are turned on, the positive potential electrode of each DC capacitor → the first conductor → the second positive terminal → the collector and emitter of the third semiconductor element → the fourth conductor The other end → the second AC output terminal at the middle point of the fourth conductor → the load → the first AC output terminal at the middle point of the third conductor → the other end of the third conductor → the collector of the second semiconductor element The current flows through the path of the emitter → the second negative terminal → the second conductor → the negative potential electrode of each DC capacitor.

この際、各直流コンデンサの正電位極から第1の導体(正極側の導体)を通して、第3の半導体素子のコレクタが接続されている第2の正極端子に流出する電流と、第2の半導体素子のエミッタが接続されている第2の負極端子から第2の導体(負極側の導体)を通して各直流コンデンサの負電位極に流入する電流は、互いに逆方向であることと、第3の半導体素子と第2の半導体素子が互いに近設され、且つ第1の導体と第2の導体が対向配設されていることとから、前記各直流コンデンサの正電位極から第1の導体を通して流出する電流と、第2の導体を通して負電位極へ流入する電流とが生成する磁束は打ち消される。   At this time, the current flowing out from the positive potential electrode of each DC capacitor through the first conductor (positive conductor) to the second positive terminal to which the collector of the third semiconductor element is connected, and the second semiconductor The current flowing from the second negative terminal to which the emitter of the element is connected to the negative potential electrode of each DC capacitor through the second conductor (negative-side conductor) is opposite to each other, and the third semiconductor Since the element and the second semiconductor element are disposed close to each other and the first conductor and the second conductor are disposed to face each other, the positive potential electrode of each DC capacitor flows out through the first conductor. The magnetic flux generated by the current and the current flowing into the negative potential electrode through the second conductor is canceled out.

このため、第3の半導体素子および第2の半導体素子のターンオフ時に直流側でのサージ電圧の発生は抑制される。   For this reason, the generation of a surge voltage on the DC side is suppressed when the third semiconductor element and the second semiconductor element are turned off.

また、第3の半導体素子のエミッタから第4の導体を通して、第2交流出力端子へ流れる電流と、第1交流出力端子から第3の導体を通して第2の半導体素子のコレクタへ流れる電流は互いに逆方向であることと、第3の半導体素子と第2の半導体素子が互いに近設され、且つ第3の導体と第4の導体が対向配設されていることとから、前記第3の導体を通して流れる電流と、第4の導体を通して流れる電流とが生成する磁束は打ち消される。   Also, the current flowing from the emitter of the third semiconductor element through the fourth conductor to the second AC output terminal and the current flowing from the first AC output terminal through the third conductor to the collector of the second semiconductor element are opposite to each other. And the third semiconductor element and the second semiconductor element are disposed close to each other, and the third conductor and the fourth conductor are disposed to face each other, so that the third conductor is passed through the third conductor. The magnetic flux generated by the flowing current and the current flowing through the fourth conductor is canceled out.

このため、第3の半導体素子および第2の半導体素子のターンオフ時にサージ電圧の発生は抑制される。   For this reason, generation | occurrence | production of a surge voltage is suppressed at the time of the turn-off of a 3rd semiconductor element and a 2nd semiconductor element.

さらに、第1の半導体素子および第4の半導体素子と、第3の半導体素子および第2の半導体素子とは離間して配設しているため、その分の距離だけ第3、第4の導体の各々の両端間距離は長い。このため、第3の導体、第4の導体を通して流れる前記電流経路における表面積が広いので、高周波であるサージ電圧は表皮効果も含めたインダクタンス低減によって抑制される。   Further, since the first semiconductor element and the fourth semiconductor element and the third semiconductor element and the second semiconductor element are spaced apart from each other, the third and fourth conductors are provided by that distance. The distance between both ends of each is long. For this reason, since the surface area in the said current path which flows through the 3rd conductor and the 4th conductor is large, the surge voltage which is a high frequency is suppressed by inductance reduction including a skin effect.

(1)請求項1、2に記載の発明によれば、第1の半導体素子および第4の半導体素子のオン時、又は第3の半導体素子および第2の半導体素子のオン時に、第1の導体(正極側の導体)を通して流れる電流と、第2の導体(負極側の導体)を通して流れる電流は互いに逆方向となるため、前記両電流が生成する磁束は打ち消され、第1の半導体素子および第4の半導体素子のターンオフ時、第3の半導体素子および第2の半導体素子のターンオフ時に、直流側でのサージ電圧の発生が抑制される。これによって、第1〜第4の半導体素子の破損を防ぐことができる。
(2)請求項2に記載の発明によれば、第1の半導体素子および第4の半導体素子のオン時、又は第3の半導体素子および第2の半導体素子のオン時に、第3の導体を通して流れる電流と第4の導体を通して流れる電流は互いに逆方向となるため、前記両電流が生成する磁束は打ち消され、第1の半導体素子および第4の半導体素子のターンオフ時、第3の半導体素子および第2の半導体素子のターンオフ時に、直流側でのサージ電圧の発生が抑制される。さらに、第3の導体、第4の導体を通して流れる前記電流経路における表面積が広いので、高周波であるサージ電圧は表皮効果も含めたインダクタンス低減によって抑制される。これによって、第1〜第4の半導体素子の破損を防ぐことができる。
(1) According to the first and second aspects of the invention, the first semiconductor element and the fourth semiconductor element are turned on, or the third semiconductor element and the second semiconductor element are turned on. Since the current flowing through the conductor (positive electrode side conductor) and the current flowing through the second conductor (negative electrode side conductor) are in opposite directions, the magnetic flux generated by both the currents is canceled, and the first semiconductor element and Generation of a surge voltage on the DC side is suppressed when the fourth semiconductor element is turned off and when the third semiconductor element and the second semiconductor element are turned off. Thereby, damage to the first to fourth semiconductor elements can be prevented.
(2) According to the invention described in claim 2, when the first semiconductor element and the fourth semiconductor element are turned on, or when the third semiconductor element and the second semiconductor element are turned on, the third conductor is passed through. Since the flowing current and the current flowing through the fourth conductor are opposite to each other, the magnetic flux generated by the both currents is canceled, and when the first semiconductor element and the fourth semiconductor element are turned off, the third semiconductor element and Generation of a surge voltage on the DC side is suppressed when the second semiconductor element is turned off. Furthermore, since the surface area of the current path flowing through the third conductor and the fourth conductor is large, a surge voltage having a high frequency is suppressed by inductance reduction including the skin effect. Thereby, damage to the first to fourth semiconductor elements can be prevented.

本発明の実施形態例による単相インバータ装置の電気的接続を示す回路図。The circuit diagram which shows the electrical connection of the single phase inverter apparatus by the example of embodiment of this invention. 本発明の実施形態例による単相インバータ装置の物理的接続を示す構成図。The block diagram which shows the physical connection of the single phase inverter apparatus by the example of embodiment of this invention. 本発明の実施形態例による単相インバータ装置を表し、図2のU導体、V導体側から見た簡略構成図。The simple block diagram showing the single phase inverter apparatus by the example of embodiment of this invention, and was seen from the U conductor and V conductor side of FIG. 本発明の実施形態例による単相インバータ装置における電流経路を示す説明図。Explanatory drawing which shows the current pathway in the single phase inverter apparatus by the example of embodiment of this invention. 従来の単相インバータにおける電流経路を示す説明図。Explanatory drawing which shows the current pathway in the conventional single phase inverter. 単相インバータ装置の従来例における電気的接続を示す回路図。The circuit diagram which shows the electrical connection in the prior art example of a single phase inverter apparatus. 単相インバータ装置の従来例における物理的接続を示す構成図。The block diagram which shows the physical connection in the prior art example of a single phase inverter apparatus.

以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。本実施形態例では、単相インバータを構成する半導体素子の配置を、直流コンデンサの正電位極から正極側(上アーム側)の半導体素子側へ流出する電流による磁束と、負極側(下アーム側)の半導体素子から直流コンデンサの負電位極側へ流入する電流による磁束とが打ち消される配置に構成することで、半導体素子のターンオフ時に発生する直流側のサージ電圧を抑制し、各半導体素子の破損を防ぐようにした。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. In the present embodiment example, the arrangement of the semiconductor elements constituting the single-phase inverter is determined by the magnetic flux generated by the current flowing from the positive potential electrode of the DC capacitor to the semiconductor element side on the positive electrode side (upper arm side) and the negative electrode side (lower arm side). ), The magnetic flux generated by the current flowing from the semiconductor element to the negative potential pole side of the DC capacitor is cancelled, so that the DC side surge voltage generated when the semiconductor element is turned off is suppressed and each semiconductor element is damaged. To prevent.

図1は本実施形態例による単相インバータ装置の電気的接続を示し、図2は物理的接続を示している。図1、図2において、図6、図7と同一部分は同一符号をもって示している。図1において、直流コンデンサCおよび半導体素子TRU,TRV,TRX,TRYの接続状態は図6と同一であるが、図7における半導体素子TRXとTRYの配置を入れ替えて図2の配置とし、さらに図7におけるU導体11、V導体12の構造を図2のように変更した。   FIG. 1 shows the electrical connection of the single-phase inverter device according to this embodiment, and FIG. 2 shows the physical connection. 1 and 2, the same parts as those in FIGS. 6 and 7 are denoted by the same reference numerals. 1, the connection state of the DC capacitor C and the semiconductor elements TRU, TRV, TRX, TRY is the same as that in FIG. 6, but the arrangement of the semiconductor elements TRX and TRY in FIG. 7, the structure of the U conductor 11 and the V conductor 12 was changed as shown in FIG.

図1において、直流コンデンサCの正、負電位極P,N間には、半導体素子TRU(第1の半導体素子)およびTRX(第2の半導体素子)が直列に接続されるとともに、半導体素子TRV(第3の半導体素子)およびTRY(第4の半導体素子)が直列に接続されている。   In FIG. 1, a semiconductor element TRU (first semiconductor element) and TRX (second semiconductor element) are connected in series between the positive and negative potential poles P and N of the DC capacitor C, and the semiconductor element TRV. (Third semiconductor element) and TRY (fourth semiconductor element) are connected in series.

半導体素子TRU,TRV,TRX,TRYは自己消弧型の半導体素子、例えばIGBTで構成されている。尚、直流コンデンサCは、例えば図7の場合と同様に、図2に示すように、分割した4つの直流コンデンサC1〜C4を並列接続して構成されている。   The semiconductor elements TRU, TRV, TRX, TRY are constituted by self-extinguishing type semiconductor elements, for example, IGBTs. For example, as shown in FIG. 2, the DC capacitor C is configured by connecting four divided DC capacitors C1 to C4 in parallel as shown in FIG.

図2において、101は、平板状の平面導体からなるP導体(第1の導体)であり、平板の長手方向一端側に、平板の長辺から直交する方向に突出して正極端子P1(第1の正極端子)が設けられ、平板の長手方向他端側に、平板の長辺から直交する方向に突出して正極端子P2(第2の正極端子)が設けられている。このP導体101は図示省略の直流電源の正極に接続されている。   In FIG. 2, reference numeral 101 denotes a P conductor (first conductor) made of a flat plate-like conductor, and protrudes in the direction perpendicular to the long side of the flat plate at one end side in the longitudinal direction of the flat plate, and is connected to the positive electrode terminal P1 Positive electrode terminal), and a positive electrode terminal P2 (second positive electrode terminal) is provided on the other end side in the longitudinal direction of the flat plate so as to protrude in a direction orthogonal to the long side of the flat plate. The P conductor 101 is connected to the positive electrode of a DC power supply (not shown).

102は、平板状の平面導体からなるN導体(第2の導体)であり、平板の長手方向一端側に、平板の長辺から直交する方向に突出して負極端子N2(第1の負極端子)が設けられ、平板の長手方向他端側に、平板の長辺から直交する方向に突出して負極端子N1(第2の負極端子)が設けられている。このN導体102は図示省略の直流電源の負極に接続されている。   Reference numeral 102 denotes an N conductor (second conductor) made of a flat plate-like conductor, and protrudes in the direction perpendicular to the long side of the flat plate at one end in the longitudinal direction of the flat plate, and is a negative electrode terminal N2 (first negative electrode terminal). The negative electrode terminal N1 (second negative electrode terminal) is provided on the other end in the longitudinal direction of the flat plate so as to protrude in a direction orthogonal to the long side of the flat plate. The N conductor 102 is connected to the negative electrode of a DC power supply (not shown).

N導体102はP導体101に対して、所定厚みを有した絶縁物105を介して対向配設されており、図2では、P導体101が奥側に配置され、N導体102が手前側に配置され、P導体101とN導体102の間に絶縁物105が介在する配置関係となっている。   The N conductor 102 is disposed opposite to the P conductor 101 via an insulator 105 having a predetermined thickness. In FIG. 2, the P conductor 101 is disposed on the back side, and the N conductor 102 is disposed on the near side. The arrangement relationship is such that an insulator 105 is interposed between the P conductor 101 and the N conductor 102.

また正極端子P1,P2と負極端子N2,N1は各々対向しない位置に配設されており、負極端子N2,N1は、正極端子P1,P2の配設位置に対してP導体101の長手方向一端から他端へ向かう方向に所定距離ずれた位置に各々配設されている。   The positive terminals P1, P2 and the negative terminals N2, N1 are disposed at positions that do not face each other, and the negative terminals N2, N1 are one end in the longitudinal direction of the P conductor 101 with respect to the positions at which the positive terminals P1, P2 are disposed. Are respectively disposed at positions shifted by a predetermined distance in the direction from one end to the other end.

また、図2における、前記P導体101のさらに奥側の部位(P導体101の、絶縁物105と反対側に対向する部位)には、P導体101の長辺に沿って直流コンデンサC1〜C4が順次配設されている。   In addition, DC capacitors C <b> 1 to C <b> 4 along the long side of the P conductor 101 are located on the further back side of the P conductor 101 in FIG. 2 (the part facing the opposite side of the insulator 105 of the P conductor 101). Are sequentially arranged.

直流コンデンサC1〜C4の各正電位極PC1〜PC4は、該コンデンサに対向するP導体101に直接、接続固定されている。直流コンデンサC1〜C4の各負電位極NC1〜NC4は、当該負電位極の大きさよりやや大きい範囲で対向するP導体101および絶縁物105の部位を切り欠くか又は貫通させて、N導体102に接続固定されている。 The positive potential electrodes P C1 to P C4 of the DC capacitors C1 to C4 are directly connected and fixed to the P conductor 101 facing the capacitors. The negative potential electrodes N C1 to N C4 of the DC capacitors C1 to C4 are formed by cutting out or penetrating portions of the P conductor 101 and the insulator 105 facing each other in a range slightly larger than the size of the negative potential electrode. The connection is fixed to 102.

尚、図2ではN導体102および絶縁物105にはハッチングを付与していない。また、P導体101とN導体102が絶縁物105を介して重なっている部位のP導体101にはハッチングを付与せず、重なっていない部位のP導体101にのみハッチングを付与している。   In FIG. 2, the N conductor 102 and the insulator 105 are not hatched. Moreover, hatching is not given to the P conductor 101 of the site | part with which the P conductor 101 and the N conductor 102 have overlapped via the insulator 105, but only the P conductor 101 of the site | part which has not overlapped.

前記正極端子P1の配設位置に相当し、且つP導体101の長辺に直交する部位には半導体素子TRUが配設され、半導体素子TRUのコレクタは正極端子P1に接続されている。   A semiconductor element TRU is disposed at a position corresponding to the position where the positive terminal P1 is disposed and orthogonal to the long side of the P conductor 101, and the collector of the semiconductor element TRU is connected to the positive terminal P1.

前記負極端子N2の配設位置に相当し、且つN導体102の長辺に直交する部位には半導体素子TRYが配設され、半導体素子TRYのエミッタは負極端子N2に接続されている。   A semiconductor element TRY is disposed at a portion corresponding to the position where the negative electrode terminal N2 is disposed and orthogonal to the long side of the N conductor 102, and the emitter of the semiconductor element TRY is connected to the negative electrode terminal N2.

前記正極端子P2の配設位置に相当し、且つP導体101の長辺に直交する部位には半導体素子TRVが配設され、半導体素子TRVのコレクタは正極端子P2に接続されている。   A semiconductor element TRV is disposed at a portion corresponding to the position where the positive electrode terminal P2 is disposed and orthogonal to the long side of the P conductor 101, and the collector of the semiconductor element TRV is connected to the positive electrode terminal P2.

前記負極端子N1の配設位置に相当し、且つN導体102の長辺に直交する部位には半導体素子TRXが配設され、半導体素子TRXのエミッタは負極端子N1に接続されている。   A semiconductor element TRX is disposed at a portion corresponding to the position where the negative electrode terminal N1 is disposed and orthogonal to the long side of the N conductor 102, and the emitter of the semiconductor element TRX is connected to the negative electrode terminal N1.

103は、半導体素子TRU,TRXの、P導体101、N導体102と反対側に対向する部位に設けられたU導体(第3の導体)であり、その一端は半導体素子TRUのエミッタに接続され、他端は半導体素子TRXのコレクタに接続され、一端と他端の間の中間点にはU端子(第1交流出力端子)111が設けられている。   Reference numeral 103 denotes a U conductor (third conductor) provided on a portion of the semiconductor elements TRU, TRX opposite to the P conductor 101 and the N conductor 102, one end of which is connected to the emitter of the semiconductor element TRU. The other end is connected to the collector of the semiconductor element TRX, and a U terminal (first AC output terminal) 111 is provided at an intermediate point between the one end and the other end.

104は、半導体素子TRY,TRVの、P導体101、N導体102と反対側に対向する部位に、U導体103に対して所定距離隔てて対向配設されたV導体(第4の導体)であり、その一端は半導体素子TRYのコレクタに接続され、他端は半導体素子TRVのエミッタに接続され、一端と他端の間の中間点にはV端子(第2交流出力端子)112が設けられている。   Reference numeral 104 denotes a V conductor (fourth conductor) disposed opposite to the P conductor 101 and the N conductor 102 on the opposite side of the semiconductor elements TRY and TRV with a predetermined distance from the U conductor 103. One end is connected to the collector of the semiconductor element TRY, the other end is connected to the emitter of the semiconductor element TRV, and a V terminal (second AC output terminal) 112 is provided at an intermediate point between the one end and the other end. ing.

尚、図2では図示省略しているがU導体103とV導体104の対向部位には絶縁物106が介挿されている。   Although not shown in FIG. 2, an insulator 106 is inserted in a portion where the U conductor 103 and the V conductor 104 face each other.

前記U端子111およびV端子112は、図示省略の負荷の両端に各々接続されている。   The U terminal 111 and the V terminal 112 are connected to both ends of a load (not shown).

図2のように構成された装置の、半導体素子TRU,TRV,TRX,TRY、正極端子P1,P2、負極端子N1,N2、各導体101〜104、U,V端子111、112、直流コンデンサC1〜C4の配置関係の一例を図3に示す。   2, the semiconductor elements TRU, TRV, TRX, TRY, positive terminals P1, P2, negative terminals N1, N2, conductors 101 to 104, U, V terminals 111, 112, DC capacitor C1 FIG. 3 shows an example of the arrangement relationship of .about.C4.

図3は図2の装置をU導体103、V導体104側から見た図であり、図2における直流コンデンサC1〜C4の正電位極PC1〜PC4、負電位極NC1〜NC4、絶縁物105、106は図示省略している。また図3では、P導体101における正極端子P1,P2間、N導体102における負極端子N1,N2間の各距離は、図2よりも若干長く記載している。 3 is a view of the apparatus of FIG. 2 as viewed from the U conductor 103 and V conductor 104 side. The positive potential electrodes P C1 to P C4 and the negative potential electrodes N C1 to N C4 of the DC capacitors C1 to C4 in FIG. The insulators 105 and 106 are not shown. In FIG. 3, the distances between the positive terminals P1 and P2 in the P conductor 101 and the negative terminals N1 and N2 in the N conductor 102 are shown slightly longer than those in FIG.

図3の例では、平板状のU導体103、V導体104の各両端から各々所定距離隔てた部位を直角に屈曲させて平板屈曲部とし、U導体103の一端を半導体素子TRUのエミッタに、U導体103の他端を半導体素子TRXのコレクタに、V導体104の一端を半導体素子TRYのコレクタに、V導体104の他端を半導体素子TRVのエミッタに各々接続している。   In the example of FIG. 3, portions of the flat U conductor 103 and the V conductor 104 that are separated from each end by a predetermined distance are bent at right angles to form a flat plate bent portion, and one end of the U conductor 103 is used as the emitter of the semiconductor element TRU. The other end of the U conductor 103 is connected to the collector of the semiconductor element TRX, one end of the V conductor 104 is connected to the collector of the semiconductor element TRY, and the other end of the V conductor 104 is connected to the emitter of the semiconductor element TRV.

そして、U導体103の平板中央部とV導体104の平板中央部とが所定距離隔てて対向するように配設している。   The flat plate center portion of the U conductor 103 and the flat plate center portion of the V conductor 104 are arranged to face each other with a predetermined distance.

また、図3のようにU導体103、V導体104に屈曲部を設けない例としては、U導体103およびV導体104を各々平板で構成して互いに対向配設し、互いに屈曲部のない平板であることによりU導体103とV導体104が交叉する部位において、互いが接触しないように各々切り欠き部を設け、各々の切り欠き部を通してU導体103およびV導体104を非接触で交叉させるように構成してもよい。   In addition, as an example in which the U conductor 103 and the V conductor 104 are not provided with bent portions as shown in FIG. Therefore, at the portion where the U conductor 103 and the V conductor 104 cross each other, a notch is provided so that they do not contact each other, and the U conductor 103 and the V conductor 104 are crossed in a non-contact manner through each notch. You may comprise.

次に、上記のように構成された単相インバータ装置の動作を、各半導体素子のオン時に流れる電流経路を矢印で示した図4とともに述べる。尚、図4では直流コンデンサC1〜C4のうちC1の電流経路のみを図示している。   Next, the operation of the single-phase inverter device configured as described above will be described with reference to FIG. FIG. 4 shows only the current path of C1 among the DC capacitors C1 to C4.

図4において、例えば半導体素子TRUおよびTRYがオンされた場合、実線の矢印で示すように、各直流コンデンサC1〜C4の正電位極PC1〜PC4→P導体101→正極端子P1→半導体素子TRUのコレクタ、エミッタ→U導体103の一端→U導体103の中間点のU端子111→図示省略の負荷→V導体104の中間点のV端子112→V導体104の一端→半導体素子TRYのコレクタ、エミッタ→負極端子N2→N導体102→各直流コンデンサC1〜C4の負電位極NC1〜NC4の経路で電流が流れる。 In FIG. 4, for example, when the semiconductor elements TRU and TRY are turned on, as indicated by solid arrows, the positive potential electrodes P C1 to P C4 of the DC capacitors C1 to C4 → P conductor 101 → positive electrode terminal P1 → semiconductor element Collector and emitter of TRU → one end of U conductor 103 → U terminal 111 at the midpoint of U conductor 103 → load not shown → V terminal 112 at the midpoint of V conductor 104 → one end of V conductor 104 → collector of semiconductor element TRY The current flows through the path of the emitter → the negative terminal N2 → the N conductor 102 → the negative potential electrodes N C1 to N C4 of the DC capacitors C1 to C4 .

この際、各直流コンデンサC1〜C4の正電位極PC1〜PC4からP導体101を通して、正極端子P1に流出する電流と、負極端子N2からN導体102を通して各直流コンデンサの負電位極NC1〜NC4に流入する電流は、互いに逆方向である。そして、半導体素子TRU,TRYが互いに近設され、且つP導体101とN導体102が対向配設されていることから、前記各直流コンデンサの正電位極PC1〜PC4からP導体101を通して流出する電流が生成する磁束と、N導体102を通して負電位極NC1〜NC4へ流入する電流が生成する磁束は打ち消される。 At this time, the current flowing out from the positive potential electrodes P C1 to P C4 of the DC capacitors C1 to C4 through the P conductor 101 to the positive terminal P1 and the negative potential electrode N C1 of each DC capacitor from the negative terminal N2 through the N conductor 102. The currents flowing into ˜N C4 are in opposite directions. Since the semiconductor elements TRU and TRY are arranged close to each other and the P conductor 101 and the N conductor 102 are arranged to face each other, the positive potential electrodes P C1 to P C4 of each DC capacitor flow out through the P conductor 101. The magnetic flux generated by the current to be generated and the magnetic flux generated by the current flowing into the negative potential electrodes N C1 to N C4 through the N conductor 102 are canceled out.

また、半導体素子TRUのエミッタからU導体103を通してU端子111へ流れる電流と、V端子112からV導体104を通して半導体素子TRYのコレクタへ流れる電流は互いに逆方向である。そして半導体素子TRUとTRYが互いに近設され、且つU導体103とV導体104が対向配設されていることから、U導体103を通して流れる電流が生成する磁束とV導体104を通して流れる電流が生成する磁束は打ち消される。このため、半導体素子TRUおよびTRYのターンオフ時にサージ電圧の発生は抑制される。   The current flowing from the emitter of the semiconductor element TRU to the U terminal 111 through the U conductor 103 and the current flowing from the V terminal 112 to the collector of the semiconductor element TRY through the V conductor 104 are in opposite directions. Since the semiconductor elements TRU and TRY are disposed close to each other and the U conductor 103 and the V conductor 104 are disposed to face each other, a magnetic flux generated by the current flowing through the U conductor 103 and a current flowing through the V conductor 104 are generated. The magnetic flux is canceled out. For this reason, generation of a surge voltage is suppressed when the semiconductor elements TRU and TRY are turned off.

さらに、半導体素子TRUおよびTRYと半導体素子TRVおよびTRXとは離間して配設されているため、その分の距離だけU導体103の両端間距離、V導体104の両端間距離は各々長い。このため、U導体103、V導体104を通して流れる電流経路における表面積が広いので、高周波であるサージ電圧は表皮効果も含めたインダクタンス低減によって抑制される。これによって、半導体素子TRU,TRV,TRX,TRYの破損を防ぐことができる。   Further, since the semiconductor elements TRU and TRY and the semiconductor elements TRV and TRX are arranged apart from each other, the distance between both ends of the U conductor 103 and the distance between both ends of the V conductor 104 are respectively longer by that amount. For this reason, since the surface area in the current path which flows through the U conductor 103 and the V conductor 104 is large, the surge voltage which is a high frequency is suppressed by the inductance reduction including the skin effect. Thereby, damage to the semiconductor elements TRU, TRV, TRX, TRY can be prevented.

また、半導体素子TRVおよびTRXがオンされた場合、破線の矢印で示すように、各直流コンデンサの正電位極PC1〜PC4→P導体101→正極端子P2→半導体素子TRVのコレクタ、エミッタ→V導体104の他端→V導体104の中間点のV端子112→負荷→U導体103の中間点のU端子111→U導体103の他端→半導体素子TRXのコレクタ、エミッタ→負極端子N1→N導体102→各直流コンデンサC1〜C4の負電位極NC1〜NC4の経路で電流が流れる。 When the semiconductor elements TRV and TRX are turned on, as indicated by broken arrows, the positive potential electrodes P C1 to P C4 of each DC capacitor → P conductor 101 → the positive terminal P2 → the collector and emitter of the semiconductor element TRV → The other end of the V conductor 104 → the V terminal 112 at the midpoint of the V conductor 104 → the load → the U terminal 111 at the midpoint of the U conductor 103 → the other end of the U conductor 103 → the collector and emitter of the semiconductor element TRX → the negative terminal N1 → Current flows through the path of the N conductor 102 → the negative potential electrodes N C1 to N C4 of the DC capacitors C1 to C4 .

この際、各直流コンデンサの正電位極PC1〜PC4からP導体101を通して、正極端子P2に流出する電流と、負極端子N1からN導体102を通して各直流コンデンサの負電位極NC1〜NC4に流入する電流は、互いに逆方向であることと、半導体素子TRV,TRXが互いに近設され、且つP導体101とN導体102が対向配設されていることから、各直流コンデンサの正電位極PC1〜PC4からP導体101を通して流出する電流が生成する磁束と、N導体102を通して負電位極NC1〜NC4へ流入する電流が生成する磁束は打ち消される。 At this time, the current flowing out from the positive potential electrodes P C1 to P C4 of each DC capacitor to the positive terminal P2 through the P conductor 101 and the negative potential electrodes N C1 to N C4 of each DC capacitor from the negative terminal N1 to the N conductor 102 are obtained. Current flowing in the opposite direction, the semiconductor elements TRV and TRX are located close to each other, and the P conductor 101 and the N conductor 102 are disposed opposite to each other, so that the positive potential pole of each DC capacitor The magnetic flux generated by the current flowing from P C1 to P C4 through the P conductor 101 and the magnetic flux generated by the current flowing through the N conductor 102 to the negative potential electrodes N C1 to N C4 are canceled out.

このため、半導体素子TRVおよびTRXのターンオフ時にサージ電圧の発生は抑制される。   For this reason, the generation of a surge voltage is suppressed when the semiconductor elements TRV and TRX are turned off.

また、半導体素子TRVのエミッタからV導体104を通してV端子112へ流れる電流と、U端子111からU導体103を通して半導体素子TRXのコレクタへ流れる電流は互いに逆方向であることと、半導体素子TRVとTRXが互いに近設され、且つU導体103とV導体104が対向配設されていることとから、U導体103を通して流れる電流が生成する磁束とV導体104を通して流れる電流が生成する磁束は打ち消される。このため、半導体素子TRVおよびTRXのターンオフ時にサージ電圧の発生は抑制される。   Further, the current flowing from the emitter of the semiconductor element TRV to the V terminal 112 through the V conductor 104 and the current flowing from the U terminal 111 to the collector of the semiconductor element TRX through the U conductor 103 are opposite to each other, and the semiconductor elements TRV and TRX Are disposed close to each other and the U conductor 103 and the V conductor 104 are disposed opposite to each other, so that the magnetic flux generated by the current flowing through the U conductor 103 and the magnetic flux generated by the current flowing through the V conductor 104 are canceled out. For this reason, the generation of a surge voltage is suppressed when the semiconductor elements TRV and TRX are turned off.

さらに、半導体素子TRUおよびTRYと半導体素子TRVおよびTRXとは離間して配設されているため、その分の距離だけU導体103の両端間距離、V導体104の両端間距離は各々長い。このため、U導体103、V導体104を通して流れる電流経路における表面積が広いので、高周波であるサージ電圧は表皮効果も含めたインダクタンス低減によって抑制される。これによって、半導体素子TRU,TRV,TRX,TRYの破損を防ぐことができる。   Further, since the semiconductor elements TRU and TRY and the semiconductor elements TRV and TRX are arranged apart from each other, the distance between both ends of the U conductor 103 and the distance between both ends of the V conductor 104 are respectively longer by that amount. For this reason, since the surface area in the current path which flows through the U conductor 103 and the V conductor 104 is large, the surge voltage which is a high frequency is suppressed by the inductance reduction including the skin effect. Thereby, damage to the semiconductor elements TRU, TRV, TRX, TRY can be prevented.

ここで、本実施形態例によるサージ電圧抑制効果と対比するために、従来の図7の構造の単相インバータ装置における電流経路を図5に示す。   Here, in order to compare with the surge voltage suppression effect according to the present embodiment, the current path in the conventional single-phase inverter device having the structure of FIG. 7 is shown in FIG.

図5は図7における各半導体素子のオン時に流れる電流経路を矢印で示しているが、直流コンデンサC1〜C4のうちC1の電流経路のみを図示している。   FIG. 5 shows current paths that flow when each semiconductor element in FIG. 7 is turned on by arrows, but only the current path of C1 among the DC capacitors C1 to C4 is illustrated.

図5において、例えば半導体素子TRUおよびTRYがオンされた場合、実線の矢印で示すように、各直流コンデンサC1〜C4の正電位極PC1〜PC4→P導体1→正極端子P1→半導体素子TRUのコレクタ、エミッタ→U導体11→負荷→V導体12→半導体素子TRYのコレクタ、エミッタ→負極端子N2→N導体2→各直流コンデンサC1〜C4の負電位極NC1〜NC4の経路で電流が流れる。 In FIG. 5, for example, when the semiconductor elements TRU and TRY are turned on, as indicated by solid arrows, the positive potential electrodes P C1 to P C4 of the DC capacitors C1 to C4 → P conductor 1 → positive electrode terminal P1 → semiconductor element TRU collector / emitter → U conductor 11 → load → V conductor 12 → semiconductor element TRY collector / emitter → negative electrode terminal N2 → N conductor 2 → negative potential electrodes N C1 to N C4 of DC capacitors C1 to C4 Current flows.

この際、U導体11およびV導体12は図4のU導体103、V導体104と比較して小さい面積であるため、該U導体11、V導体12を通る電流によるインダクタンスは大きい。また、U導体11とV導体12は、図4のように互いの面どうしを対向配設したものではなく、また互いに離間しているため、両者に各々流れる電流が生成する磁束どうしは干渉せず、図4の場合のように打ち消されることはない。   At this time, since the U conductor 11 and the V conductor 12 have a smaller area than the U conductor 103 and the V conductor 104 in FIG. 4, the inductance due to the current passing through the U conductor 11 and the V conductor 12 is large. Further, the U conductor 11 and the V conductor 12 are not arranged so as to face each other as shown in FIG. 4, and are separated from each other, so that magnetic fluxes generated by currents flowing through the U conductor 11 and the V conductor 12 do not interfere with each other. In other words, it is not canceled as in the case of FIG.

さらに、各直流コンデンサC1〜C4の正電位極PC1〜PC4からP導体1を通して正極端子P1に流出する電流が生成する磁束と、負極端子N2からN導体2を通して各負電位極NC1〜NC4に流入する電流が生成する磁束は、半導体素子TRUとTRYが離間して配設されているため、干渉力が弱く、図4の場合のように打ち消されることはない。 Further, the magnetic flux generated by the current flowing out from the positive potential electrodes P C1 to P C4 of each DC capacitor C1 to C4 through the P conductor 1 to the positive terminal P1, and the negative potential electrodes N C1 to N C1 through the N conductor 2 from the negative terminal N2. The magnetic flux generated by the current flowing into N C4 has a weak interference force because the semiconductor elements TRU and TRY are arranged apart from each other, and is not canceled as in the case of FIG.

このため、P導体1、N導体2を通流する各電流のインダクタンスが大きい。これによって、半導体素子TRU,TRYのターンオフ時に発生するサージ電圧が大きくなり各半導体素子が破損しやすくなる。   For this reason, the inductance of each current flowing through the P conductor 1 and the N conductor 2 is large. As a result, a surge voltage generated when the semiconductor elements TRU and TRY are turned off increases and each semiconductor element is easily damaged.

また、半導体素子TRVおよびTRXがオンされた場合、破線の矢印で示すように、各直流コンデンサC1〜C4の正電位極PC1〜PC4→P導体1→正極端子P2→半導体素子TRVのコレクタ、エミッタ→V導体12→負荷→U導体11→半導体素子TRXのコレクタ、エミッタ→負極端子N1→N導体2→各直流コンデンサC1〜C4の負電位極NC1〜NC4の経路で電流が流れる。 When the semiconductor elements TRV and TRX are turned on, as indicated by broken arrows, the positive potential electrodes P C1 to P C4 of the DC capacitors C1 to C4 → P conductor 1 → the positive terminal P2 → the collector of the semiconductor element TRV , Emitter → V conductor 12 → load → U conductor 11 → collector of semiconductor element TRX, emitter → negative electrode terminal N1 → N conductor 2 → current flows through a path of negative potential electrodes N C1 to N C4 of DC capacitors C1 to C4. .

この際、U導体11およびV導体12は図4のU導体103、V導体104と比較して小さい面積であるため、該U導体11、V導体12を通る電流によるインダクタンスは大きい。また、U導体11とV導体12は、図4のように互いの面どうしを対向配設したものではなく、また互いに離間しているため、両者に各々流れる電流が生成する磁束どうしは干渉せず、図4の場合のように打ち消されることはない。   At this time, since the U conductor 11 and the V conductor 12 have a smaller area than the U conductor 103 and the V conductor 104 in FIG. 4, the inductance due to the current passing through the U conductor 11 and the V conductor 12 is large. Further, the U conductor 11 and the V conductor 12 are not arranged so as to face each other as shown in FIG. 4, and are separated from each other, so that magnetic fluxes generated by currents flowing through the U conductor 11 and the V conductor 12 do not interfere with each other. In other words, it is not canceled as in the case of FIG.

さらに、各直流コンデンサC1〜C4の正電位極PC1〜PC4からP導体1を通して正極端子P2に流出する電流が生成する磁束と、負極端子N1からN導体2を通して各負電位極NC1〜NC4に流入する電流が生成する磁束は、半導体素子TRVとTRXが離間して配設されているため、干渉力が弱く、図4の場合のように打ち消されることはない。 Further, the magnetic flux generated by the current flowing out from the positive potential electrodes P C1 to P C4 of each DC capacitor C1 to C4 through the P conductor 1 to the positive terminal P2, and the negative potential electrodes N C1 to N C1 through the N conductor 2 from the negative terminal N1. The magnetic flux generated by the current flowing into N C4 has a weak interference force because the semiconductor elements TRV and TRX are spaced apart from each other, and is not canceled as in the case of FIG.

このため、P導体1、N導体2を通流する各電流のインダクタンスが大きい。これによって、半導体素子TRV,TRXのターンオフ時に発生するサージ電圧が大きくなり各半導体素子が破損しやすくなる。   For this reason, the inductance of each current flowing through the P conductor 1 and the N conductor 2 is large. As a result, a surge voltage generated when the semiconductor elements TRV and TRX are turned off increases, and each semiconductor element is easily damaged.

尚、直流電源の正、負極端間に並列接続される直流コンデンサの個数は4個に限らず5個以上であってもよい。   Note that the number of DC capacitors connected in parallel between the positive and negative terminals of the DC power supply is not limited to four and may be five or more.

101…P導体
102…N導体
103…U導体
104…V導体
105,106…絶縁物
111…U端子
112…V端子
C,C1〜C4…直流コンデンサ
P1,P2…正極端子
C1〜PC4…正電位極
N1,N2…負極端子
C1〜NC4…負電位極
TRU,TRY,TRV,TRX…半導体素子
101 ... P conductors 102 ... N conductors 103 ... U conductors 104 ... V conductors 105, 106 ... insulator 111 ... U terminals 112 ... V terminal C, C1 -C4 ... DC capacitor P1, P2 ... positive terminal P C1 to P C4 ... Positive potential electrode N1, N2 ... Negative electrode terminal N C1 to N C4 ... Negative potential electrode TRU, TRY, TRV, TRX ... Semiconductor element

Claims (2)

直流電源の正、負極端間に並列に接続した複数の直流コンデンサと、前記直流電源の正、負極端間に第1および第2の半導体素子を順次直列に接続した第1の直列回路と、前記直流電源の正、負極端間に第3および第4の半導体素子を順次直列に接続した第2の直列回路と、を備え、
前記第1の直列回路の第1および第2の半導体素子の共通接続点と、前記第2の直列回路の第3および第4の半導体素子の共通接続点との間に交流出力を得る単相インバータにおいて、
第1の半導体素子および第4の半導体素子を互いに近設し、第3の半導体素子および第2の半導体素子を前記第1および第4の半導体素子から離間して互いに近設し、
前記直流電源の正極および前記各直流コンデンサの正電位極が接続される平面導体であって、該平面導体の一端側に設けられ、前記第1の半導体素子のコレクタが接続された第1の正極端子と、該平面導体の他端側に設けられ、前記第3の半導体素子のコレクタが接続された第2の正極端子とを有した第1の導体と、
前記第1の導体に対して所定距離隔てて対向配設され、前記直流電源の負極および前記各直流コンデンサの負電位極が接続される平面導体であって、該平面導体の一端側で且つ前記第1の正極端子の近傍に設けられ、前記第4の半導体素子のエミッタが接続された第1の負極端子と、該平面導体の他端側で且つ前記第2の正極端子の近傍に設けられ、前記第2の半導体素子のエミッタが接続された第2の負極端子と、を有した第2の導体と、
を備えたことを特徴とする単相インバータ装置。
A plurality of DC capacitors connected in parallel between the positive and negative terminals of the DC power supply; a first series circuit in which first and second semiconductor elements are sequentially connected in series between the positive and negative terminals of the DC power supply; A second series circuit in which third and fourth semiconductor elements are sequentially connected in series between the positive and negative terminals of the DC power supply,
A single phase that obtains an AC output between a common connection point of the first and second semiconductor elements of the first series circuit and a common connection point of the third and fourth semiconductor elements of the second series circuit In the inverter,
A first semiconductor element and a fourth semiconductor element are placed close to each other; a third semiconductor element and a second semiconductor element are spaced apart from the first and fourth semiconductor elements;
A planar conductor to which a positive electrode of the DC power source and a positive potential electrode of each DC capacitor are connected, the first positive electrode being provided on one end side of the planar conductor and connected to the collector of the first semiconductor element A first conductor having a terminal and a second positive electrode terminal provided on the other end side of the planar conductor and connected to a collector of the third semiconductor element;
A planar conductor disposed opposite to the first conductor at a predetermined distance to which a negative electrode of the DC power source and a negative potential electrode of each DC capacitor are connected, on one end side of the planar conductor and A first negative electrode terminal provided near the first positive electrode terminal, to which the emitter of the fourth semiconductor element is connected, and provided at the other end of the planar conductor and in the vicinity of the second positive electrode terminal. A second conductor having a second negative electrode terminal to which an emitter of the second semiconductor element is connected;
A single-phase inverter device comprising:
一端が前記第1の半導体素子のエミッタに接続され、他端が前記第2の半導体素子のコレクタに接続され、前記一端と他端の間の中間点を第1交流出力端子とした第3の導体と、
前記第3の導体に対して所定距離隔てて対向配設され、一端が前記第4の半導体素子のコレクタに接続され、他端が前記第3の半導体素子のエミッタに接続され、前記一端と他端の間の中間点を第2交流出力端子とした第4の導体と、
を備えたこと特徴とする請求項1に記載の単相インバータ装置。
One end is connected to the emitter of the first semiconductor element, the other end is connected to the collector of the second semiconductor element, and an intermediate point between the one end and the other end is a first AC output terminal. Conductors,
It is disposed opposite to the third conductor at a predetermined distance, one end is connected to the collector of the fourth semiconductor element, the other end is connected to the emitter of the third semiconductor element, and the other end is connected to the other end. A fourth conductor having a middle point between the ends as a second AC output terminal;
The single-phase inverter device according to claim 1, comprising:
JP2016118429A 2016-06-15 2016-06-15 Single-phase inverter device Pending JP2017225235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016118429A JP2017225235A (en) 2016-06-15 2016-06-15 Single-phase inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016118429A JP2017225235A (en) 2016-06-15 2016-06-15 Single-phase inverter device

Publications (1)

Publication Number Publication Date
JP2017225235A true JP2017225235A (en) 2017-12-21

Family

ID=60687253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016118429A Pending JP2017225235A (en) 2016-06-15 2016-06-15 Single-phase inverter device

Country Status (1)

Country Link
JP (1) JP2017225235A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020162378A (en) * 2019-03-28 2020-10-01 株式会社明電舎 Conductor connecting structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020162378A (en) * 2019-03-28 2020-10-01 株式会社明電舎 Conductor connecting structure
JP7088106B2 (en) 2019-03-28 2022-06-21 株式会社明電舎 Conductor connection structure

Similar Documents

Publication Publication Date Title
EP2884650B1 (en) Power module comprising two elements, and three-level power conversion device using same
RU2690021C1 (en) Current busbar arrangement
EP3203625B1 (en) Electric power conversion apparatus
US10897795B2 (en) Induction heating power supply apparatus
JP2013102627A (en) Power conversion apparatus, and method for arranging conductor in power conversion apparatus
JP2008245451A (en) Power conversion apparatus
JP2017099231A (en) Power converter
KR101441336B1 (en) Power control module with bus bar structrue for reducing stray inductance
JP7375797B2 (en) power converter
JP5906313B2 (en) Power converter
JP2017225235A (en) Single-phase inverter device
JP7062979B2 (en) Power supply
JP2007325387A (en) Power conversion device
JP2014158349A (en) Multilevel converter
JP5836993B2 (en) Inverter device
JPWO2015133218A1 (en) Capacitor module
WO2016128817A1 (en) Circuit module and inverter device using same
JP5906744B2 (en) Semiconductor power converter
JP2011142251A (en) Circuit component mounting structure, and mounting substrate therewith
JP6934275B2 (en) Power converter
JP2019205265A (en) Wiring structure of power conversion device
JP2016082056A (en) Power module and power unit
JP2020022265A (en) Electric power conversion device
JP5866792B2 (en) Power converter
JP5228873B2 (en) Multilayer wiring conductor of semiconductor power converter