JP2017222547A - Method for producing activated carbon, and activated carbon production system - Google Patents

Method for producing activated carbon, and activated carbon production system Download PDF

Info

Publication number
JP2017222547A
JP2017222547A JP2016120071A JP2016120071A JP2017222547A JP 2017222547 A JP2017222547 A JP 2017222547A JP 2016120071 A JP2016120071 A JP 2016120071A JP 2016120071 A JP2016120071 A JP 2016120071A JP 2017222547 A JP2017222547 A JP 2017222547A
Authority
JP
Japan
Prior art keywords
activated carbon
alkali
activated
carbide
activation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016120071A
Other languages
Japanese (ja)
Other versions
JP6760583B2 (en
Inventor
岡本 正行
Masayuki Okamoto
正行 岡本
奥谷 猛
Takeshi Okuya
猛 奥谷
充 大西
Mitsuru Onishi
充 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Shinwa Corp
Original Assignee
Japan Aerospace Exploration Agency JAXA
Shinwa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA, Shinwa Corp filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2016120071A priority Critical patent/JP6760583B2/en
Publication of JP2017222547A publication Critical patent/JP2017222547A/en
Application granted granted Critical
Publication of JP6760583B2 publication Critical patent/JP6760583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method by which activated carbon suitable for gas absorption can be produced.SOLUTION: A method for producing activated carbon includes: a step of carbonizing silicon integrated biomass to obtain a carbide; a step of mixing the carbide with an alkali compound, subjecting the resultant to alkali activation, reacting the resultant with silicon to generate an alkaline silicate, and then removing the alkaline silicate to obtain a porous carbon material; and subjecting the porous carbon material to gas activation to obtain activated carbon.SELECTED DRAWING: None

Description

本発明は、シリカを含む植物原料(ケイ素集積バイオマス)から活性炭を製造する方法、及び活性炭製造システムに関する。   The present invention relates to a method for producing activated carbon from a plant raw material (silicon-integrated biomass) containing silica, and an activated carbon production system.

活性炭は気体および液体中の有害物質の吸着剤、触媒担体、イオン分子を吸脱着させて充電と放電を繰り返すことができるキャパシターなどに利用されている。   Activated carbon is used in adsorbents of harmful substances in gases and liquids, catalyst carriers, capacitors that can repeatedly charge and discharge by adsorbing and desorbing ionic molecules.

活性炭は、有機物を炭化および賦活させて製造される。原料の有機物としては、植物系、たとえば木材、鋸屑、やし殻、パルプ廃液など、ならびに石炭・石油系、たとえば石炭、石油重質油、石炭および石油系ピッチ、合成高分子などがある。これらの有機物は、炭素のほかに酸素、水素などの元素を含む。   Activated carbon is produced by carbonizing and activating organic matter. Examples of raw organic materials include plant-based materials such as wood, sawdust, coconut husk and pulp waste liquid, and coal / petroleum materials such as coal, petroleum heavy oil, coal and petroleum-based pitch, and synthetic polymers. These organic substances contain elements such as oxygen and hydrogen in addition to carbon.

炭化工程は、原料の有機物を熱処理して炭素が濃縮された炭化物を作製し、活性炭の基本的な孔隙構造を作るために行われる。賦活工程は、上記炭化物から、より発達した孔隙構造をもつ多孔質の活性炭を作製するために行われる。賦活法には、薬品賦活法とガス賦活法とがある。   A carbonization process is performed in order to produce the carbide | carbonized_material which the organic substance of raw material was heat-processed, and carbon was concentrated, and to make the basic pore structure of activated carbon. The activation process is performed to produce porous activated carbon having a more developed pore structure from the carbide. The activation method includes a chemical activation method and a gas activation method.

薬品賦活法は、炭化物に、塩化亜鉛、リン酸、塩化カルシウム、硫化カルシウムなどの賦活薬品を適切な質量比で含浸させ、不活性ガス中で加熱して、脱水および炭素引き抜きを伴う酸化反応により細孔を増加させる方法である。   In the chemical activation method, carbide is impregnated with an activation chemical such as zinc chloride, phosphoric acid, calcium chloride, calcium sulfide, etc. at an appropriate mass ratio, heated in an inert gas, and then subjected to an oxidation reaction involving dehydration and carbon extraction. This is a method of increasing pores.

ガス賦活法は、炭化物を、水蒸気、二酸化炭素、酸素などのガスと接触反応させる方法である。ガス賦活法では以下のような経過をたどって炭化物の孔隙構造が発達する。まず、初期の加熱過程で、炭化物は未組織化部分(細孔が発達していない部分)が選択的に分解され、炭化物内部の閉ざされた細孔が開放されることによって内部表面積の増加がもたらされる。次に、微細な細孔の周囲の炭素が反応して、孔径の大きな細孔が形成される。   The gas activation method is a method in which a carbide is brought into contact with a gas such as water vapor, carbon dioxide, or oxygen. In the gas activation method, the pore structure of carbides develops following the following process. First, during the initial heating process, the carbide is selectively decomposed in the unorganized portion (portion where the pores are not developed), and the closed pores inside the carbide are opened, thereby increasing the internal surface area. Brought about. Next, the carbon around the fine pores reacts to form pores with a large pore diameter.

優れた活性炭吸着剤は、単位量当たりの吸着容量が大きく、吸着速度が大きいことが好ましく、そのためには比表面積が大きく、吸着種に適した径の細孔を均一に多数有することが望ましい。   An excellent activated carbon adsorbent preferably has a large adsorption capacity per unit amount and a high adsorption rate. For that purpose, it is desirable that the specific surface area is large and that there are a large number of pores having a diameter suitable for the adsorbing species.

たとえば、石油コークスから水酸化カリウムを用いた薬品賦活法により、3000m/g以上のBET比表面積をもつ活性炭が製造されることが報告されている(非特許文献1、特許文献1)。 For example, it has been reported that activated carbon having a BET specific surface area of 3000 m 2 / g or more is produced from petroleum coke by a chemical activation method using potassium hydroxide (Non-patent Document 1, Patent Document 1).

また、原料である籾殻などのケイ素集積バイオマスをアルカリ金属化合物と混合して焼成してアルカリ賦活し、シリカをケイ酸アルカリとして溶出除去させることにより、2000〜4000m/gの比表面積をもつ多孔質シリカ−炭素複合材料を製造する方法が知られている(特許文献2)。また、ケイ素を含む植物由来の材料を酸またはアルカリで処理することによって多孔質炭素材料を製造する方法が知られている(特許文献3)。なお、薬品賦活法であるKOH賦活と、ガス賦活法であるHO(水蒸気)賦活とを比較すると、以下のような違いがあることが知られている。すなわち、KOH賦活では、炭素を消費しなくても比表面積が増加し、細孔径2nm以上の細孔が多くなる。 In addition, porous silicon having a specific surface area of 2000 to 4000 m 2 / g is obtained by mixing silicon-accumulated biomass such as rice husk, which is a raw material, with an alkali metal compound, calcination and alkali activation, and elution and removal of silica as alkali silicate. A method for producing a porous silica-carbon composite material is known (Patent Document 2). Moreover, a method for producing a porous carbon material by treating a plant-derived material containing silicon with an acid or an alkali is known (Patent Document 3). In addition, it is known that there is the following difference when comparing KOH activation, which is a chemical activation method, and H 2 O (water vapor) activation, which is a gas activation method. That is, in the KOH activation, the specific surface area increases and the number of pores having a pore diameter of 2 nm or more increases without consuming carbon.

一方、HO賦活では、炭素を消費することによってのみ比表面積が増加し、細孔径2nm以下の細孔が生成しやすいが、細孔径2nm以上の細孔はほとんど生成しない(非特許文献2)。 On the other hand, in the H 2 O activation, the specific surface area is increased only by consuming carbon, and pores having a pore diameter of 2 nm or less are easily generated, but pores having a pore diameter of 2 nm or more are hardly generated (Non-patent Document 2). ).

米国特許第4082694号明細書U.S. Pat. No. 4,082,694 特許第2506600号公報Japanese Patent No. 2506600 特許第4618308号公報Japanese Patent No. 4618308

H.Marsh,D.Crawford,Carbon,20,419(1982)H. Marsh, D.M. Crawford, Carbon, 20, 419 (1982) 真田雄三、鈴木基之、藤本薫編、新版活性炭 基礎と応用、講談社サイエンティフィク、p.68(2000)Edited by Yuzo Sanada, Motoyuki Suzuki, Jun Fujimoto, New Edition Activated Carbon Fundamentals and Applications, Kodansha Scientific, p. 68 (2000)

優良な活性炭は、高比表面積で吸着速度が大きく、吸着種に適した径をもつ細孔が多く存在する。活性炭の細孔分布は、原料、炭化の温度などの条件、賦活方法と温度などの条件に左右される。従来の方法に従って、ケイ素集積バイオマスを炭化し、得られた炭化物とアルカリ金属化合物(水酸化カリウムなど)とを混合し、炭素分をアルカリ賦活し、かつシリカを除去することにより、高比表面積の活性炭を得ることができる。得られる活性炭の細孔は、マクロ孔(細孔径50nm以上)、メソ孔(細孔径2〜50nm)、およびミクロ孔(細孔径2nm以下)の領域に広く分布している。   Excellent activated carbon has a high specific surface area, a high adsorption rate, and many pores having a diameter suitable for the adsorbing species. The pore distribution of activated carbon depends on conditions such as raw materials, carbonization temperature, activation method and temperature. According to the conventional method, silicon-accumulated biomass is carbonized, the obtained carbide and an alkali metal compound (potassium hydroxide, etc.) are mixed, the carbon content is alkali activated, and the silica is removed, so that the high specific surface area is increased. Activated carbon can be obtained. The pores of the obtained activated carbon are widely distributed in the regions of macropores (pore diameter 50 nm or more), mesopores (pore diameter 2 to 50 nm), and micropores (pore diameter 2 nm or less).

しかし、このような活性炭では、細孔径2nm以下のミクロ孔の比率が小さいため、ガス吸着には適していない。そこで、本発明の課題は、ガス吸着に適した活性炭を製造することができる方法、及び活性炭製造システムを提供することにある。   However, such activated carbon is not suitable for gas adsorption because the ratio of micropores having a pore diameter of 2 nm or less is small. Then, the subject of this invention is providing the method and activated carbon manufacturing system which can manufacture activated carbon suitable for gas adsorption | suction.

本発明に係る活性炭の製造方法は、ケイ素集積バイオマスを炭化して炭化物を得る工程と、前記炭化物にアルカリ化合物を混合してアルカリ賦活するとともにケイ素を反応させてケイ酸アルカリを生成させた後、前記ケイ酸アルカリを除去して多孔質炭素材料を得る工程と、前記多孔質炭素材料をガス賦活して、活性炭を得る工程とを有することを特徴とする。また、本発明においては活性炭製造システムを提供する。   The method for producing activated carbon according to the present invention includes a step of carbonizing silicon-integrated biomass to obtain a carbide, an alkali compound mixed with the carbide to activate the alkali and reacting silicon to generate an alkali silicate, It comprises a step of obtaining the porous carbon material by removing the alkali silicate, and a step of obtaining activated carbon by gas activation of the porous carbon material. The present invention also provides an activated carbon production system.

本発明では、籾殻などのケイ素集積バイオマスを炭化し、次に炭化物をアルカリ金属化合物で賦活し、シリカをケイ酸アルカリとして除去することによって高比表面積の活性炭を得た後、さらにガス賦活を行うことによって高比表面積をもち、かつミクロ孔が発達した活性炭を製造することができる。したがって、本発明の方法によれば、高比表面積で、ミクロ孔の比率が高いので、ガス吸着に適した活性炭を製造することができる。   In the present invention, carbon accumulation biomass such as rice husk is carbonized, activated carbon is then activated with an alkali metal compound, silica is removed as alkali silicate to obtain activated carbon having a high specific surface area, and further gas activation is performed. Thus, activated carbon having a high specific surface area and developed micropores can be produced. Therefore, according to the method of the present invention, activated carbon suitable for gas adsorption can be produced because of a high specific surface area and a high ratio of micropores.

以下、本発明の実施形態を説明する。
原料としては、高比表面積活性炭が期待できる、籾殻、稲藁、サトウキビ、トウモロコシ、竹などのケイ素集積バイオマスを用いる。ここでは、籾殻を例に説明する。籾殻は、質量%で、71〜87%の有機物(セルロース、ヘミセルロース、リグニンなど)、13〜29%の無機質を含む組成を有する。無機質は、87〜97%のシリカ、3〜13%の他の酸化物(酸化ナトリウム、酸化カリウム、アルミナなど)を含む。これらの成分の割合は、稲の種類、産地に依存しない(L.Sun,K.Gong,Silicon−Based Materials from Rice Hucks and Their Application,Ind.Eng.Chem.Res.2001,40,5861−5877)。
Embodiments of the present invention will be described below.
As the raw material, silicon-integrated biomass such as rice husk, rice straw, sugarcane, corn, bamboo, etc., which can be expected to have high specific surface area activated carbon, is used. Here, a rice husk will be described as an example. The rice husk has a composition containing 71 to 87% of an organic substance (cellulose, hemicellulose, lignin, etc.) and 13 to 29% of an inorganic substance by mass%. Minerals contain 87-97% silica, 3-13% other oxides (sodium oxide, potassium oxide, alumina, etc.). The ratio of these components does not depend on the kind of rice and the production area (L. Sun, K. Gong, Silicon-Based Materials from Rice Hucks and Ther Applications, Ind. Eng. Chem. Res. 2001, 40, 5861-5877. ).

本発明においては、ケイ素集積バイオマス中のシリカの含有率は、質量%で0.1%以上であればよい。まず、原料であるケイ素集積バイオマスに含まれる有機物を非酸化性ガス中で熱処理することによって炭化して炭化物を得る。なお、炭化処理の前に原料中の有機質以外の不純物を酸洗浄によって除去してもよいし、酸洗浄を行わずに原料をそのまま炭化処理してもよい。炭化処理により、セルロースなどの有機物が分解して気体状の分解物が生成する。   In this invention, the content rate of the silica in silicon accumulation biomass should just be 0.1% or more by mass%. First, an organic substance contained in the raw silicon-integrated biomass is carbonized by heat treatment in a non-oxidizing gas to obtain a carbide. Prior to the carbonization treatment, impurities other than organic substances in the raw material may be removed by acid cleaning, or the raw material may be carbonized as it is without performing acid cleaning. By carbonization, organic substances such as cellulose are decomposed to generate gaseous decomposition products.

炭化処理は、静止または空間速度0.1min−1以上好ましくは0.3〜1min−1の、不活性ガス気流中または酸素が消費された燃焼ガス中で行う。炭化処理の温度は、500〜1000℃、好ましくは500〜800℃とする。所定温度まで、1℃/min以上好ましくは5〜20℃/minの昇温速度で昇温する。所定温度到達後の保持時間は0〜5時間、好ましくは0〜2時間とする。こうした炭化処理の結果として得られる炭化物中の炭素とシリカとの含有率は、不純物を含む炭化物では炭素50〜60%、シリカ50〜40%、不純物を除去した炭化物では炭素約50%、シリカ約50%となる。 The carbonization treatment is performed in an inert gas stream or a combustion gas in which oxygen is consumed at a static or space velocity of 0.1 min −1 or more, preferably 0.3 to 1 min −1 . The carbonization temperature is 500 to 1000 ° C, preferably 500 to 800 ° C. The temperature is raised to a predetermined temperature at a rate of 1 ° C./min or higher, preferably 5 to 20 ° C./min. The holding time after reaching the predetermined temperature is 0 to 5 hours, preferably 0 to 2 hours. The content of carbon and silica in the carbide obtained as a result of such carbonization treatment is as follows: carbon containing impurities is 50 to 60%, silica is 50 to 40%, carbon from which impurities are removed is about 50%, silica is about 50%.

次に、得られた炭化物とアルカリ化合物とを混合して熱処理することによって、アルカリ賦活を行うとともに、シリカをアルカリ化合物と反応させてケイ酸アルカリを生成させる。   Next, by mixing and heat-treating the obtained carbide and an alkali compound, alkali activation is performed, and silica is reacted with the alkali compound to generate an alkali silicate.

アルカリ化合物としては、カリウム、ナトリウム、リチウムなどの、水酸化物、炭酸物、炭酸水素物、塩化物、硫酸物、硝酸物などが挙げられる。アルカリ化合物の形態は、水溶液状、粉末状、または径が5mm以下の粒状のいずれでもよい。炭化物へのアルカリ化合物の添加量は、シリカ除去のためには、炭化物中のシリカ1molに対してアルカリ化合物中に含まれるアルカリ金属換算で2〜10当量、好ましくは2〜5当量、アルカリ賦活のためには、炭化物中の炭素1molに対してアルカリ化合物中に含まれるアルカリ金属換算で0.1〜10当量、好ましくは1〜4当量である。炭化物へのアルカリ化合物の添加量は、シリカ除去のために添加量とアルカリ賦活のための添加量との合計とする。   Examples of the alkali compound include hydroxides, carbonates, bicarbonates, chlorides, sulfates, nitrates and the like such as potassium, sodium and lithium. The form of the alkali compound may be any of an aqueous solution, a powder, or a granule having a diameter of 5 mm or less. The addition amount of the alkali compound to the carbide is 2 to 10 equivalents, preferably 2 to 5 equivalents in terms of alkali metal contained in the alkali compound with respect to 1 mol of silica in the carbide, for removing silica. Therefore, it is 0.1 to 10 equivalents, preferably 1 to 4 equivalents in terms of alkali metal contained in the alkali compound with respect to 1 mol of carbon in the carbide. The addition amount of the alkali compound to the carbide is the sum of the addition amount for removing silica and the addition amount for alkali activation.

炭化物とアルカリ化合物との混合物をニッケルるつぼに入れて熱処理する。この熱処理は、静止または空間速度0.1min−1以上好ましくは空間速度0.3〜1min−1の窒素、アルゴンなどの不活性ガス中で行う。熱処理温度は、アルカリ化合物の融点以上、好ましくは500℃以上で1000℃以下、より好ましくは700〜900℃とする。所定温度まで、1℃/min以上好ましくは5〜20℃/minの昇温速度で昇温する。所定温度到達後の保持時間は0〜5時間、好ましくは0〜2時間とする。 A mixture of carbide and alkali compound is placed in a nickel crucible and heat treated. This heat treatment is performed in an inert gas such as nitrogen or argon at rest or at a space velocity of 0.1 min −1 or more, preferably at a space velocity of 0.3 to 1 min −1 . The heat treatment temperature is higher than the melting point of the alkali compound, preferably 500 ° C. or higher and 1000 ° C. or lower, more preferably 700 to 900 ° C. The temperature is raised to a predetermined temperature at a rate of 1 ° C./min or higher, preferably 5 to 20 ° C./min. The holding time after reaching the predetermined temperature is 0 to 5 hours, preferably 0 to 2 hours.

シリカとアルカリ化合物との反応は、アルカリ化合物が水酸化カリウムまたは水酸化ナトリウムである場合でそれぞれ下記の反応式で表される。
SiO+2KOH → KSiO+H
SiO+2NaOH → NaSiO+H
The reaction between silica and the alkali compound is represented by the following reaction formula when the alkali compound is potassium hydroxide or sodium hydroxide.
SiO 2 + 2KOH → K 2 SiO 3 + H 2 O
SiO 2 + 2NaOH → Na 2 SiO 3 + H 2 O

これらの反応によりシリカからケイ酸アルカリが生成する。ケイ酸アルカリは水に可溶なので、炭素から分離できる。熱処理後、室温まで放冷する。試料に水を加えて煮沸し、ケイ酸アルカリを溶解させる。煮沸はケイ酸アルカリが溶解するまで行う。煮沸時間は30分〜2時間、好ましくは30分〜1時間とする。その後、ろ過して活性炭を残渣として得る。得られた活性炭を、水で洗浄して乾燥する。洗浄には、30℃程度の温水を用いることが好ましい。洗浄はろ液のpHが約7.0になるまで行う。乾燥は、80〜100℃、30分〜2時間、大気圧下または0.01013MPa(0.1atm)以下の減圧下、好ましくは100℃、30分〜1時間、約0.01013MPaの減圧下で行う。   These reactions produce alkali silicate from silica. Alkali silicates are soluble in water and can be separated from carbon. After heat treatment, it is allowed to cool to room temperature. Add water to the sample and boil to dissolve the alkali silicate. Boil until the alkali silicate is dissolved. The boiling time is 30 minutes to 2 hours, preferably 30 minutes to 1 hour. Thereafter, filtration is performed to obtain activated carbon as a residue. The obtained activated carbon is washed with water and dried. It is preferable to use warm water of about 30 ° C. for cleaning. Washing is performed until the pH of the filtrate is about 7.0. Drying is performed at 80 to 100 ° C. for 30 minutes to 2 hours under atmospheric pressure or under reduced pressure of 0.01013 MPa (0.1 atm) or less, preferably at 100 ° C. for 30 minutes to 1 hour under reduced pressure of about 0.01013 MPa. Do.

得られた多孔質炭素材料(アルカリ賦活活性炭)は、比表面積が2000〜4000m/gであり、細孔がマクロ孔(細孔径50nm以上)、メソ孔(細孔径2〜50nm)、およびミクロ孔(細孔径2nm以下)の領域に広く分布した細孔分布を示す。 The obtained porous carbon material (alkali activated activated carbon) has a specific surface area of 2000 to 4000 m 2 / g, pores of macropores (pore diameter of 50 nm or more), mesopores (pore diameter of 2 to 50 nm), and micropores. The pore distribution widely distributed in the region of pores (pore diameter of 2 nm or less) is shown.

次に、得られたアルカリ賦活活性炭にガス賦活を施す。ガス賦活は、水蒸気、二酸化炭素、酸素などのガスを含む雰囲気中の熱処理することによって行う。
炭素とこれらのガスとの反応は以下のとおりである。
水蒸気の場合
C+HO → CO+H C+2HO → CO+2H
二酸化炭素の場合
C+CO → 2CO
酸素の場合
C+O → CO 2C+O → 2CO
Next, gas activation is given to the obtained alkali activated carbon. The gas activation is performed by heat treatment in an atmosphere containing a gas such as water vapor, carbon dioxide, or oxygen.
The reaction between carbon and these gases is as follows.
In the case of water vapor C + H 2 O → CO + H 2 C + 2H 2 O → CO 2 + 2H 2
In the case of carbon dioxide C + CO 2 → 2CO
In the case of oxygen C + O 2 → CO 2 2C + O 2 → 2CO

これらの反応によりアルカリ賦活活性炭から炭素を引き抜くことによって、径が2nm以下である細孔を増加させる。上記の反応のうち、水蒸気または二酸化炭素を用いる反応は吸熱反応であるが、酸素を用いる反応は発熱反応である。発熱反応は温度制御が難しいので、水蒸気または二酸化炭素を用いてガス賦活を行うことが好ましい。   By extracting carbon from the alkali activated carbon by these reactions, pores having a diameter of 2 nm or less are increased. Among the above reactions, the reaction using water vapor or carbon dioxide is an endothermic reaction, while the reaction using oxygen is an exothermic reaction. Since temperature control of the exothermic reaction is difficult, it is preferable to perform gas activation using water vapor or carbon dioxide.

反応は水蒸気または二酸化炭素が炭素と接触することによって開始される。この際、HOまたはCOの分子径が、生成する細孔の径に影響を及ぼす。HOおよびCOのファンデルヴァールス径は、それぞれ4.82Åおよび5.26Åなので、径の小さい細孔を作るためには、HOを用いることが好ましい。 The reaction is initiated by contact of water vapor or carbon dioxide with carbon. At this time, the molecular diameter of H 2 O or CO 2 affects the diameter of the generated pores. Since the van der Waals diameters of H 2 O and CO 2 are 4.82 mm and 5.26 mm, respectively, it is preferable to use H 2 O in order to make pores having a small diameter.

これらの点を考慮して、ガス賦活を不活性ガス−水蒸気混合ガス気流中で行う場合には以下のような条件を採用する。不活性ガス−水蒸気混合ガスの流量は、空間速度0.01〜100min−1以上、好ましくは1〜50min−1とする。水蒸気の供給量は炭素1molに対して、毎分0.01〜1mol、好ましくは毎分0.05〜0.5molとする。ガス賦活の温度は、500〜1000℃とする。500℃未満ではガス賦活が不十分になる。500〜1000℃の範囲でガス賦活を行うと、高い比表面積を得るのに有利になる。これは、ミクロ孔の比率が高くなるためであると考えられる。ただし、1000℃を超える温度でガス賦活しても、ミクロ孔の比率を高める効果は飽和する。好ましいガス賦活の温度は、700〜900℃である。所定温度まで、1℃/min以上好ましくは5〜20℃/minの昇温速度で昇温する。所定温度到達後の保持時間は0〜5時間、好ましくは1分〜2時間とする。保持時間が長くなるほど細孔径が大きくなる傾向があるので、保持時間を長くすることは避けることが好ましい。 Considering these points, the following conditions are adopted when gas activation is performed in an inert gas-water vapor mixed gas stream. Inert gas - flow rate of the water vapor mixed gas space velocity 0.01~100Min -1 or higher, preferably 1~50min -1. The supply amount of water vapor is 0.01 to 1 mol / min, preferably 0.05 to 0.5 mol / min with respect to 1 mol of carbon. The temperature of gas activation shall be 500-1000 degreeC. If it is less than 500 degreeC, gas activation will become inadequate. When gas activation is performed in the range of 500 to 1000 ° C., it is advantageous to obtain a high specific surface area. This is considered to be because the ratio of micropores becomes high. However, even if the gas is activated at a temperature exceeding 1000 ° C., the effect of increasing the micropore ratio is saturated. A preferable gas activation temperature is 700 to 900 ° C. The temperature is raised to a predetermined temperature at a rate of 1 ° C./min or higher, preferably 5 to 20 ° C./min. The holding time after reaching the predetermined temperature is 0 to 5 hours, preferably 1 minute to 2 hours. Since the pore size tends to increase as the holding time becomes longer, it is preferable to avoid increasing the holding time.

以上のようにして得られる活性炭(アルカリ賦活−ガス賦活活性炭)は、高比表面積で、ガス吸着に適したミクロ孔の比率が高いので、ガス吸着に有利に適用することができる。得られた活性炭粉体は、用途に応じて造粒、成形してもよい。また、当該活性炭は、ケイ素集積バイオマスを炭化して炭化物を得る炭化物取得部と、前記炭化物にアルカリ化合物を混合してアルカリ賦活するとともにケイ素を反応させてケイ酸アルカリを生成させた後、前記ケイ酸アルカリを除去して多孔質炭素材料を得る多孔質炭素材料取得部と、前記多孔質炭素材料をガス賦活して活性炭を得る活性炭取得部とを備える活性炭製造システムにて成形されることとなる。なお、活性炭製造システムは、炭化物取得部、多孔質炭素材料取得部及び活性炭取得部を一体的に備えて構成されていてもよく、各部が分離した状態で構成されていてもよい。また、本発明に支障を与えない範囲で、活性炭製造システムは他の機能部を備えてもよい。   The activated carbon (alkali-activated / gas-activated activated carbon) obtained as described above has a high specific surface area and a high ratio of micropores suitable for gas adsorption, and therefore can be advantageously applied to gas adsorption. The obtained activated carbon powder may be granulated and molded according to the application. In addition, the activated carbon includes a carbide acquisition unit that carbonizes silicon-integrated biomass to obtain a carbide, and an alkali compound mixed with the carbide to activate the alkali and react with silicon to generate an alkali silicate, and then the silica. It will be molded by an activated carbon production system comprising a porous carbon material acquisition unit that removes acid-alkali to obtain a porous carbon material, and an activated carbon acquisition unit that activates the porous carbon material to obtain activated carbon. . In addition, the activated carbon manufacturing system may be configured by integrally including a carbide acquisition unit, a porous carbon material acquisition unit, and an activated carbon acquisition unit, or may be configured in a state where each unit is separated. In addition, the activated carbon production system may include other functional units as long as the present invention is not hindered.

以下、本発明の実施例を説明する。表1における実施例1Aに関して、原料として50gの生の籾殻をビーカーに採り、これに500mLの蒸留水を加えて30分洗浄し、その後1000mLの蒸留水で洗い流し、100℃のオーブンで24時間乾燥させた。乾燥させた籾殻を100℃のオーブンで1時間真空乾燥させた。乾燥質量で50gの洗浄済み籾殻に、80mLの塩酸(試薬特級)と920mLの蒸留水とを混合した濃度3%HCl(v/v)の塩酸水溶液を加えて加熱し、溶液が沸騰してから2時間還流を行い(リーチング)、溶液が冷めてから吸引ろ過を行った。その後、籾殻を、ろ液がpH7程度になるまで蒸留水約8Lで洗浄した後、100℃のオーブンで24時間乾燥させた。
Examples of the present invention will be described below. Regarding Example 1A in Table 1, 50 g of raw rice husk is taken as a raw material in a beaker, 500 mL of distilled water is added thereto, washed for 30 minutes, then rinsed with 1000 mL of distilled water, and dried in an oven at 100 ° C. for 24 hours. I let you. The dried rice husk was vacuum dried in an oven at 100 ° C. for 1 hour. To a washed rice husk having a dry mass of 50 g, a hydrochloric acid aqueous solution having a concentration of 3% HCl (v / v) mixed with 80 mL of hydrochloric acid (special grade reagent) and 920 mL of distilled water was added and heated. Reflux was performed for 2 hours (leaching), and suction filtration was performed after the solution had cooled. Thereafter, the rice husk was washed with about 8 L of distilled water until the filtrate had a pH of about 7, and then dried in an oven at 100 ° C. for 24 hours.

洗浄・リーチング処理後の乾燥質量で15g(容積150cc)の籾殻(leached rice hulls:LRH)を電気炉に入れた。電気炉の内部を窒素で3回置換した後、窒素気流100mL/min、昇温速度5℃/minで700℃まで昇温し、700℃で1時間保持し、炭化処理を行い、自然放熱することによって籾殻炭化物を得た。籾殻炭化物の組成は、炭素:48.58%、SiO:51.42%、KO等の不純物:0.05%であった。
乾燥質量で4gの籾殻炭化物と16gのKOHとをニッケルるつぼに入れて1分間混合した後、70℃のオーブンで2時間熟成させ、混合物を電気炉に入れた。電気炉の内部を窒素で3回置換した後、窒素気流100mL/min、昇温速度5℃/minで700℃まで昇温し、700℃で1時間保持し、アルカリ賦活を行うとともにシリカを反応させてケイ酸アルカリを生成させ、自然放熱させた。処理後の試料に約200mLの蒸留水を加えて30分間加熱して煮沸させ、ケイ酸アルカリを溶解させ、吸引ろ過してケイ酸アルカリを除去して固形物を得た。得られた固形物を、ろ液がpH7程度になるまで温水約8Lで洗浄した後、100℃のオーブンで1時間真空乾燥させてKOH賦活籾殻活性炭を得た。
15 g (volume 150 cc) of rice husk (leached rice hulls: LRH) in a dry mass after washing and leaching was placed in an electric furnace. After replacing the inside of the electric furnace three times with nitrogen, the temperature is raised to 700 ° C. at a nitrogen stream of 100 mL / min and a heating rate of 5 ° C./min, held at 700 ° C. for 1 hour, carbonized, and naturally dissipated. Thus, rice husk carbide was obtained. The composition of rice husk carbide was carbon: 48.58%, SiO 2 : 51.42%, impurities such as K 2 O: 0.05%.
A dry mass of 4 g of rice husk carbide and 16 g of KOH were placed in a nickel crucible and mixed for 1 minute, then aged in an oven at 70 ° C. for 2 hours, and the mixture was placed in an electric furnace. After replacing the inside of the electric furnace three times with nitrogen, the temperature was raised to 700 ° C. at a nitrogen flow of 100 mL / min and a heating rate of 5 ° C./min, held at 700 ° C. for 1 hour, alkali activated and reacted with silica. To generate alkali silicate, which was naturally dissipated. About 200 mL of distilled water was added to the treated sample and heated to boil for 30 minutes to dissolve the alkali silicate, and suction filtration was performed to remove the alkali silicate to obtain a solid. The obtained solid was washed with about 8 L of warm water until the filtrate had a pH of about 7, and then vacuum dried in an oven at 100 ° C. for 1 hour to obtain KOH-activated rice husk activated carbon.

乾燥質量で0.3gのKOH賦活籾殻活性炭を燃焼ボートに採り、これを電気炉に入れた。電気炉の内部を窒素で3回置換した後、窒素気流100mL/min、蒸留水流入速度0.04mL/min、昇温速度5℃/minで700℃まで昇温し、700℃で1時間保持してHO賦活を行い、自然放熱させることによってKOH賦活−HO賦活籾殻活性炭を得た。 0.3 g of KOH-activated rice husk activated carbon with a dry mass was taken in a combustion boat and placed in an electric furnace. After replacing the inside of the electric furnace three times with nitrogen, the temperature was raised to 700 ° C. at a nitrogen flow of 100 mL / min, distilled water inflow rate of 0.04 mL / min and a heating rate of 5 ° C./min, and held at 700 ° C. for 1 hour. Then, H 2 O activation was performed, and natural heat dissipation was performed to obtain KOH activated-H 2 O activated rice husk activated carbon.

表1における実施例1B、1Cに関して、HO賦活の条件を、800℃で1時間(実施例1B)または900℃で1時間(実施例1C)に変更した以外は、実施例1Aと同一の条件で、KOH賦活−HO賦活籾殻活性炭(実施例1B、1C)を得た。 Regarding Examples 1B and 1C in Table 1, the conditions for H 2 O activation were the same as Example 1A except that the conditions for activation of H 2 O were changed to 800 ° C. for 1 hour (Example 1B) or 900 ° C. for 1 hour (Example 1C). Under these conditions, KOH activated-H 2 O activated rice husk activated carbon (Examples 1B, 1C) was obtained.

KOH賦活籾殻活性炭(比較例1)およびKOH賦活−HO賦活籾殻活性炭(実施例1A〜1C)について、BET比表面積、窒素相対圧P/P=0.99(径が300nmまで)の全細孔容積を測定した。t−プロット法によるミクロ孔容積を測定し、ミクロ孔の全細孔容積に占める比率を求めた。
表1にその結果を示す。また、表1には、参考のために、市販のやし殻活性炭1(参考例1)の結果も示す。
For KOH activated rice husk activated carbon (Comparative Example 1) and KOH activated -H 2 O activated rice husk activated carbon (Examples 1A to 1C), BET specific surface area, nitrogen relative pressure P / P 0 = 0.99 (diameter up to 300 nm) Total pore volume was measured. The micropore volume was measured by the t-plot method, and the ratio of the micropores to the total pore volume was determined.
Table 1 shows the results. Table 1 also shows the results of commercially available coconut shell activated carbon 1 (Reference Example 1) for reference.

表1から分かるように、KOH賦活−HO賦活籾殻活性炭は、KOH賦活籾殻活性炭と比較して、全細孔容積が減少するにもかかわらず、ミクロ孔容積が増加している。KOH賦活籾殻活性炭と比較して、700℃でHO賦活したKOH賦活−HO賦活籾殻活性炭は比表面積が減少しているが、800℃または900℃でHO賦活したKOH賦活−HO賦活籾殻活性炭は比表面積が増加している。800℃または900℃でHO賦活したKOH賦活−HO賦活籾殻活性炭は、700℃でHO賦活したKOH賦活−HO賦活籾殻活性炭よりも全細孔容積とミクロ細孔容積、ミクロ孔の比率とも増加している。これらの結果は、HO賦活によってマクロ孔およびメソ孔が壊れる一方で、ミクロ孔が発達することによるものと考えられる。また、KOH賦活−HO賦活籾殻活性炭の比表面積、全細孔容積およびミクロ孔容積は、ほとんどの細孔がミクロ孔であるやし殻活性と比較して大きい。 As can be seen from Table 1, the KOH activated-H 2 O activated rice husk activated carbon has an increased micropore volume, although the total pore volume is reduced, compared to the KOH activated rice husk activated carbon. Compared with KOH-activated rice husk activated carbon, KOH activated by H 2 O activation at 700 ° C.-H 2 O activated rice husk activated carbon has a reduced specific surface area, but KOH activation activated by H 2 O at 800 ° C. or 900 ° C.− H 2 O activated rice husk activated carbon has an increased specific surface area. The KOH activated-H 2 O activated rice husk activated carbon activated with H 2 O at 800 ° C. or 900 ° C. has a total pore volume and micropore volume larger than those of KOH activated-H 2 O activated rice husk activated carbon activated with H 2 O at 700 ° C. The ratio of micropores is also increasing. These results are thought to be due to the development of micropores while macropores and mesopores are broken by H 2 O activation. The specific surface area of KOH activated -H 2 O activated chaff charcoal, total pore volume and micropore volume is large compared to most coconut shell active pores are micropores.

本発明によれば、籾殻炭化物をKOH賦活することによって、高比表面積をもちマクロ孔からミクロ孔までの広い細孔をもつ活性炭を製造でき、さらにKOH賦活籾殻活性炭をHO賦活することによって、ミクロ孔容積が増加し、全細孔中のミクロ孔の比率が高い活性炭を製造することができた。 According to the present invention, by activating rice husk carbide with KOH, activated carbon having a high specific surface area and wide pores from macropores to micropores can be produced, and further, KOH-activated rice husk activated carbon can be activated with H 2 O. As a result, activated carbon having an increased micropore volume and a high ratio of micropores in all pores could be produced.

表2に関して、KOHをNaOHに代えた以外は実施例1と同様にしてNaOH賦活−HO賦活籾殻活性炭を製造した(実施例2)。得られたNaOH賦活−HO賦活籾殻活性炭について、BET比表面積を測定した。
Regarding Table 2, a NaOH activated-H 2 O activated rice husk activated carbon was produced in the same manner as in Example 1 except that KOH was replaced with NaOH (Example 2). The resulting NaOH activated -H 2 O activated chaff charcoal, the BET specific surface area was measured.

次に、KOH賦活−HO賦活(700℃)籾殻活性炭(実施例1A)、NaOH賦活−HO賦活(700℃)籾殻活性炭(実施例2)、および市販やし殻活性炭1(参考例1)を、それぞれ、温度20〜25℃でベンゼンを入れた密封容器に24時間放置し、質量増加量からベンゼン吸着量を算出した。 Next, KOH activated-H 2 O activated (700 ° C.) rice husk activated carbon (Example 1A), NaOH activated—H 2 O activated (700 ° C.) rice husk activated carbon (Example 2), and commercially available coconut husk activated carbon 1 (reference) Each of Examples 1) was allowed to stand in a sealed container containing benzene at a temperature of 20 to 25 ° C. for 24 hours, and the amount of benzene adsorbed was calculated from the amount of increase in mass.

ベンゼン蒸気は径が2nm以下であるミクロ孔によく吸着されることがわかっている。表2に示したように、KOH賦活−HO賦活籾殻活性炭およびNaOH賦活−HO賦活籾殻活性炭のいずれも、やし殻活性炭と比較してベンゼン吸着量が多くなっている。 It has been found that benzene vapor is well adsorbed in micropores having a diameter of 2 nm or less. As shown in Table 2, both the KOH-activated-H 2 O activated rice husk activated carbon and the NaOH-activated-H 2 O activated rice husk activated carbon have a higher benzene adsorption amount than the coconut shell activated carbon.

本発明によれば、籾殻炭化物をアルカリ賦活することによって、高比表面積をもつ活性炭を製造でき、さらにアルカリ賦活籾殻活性炭をHO賦活することによって、ミクロ孔容量が増加し、全細孔中のミクロ孔の比率が高い活性炭を製造することができ、ベンゼン吸着量を増加させることができた。 According to the present invention, activated carbon having a high specific surface area can be produced by alkali-activating rice husk carbide, and by further activating the alkali-activated rice husk activated carbon with H 2 O, the micropore capacity increases, Activated carbon with a high ratio of micropores could be produced, and the amount of benzene adsorption could be increased.

また、市販石炭系活性炭(参考例2A)を用意し、これを水蒸気賦活して市販石炭系活性炭−水蒸気賦活(参考例2B)を調製した。市販やし殻活性炭2(参考例3A、表1および表2に示した市販やし殻活性炭1とは異なる)を用意し、これを水蒸気賦活して市販やし殻活性炭−水蒸気賦活(参考例3B)を調製した。いずれの場合にも、水蒸気賦活の条件は、上述した実施例1Aの条件(700℃、1時間)と同一とした。参考例2A、2B、3A、3Bについて、BET比表面積および全細孔容積を測定した。
In addition, a commercial coal-based activated carbon (Reference Example 2A) was prepared, and this was steam activated to prepare a commercial coal-based activated carbon-steam activated (Reference Example 2B). Commercially available coconut shell activated carbon 2 (reference example 3A, different from commercially available coconut shell activated carbon 1 shown in Tables 1 and 2) was prepared, and this was steam activated to obtain commercially available coconut shell activated carbon-steam activated (reference example). 3B) was prepared. In any case, the conditions for steam activation were the same as those of Example 1A (700 ° C., 1 hour) described above. For Reference Examples 2A, 2B, 3A, and 3B, the BET specific surface area and the total pore volume were measured.

表3において、市販石炭系活性炭(参考例2A)および市販やし殻活性炭2(参考例3A)ともに、水蒸気賦活を行うことにより比表面積および全細孔容積が減少している。これらの市販活性炭では細孔のほとんどがミクロ孔であり、水蒸気賦活によってミクロ孔が壊れ、その結果として比表面積および細孔容積の減少を招いていると考えられる。石炭系活性炭およびやし殻活性炭は市販されている状態で比表面積および細孔容積が最大になるように最適化されている。しかし、市販石炭系活性炭または市販やし殻活性炭をさらに水蒸気賦活すると、比表面積および細孔容積が減少し、ミクロ孔は減少する。   In Table 3, the specific surface area and the total pore volume are reduced by performing steam activation for both commercial coal-based activated carbon (Reference Example 2A) and commercial coconut shell activated carbon 2 (Reference Example 3A). In these commercially available activated carbons, most of the pores are micropores, and the micropores are broken by water vapor activation, resulting in a decrease in specific surface area and pore volume. Coal-based activated carbon and coconut shell activated carbon are optimized to maximize the specific surface area and pore volume in the commercial state. However, when the commercial coal-based activated carbon or commercially available coconut shell activated carbon is further steam-activated, the specific surface area and pore volume decrease, and the micropores decrease.

以上の結果をまとめると、下記のように結論できる。籾殻活性炭をアルカリ賦活すると、ミクロ孔、メソ孔およびマクロ孔が発達し、大きな比表面積を持つようになる。さらに、アルカリ賦活籾殻活性炭をHO賦活すると、マクロ孔およびメソ孔が壊れ、その代わりにミクロ孔が発達する。水蒸気賦活を700℃で行った場合、ミクロ孔が発達するが、その発達度合は十分ではないため、結果としてマクロ孔およびメソ孔が壊れたことにより比表面積および細孔容積の減少が大きく表れる。水蒸気賦活を800℃または900℃で行った場合には、ミクロ孔の発達が著しいため、水蒸気賦活を700℃で行った場合よりも、比表面積および細孔容積ともに増加する。また、比表面積および細孔容積の増加をもたらす水蒸気賦活温度には最適条件があるように見える。本実施例の場合には、800℃での水蒸気賦活が最適であった。 To summarize the above results, we can conclude as follows. When the rice husk activated carbon is activated with alkali, micropores, mesopores and macropores develop and have a large specific surface area. Furthermore, when alkali activated rice husk activated carbon is activated with H 2 O, macropores and mesopores are broken, and micropores are developed instead. When steam activation is performed at 700 ° C., micropores develop, but the degree of development is not sufficient. As a result, the macropores and mesopores are broken, and the specific surface area and pore volume are greatly reduced. When the steam activation is performed at 800 ° C. or 900 ° C., the micropores are remarkably developed, so that both the specific surface area and the pore volume are increased as compared with the case where the steam activation is performed at 700 ° C. It also appears that there is an optimal condition for the steam activation temperature that results in an increase in specific surface area and pore volume. In the case of this example, steam activation at 800 ° C. was optimal.

Claims (8)

ケイ素集積バイオマスを炭化して炭化物を得る工程と、
前記炭化物にアルカリ化合物を混合してアルカリ賦活するとともにケイ素を反応させてケイ酸アルカリを生成させた後、前記ケイ酸アルカリを除去して多孔質炭素材料を得る工程と、
前記多孔質炭素材料をガス賦活して活性炭を得る工程とを有することを特徴とする活性炭の製造方法。
Carbonizing silicon-integrated biomass to obtain a carbide;
The step of mixing the alkali compound with the carbide to activate the alkali and reacting silicon to produce an alkali silicate, then removing the alkali silicate to obtain a porous carbon material;
A method for producing activated carbon, comprising: a step of gas-activating the porous carbon material to obtain activated carbon.
前記ケイ素集積バイオマスは質量%で0.1%以上のシリカを含むことを特徴とする請求項1に記載の活性炭の製造方法。   The method for producing activated carbon according to claim 1, wherein the silicon-integrated biomass contains 0.1% or more silica by mass%. 前記ケイ素集積バイオマスを100℃以下で酸処理して不純物を除去することを特徴とする請求項1または2に記載の活性炭の製造方法。   The method for producing activated carbon according to claim 1 or 2, wherein the silicon-integrated biomass is acid-treated at 100 ° C or less to remove impurities. 前記アルカリ化合物が水酸化カリウムまたは水酸化ナトリウムであることを特徴とする請求項1〜3のいずれか1項に記載の活性炭の製造方法。   The method for producing activated carbon according to any one of claims 1 to 3, wherein the alkali compound is potassium hydroxide or sodium hydroxide. 前記アルカリ賦活を、500〜1000℃で行うことを特徴とする請求項1〜4のいずれか1項に記載の活性炭の製造方法。   The method for producing activated carbon according to any one of claims 1 to 4, wherein the alkali activation is performed at 500 to 1000 ° C. 前記ガス賦活を、水蒸気を含む不活性ガス雰囲気下で行うことを特徴とする請求項1〜5のいずれか1項に記載の活性炭の製造方法。   The method for producing activated carbon according to any one of claims 1 to 5, wherein the gas activation is performed in an inert gas atmosphere containing water vapor. 前記ガス賦活を、500〜1000℃で行うことを特徴とする請求項1〜6のいずれか1項に記載の活性炭の製造方法。   The method for producing activated carbon according to any one of claims 1 to 6, wherein the gas activation is performed at 500 to 1000 ° C. ケイ素集積バイオマスを炭化して炭化物を得る炭化物取得部と、前記炭化物にアルカリ化合物を混合してアルカリ賦活するとともにケイ素を反応させてケイ酸アルカリを生成させた後、前記ケイ酸アルカリを除去して多孔質炭素材料を得る多孔質炭素材料取得部と、前記多孔質炭素材料をガス賦活して活性炭を得る活性炭取得部とを備える活性炭製造システム。   Carbide-acquisition part which carbonizes silicon accumulation biomass, and obtains a carbide | carbonized_material, After mixing alkali compound with the said carbide | carbonized_material and activating alkali and reacting silicon | silicone to produce | generate an alkali silicate, the said alkali silicate is removed An activated carbon production system comprising: a porous carbon material obtaining unit that obtains a porous carbon material; and an activated carbon obtaining unit that obtains activated carbon by gas activation of the porous carbon material.
JP2016120071A 2016-06-16 2016-06-16 How to make activated carbon Active JP6760583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016120071A JP6760583B2 (en) 2016-06-16 2016-06-16 How to make activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016120071A JP6760583B2 (en) 2016-06-16 2016-06-16 How to make activated carbon

Publications (2)

Publication Number Publication Date
JP2017222547A true JP2017222547A (en) 2017-12-21
JP6760583B2 JP6760583B2 (en) 2020-09-23

Family

ID=60686824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016120071A Active JP6760583B2 (en) 2016-06-16 2016-06-16 How to make activated carbon

Country Status (1)

Country Link
JP (1) JP6760583B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109970056A (en) * 2019-05-07 2019-07-05 吉林农业大学 A kind of preparation method and applications of biomass-based orderly micro-pore carbon material
JP2021038103A (en) * 2019-08-31 2021-03-11 ジカンテクノ株式会社 Graphene and production apparatus of graphene
JP2021038102A (en) * 2019-08-31 2021-03-11 ジカンテクノ株式会社 Carbon raw material, graphene, apparatus for producing carbon raw material and method for producing carbon raw material
CN113277506A (en) * 2021-04-30 2021-08-20 成都天府达奇科技有限公司 Active carbon and its use and water purifier
WO2021241754A1 (en) * 2020-05-28 2021-12-02 昭和電工株式会社 Composite particle, negative electrode active material, and lithium secondary battery
CN113828277A (en) * 2021-10-28 2021-12-24 重庆科技学院 Modified biochar and preparation method and application thereof
CN114349004A (en) * 2022-02-27 2022-04-15 四川轻化工大学 Preparation method of biomass porous carbon for water treatment
CN114763264A (en) * 2021-01-11 2022-07-19 中国石油化工股份有限公司 Process for preparing activated carbon by alkali activation method
CN114797766A (en) * 2022-03-14 2022-07-29 南京工业大学 Porous biochar and preparation method and application thereof
JP2022545305A (en) * 2019-08-21 2022-10-27 ヒンドスタン ペテローリアム コーポレーション リミテッド Catalyst composition and its use
CN116751422A (en) * 2023-08-16 2023-09-15 广州海天塑胶有限公司 Negative ion polypropylene composite polymer material for automobile and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010208872A (en) * 2009-03-06 2010-09-24 Yokohama National Univ Porous aluminosilicate-carbon composite material and production method of the same
JP2011079705A (en) * 2009-10-07 2011-04-21 Osaka Gas Chem Kk Method and apparatus for producing activated carbon
JP2011225521A (en) * 2010-03-30 2011-11-10 Sony Corp Fungicide, photo catalytic composite material, adsorbent, and depurative
JP2012160456A (en) * 2007-04-04 2012-08-23 Sony Corp Electrode material for secondary battery and method for producing the same, and material for electric double layer capacitor and method for producing the same
JP2013049617A (en) * 2011-08-02 2013-03-14 Toc Capacitor Kk Method for producing activated carbon porous body, activated carbon porous body, and electrode for electric double layer capacitor
JP2014129200A (en) * 2012-12-28 2014-07-10 Kansai Coke & Chem Co Ltd Active carbon and manufacturing method thereof
WO2014112401A1 (en) * 2013-01-18 2014-07-24 ソニー株式会社 Composite material for electrodes, method for producing same, and secondary battery
JP2016000665A (en) * 2014-06-11 2016-01-07 滋賀県 Method of producing active carbon

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160456A (en) * 2007-04-04 2012-08-23 Sony Corp Electrode material for secondary battery and method for producing the same, and material for electric double layer capacitor and method for producing the same
JP2010208872A (en) * 2009-03-06 2010-09-24 Yokohama National Univ Porous aluminosilicate-carbon composite material and production method of the same
JP2011079705A (en) * 2009-10-07 2011-04-21 Osaka Gas Chem Kk Method and apparatus for producing activated carbon
JP2011225521A (en) * 2010-03-30 2011-11-10 Sony Corp Fungicide, photo catalytic composite material, adsorbent, and depurative
JP2013049617A (en) * 2011-08-02 2013-03-14 Toc Capacitor Kk Method for producing activated carbon porous body, activated carbon porous body, and electrode for electric double layer capacitor
JP2014129200A (en) * 2012-12-28 2014-07-10 Kansai Coke & Chem Co Ltd Active carbon and manufacturing method thereof
WO2014112401A1 (en) * 2013-01-18 2014-07-24 ソニー株式会社 Composite material for electrodes, method for producing same, and secondary battery
JP2016000665A (en) * 2014-06-11 2016-01-07 滋賀県 Method of producing active carbon

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109970056A (en) * 2019-05-07 2019-07-05 吉林农业大学 A kind of preparation method and applications of biomass-based orderly micro-pore carbon material
JP2022545305A (en) * 2019-08-21 2022-10-27 ヒンドスタン ペテローリアム コーポレーション リミテッド Catalyst composition and its use
JP7311596B2 (en) 2019-08-21 2023-07-19 ヒンドスタン ペテローリアム コーポレーション リミテッド Catalyst composition and its use
JP2021038103A (en) * 2019-08-31 2021-03-11 ジカンテクノ株式会社 Graphene and production apparatus of graphene
JP2021038102A (en) * 2019-08-31 2021-03-11 ジカンテクノ株式会社 Carbon raw material, graphene, apparatus for producing carbon raw material and method for producing carbon raw material
JP7312396B2 (en) 2019-08-31 2023-07-21 ジカンテクノ株式会社 Manufacturing method of carbon material
JP7312397B2 (en) 2019-08-31 2023-07-21 ジカンテクノ株式会社 Method for producing carbide and carbon material
WO2021241754A1 (en) * 2020-05-28 2021-12-02 昭和電工株式会社 Composite particle, negative electrode active material, and lithium secondary battery
JP7405249B2 (en) 2020-05-28 2023-12-26 株式会社レゾナック Composite particles, negative electrode active materials and lithium ion secondary batteries
CN114763264A (en) * 2021-01-11 2022-07-19 中国石油化工股份有限公司 Process for preparing activated carbon by alkali activation method
CN114763264B (en) * 2021-01-11 2024-05-03 中国石油化工股份有限公司 Process for preparing active carbon by alkali activation method
CN113277506A (en) * 2021-04-30 2021-08-20 成都天府达奇科技有限公司 Active carbon and its use and water purifier
CN113828277A (en) * 2021-10-28 2021-12-24 重庆科技学院 Modified biochar and preparation method and application thereof
CN114349004A (en) * 2022-02-27 2022-04-15 四川轻化工大学 Preparation method of biomass porous carbon for water treatment
CN114797766A (en) * 2022-03-14 2022-07-29 南京工业大学 Porous biochar and preparation method and application thereof
CN116751422A (en) * 2023-08-16 2023-09-15 广州海天塑胶有限公司 Negative ion polypropylene composite polymer material for automobile and preparation method thereof
CN116751422B (en) * 2023-08-16 2023-11-03 广州海天塑胶有限公司 Negative ion polypropylene composite polymer material for automobile and preparation method thereof

Also Published As

Publication number Publication date
JP6760583B2 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
JP6760583B2 (en) How to make activated carbon
CN107108232B (en) Activated carbon, hydrothermal carbon and preparation method thereof
CN104583120B (en) Activated carbon with high active surface area
KR101400249B1 (en) Method for preparing carbon dioxide absorbent based on natural biomass and carbon dioxide absorbent based on natural biomass prepared by the same
CN104583119B (en) Activated carbon having basic functional group and method for producing same
JP2001240407A (en) Activated carbon and its manufacturing method
Liu et al. Investigation of ammonia/steam activation for the scalable production of high-surface area nitrogen-containing activated carbons
JP2001122608A (en) Activated carbon controlled in fine pore structure and method of manufacturing the same
CN102786050A (en) Method for preparing microporous cocoanut active charcoal by pyrolysis and activation
Chistyakov et al. Methods for preparing carbon sorbents from lignin
KR101631180B1 (en) Manufacturing method of active carbon derived from rice husks for hydrogen storage using chemical activation
JP4864238B2 (en) Activated carbon and its manufacturing method
Boujibar et al. Efficient CO2 capture by ultra‐high microporous activated carbon made from natural coal
JPH07155589A (en) Production of carbon material having large specific surface area
RU2436625C1 (en) Method to produce carbon adsorbent
RU2393111C1 (en) Method of producing microporous carbon material from lignocellulose material
KR101140990B1 (en) Method for producing activated carbons using sewage sludge
Ruan et al. One-step fabrication of N-doped activated carbon by NH3 activation coupled with air oxidation for supercapacitor and CO2 capture applications
Eletskii et al. Texture and adsorptive properties of microporous amorphous carbon materials prepared by the chemical activation of carbonized high-ash biomass
Melezhik et al. Synthesis of carbon materials with abnormally high specific surface area
JP2007229707A (en) Organic gas adsorbent
Li et al. Preparation of activated carbon from pyrolyzed rice husk by leaching out ash content after CO2 activation
CN112619608B (en) Preparation and application of glucose-based porous carbon material
KR102544657B1 (en) The Method of Producing Active Carbon by Using Physical Activation and the Active Carbon Produced by the Same
KR101337523B1 (en) Manufacturing of graphene nanosheet for carbon dioxide adsorbent

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20160728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160728

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200826

R150 Certificate of patent or registration of utility model

Ref document number: 6760583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250