JP2014129200A - Active carbon and manufacturing method thereof - Google Patents

Active carbon and manufacturing method thereof Download PDF

Info

Publication number
JP2014129200A
JP2014129200A JP2012288600A JP2012288600A JP2014129200A JP 2014129200 A JP2014129200 A JP 2014129200A JP 2012288600 A JP2012288600 A JP 2012288600A JP 2012288600 A JP2012288600 A JP 2012288600A JP 2014129200 A JP2014129200 A JP 2014129200A
Authority
JP
Japan
Prior art keywords
activated carbon
coal
pore
surface area
total volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012288600A
Other languages
Japanese (ja)
Other versions
JP5882191B2 (en
Inventor
Yuki Kimura
雄貴 木村
Naoki Matoba
直樹 的場
Akiko Hara
亜希子 原
Junichi Yasumaru
純一 安丸
Maki Hamaguchi
眞基 濱口
Noriyuki Okuyama
憲幸 奥山
Koji Sakai
康爾 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51407984&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2014129200(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd, Kansai Coke and Chemicals Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2012288600A priority Critical patent/JP5882191B2/en
Publication of JP2014129200A publication Critical patent/JP2014129200A/en
Application granted granted Critical
Publication of JP5882191B2 publication Critical patent/JP5882191B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide active carbon superior in an initial adsorption rate as primary particles of the active carbon without granulation or shaping, and a manufacturing method thereof.SOLUTION: When pore size distribution of primary particles of active carbon is measured, a peak of distribution is shown to an area of pore size 0.1-3 μm, and a total cubic content of pore sizes of 0.05-5 μm is not less than 0.4 mL/g.

Description

本発明は活性炭、およびその製造方法に関し、詳細には被吸着物の初期吸着速度に優れた活性炭、およびその製造方法に関する。   The present invention relates to activated carbon and a method for producing the same, and more particularly, to activated carbon having an excellent initial adsorption rate for an adsorbent and a method for producing the activated carbon.

活性炭はその表面に無数の細孔を有しており、その吸着能力を活かして、気体中、或いは液体中の有害物質などの被吸着物を除去するための吸着材として汎用されている。また近年、活性炭は電気二重層キャパシタの分極性電極材などの電子材料としても利用されるなど、その適用分野も多岐に亘っている。   Activated carbon has innumerable pores on its surface and is widely used as an adsorbent for removing adsorbed substances such as harmful substances in gases or liquids by utilizing its adsorption ability. In recent years, activated carbon has been used in various fields such as an electronic material such as a polarizable electrode material for an electric double layer capacitor.

活性炭の細孔は、その細孔径に応じてマクロ孔(直径50nm以上)、メソ孔(直径2nm以上、50nm未満)、ミクロ孔(直径2nm未満)に分類されている(IUPAC(International Union of Pure and Applied Chemistry)による分類)。ミクロ孔は主に被吸着物の吸着サイトとして機能する吸着部位であり、またメソ孔やマクロ孔は、被吸着物を含む気体や液体をミクロ孔まで運搬する経路として機能し、吸着速度に影響することが知られている。   The pores of the activated carbon are classified into macropores (diameter 50 nm or more), mesopores (diameter 2 nm or more and less than 50 nm), and micropores (diameter 2 nm or less) according to the pore diameter (IUPAC (International Union of Pure). and Applied Chemistry). Micropores are adsorption sites that mainly function as adsorption sites for adsorbents, and mesopores and macropores function as a route for transporting gases and liquids containing adsorbates to the micropores, affecting the adsorption rate. It is known to do.

ミクロ孔が増えると比表面積が大きくなるため、ヤシガラ活性炭などミクロ孔が発達した活性炭は平衡吸着性能(平衡吸着量)が高くなる傾向を示す。しかしながらミクロ孔が発達していてもメソ孔やマクロ孔の発達が十分でない活性炭の場合、被吸着物の細孔内への移動速度が遅くなる。   Since the specific surface area increases as the number of micropores increases, activated carbon with developed micropores such as coconut shell activated carbon tends to have higher equilibrium adsorption performance (equilibrium adsorption amount). However, in the case of activated carbon in which mesopores and macropores are not sufficiently developed even if micropores are developed, the moving speed of the adsorbed material into the pores becomes slow.

このような問題を解決する手段として、細孔の割合を調整した活性炭が、種々提案されている。   As means for solving such a problem, various activated carbons having a controlled proportion of pores have been proposed.

例えば特許文献1には、石炭を原料とし、細孔径30nm以上の細孔容積が0.2〜0.6mL/gで、そのうち細孔径1μm以下の細孔容積の割合が60%以上、BET比表面積が800〜2000m2/g、安息角が30°以下である球状活性炭が開示されている。 For example, in Patent Document 1, coal is used as a raw material, and the pore volume with a pore diameter of 30 nm or more is 0.2 to 0.6 mL / g, of which the proportion of the pore volume with a pore diameter of 1 μm or less is 60% or more, the BET ratio A spherical activated carbon having a surface area of 800 to 2000 m 2 / g and an angle of repose of 30 ° or less is disclosed.

また特許文献2には、水銀圧入法で測定した平均細孔径3000〜100000nmの範囲の積算細孔容積が6.5mL/dL以上、n−ブタン容量濃度2000ppmにおける平衡吸着量が0.16g/dL以上である吸着材が開示されている。   Patent Document 2 discloses that the integrated pore volume in the range of 3000-100000 nm having an average pore diameter measured by the mercury intrusion method is 6.5 mL / dL or more, and the equilibrium adsorption amount at an n-butane volume concentration of 2000 ppm is 0.16 g / dL. The adsorbent which is the above is disclosed.

特開2006−83052号公報JP 2006-83052 A 国際公開第2009/031467号公報International Publication No. 2009/031467

従来から提案されている吸着速度を改善した活性炭は、複数の活性炭粒子(一次粒子)を造粒や成型することで、活性炭の特性を改善するものである。例えば複数の活性炭粒子を造粒や成型すると、活性炭の一次粒子間(二次粒子内)に空隙が形成され、この空隙が運搬経路として機能し、吸着速度が向上する。しかしながら製造コスト削減の観点から造粒や成型をしなくとも吸着速度に優れた活性炭が求められていた。また近年、吸着材の吸着効率向上や電気二重層キャパシタ用電極材料の充放電特性改善の一環として、吸着開始直後の初期吸着速度の向上が求められている。   Conventionally proposed activated carbon with improved adsorption rate improves the characteristics of activated carbon by granulating or molding a plurality of activated carbon particles (primary particles). For example, when a plurality of activated carbon particles are granulated or molded, voids are formed between the primary particles of the activated carbon (inside the secondary particles), and these voids function as a transport path, improving the adsorption rate. However, activated carbon having an excellent adsorption rate without granulation or molding has been demanded from the viewpoint of manufacturing cost reduction. In recent years, there has been a demand for improvement in the initial adsorption rate immediately after the start of adsorption as part of improvement in adsorption efficiency of the adsorbent and charge / discharge characteristics of the electrode material for electric double layer capacitors.

本発明は上記のような事情に着目してなされたものであって、活性炭の初期吸着速度に優れた活性炭、およびその製造方法を提供することである。   This invention is made paying attention to the above situations, and is providing the activated carbon excellent in the initial adsorption rate of activated carbon, and its manufacturing method.

上記課題を解決し得た本発明の活性炭は、一次粒子の細孔径分布を測定したとき、細孔径0.1〜3μmの領域に分布のピークを示し、かつ細孔径0.05〜5μmの合計容積が、0.4mL/g以上である。 The activated carbon of the present invention capable of solving the above problems shows a distribution peak in the region of pore diameter of 0.1 to 3 μm when the pore diameter distribution of primary particles is measured, and the total of pore diameters of 0.05 to 5 μm. The volume is 0.4 mL / g or more.

また比表面積あたりの細孔径0.05〜5μmの合計容積が、0.2μL/m2以上であることも好ましい実施態様である。 Moreover, it is also a preferable embodiment that the total volume of pore diameters of 0.05 to 5 μm per specific surface area is 0.2 μL / m 2 or more.

更に比表面積が、800m2/g以上、全細孔容積が、0.4mL/g以上であることも好ましい実施態様である。 It is also a preferred embodiment that the specific surface area is 800 m 2 / g or more and the total pore volume is 0.4 mL / g or more.

また本発明の上記活性炭は、石炭を温度200℃以上の有機溶媒で抽出処理した際に生じる固体抽出残渣をアルカリ賦活処理して得られたものであることが望ましい。   Moreover, it is desirable that the activated carbon of the present invention be obtained by subjecting a solid extraction residue produced when coal is extracted with an organic solvent having a temperature of 200 ° C. or more to alkali activation treatment.

また更に前記固体残渣中の灰分量が5質量%以上であることも好ましい。   Furthermore, it is also preferable that the amount of ash in the solid residue is 5% by mass or more.

本発明には、上記活性炭を用いた吸着材や、上記活性炭を用いた電気二重層キャパシタ用電極材料も含まれる。   The present invention also includes an adsorbent using the activated carbon and an electrode material for an electric double layer capacitor using the activated carbon.

また本発明の活性炭の製造方法は、石炭を温度200℃以上の有機溶媒で抽出処理する工程、及びこの抽出処理で残った固体抽出残渣をアルカリ賦活処理する工程を有することに要旨を有する。   Moreover, the manufacturing method of activated carbon of this invention has a summary in having the process of carrying out the extraction process of coal with the organic solvent with a temperature of 200 degreeC or more, and the process of carrying out the alkali activation process of the solid extraction residue remaining by this extraction process.

本発明の活性炭によれば、その細孔径が特定の分布を示すため、一次粒子のままで初期吸着速度に優れている。また本発明の製造方法によれば、初期吸着速度に優れた前記活性炭を提供することができる。本発明の活性炭は製造コストが従来よりも低く、また浄水用吸着材、排水浄化用吸着材などの吸着材や電気二重層キャパシタ用電極材料として好適である。   According to the activated carbon of the present invention, since the pore diameter shows a specific distribution, the initial adsorption rate is excellent while maintaining the primary particles. Moreover, according to the manufacturing method of this invention, the said activated carbon excellent in the initial stage adsorption rate can be provided. The activated carbon of the present invention is lower in production cost than conventional ones, and is suitable as an adsorbent such as an adsorbent for water purification and an adsorbent for wastewater purification, and an electrode material for electric double layer capacitors.

図1は水銀圧入法で測定した活性炭の細孔容積と細孔径の分布を示すグラフである。FIG. 1 is a graph showing the pore volume and pore size distribution of activated carbon measured by mercury porosimetry. 図2は活性炭の吸着速度(平衡到達率と経過時間との関係)を示すグラフである。FIG. 2 is a graph showing the adsorption rate of activated carbon (relationship between equilibrium arrival rate and elapsed time). 図3は活性炭の吸着速度(平衡到達率(5分)と細孔径0.05〜5μmの合計容積(mL/g)との関係)を示すグラフである。FIG. 3 is a graph showing the adsorption rate of activated carbon (relationship between the equilibrium arrival rate (5 minutes) and the total volume (mL / g) of pore diameters of 0.05 to 5 μm). 図4は活性炭の吸着速度(平衡到達率(5分)と比表面積あたりの細孔径0.05〜5μmの合計容積(μL/m2)との関係)を示すグラフである。FIG. 4 is a graph showing the adsorption rate of activated carbon (relationship between the equilibrium arrival rate (5 minutes) and the total volume (μL / m 2 ) of pore diameters of 0.05 to 5 μm per specific surface area). 本発明で使用する固体抽出残渣を製造する装置およびプロセスを例示する説明図である。It is explanatory drawing which illustrates the apparatus and process which manufacture the solid extraction residue used by this invention.

本発明者らは、細孔径0.1〜3μmの領域に分布のピークを示すと共に、細孔径0.05〜5μmの合計容積が、0.4mL/g以上である活性炭の一次粒子は、被吸着物の拡散、移動速度が速くなり、初期吸着速度が向上すること、また、細孔深部に存在する吸着サイト(ミクロ孔)も十分に生かすことができることを見出した。したがって、本発明の活性炭を吸着材として用いれば、初期吸着速度を向上させることができる。また、本発明の活性炭を電気二重層キャパシタ用電極材料として用いた場合、急速充放電特性の向上が期待できる。   The present inventors show a distribution peak in a region having a pore diameter of 0.1 to 3 μm and primary particles of activated carbon having a total volume of pores of 0.05 to 5 μm of 0.4 mL / g or more. It has been found that the diffusion and movement speed of adsorbate is increased, the initial adsorption speed is improved, and the adsorption sites (micropores) existing in the deep pores can be fully utilized. Therefore, if the activated carbon of the present invention is used as an adsorbent, the initial adsorption rate can be improved. In addition, when the activated carbon of the present invention is used as an electrode material for an electric double layer capacitor, an improvement in rapid charge / discharge characteristics can be expected.

本発明において初期吸着速度とは、吸着開始(0分)から5分後の平衡到達率であり、平衡到達率が高ければ初期吸着速度が速いとみなす。平衡到達率は、実施例に記載の吸着速度試験に基づいて測定される値である。平衡到達率は、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上、より更に好ましくは85%以上、最も好ましくは90%以上である。   In the present invention, the initial adsorption rate is the equilibrium arrival rate after 5 minutes from the start of adsorption (0 minutes), and the higher the equilibrium arrival rate, the higher the initial adsorption rate. The equilibrium achievement rate is a value measured based on the adsorption rate test described in the examples. The equilibrium achievement rate is preferably 70% or more, more preferably 75% or more, still more preferably 80% or more, still more preferably 85% or more, and most preferably 90% or more.

また本発明において「分布のピーク」とは、一次粒子の細孔径分布を水銀圧入法に従って測定したとき、得られる細孔径分布曲線(縦軸:細孔容積(mL/g)、横軸:細孔径(μm))上の極大値をいう。   In the present invention, the “distribution peak” means a pore size distribution curve (vertical axis: pore volume (mL / g), horizontal axis: fine) obtained when the pore size distribution of primary particles is measured according to the mercury intrusion method. The maximum value on the pore diameter (μm)).

以下、本発明の活性炭について具体的に説明する。   Hereinafter, the activated carbon of the present invention will be specifically described.

本発明において一次粒子の細孔径分布を測定したときの分布のピーク位置を細孔径0.1μm〜3μmの範囲に限定した理由は、ピーク位置の細孔径が0.1μm以上であることが初期吸着速度向上に有効だからである。一方、ピーク位置の細孔径が大きくなりすぎると、隣接する細孔との間隔が狭くなって粒子の強度が低下する恐れがあり、また孔の数が減少して吸着容量等に影響を及ぼすため、上限を3μmとした。分布のピークの位置は、好ましくは細孔径0.3μm以上、より好ましくは0.5μm以上であって、好ましくは2.5μm以下、より好ましくは2.0μm以下の範囲である。   The reason why the peak position of the distribution when the pore diameter distribution of the primary particles is measured in the present invention is limited to the range of the pore diameter of 0.1 μm to 3 μm is that the initial adsorption is that the pore diameter at the peak position is 0.1 μm or more. It is effective for speed improvement. On the other hand, if the pore diameter at the peak position is too large, the distance between adjacent pores may be narrowed, which may reduce the strength of the particles, and the number of pores may decrease, affecting the adsorption capacity. The upper limit was 3 μm. The position of the distribution peak is preferably a pore diameter of 0.3 μm or more, more preferably 0.5 μm or more, preferably 2.5 μm or less, more preferably 2.0 μm or less.

更に本発明では、初期吸着速度向上の観点から、上記分布のピークに加えて、一次粒子の細孔径0.05〜5μmの範囲の合計容積が0.4mL/g以上であることが必要である。合計容積が大きくなると初期吸着速度が向上するため、好ましくは0.45mL/g以上、より好ましくは0.47mL/g以上、更に好ましくは0.50mL/g以上である。一方、合計容積が大きくなりすぎると、強度が低下することがあるため、好ましくは2.0mL/g以下、より好ましくは1.5mL/g以下である。   Furthermore, in the present invention, from the viewpoint of improving the initial adsorption rate, in addition to the above distribution peak, the total volume in the range of the pore diameter of the primary particles of 0.05 to 5 μm needs to be 0.4 mL / g or more. . Since the initial adsorption rate is improved when the total volume is increased, it is preferably 0.45 mL / g or more, more preferably 0.47 mL / g or more, and further preferably 0.50 mL / g or more. On the other hand, if the total volume becomes too large, the strength may decrease, so that it is preferably 2.0 mL / g or less, more preferably 1.5 mL / g or less.

なお、合計容積の範囲を細孔径0.05〜5μmとした理由は、初期吸着速度と活性炭の強度のバランスを考慮して決定したものであり、この範囲において上記所定の合計容積を満足すれば初期吸着速度向上効果を奏することができる。   The reason why the total volume range was set to a pore diameter of 0.05 to 5 μm was determined in consideration of the balance between the initial adsorption rate and the strength of the activated carbon, and if the predetermined total volume is satisfied within this range, The effect of improving the initial adsorption rate can be achieved.

更に本発明では、比表面積あたりの上記細孔径0.05〜5μmの合計容積が、0.2μL/m2以上であることが好ましい。比表面積あたりの合計容積が0.2μL/m2以上であれば、吸着速度向上効果をより一層高めることができる。より好ましくは0.25μL/m2以上、更に好ましくは0.30μL/m2以上である。一方、比表面積あたりの合計容積が大きくなりすぎると、活性炭の比表面積が低下して吸着容量や吸着速度に低下することがあるため、好ましくは1.0μL/m2以下、より好ましくは0.5μL/m2以下である。 Furthermore, in this invention, it is preferable that the total volume of the said pore diameter 0.05-5 micrometers per specific surface area is 0.2 microliters / m < 2 > or more. If the total volume per specific surface area is 0.2 μL / m 2 or more, the adsorption rate improvement effect can be further enhanced. More preferably 0.25 [mu] L / m 2 or more, still more preferably 0.30μL / m 2 or more. On the other hand, if the total volume per specific surface area becomes too large, the specific surface area of the activated carbon may be reduced and the adsorption capacity and adsorption rate may be lowered, so that it is preferably 1.0 μL / m 2 or less, more preferably 0.8. 5 μL / m 2 or less.

なお、一次粒子の比表面積は特に限定されないが、比表面積が小さすぎると活性炭の吸着能力が低くなり、また電気二重層キャパシタ用電極に用いた場合には質量あたりの静電容量(F/g)が低くなることがあるため、好ましくは800m2/g以上、より好ましくは1200m2/g以上である。一方、比表面積が大きくなりすぎると、密度が低下して粒子の強度が低くなることがあるため、好ましくは4000m2/g以下、より好ましくは3000m2/g以下である。 The specific surface area of the primary particles is not particularly limited, but if the specific surface area is too small, the adsorption capacity of activated carbon is lowered, and when used for an electric double layer capacitor electrode, the capacitance per mass (F / g ) May be low, and is preferably 800 m 2 / g or more, more preferably 1200 m 2 / g or more. On the other hand, if the specific surface area becomes too large, the density may decrease and the strength of the particles may be lowered. Therefore, the specific surface area is preferably 4000 m 2 / g or less, more preferably 3000 m 2 / g or less.

また一次粒子の全細孔容積も特に限定されないが、活性炭の吸着性能(吸着量)の向上を図る観点から、上記所定の細孔経の分布のピークや合計容積に加えて、平衡吸着性能に影響を及ぼすミクロ孔や吸着速度に影響を及ぼすメソ孔もバランスよく有していることが望ましい。したがってこれらを加味した活性炭の全細孔の細孔容積(全細孔容積)は好ましくは0.4mL/g以上、より好ましくは0.5mL/g以上、更に好ましくは0.6mL/g以上である。一方、全細孔容積が大きくなりすぎると、比表面積が減少してしまうため、好ましくは2.5mL/g以下、より好ましくは2.0mL/g以下である。   The total pore volume of the primary particles is not particularly limited, but from the viewpoint of improving the adsorption performance (adsorption amount) of activated carbon, in addition to the above-mentioned peak distribution of pore diameter and the total volume, the equilibrium adsorption performance is improved. It is desirable to have well-balanced micropores that affect and mesopores that affect the adsorption rate. Therefore, the pore volume (total pore volume) of the activated carbon in consideration of these is preferably 0.4 mL / g or more, more preferably 0.5 mL / g or more, and further preferably 0.6 mL / g or more. is there. On the other hand, if the total pore volume becomes too large, the specific surface area decreases, so that it is preferably 2.5 mL / g or less, more preferably 2.0 mL / g or less.

上記特性を有する本発明の活性炭は、後記するように石炭を温度200℃以上の有機溶媒で抽出した際に生じる固体抽出残渣(好ましくは灰分量が5%以上)をアルカリ賦活処理したものであることが望ましい。石炭を所定の温度で抽出処理することでマクロ孔の形成が促進されると共に、更にアルカリ賦活工程でもマクロ孔の形成が促進されるため、初期吸着速度に優れた本発明の上記活性炭を容易に製造することができる。   The activated carbon of the present invention having the above characteristics is obtained by subjecting a solid extraction residue (preferably an ash content of 5% or more) generated when coal is extracted with an organic solvent having a temperature of 200 ° C. or higher to alkali activation treatment as described later. It is desirable. Extraction treatment of coal at a predetermined temperature promotes the formation of macropores, and further promotes the formation of macropores in the alkali activation step, so that the activated carbon of the present invention having excellent initial adsorption rate can be easily obtained. Can be manufactured.

本発明において活性炭の原料となる石炭の種類は特に限定されず、無煙炭、瀝青炭などの高品位炭;亜瀝青炭、褐炭、泥炭などの低品位炭のいずれであってもよい。   In the present invention, the type of coal used as a raw material for activated carbon is not particularly limited, and may be any of high-grade coal such as anthracite and bituminous coal; and low-grade coal such as sub-bituminous coal, lignite, and peat.

また石炭の平均粒子径も特に限定されないが、有機溶媒による抽出効率を高める観点からは細粒化されていることが好ましく、例えば平均粒子径は好ましくは10mm以下、より好ましくは5mm以下の粒子に粉砕されていることが望ましい。また粒子径を小さくすることによって、比表面積、全細孔容積、細孔径0.05〜5μmにおける合計容積(質量あたりの合計容積、比表面積あたりの合計容積)を増大することができる。   The average particle diameter of coal is not particularly limited, but is preferably finely divided from the viewpoint of increasing extraction efficiency with an organic solvent. For example, the average particle diameter is preferably 10 mm or less, more preferably 5 mm or less. It is desirable that it is pulverized. Further, by reducing the particle diameter, the specific surface area, total pore volume, and total volume (total volume per mass, total volume per specific surface area) at a pore diameter of 0.05 to 5 μm can be increased.

石炭を有機溶媒で抽出処理することによって、固体抽出残渣を得ることができる。石炭を有機溶媒で抽出処理する工程とは、石炭に含まれる抽出成分(有機溶媒可溶成分)の少なくとも一部を有機溶媒に溶出させる工程である。   A solid extraction residue can be obtained by extracting coal with an organic solvent. The process of extracting coal with an organic solvent is a process of eluting at least a part of an extraction component (organic solvent-soluble component) contained in coal into an organic solvent.

石炭を有機溶媒によって抽出処理すると、石炭に含まれる溶媒可溶の有機質成分が有機溶媒中へ溶出するが、本発明では特に200℃以上の温度で抽出処理することによって、この溶媒可溶の有機質成分の溶出割合が増加し、上記細孔をより多く含む固体抽出残渣を得ることができることを見出した。このように200℃以上で抽出処理することで、抽出処理後の固体抽出残渣の表面には、抽出成分が抜けた穴(細孔)が無数に形成される。   When coal is extracted with an organic solvent, a solvent-soluble organic component contained in the coal is eluted into the organic solvent. In the present invention, the solvent-soluble organic substance is extracted at a temperature of 200 ° C. or more. It has been found that the elution ratio of components can be increased and a solid extraction residue containing more pores can be obtained. By performing the extraction treatment at 200 ° C. or more in this way, numerous holes (pores) from which the extraction components are removed are formed on the surface of the solid extraction residue after the extraction treatment.

有機溶媒としては、石炭に含有される抽出成分(ピレン、ナフタセン、ペリレンなど)を溶解し得るものであれば特に限定されない。例えば、N−メチル−2−ピロリドン、キノリン、ピリジン、テトラヒドロフラン、ピラジン、キノキサリン、アクリジンなどの複素環式化合物;ベンゼン、トルエン、キシレン、メシチレン、ナフタレン、アントラセン、ピレン、クリセン、ペリレンなどの芳香族炭化水素;ヘキサン、ヘプタン、シクロヘキサンなどの脂肪族炭化水素;クロロホルム、ジクロロエタンなどのハロゲン系脂肪族炭化水素;アセトン、メチルエチルケトンなどのケトン;酢酸エチルなどのエステル;メタノール、エタノール、プロパノールなどのアルコール;などが挙げられる。これらの中でも、ピレン、ナフタレン、ペリレンなどの抽出物の効率的な溶出に好適な有機溶媒として、複素環式化合物、芳香族炭化水素が好ましく、より好ましくは2環式複素環式化合物、2環式芳香族炭化水素など、特にキノキサリン、アクリジン、ナフタレン、アントラセン、ピレン、クリセン、ペリレンなどである。これら有機溶媒は、適当な置換基(例えば、メチル基などのアルキル基)を有していてもよい。   The organic solvent is not particularly limited as long as it can dissolve extraction components (pyrene, naphthacene, perylene, etc.) contained in coal. For example, heterocyclic compounds such as N-methyl-2-pyrrolidone, quinoline, pyridine, tetrahydrofuran, pyrazine, quinoxaline, acridine; aromatic carbonization such as benzene, toluene, xylene, mesitylene, naphthalene, anthracene, pyrene, chrysene, perylene Hydrogen; aliphatic hydrocarbons such as hexane, heptane and cyclohexane; halogenated aliphatic hydrocarbons such as chloroform and dichloroethane; ketones such as acetone and methyl ethyl ketone; esters such as ethyl acetate; alcohols such as methanol, ethanol and propanol; Can be mentioned. Among these, as organic solvents suitable for efficient elution of extracts such as pyrene, naphthalene, and perylene, heterocyclic compounds and aromatic hydrocarbons are preferable, and bicyclic heterocyclic compounds, bicyclic rings are more preferable. And aromatic hydrocarbons such as quinoxaline, acridine, naphthalene, anthracene, pyrene, chrysene, and perylene. These organic solvents may have an appropriate substituent (for example, an alkyl group such as a methyl group).

これらの有機溶媒は単独で使用してもよいし、2種以上を併用してもよい。また本発明の効果を損なわない程度に、有機溶媒に水を含有させてもよい。   These organic solvents may be used alone or in combination of two or more. Moreover, you may make water contain an organic solvent to such an extent that the effect of this invention is not impaired.

抽出処理の方法は石炭から抽出成分を溶出させることができる方法であれば特に限定されず、各種公知の抽出方法を採用できる。例えば、石炭を有機溶媒に浸漬して超音波処理する方法;石炭を有機溶媒に浸漬して撹拌する方法;ソックスレー抽出法などを挙げることができる。これらの中でも石炭を有機溶媒に浸漬して撹拌する方法は、所定の温度域で抽出成分(有機溶媒可溶成分)をより効率よく溶出させることができるため、好適である。   The method of extraction processing is not particularly limited as long as it can elute extracted components from coal, and various known extraction methods can be adopted. For example, a method in which coal is immersed in an organic solvent and subjected to ultrasonic treatment; a method in which coal is immersed in an organic solvent and stirred; a Soxhlet extraction method, and the like can be given. Among these, the method of immersing coal in an organic solvent and stirring is preferable because the extraction component (organic solvent-soluble component) can be more efficiently eluted in a predetermined temperature range.

石炭を有機溶媒に浸漬して撹拌する方法によって固体抽出残渣を得る方法として、以下のプロセスが例示される。すなわち、石炭を有機溶媒と混合してスラリーを調製し、得られたスラリーを加熱、熟成して有機溶媒中に可溶成分を抽出し、次いでスラリーを上澄み液と固相成分が濃縮された濃縮液とに分離した後、固相成分濃縮液を濾過して得られた濾物を乾燥させることにより、固体抽出残渣が得られる。   The following process is exemplified as a method for obtaining a solid extraction residue by a method in which coal is immersed in an organic solvent and stirred. That is, coal is mixed with an organic solvent to prepare a slurry, and the resulting slurry is heated and aged to extract soluble components in the organic solvent, and then the slurry is concentrated by concentrating the supernatant and solid phase components. After separation into a liquid, a solid extract residue is obtained by drying the filtrate obtained by filtering the solid phase component concentrate.

このようなプロセスは例えば脱灰炭(ハイパーコール、または無灰炭ともいう)の製造に用いられており、本発明では、石炭を有機溶媒を用いた抽出法による脱灰炭の製造過程で得られる固体抽出残渣を用いることもできる。   Such a process is used, for example, in the production of demineralized coal (also referred to as hypercoal or ashless coal). In the present invention, coal is obtained during the process of producing demineralized coal by an extraction method using an organic solvent. The solid extraction residue obtained can also be used.

上記プロセスについて図5を用いてより詳細に説明する。図5に従えば、タンク1において、石炭と有機溶媒とを混合し、スラリーを生成する。得られたスラリーは、ポンプ2によって抽出処理を行う抽出槽4に供給する。その際、スラリーを予熱器3によって所定の温度に加温する。抽出槽4において、スラリーを撹拌機10を用いて撹拌しながら可溶成分を有機溶媒中に抽出する(石炭を有機溶媒で抽出処理する工程)。次に抽出槽4中のスラリーを重力沈降槽5に供給する。重力沈降槽5では、重力沈降を行って固相成分を沈降させて(矢印11)、スラリーを上澄み液と固相成分が濃縮された液とに分離する。上澄み液はフィルターユニット8に供給し、フィルター部材7で濾過し、得られた濾液は上澄み液を回収する上澄み液受け器9に回収する。そして、回収された上澄み液から有機溶媒を蒸発除去することによって無灰炭(ハイパーコール)が得られる。重力沈降槽5内で沈降した固相成分濃縮液は固相成分濃縮液受け器6に回収され、攪拌機13で攪拌される。固相成分濃縮液をフィルター部材(図示せず)で濾過し、濾過して得られた濾物を乾燥させることにより、固体抽出残渣が得られる。   The above process will be described in more detail with reference to FIG. According to FIG. 5, in the tank 1, coal and an organic solvent are mixed and a slurry is produced | generated. The obtained slurry is supplied to the extraction tank 4 where the pump 2 performs the extraction process. At that time, the slurry is heated to a predetermined temperature by the preheater 3. In the extraction tank 4, the soluble component is extracted into an organic solvent while stirring the slurry using the stirrer 10 (step of extracting coal with an organic solvent). Next, the slurry in the extraction tank 4 is supplied to the gravity settling tank 5. In the gravity settling tank 5, gravity settling is performed to settle the solid phase component (arrow 11), and the slurry is separated into a supernatant liquid and a liquid in which the solid phase component is concentrated. The supernatant liquid is supplied to the filter unit 8 and filtered through the filter member 7, and the obtained filtrate is recovered in a supernatant liquid receiver 9 that recovers the supernatant liquid. Then, ashless coal (hypercoal) is obtained by evaporating and removing the organic solvent from the collected supernatant. The solid phase component concentrate that has settled in the gravity sedimentation tank 5 is collected in the solid phase component concentrate receiver 6 and stirred by the stirrer 13. A solid phase residue is obtained by filtering the solid phase component concentrate through a filter member (not shown) and drying the filtrate obtained by filtration.

石炭を有機溶媒で抽出処理する工程において、有機溶媒の使用量は、特に限定されないが、抽出効率を高める観点から石炭と有機溶媒との質量比(有機溶媒/石炭)を、2以上とすることが好ましく、より好ましくは3以上、更に好ましくは4以上であり、40以下とすることが好ましく、より好ましくは30以下、更に好ましくは20以下である。   In the process of extracting coal with an organic solvent, the amount of the organic solvent used is not particularly limited, but the mass ratio of the coal to the organic solvent (organic solvent / coal) is set to 2 or more from the viewpoint of increasing the extraction efficiency. More preferably, it is 3 or more, More preferably, it is 4 or more, It is preferable to set it as 40 or less, More preferably, it is 30 or less, More preferably, it is 20 or less.

スラリーを加熱、熟成して有機溶媒中に可溶成分を抽出する方法としては、例えば、スラリーを200℃〜420℃で5分〜120分間(好ましくは10分〜30分間)保持し、石炭中の可溶成分を可溶化させる態様が挙げられる。温度を適切に制御することによって、細孔径や細孔容積を増大することができるため、上記本発明の活性炭の一次粒子の製造においては重要な条件である。保持温度が200℃より低い温度では、石炭を構成する分子間の結合を弱めるには不十分であり、石炭から抽出できる可溶成分の割合が低下し、また保持温度が低いと形成される細孔の孔径を十分に大きくすることができず、所望の分布のピークや細孔容積等が得られない。一方、保持温度が420℃より高い温度では、石炭の熱分解反応が活発になり、生成した熱分解ラジカルの再結合が起こるため、やはり抽出される可溶成分の割合が低下するおそれがある。また保持温度が高いと形成される孔径が大きくなりすぎて上記所望の活性炭が得られないばかりか、表面積の低下や強度の低下が生じる。抽出処理時の保持温度は好ましくは250℃以上、より好ましくは300℃以上であって、好ましくは400℃以下、より好ましくは380℃以下である。   As a method for extracting a soluble component in an organic solvent by heating and aging the slurry, for example, the slurry is held at 200 ° C. to 420 ° C. for 5 minutes to 120 minutes (preferably 10 minutes to 30 minutes), and in coal The aspect which solubilizes this soluble component is mentioned. Since the pore diameter and pore volume can be increased by appropriately controlling the temperature, it is an important condition in the production of the primary particles of the activated carbon of the present invention. When the holding temperature is lower than 200 ° C., it is insufficient to weaken the bonds between the molecules constituting the coal, the proportion of soluble components that can be extracted from the coal is reduced, and the fineness formed when the holding temperature is low. The pore diameter of the pores cannot be made sufficiently large, and a desired distribution peak and pore volume cannot be obtained. On the other hand, when the holding temperature is higher than 420 ° C., the pyrolysis reaction of coal becomes active and recombination of the generated pyrolysis radicals occurs, so that the ratio of the soluble components that are extracted may also decrease. Further, when the holding temperature is high, the pore diameter formed becomes too large to obtain the desired activated carbon, and the surface area and strength are reduced. The holding temperature during the extraction treatment is preferably 250 ° C. or higher, more preferably 300 ° C. or higher, preferably 400 ° C. or lower, more preferably 380 ° C. or lower.

溶出処理した後、例えば、濾過することにより固体抽出残渣のみを取り出すことができる。濾取した固体抽出残渣は、窒素雰囲気下あるいは真空下にて、20℃〜300℃で、0.5時間〜24時間乾燥させることが好ましい。   After the elution treatment, for example, only the solid extraction residue can be taken out by filtration. The solid extraction residue collected by filtration is preferably dried at 20 ° C. to 300 ° C. for 0.5 hours to 24 hours in a nitrogen atmosphere or under vacuum.

続いて固体抽出残渣にアルカリ賦活処理を施す。固体抽出残渣をアルカリ賦活処理する工程は、一般に固体抽出残渣の表面に細孔を形成して、主に比表面積および細孔容積(主にミクロ孔)を増大させる処理であるが、本発明では固体抽出残渣にアルカリ賦活処理を施すことで、更に上記所望の分布のピークや細孔容積を有する活性炭の形成を促進できる。すなわち、固体抽出残渣は主に有機溶媒で溶解されずに残る灰分(例えばケイ酸、アルミナ、酸化鉄、石灰、マグネシア、アルカリ金属など)や該灰分を含む灰炭など不純物成分を含む石炭成分で構成されており、特に不純物成分としてSiが多く含まれている。このような固体抽出残渣にアルカリ賦活処理を施すと、固体抽出残渣に含まれるSiなどの不純物成分を溶出させることができ、得られる活性炭には、不純物成分が抜けた細孔(穴)が無数に形成される。この際に形成される細孔は上記抽出処理時に形成される孔と共に、本発明にかかる所望の分布のピークや細孔容積等に寄与するものであり、これら処理を施すことによって上記本発明の活性炭が得られる。   Subsequently, an alkali activation treatment is applied to the solid extraction residue. The step of subjecting the solid extraction residue to alkali activation is generally a treatment for forming pores on the surface of the solid extraction residue and mainly increasing the specific surface area and pore volume (mainly micropores). By subjecting the solid extraction residue to an alkali activation treatment, it is possible to further promote the formation of activated carbon having the desired distribution peak and pore volume. That is, the solid extraction residue is mainly a coal component containing impurity components such as ash remaining without being dissolved in an organic solvent (for example, silicic acid, alumina, iron oxide, lime, magnesia, alkali metal, etc.) and ash coal containing the ash. In particular, a large amount of Si is contained as an impurity component. When such a solid extraction residue is subjected to an alkali activation treatment, impurity components such as Si contained in the solid extraction residue can be eluted, and the resulting activated carbon has numerous pores (holes) from which the impurity component has been removed. Formed. The pores formed at this time, together with the pores formed during the extraction process, contribute to the desired distribution peak and pore volume according to the present invention. Activated carbon is obtained.

なお、賦活処理による上記効果は、アルカリ賦活処理した場合に得られる特有の効果であって、ガス賦活処理や水蒸気賦活処理などの他の賦活処理方法では得られない。例えば上記固体抽出残渣にガス賦活処理や水蒸気賦活処理をした場合、不純物成分のみを選択的に溶出することができず、固体抽出残渣を浸食しながら賦活が進行するため、上記本発明の所定の分布のピークや細孔容積を有する活性炭が得られない。   In addition, the said effect by an activation process is a specific effect acquired when performing an alkali activation process, Comprising: It cannot obtain by other activation processing methods, such as a gas activation process and a water vapor activation process. For example, when a gas activation treatment or a steam activation treatment is performed on the solid extraction residue, only the impurity component cannot be selectively eluted, and the activation proceeds while eroding the solid extraction residue. Activated carbon having a distribution peak and pore volume cannot be obtained.

アルカリ賦活処理は、固体抽出残渣と薬剤(例えばアルカリ賦活剤)とを混合し、加熱することによって賦活処理することができる。賦活処理条件は特に限定されないが、例えば以下のような条件が例示される。   The alkali activation treatment can be activated by mixing a solid extraction residue and a drug (for example, an alkali activation agent) and heating them. The activation treatment conditions are not particularly limited, but examples include the following conditions.

アルカリ賦活剤としては、アルカリ金属化合物が好ましい。アルカリ金属化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどの水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸リチウムなどの炭酸塩などが挙げられる。これらのアルカリ賦活剤は単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、水酸化カリウムが好適である。   As the alkali activator, an alkali metal compound is preferable. Examples of the alkali metal compound include hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide; carbonates such as sodium carbonate, potassium carbonate and lithium carbonate. These alkali activators may be used alone or in combination of two or more. Of these, potassium hydroxide is preferred.

固体抽出残渣とアルカリ賦活剤との質量比(アルカリ賦活剤/固体抽出残渣)は、上記賦活効果及び不純物溶出効果が所望の程度得られるように適宜設定すればよく特に限定されない。アルカリ賦活剤が少なすぎると残存する灰分を十分に除去できず、上記効果が低いことがある。またアルカリ賦活剤が多すぎると、活性炭が脆化して強度の低下を招く。固体抽出残渣とアルカリ賦活剤との質量比(アルカリ賦活剤/固体抽出残渣)は、0.5以上とすることが好ましく、より好ましくは1.5以上、更に好ましくは2.0以上であり、4.5以下とすることが好ましく、より好ましくは4.0以下、更に好ましくは3.5以下である。   The mass ratio between the solid extraction residue and the alkali activator (alkali activator / solid extraction residue) is not particularly limited as long as it is appropriately set so that the above-described activation effect and impurity elution effect are obtained to a desired extent. When there are too few alkali activators, the remaining ash cannot fully be removed and the said effect may be low. Moreover, when there are too many alkali activators, activated carbon will become embrittled and will cause the fall of intensity | strength. The mass ratio between the solid extraction residue and the alkali activator (alkali activator / solid extraction residue) is preferably 0.5 or more, more preferably 1.5 or more, and still more preferably 2.0 or more. It is preferably 4.5 or less, more preferably 4.0 or less, still more preferably 3.5 or less.

また、アルカリ賦活剤を添加する際、固体抽出残渣との混合を十分に行うために、アルカリ賦活剤を水溶液として使用しても良い。このときの水の使用量は、アルカリ賦活剤の0.05質量倍〜10質量倍が好ましい。なお、アルカリ賦活剤を水溶液として使用する場合には、賦活処理のための加熱を行う前に、アルカリ賦活剤水溶液に由来する水分の突沸防止のため、賦活処理における加熱温度よりも低温での加熱処理を行って、水分を除去しておくことが好ましい。   Moreover, when adding an alkali activator, in order to fully mix with a solid extraction residue, you may use an alkali activator as aqueous solution. The amount of water used at this time is preferably 0.05 times by mass to 10 times by mass of the alkali activator. In addition, when using an alkali activator as an aqueous solution, before performing heating for the activation treatment, heating at a temperature lower than the heating temperature in the activation treatment is performed to prevent bumping of moisture derived from the alkaline activator aqueous solution. It is preferable to remove moisture by performing treatment.

賦活処理を行う際の加熱温度は600℃以上が好ましく、より好ましくは650℃以上であり、950℃以下が好ましく、より好ましくは900℃以下である。また、賦活処理を行う際の加熱時間は0.1時間以上が好ましく、より好ましくは1.5時間以上であり、3.5時間以下が好ましく、より好ましくは3時間以下である。なお、加熱時の雰囲気は、アルゴン、ヘリウム、窒素などの不活性ガス雰囲気が好ましい。   The heating temperature for performing the activation treatment is preferably 600 ° C. or higher, more preferably 650 ° C. or higher, preferably 950 ° C. or lower, more preferably 900 ° C. or lower. In addition, the heating time in performing the activation treatment is preferably 0.1 hour or longer, more preferably 1.5 hours or longer, 3.5 hours or shorter, more preferably 3 hours or shorter. The atmosphere during heating is preferably an inert gas atmosphere such as argon, helium, or nitrogen.

賦活処理後に、必要に応じて洗浄処理、熱処理、粉砕処理などを行ってもよい。   After the activation treatment, washing treatment, heat treatment, pulverization treatment, or the like may be performed as necessary.

洗浄処理は、賦活処理後の活性炭を洗浄する工程であり、その後、必要により乾燥させてもよい。賦活処理後の活性炭の表面には、アルカリ賦活剤として使用した水酸化アルカリ金属などが付着しているので、このような付着物を除去するために活性炭の洗浄を行う。活性炭の洗浄方法としては、水洗、酸洗浄などを挙げることができる。   The cleaning process is a process of cleaning the activated carbon after the activation process, and may be dried if necessary. Since the alkali metal hydroxide used as an alkali activator adheres to the surface of the activated carbon after the activation treatment, the activated carbon is washed to remove such deposits. Examples of the method for washing activated carbon include water washing and acid washing.

水洗方法は、特に限定されないが、例えば、活性炭を水に投入し、必要に応じて撹拌、分散させた後、濾取することにより行うことが好ましい。撹拌や分散は、機械的撹拌、気体吹込み、超音波照射、加熱煮沸によって行うことができる。水洗時の水温は、特に限定されず、例えば30℃以上でもよい。また撹拌、分散時間も特に限定されず、例えば0.5時間以上行うことが好ましい。   The washing method is not particularly limited, but for example, it is preferably performed by adding activated carbon to water, stirring and dispersing as necessary, and then filtering. Stirring and dispersion can be performed by mechanical stirring, gas blowing, ultrasonic irradiation, and heating boiling. The water temperature at the time of water washing is not specifically limited, For example, 30 degreeC or more may be sufficient. Moreover, stirring and dispersion time are not particularly limited, and for example, it is preferably performed for 0.5 hour or longer.

酸洗浄は、無機酸、有機酸などを含有する洗浄液を用いて行う洗浄である。なお、洗浄液の溶媒は特に限定されないが、通常は水である。酸洗浄を行うことによって、アルカリ賦活剤として使用した水酸化アルカリ金属などを効率よく除去できる。   The acid cleaning is cleaning performed using a cleaning liquid containing an inorganic acid, an organic acid, or the like. The solvent for the cleaning liquid is not particularly limited, but is usually water. By performing the acid cleaning, the alkali metal hydroxide used as the alkali activator can be efficiently removed.

無機酸としては、例えば、塩酸、硝酸、硫酸、リン酸、炭酸などが挙げられる。これらの無機酸は単独で使用してもよいし、2種以上を併用してもよい。無機酸を使用する場合、洗浄液中の無機酸濃度は、0.5mol/L以上が好ましく、より好ましくは1.0mol/L以上であり、3.5mol/L以下が好ましく、より好ましくは3.0mol/L以下である。無機酸を用いた酸洗浄の方法は、特に限定されないが、例えば、活性炭と、無機酸を含有する洗浄液とを混合して、50℃〜100℃の温度で、30分間〜120分間撹拌することにより行うことが好ましい。   Examples of inorganic acids include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and carbonic acid. These inorganic acids may be used alone or in combination of two or more. When the inorganic acid is used, the concentration of the inorganic acid in the cleaning liquid is preferably 0.5 mol / L or more, more preferably 1.0 mol / L or more, and preferably 3.5 mol / L or less, more preferably 3. 0 mol / L or less. The method of acid cleaning using an inorganic acid is not particularly limited. For example, activated carbon and a cleaning liquid containing an inorganic acid are mixed and stirred at a temperature of 50 ° C. to 100 ° C. for 30 minutes to 120 minutes. Is preferably performed.

また有機酸としては、例えば、ギ酸、シュウ酸、マロン酸、コハク酸、酢酸、プロピオン酸などを挙げることができる。これらの有機酸は、単独で使用してもよいし、2種以上を併用してもよい。前記有機酸を含有する洗浄液中の有機酸の濃度は、1vol%以上が好ましく、より好ましくは2vol%以上、さらに好ましくは5vol%以上であり、100vol%以下が好ましく、より好ましくは80vol%以下、さらに好ましくは60vol%以下である。有機酸の濃度を1vol%以上とすることによって、有機酸による金属成分除去効果が得られるが、濃度が高くなりすぎると、製造コストが高くなるので好ましくない。有機酸を用いた酸洗浄の方法は、例えば、活性炭と、有機酸を含有する洗浄液とを混合して、得られた混合物を20℃〜80℃の温度で、1分間〜120分間撹拌することにより行うことが好ましい。洗浄後の活性炭は、50℃〜120℃で、0.5時間〜2.0時間乾燥させることが好ましい。   Examples of the organic acid include formic acid, oxalic acid, malonic acid, succinic acid, acetic acid, propionic acid, and the like. These organic acids may be used alone or in combination of two or more. The concentration of the organic acid in the cleaning liquid containing the organic acid is preferably 1 vol% or more, more preferably 2 vol% or more, still more preferably 5 vol% or more, preferably 100 vol% or less, more preferably 80 vol% or less, More preferably, it is 60 vol% or less. By setting the concentration of the organic acid to 1 vol% or more, the effect of removing the metal component by the organic acid can be obtained. However, if the concentration is too high, the manufacturing cost increases, which is not preferable. The method of acid cleaning using an organic acid is, for example, mixing activated carbon and a cleaning solution containing an organic acid, and stirring the resulting mixture at a temperature of 20 ° C. to 80 ° C. for 1 minute to 120 minutes. Is preferably performed. The activated carbon after washing is preferably dried at 50 to 120 ° C. for 0.5 to 2.0 hours.

本発明の製造方法においては、洗浄処理として、酸洗浄と水洗とを行うことが好ましく、より好ましくは酸洗浄を行った後、水洗を複数回行う態様である。   In the manufacturing method of this invention, it is preferable to perform acid washing and water washing as a washing | cleaning process, More preferably, after performing acid washing, it is the aspect which performs water washing several times.

賦活処理後あるいは洗浄処理後の活性炭を、さらに不活性ガス雰囲気下で熱処理することも好ましい(熱処理工程)。活性炭に熱処理を行うことにより、活性炭の表面の官能基量を調整することができる。   It is also preferable to heat-treat the activated carbon after the activation treatment or after the washing treatment in an inert gas atmosphere (heat treatment step). By performing heat treatment on the activated carbon, the amount of functional groups on the surface of the activated carbon can be adjusted.

前記熱処理としては、賦活処理直後の活性炭を不活性ガス雰囲気下で熱処理する態様;賦活処理後の活性炭を、酸洗浄および/または水洗した後、不活性ガス雰囲気下で熱処理する態様などを挙げることができる。前記不活性ガスとしては、例えば、アルゴン、窒素、ヘリウムなどを使用することができる。また、前記熱処理温度は、特に限定されないが、好ましくは400℃以上1000℃以下である。   Examples of the heat treatment include an aspect in which the activated carbon immediately after the activation treatment is heat-treated in an inert gas atmosphere; an embodiment in which the activated carbon after the activation treatment is acid-washed and / or washed with water and then heat-treated in an inert gas atmosphere. Can do. As said inert gas, argon, nitrogen, helium etc. can be used, for example. The heat treatment temperature is not particularly limited, but is preferably 400 ° C. or higher and 1000 ° C. or lower.

更に必要に応じて活性炭の粒径を調整するために粉砕を行ってもよい(粉砕処理工程)。活性炭の粉砕方法は、特に限定されるものでなく、ヘンシェルミキサー、ジェットミル、ディスクミル、ボールミル、ビーズミルなどを用いて行えばよい。なお、活性炭の平均粒子径は特に限定されず、用途に応じて適宜調製すればよい。例えば、浄水用吸着材として用いる場合、吸着性能と通水時の圧力損失のバランスを考慮すると、50〜500μm程度とすることが好ましい。また、電気二重層キャパシタ用電極材料として用いる場合、集電板との結着性などの取扱い性を考慮するとおおむね1μm〜10μm程度とすることが好ましい。   Furthermore, you may grind | pulverize as needed, in order to adjust the particle size of activated carbon (grinding process process). The method for pulverizing the activated carbon is not particularly limited, and may be performed using a Henschel mixer, a jet mill, a disk mill, a ball mill, a bead mill, or the like. In addition, the average particle diameter of activated carbon is not specifically limited, What is necessary is just to prepare suitably according to a use. For example, when used as an adsorbent for water purification, considering the balance between adsorption performance and pressure loss during water flow, it is preferably about 50 to 500 μm. In addition, when used as an electrode material for an electric double layer capacitor, it is preferable that the thickness is approximately 1 μm to 10 μm in consideration of handling properties such as binding property to a current collector plate.

本発明の製造方法により得られる活性炭は、脱臭用途、有害物質除去用途など様々な用途における吸着用活性炭として使用でき、例えば、ガス吸着用の充填材、浄水器用の充填材(ろ材、吸着材)などの吸着材として好適である。また、電気二重層キャパシタ用電極材料として用いることができ、当該電極材料を使用して、電気二重層キャパシタ用電極や電気二重層キャパシタを製造することが可能である。   The activated carbon obtained by the production method of the present invention can be used as an activated carbon for adsorption in various applications such as deodorization and harmful substance removal. For example, a filler for gas adsorption, a filler for a water purifier (filter material, adsorbent). It is suitable as an adsorbing material. Further, it can be used as an electrode material for an electric double layer capacitor, and an electrode for an electric double layer capacitor or an electric double layer capacitor can be produced using the electrode material.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

(固体抽出残渣の製造)
以下の方法により、固体抽出残渣を製造した。
(Production of solid extraction residue)
A solid extraction residue was produced by the following method.

原料石炭(炭素質物質)としてオーストラリア産の瀝青炭A(原料石炭A:灰分17.0%)、またはオーストラリア産の瀝青炭B(原料石炭B:灰分12.8%)を用いた。   Australian bituminous coal A (raw coal A: ash 17.0%) or Australian bituminous coal B (raw coal B: ash 12.8%) was used as the raw material coal (carbonaceous material).

この原料石炭5kgに対し、4倍量(20kg)の溶媒(1−メチルナフタレン(新日鉄化学社製))を混合してスラリーを調製した。このスラリーを窒素雰囲気下で加圧(1.2MPa)して、内容積30Lのバッチ式オートクレーブ中370℃、1時間の条件で抽出処理した。このスラリーを同一温度、圧力を維持した重力沈降槽内で上澄み液と固形分濃縮液とに分離し、固形分濃縮液から蒸留法で溶媒を分離・回収して、固体抽出残渣(原料石炭Aの固体抽出残渣X、または原料石炭Bの固体抽出残渣Y)を得た。   A slurry was prepared by mixing 4 kg (20 kg) of a solvent (1-methylnaphthalene (manufactured by Nippon Steel Chemical Co., Ltd.)) with 5 kg of this raw material coal. This slurry was pressurized (1.2 MPa) under a nitrogen atmosphere and extracted in a batch-type autoclave with an internal volume of 30 L at 370 ° C. for 1 hour. This slurry is separated into a supernatant and a solid concentrate in a gravity sedimentation tank maintained at the same temperature and pressure, and the solvent is separated and recovered from the solid concentrate by a distillation method to obtain a solid extraction residue (raw material coal A Solid extraction residue X or raw coal B solid extraction residue Y).

(活性炭の製造)
製造例1
粒径を1〜2mmに調整した上記オーストラリア産の瀝青炭(原料石炭A)の固体抽出残渣X30gに、賦活剤として質量比(賦活剤/固体抽出残渣)で2.5倍(75g)の水酸化カリウム(アルカリ賦活剤)を混合した後、窒素雰囲気下、800℃で2時間加熱し、アルカリ賦活処理を行って、多孔質炭素材料を得た。
(Manufacture of activated carbon)
Production Example 1
To the solid extraction residue X30g of the above-mentioned Australian bituminous coal (raw coal A) having a particle size adjusted to 1 to 2 mm, the mass ratio (activator / solid extraction residue) is 2.5 times (75 g) of hydroxylation as an activator. After mixing potassium (alkaline activator), the mixture was heated at 800 ° C. for 2 hours in a nitrogen atmosphere to perform alkali activation treatment to obtain a porous carbon material.

得られた多孔質炭素材料を水洗浄処理(温度:60℃)してから塩酸洗浄処理(5.25質量%の塩酸)を行って、金属不純物などが除去された活性炭を得た。その後、活性炭をチューブ炉(光洋サーモシステム社製KTF055N)に入れて窒素流通下(0.4L/min)、炉内温度を1000℃まで昇温(昇温速度:10℃/min)し、1000℃で2時間保持して、活性炭Aを得た。   The obtained porous carbon material was washed with water (temperature: 60 ° C.) and then washed with hydrochloric acid (5.25 mass% hydrochloric acid) to obtain activated carbon from which metal impurities and the like were removed. Thereafter, the activated carbon was put into a tube furnace (KTF055N manufactured by Koyo Thermo Systems Co., Ltd.) and the temperature in the furnace was raised to 1000 ° C. under a nitrogen flow (0.4 L / min) (heating rate: 10 ° C./min). Holding at 2 ° C. for 2 hours, activated carbon A was obtained.

製造例2
粒径を2mm以下に調整した上記オーストラリア産の瀝青炭(原料石炭A)の固体抽出残渣X30gに、賦活剤として質量比(賦活剤/固体抽出残渣)で1.0倍(30g)の水酸化カリウムを混合した後、窒素雰囲気下、800℃、2時間の条件でアルカリ賦活処理を行って、多孔質炭素材料を得た。
Production Example 2
To the solid extraction residue X30g of the above-mentioned Australian bituminous coal (raw coal A) adjusted to a particle size of 2mm or less, 1.0 times (30g) potassium hydroxide in mass ratio (activator / solid extraction residue) as an activator After mixing, alkali activation treatment was performed under a nitrogen atmosphere at 800 ° C. for 2 hours to obtain a porous carbon material.

得られた多孔質炭素材料は、上記製造例1と同様に処理して活性炭Bを得た。   The obtained porous carbon material was treated in the same manner as in Production Example 1 to obtain activated carbon B.

製造例3
粒径を2mm以下に調整した上記オーストラリア産の瀝青炭(原料石炭A)の固体抽出残渣X30gに、賦活材として質量比(賦活剤/固体抽出残渣)で2.5倍(75g)の水酸化カリウムを混合した後、窒素雰囲気下、800℃、2時間の条件でアルカリ賦活処理を行って、多孔質炭素材料を得た。得られた多孔質炭素材料を製造例1と同様に水洗、塩酸洗浄処理を行って活性炭を得た。その後、活性炭を、チューブ炉に入れ、窒素流通下(0.4L/min)で炉内温度を1000℃まで昇温した(昇温速度:10℃/min)。炉内温度が1000℃に達してから、2時間保持することにより活性炭Cを得た。
Production Example 3
To the solid extraction residue X30g of the above-mentioned Australian bituminous coal (raw coal A) whose particle size was adjusted to 2 mm or less, 2.5 times (75 g) of potassium hydroxide in mass ratio (activator / solid extraction residue) as an activator After mixing, alkali activation treatment was performed under a nitrogen atmosphere at 800 ° C. for 2 hours to obtain a porous carbon material. The obtained porous carbon material was washed with water and hydrochloric acid in the same manner as in Production Example 1 to obtain activated carbon. Thereafter, the activated carbon was put into a tube furnace, and the furnace temperature was raised to 1000 ° C. under a nitrogen flow (0.4 L / min) (temperature increase rate: 10 ° C./min). Activated carbon C was obtained by holding for 2 hours after the furnace temperature reached 1000 ° C.

製造例4
原料石炭Aの固体抽出残渣Xに換えて、粒径を1〜2mmに調整した原料石炭Bの固体抽出残渣Yを用いた以外は、実施例1と同様にして活性炭Dを得た。
Production Example 4
Activated carbon D was obtained in the same manner as in Example 1 except that instead of the solid extraction residue X of the raw material coal A, the solid extraction residue Y of the raw material coal B whose particle size was adjusted to 1 to 2 mm was used.

製造例5
原料石炭Aの固体抽出残渣Xに換えて、製造例4と同じ原料石炭Bの固体抽出残渣Yを用いた以外は、実施例2と同様にして活性炭Eを得た。
Production Example 5
Activated carbon E was obtained in the same manner as in Example 2 except that the same solid extraction residue Y of the raw material coal B as in Production Example 4 was used instead of the solid extraction residue X of the raw material coal A.

比較製造例1
原料として紙−フェノール系樹脂積層板を用いた。紙−フェノール系樹脂積層板100gを回転式焼成炉(タナカテック社製ロータリールキン:容量2.5L)に投入して、窒素流通下(1L/分)、炉内温度を900℃まで昇温(昇温速度10℃/分)した。
Comparative production example 1
A paper-phenolic resin laminate was used as a raw material. 100 g of a paper-phenolic resin laminate is put into a rotary baking furnace (Tanakatec Co., Ltd. rotary kin: capacity 2.5 L), and the furnace temperature is raised to 900 ° C. under nitrogen flow (1 L / min) ( The heating rate was 10 ° C./min.

900℃に達してから回転式焼成炉内に水蒸気(水蒸気分圧71.2kPa)を窒素(1.0L/分)とともに供給して、2.0時間水蒸気賦活処理を行い活性炭Fを得た。   After reaching 900 ° C., steam (steam partial pressure 71.2 kPa) was supplied together with nitrogen (1.0 L / min) into the rotary firing furnace, and steam activation treatment was performed for 2.0 hours to obtain activated carbon F.

比較製造例2
ヤシガラ活性炭(MCエバテック社製W10−30)を活性炭Gとした。
Comparative production example 2
Coconut charcoal activated carbon (MC Evatech W10-30) was used as activated carbon G.

比較製造例3
紙−フェノール系樹脂積層板をアルカリ賦活処理した活性炭(MCエバテック社製MSP−20)を活性炭Hとした。
Comparative production example 3
Activated carbon (MSP-20 manufactured by MC Evatech Co., Ltd.) obtained by subjecting the paper-phenolic resin laminate to alkali activation treatment was defined as activated carbon H.

比較製造例4
石油ピッチコークスをアルカリ賦活処理した活性炭(MCエバテック社製MSC−30)を活性炭Iとした。
Comparative production example 4
Activated carbon obtained by subjecting petroleum pitch coke to alkali activation treatment (MC Evatech Co., Ltd., MSC-30) was designated as activated carbon I.

(活性炭の灰分(%))
活性炭の灰分(%)は工業分析(JIS M8812)にしたがって測定した。
(Activated ash content (%))
The ash content (%) of the activated carbon was measured according to industrial analysis (JIS M8812).

(比表面積、全細孔容積および平均細孔径)
活性炭0.2gを150℃にて真空加熱した後、窒素吸着装置(マイクロメリティックス社製、「ASAP−2400」)を用いて、窒素ガス吸着法による吸着等温線を求め、BET法により比表面積を算出した。また、全細孔容積は相対圧P/P0(P:吸着平衡にある吸着質の気体圧力、P0:吸着温度における吸着質の飽和蒸気圧)が0.93における窒素吸着量から求めた。
(Specific surface area, total pore volume and average pore diameter)
After 0.2 g of activated carbon was heated at 150 ° C. under vacuum, an adsorption isotherm obtained by a nitrogen gas adsorption method was obtained using a nitrogen adsorption device (“ASAP-2400” manufactured by Micromeritics Co., Ltd.) The surface area was calculated. The total pore volume was determined from the amount of nitrogen adsorbed when the relative pressure P / P 0 (P: gas pressure of the adsorbate in adsorption equilibrium, P 0 : saturated vapor pressure of the adsorbate at the adsorption temperature) was 0.93. .

また、平均細孔径は、比表面積および全細孔容積を用いて、下記式(1)に基づいて算出した。
平均細孔径(nm)=(4×全細孔容積(mL/g))/(比表面積(m2/g))×1000・・・式(1)
Moreover, the average pore diameter was calculated based on the following formula (1) using the specific surface area and the total pore volume.
Average pore diameter (nm) = (4 × total pore volume (mL / g)) / (specific surface area (m 2 / g)) × 1000 (1)

(細孔経0.05〜5μmの合計容積)
活性炭を53−300μmに篩分けした後、水銀ポロシメーター(ユアサアイソニクス社製ポアマスターGT)を使用し、水銀圧入圧力1.37×10-3〜404MPaの範囲で測定し、圧力4.26×10-2〜4.26MPaにおける細孔径0.05〜5μmの合計容積を算出した。(表1中、「合計容積(mL/g)」)。結果を表1に示すと共に、各活性炭の細孔径分布を図1に示した。なお、図1において細孔径5μmを超える細孔径分布は粒子間空隙による空孔を含むため、今回算出した細孔経0.05〜5μmの合計容積からは除外している。
(Total volume of pore diameter 0.05 to 5 μm)
After sieving the activated carbon to 53-300 μm, a mercury porosimeter (Poremaster GT manufactured by Yuasa Isonics Co., Ltd.) is used, and the mercury pressure is measured in the range of 1.37 × 10 −3 to 404 MPa, and the pressure is 4.26 ×. The total volume of pore diameters of 0.05 to 5 μm at 10 −2 to 4.26 MPa was calculated. (In Table 1, “total volume (mL / g)”). The results are shown in Table 1, and the pore size distribution of each activated carbon is shown in FIG. In FIG. 1, the pore size distribution exceeding the pore size of 5 μm includes pores due to interparticle voids, and is therefore excluded from the total volume of pore diameters of 0.05 to 5 μm calculated this time.

(細孔径0.1μm〜3μmの領域内の分布のピークの有無)
図1の細孔径分布図から、細孔容積の最大ピーク位置を特定した。細孔容積の最大ピークが細孔径0.1μm〜3μmの範囲内である場合、表1に「有」と記入した(表1中、「分布ピーク」)。
(Presence or absence of distribution peak in the region of pore diameter of 0.1 μm to 3 μm)
From the pore diameter distribution diagram of FIG. 1, the maximum peak position of the pore volume was identified. When the maximum peak of the pore volume was within the range of the pore diameter of 0.1 μm to 3 μm, “Yes” was entered in Table 1 (“Distribution peak” in Table 1).

(比表面積あたりの細孔径0.05〜5μmの合計容積)
上記測定した比表面積、及び細孔経0.05〜5μmの合計容積に基づいて比表面積あたりの細孔径0.05〜5μmの合計容積を算出した(表1中、「合計容積(μL/m2)」)。
(Total volume of pore diameter per specific surface area of 0.05 to 5 μm)
Based on the measured specific surface area and the total volume of pore diameters of 0.05 to 5 μm, the total volume of pore diameters per specific surface area of 0.05 to 5 μm was calculated (in Table 1, “total volume (μL / m 2 ) ").

(吸着速度)
100mL三角フラスコに活性炭(0.13g)を入れた後、5mg/Lの濃度に調整したTCA(1,1,1−トリクロロエタン)水溶液で満たし、20℃で所定時間(5分、10分、30分、1時間、2時間、14時間)、撹拌して吸着させ、各時間における残存TCA濃度から、各時間での平衡到達率(%)を算出し、結果を図2に示した。
(Adsorption speed)
After putting activated carbon (0.13 g) into a 100 mL Erlenmeyer flask, it is filled with an aqueous solution of TCA (1,1,1-trichloroethane) adjusted to a concentration of 5 mg / L, and at 20 ° C. for a predetermined time (5 minutes, 10 minutes, 30 Minute, 1 hour, 2 hours, 14 hours), the mixture was adsorbed by stirring, and the equilibrium achievement rate (%) at each time was calculated from the residual TCA concentration at each time, and the results are shown in FIG.

また平衡到達率(開始5分後)と上記細孔径0.05〜5μmの合計容積(mL/g)との関係を図3に示すと共に、平衡到達率(開始5分後)と上記比表面積あたりの細孔径0.05〜5μmの合計容積(μL/m2)との関係を図4に示した。 FIG. 3 shows the relationship between the equilibrium arrival rate (5 minutes after the start) and the total volume (mL / g) of the pore diameter of 0.05 to 5 μm, and the equilibrium arrival rate (5 minutes after the start) and the specific surface area. The relationship with the total volume (μL / m 2 ) of per pore diameter of 0.05 to 5 μm is shown in FIG.

Figure 2014129200
Figure 2014129200

Figure 2014129200
Figure 2014129200

図3から次のことがわかる。細孔容積の分布のピークの位置と細孔径0.05〜5μmの合計容積が、本発明の規定を満足するNo.1〜5は、吸着試験開始5分後の初期平衡到達率がいずれも70%以上と高く、初期吸着速度に優れていた。特に細孔径0.05〜5μmの合計容積が本発明のより好ましい範囲(0.47mL/g以上)を満足するNo.1、3〜5は、初期平衡到達率が80%以上であり、このうち更に好ましい範囲(0.5mL/g以上)を満足するNo.1、3、4は初期平衡到達率が90%以上であり、特に優れた初期吸着速度を示した。   The following can be seen from FIG. The position of the peak of the pore volume distribution and the total volume of pore diameters of 0.05 to 5 μm satisfy No. 1 of the present invention. In Nos. 1 to 5, the initial equilibrium arrival rate 5 minutes after the start of the adsorption test was as high as 70% or more, and the initial adsorption rate was excellent. In particular, the total volume with a pore diameter of 0.05 to 5 μm satisfies the more preferable range (0.47 mL / g or more) of the present invention. Nos. 1 and 3 to 5 have an initial equilibrium achievement rate of 80% or more, and No. 1 satisfying a more preferable range (0.5 mL / g or more). Nos. 1, 3, and 4 had an initial equilibrium arrival rate of 90% or more, and showed particularly excellent initial adsorption rates.

一方、本発明の規定する分布のピークの位置と細孔径0.05〜5μmの合計容積を満足しなかったNo.6〜9は、初期平衡到達率が70%未満であり、初期吸着速度が劣っていた。   On the other hand, the peak position of the distribution defined by the present invention and the total volume of pores of 0.05 to 5 μm were not satisfied. 6 to 9 had an initial equilibrium achievement rate of less than 70%, and the initial adsorption rate was inferior.

また図4からは、比表面積あたりの細孔径0.05〜5μmの合計容積が、本発明の好ましい範囲(0.2μL/m2以上)を満足するNo.1〜5は、初期平衡到達率が70%以上と高く、初期吸着速度に優れていることがわかる。一方、比表面積あたりの細孔径0.05〜5μmの合計容積が、本発明の好ましい範囲(0.2μL/m2以上)を満足しなかったNo.6〜9は、初期平衡到達率が70%未満であり、初期吸着速度が劣ることがわかる。 4 shows that the total volume of pore diameters of 0.05 to 5 μm per specific surface area satisfies the preferred range of the present invention (0.2 μL / m 2 or more). 1 to 5 show that the initial equilibrium achievement rate is as high as 70% or more, and the initial adsorption rate is excellent. On the other hand, the total volume of pore diameters of 0.05 to 5 μm per specific surface area did not satisfy the preferred range (0.2 μL / m 2 or more) of the present invention. 6 to 9 show that the initial equilibrium achievement rate is less than 70%, and the initial adsorption rate is inferior.

活性炭の原料として炭素質物質を有機溶媒で抽出した際に生じる固体抽出残渣を賦活処理したものを用いたNo.1〜5は、該固体抽出残渣以外を用いたNo.6〜9と比べて初期平衡到達率が70%以上と高く、初期吸着速度に優れていた。   As a raw material of activated carbon, No. 1 was used in which a solid extraction residue produced when a carbonaceous material was extracted with an organic solvent was activated. Nos. 1 to 5 are No. 1 using other than the solid extraction residue. Compared with 6-9, the initial equilibrium achievement rate was as high as 70% or more, and the initial adsorption rate was excellent.

更に詳細に検討すると、原料灰分が少ない材料を用いた活性炭F〜Iでは、全細孔容積、細孔径0.05〜5μmの合計容積、及び比表面積あたりの細孔径0.05〜5μmの合計容積が小さく、初期平衡到達率が低かった。特に原料灰分が少ない材料(活性炭H:紙−フェノール系樹脂積層板、活性炭I:石油ピッチコークス)では、アルカリ賦活処理しても細孔径0.05〜5μmの合計容積、及び比表面積あたりの細孔径0.05〜5μmの合計容積を増大できなかった。   When examining in more detail, in the activated carbon F to I using a material with low raw material ash content, the total pore volume, the total volume of the pore diameter of 0.05 to 5 μm, and the total of the pore diameter of 0.05 to 5 μm per specific surface area The volume was small and the initial equilibrium achievement rate was low. Especially for materials with low raw material ash content (activated carbon H: paper-phenolic resin laminate, activated carbon I: petroleum pitch coke), the total volume with a pore diameter of 0.05 to 5 μm and the fine per specific surface area even with alkali activation treatment. The total volume with a pore size of 0.05-5 μm could not be increased.

一方、原料灰分が多いと、全細孔容積、細孔径0.05〜5μmの合計容積、及び比表面積あたりの細孔径0.05〜5μmの合計容積が大きくなり、初期平衡到達率が高くなる。特に原料灰分が多い程、細孔径0.05〜5μmの合計容積、及び比表面積あたりの細孔径0.05〜5μmの合計容積が大きくなる傾向を示したが(活性炭AとDの対比)、アルカリ賦活剤の使用量が少ない場合は、灰分を十分に除去できず、細孔径0.05〜5μmの合計容積、及び比表面積あたりの細孔径0.05〜5μmの合計容積や全細孔容積も小さくなる傾向を示した(活性炭BとC)。   On the other hand, if the amount of raw material ash is large, the total pore volume, the total volume of pore diameters of 0.05 to 5 μm, and the total volume of pore diameters of 0.05 to 5 μm per specific surface area increase, and the initial equilibrium achievement rate increases. . In particular, the larger the raw material ash, the larger the total volume of pore diameters 0.05 to 5 μm and the total volume of pore diameters 0.05 to 5 μm per specific surface area (contrast with activated carbon A and D), When the amount of the alkali activator used is small, ash cannot be sufficiently removed, and the total volume of pore diameters of 0.05 to 5 μm and the total volume of pore diameters per specific surface area of 0.05 to 5 μm and the total pore volume (Active carbon B and C).

また細かい粒径の原料石炭を用いると、比表面積、全細孔容積、および細孔径0.05〜5μmの合計容積、及び比表面積あたりの細孔径0.05〜5μmの合計容積が増大する傾向を示した(活性炭Aと活性炭Cの対比)。   Further, when raw material coal having a fine particle size is used, the specific surface area, the total pore volume, the total volume of pore diameters of 0.05 to 5 μm, and the total volume of pore diameters per specific surface area of 0.05 to 5 μm tend to increase. (Contrast of activated carbon A and activated carbon C).

1:タンク
2:ポンプ
3:予熱器
4:抽出槽
5:重力沈降槽
6:固相成分濃縮液受け器
7:フィルター部材
8:フィルターユニット
9:上澄み液受け器
10:撹拌機
12:撹拌機
13:撹拌機

1: Tank 2: Pump 3: Preheater 4: Extraction tank 5: Gravity sedimentation tank 6: Solid phase component concentrate receiver 7: Filter member 8: Filter unit 9: Supernatant liquid receiver 10: Stirrer 12: Stirrer 13: Stirrer

Claims (8)

一次粒子の細孔径分布を測定したとき、細孔径0.1〜3μmの領域に分布のピークを示し、かつ細孔径0.05〜5μmの合計容積が、0.4mL/g以上である活性炭。   Activated carbon having a distribution peak in a region having a pore diameter of 0.1 to 3 μm and a total volume of pore diameters of 0.05 to 5 μm being 0.4 mL / g or more when the pore size distribution of primary particles is measured. 比表面積あたりの細孔径0.05〜5μmの合計容積が、0.2μL/m2以上である請求項1に記載の活性炭。 The activated carbon according to claim 1, wherein the total volume of pore diameters of 0.05 to 5 µm per specific surface area is 0.2 µL / m 2 or more. 比表面積が、800m2/g以上、全細孔容積が、0.4mL/g以上である請求項1または2に記載の活性炭。 The activated carbon according to claim 1 or 2, wherein the specific surface area is 800 m 2 / g or more and the total pore volume is 0.4 mL / g or more. 前記活性炭は、石炭を温度200℃以上の有機溶媒で抽出処理した際に生じる固体抽出残渣をアルカリ賦活処理して得られたものである請求項1〜3のいずれかに記載の活性炭。   The activated carbon according to any one of claims 1 to 3, wherein the activated carbon is obtained by subjecting a solid extraction residue generated when coal is extracted with an organic solvent having a temperature of 200 ° C or higher to alkali activation treatment. 前記固体残渣中の灰分量が5質量%以上である請求項1〜4のいずれかに記載の活性炭。   The activated carbon according to claim 1, wherein an amount of ash in the solid residue is 5% by mass or more. 請求項1〜5のいずれかに記載の活性炭を用いた吸着材。   The adsorbent using the activated carbon in any one of Claims 1-5. 請求項1〜5のいずれかに記載の活性炭を用いた電気二重層キャパシタ用電極材料。   The electrode material for electric double layer capacitors using the activated carbon in any one of Claims 1-5. 石炭を温度200℃以上の有機溶媒で抽出処理する工程、及びこの抽出処理で残った固体抽出残渣をアルカリ賦活処理する工程を有する活性炭の製造方法。   A method for producing activated carbon, comprising: a step of extracting coal with an organic solvent having a temperature of 200 ° C. or higher; and a step of subjecting the solid extraction residue remaining in the extraction treatment to an alkali activation treatment.
JP2012288600A 2012-12-28 2012-12-28 Activated carbon and method for producing the same Active JP5882191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012288600A JP5882191B2 (en) 2012-12-28 2012-12-28 Activated carbon and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012288600A JP5882191B2 (en) 2012-12-28 2012-12-28 Activated carbon and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014129200A true JP2014129200A (en) 2014-07-10
JP5882191B2 JP5882191B2 (en) 2016-03-09

Family

ID=51407984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012288600A Active JP5882191B2 (en) 2012-12-28 2012-12-28 Activated carbon and method for producing the same

Country Status (1)

Country Link
JP (1) JP5882191B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101721493B1 (en) 2015-11-24 2017-03-31 한국기계연구원 Activated carbon, and method for manufacture thereof
JP2017222547A (en) * 2016-06-16 2017-12-21 進和テック株式会社 Method for producing activated carbon, and activated carbon production system
CN109305679A (en) * 2017-07-27 2019-02-05 迪睿合电子材料有限公司 The manufacturing method of husk active carbon
KR20200125017A (en) 2019-04-25 2020-11-04 서울대학교산학협력단 Method for manufacturing activated carbon, the activated carbon manufactured by the method, electrode including the activated carbon, and supercapacitor including the electrode
CN114452935A (en) * 2022-02-16 2022-05-10 山东省科学院能源研究所 Method for preparing carbon-based denitration efficient adsorbent by using short chain

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142204A (en) * 2005-11-18 2007-06-07 Gunma Univ Carbon material for electric double layer capacitor and manufacturing method
US20070258879A1 (en) * 2005-12-13 2007-11-08 Philip Morris Usa Inc. Carbon beads with multimodal pore size distribution
JP2007331986A (en) * 2006-06-15 2007-12-27 Japan Enviro Chemicals Ltd Activated carbon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142204A (en) * 2005-11-18 2007-06-07 Gunma Univ Carbon material for electric double layer capacitor and manufacturing method
US20070258879A1 (en) * 2005-12-13 2007-11-08 Philip Morris Usa Inc. Carbon beads with multimodal pore size distribution
JP2007331986A (en) * 2006-06-15 2007-12-27 Japan Enviro Chemicals Ltd Activated carbon

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015019799; PARK,S.-J. et al: '"Preparation of activated carbons derived from KOH-impregnated resin"' Carbon Vol.40, 2002, pp.2021-2022 *
JPN6015019801; DAUD,W.M.A.M. et al: '"The effects of carbonization temperature on pore development in palm-shell-based activated carbon"' Carbon Vol.38, 2000, pp.1925-1932 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101721493B1 (en) 2015-11-24 2017-03-31 한국기계연구원 Activated carbon, and method for manufacture thereof
JP2017222547A (en) * 2016-06-16 2017-12-21 進和テック株式会社 Method for producing activated carbon, and activated carbon production system
CN109305679A (en) * 2017-07-27 2019-02-05 迪睿合电子材料有限公司 The manufacturing method of husk active carbon
JP2019026497A (en) * 2017-07-27 2019-02-21 デクセリアルズ株式会社 Method for producing activated carbon made of chaff
JP7034623B2 (en) 2017-07-27 2022-03-14 デクセリアルズ株式会社 Manufacturing method of rice husk activated carbon
KR20200125017A (en) 2019-04-25 2020-11-04 서울대학교산학협력단 Method for manufacturing activated carbon, the activated carbon manufactured by the method, electrode including the activated carbon, and supercapacitor including the electrode
CN114452935A (en) * 2022-02-16 2022-05-10 山东省科学院能源研究所 Method for preparing carbon-based denitration efficient adsorbent by using short chain

Also Published As

Publication number Publication date
JP5882191B2 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5882191B2 (en) Activated carbon and method for producing the same
JP5027849B2 (en) Method for producing activated carbon, and electric double layer capacitor using activated carbon obtained by the method
JP6517607B2 (en) Method of producing activated carbon, activated carbon and electrode material for electric double layer capacitor
JP5210504B2 (en) Activated carbon purification method and activated carbon purification apparatus
Ma et al. Adsorption and regeneration of leaf-based biochar for p-nitrophenol adsorption from aqueous solution
JP5271851B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP6676821B2 (en) Method of producing binder-based activated carbon with no binder
Mahmoudi et al. Preparation and characterization of activated carbon from date pits by chemical activation with zinc chloride for methyl orange adsorption
Özçimen et al. Adsorption of copper (II) ions onto hazelnut shell and apricot stone activated carbons
KR20160142275A (en) Activated carbon for water purifier
JP5770550B2 (en) Activated carbon and manufacturing method thereof
JP2006347864A (en) Method for producing mesoporous carbon, and mesoporous carbon
JP2014034500A (en) Activated carbon imparted with basic functional group, and method for producing the same
Li et al. Characteristics and adsorption of Cr (VI) of biochar pyrolyzed from landfill leachate sludge
US20210179435A1 (en) Activated carbon and method for manufacturing same
JP2012101948A (en) Method for producing activated carbon
CN106622124A (en) High-adsorbability activated semi-coke as well as preparation method and application thereof
CN102976305A (en) Preparation method of mesoporous carbon material with aperture regulated by using template method
JP2008050237A (en) Spherical porous carbon particle powder and production method therefor
Aldawsari et al. Development of activated carbon from Phoenix dactylifera fruit pits: process optimization, characterization, and methylene blue adsorption
KR20090022040A (en) Preparation of high porous activated carbon for methane storage
KR101646137B1 (en) Active carbon and method for preparation of the same
Gedam et al. Comparative study of sponge gourd derived biochar and activated carbon for bio-sorption and desorption of Pb (II) ions
Koubaissy et al. Valorization of agricultural waste into activated carbons and its adsorption characteristics for heavy metals
KR20120007882A (en) Method for preparation of zeolite 13x and mesoporous silica derived from power plant bottom ash, and carbon dioxide sorbents based on zeolite 13x and mesoporous silica prepared by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160203

R150 Certificate of patent or registration of utility model

Ref document number: 5882191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250