JP2017220518A - High density multilayer wiring board of penetration through holeless structure - Google Patents

High density multilayer wiring board of penetration through holeless structure Download PDF

Info

Publication number
JP2017220518A
JP2017220518A JP2016112672A JP2016112672A JP2017220518A JP 2017220518 A JP2017220518 A JP 2017220518A JP 2016112672 A JP2016112672 A JP 2016112672A JP 2016112672 A JP2016112672 A JP 2016112672A JP 2017220518 A JP2017220518 A JP 2017220518A
Authority
JP
Japan
Prior art keywords
wiring board
printed wiring
hole
multilayer wiring
density multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016112672A
Other languages
Japanese (ja)
Inventor
詠逸 品田
Eiitsu Shinada
詠逸 品田
雅広 加藤
Masahiro Kato
雅広 加藤
勇人 田辺
Yuto TANABE
勇人 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016112672A priority Critical patent/JP2017220518A/en
Publication of JP2017220518A publication Critical patent/JP2017220518A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high density multilayer wiring board of penetration through holeless structure where narrow pitch printed wiring boards, subjected to boring of small diameter in a state of thin board thickness, are connected electrically by a conductive material for coping with narrow hole pitch or increase in the number of signal lines.SOLUTION: In a high density multilayer wiring board of penetration through holeless structure where at least two printed wiring boards, having through holes connected electrically and filled with nonconductive resin, are connected electrically, the connection member for electrically connecting the at least two printed wiring boards is a conductive material (A), pads or lands composed of a conductive metal layer are formed on the surface of the printed wiring board for connection with the connection member, and the layers of the printed wiring board where the connection member is not placed are insulated by nonwoven fabric or an insulation material (B) not containing a cloth material.SELECTED DRAWING: Figure 1

Description

本発明は、貫通スルーホールレス構造の高密度多層配線板に関する。   The present invention relates to a high-density multilayer wiring board having a through-through-less structure.

多層配線板は、回路形成された両面銅張積層板を絶縁性接着剤と交互に複数枚重ねて積層一体化し、接続に必要な箇所に多層配線板の板厚全体を貫通する貫通穴を設けてその内壁を金属めっきにより電気的に接続した貫通スルーホールを設けるのが一般的である。   Multi-layer wiring boards are laminated and integrated with multiple layers of double-sided copper-clad laminates with circuits formed alternately with insulating adhesive, and through-holes that penetrate the entire thickness of the multilayer wiring board are provided at the locations required for connection. It is common to provide through through holes whose inner walls are electrically connected by metal plating.

また、多層配線板に実装される部品の高密度化に伴い、貫通スルーホールを設けた2枚のプリント配線板を積層した後、プリント配線板間を電気的に接続させるため、接続に必要な箇所に貫通スルーホールを設けたインタスティシャルバイアホール(IVH;非貫通スルーホール)付き多層配線板があり、貫通スルーホールのみの多層配線板に比べ、小径の穴明けが可能であり、狭ピッチ化への対応も可能となった。   In addition, as the density of parts mounted on the multilayer wiring board is increased, two printed wiring boards with through-holes are stacked and then electrically connected between the printed wiring boards. There are multi-layer wiring boards with interstitial via holes (IVH; non-through-through holes) that have through-holes at locations, allowing for smaller diameter drilling and narrow pitch compared to multi-layer wiring boards with only through-through holes. It has become possible to respond to computerization.

また、更なる高密度化へ対応するために、多層配線板のその表面にビルドアップ層を形成し、レーザ等により非貫通穴を設け、その内壁をめっきし、電気的に接続するものを必要層数に応じて逐次積み重ねた、いわゆるビルドアップ付き多層配線板があり、更なる狭ピッチ化が可能となった。しかし、多層プリント配線板に配置された貫通スルーホールピッチをビルドアップ層で狭ピッチ化することが主目的であり、多層配線板自体の狭ピッチ化は図れないため、信号線数の増加としての効果は少なかった。   Also, in order to cope with higher density, it is necessary to form a build-up layer on the surface of the multilayer wiring board, provide a non-through hole with a laser, etc., plate the inner wall, and connect electrically There is a multilayer wiring board with so-called build-up, which is sequentially stacked according to the number of layers, and it is possible to further reduce the pitch. However, the main purpose is to narrow the pitch of the through-holes arranged in the multilayer printed wiring board at the build-up layer. Since the multilayer wiring board itself cannot be narrowed, the number of signal lines is increased. The effect was small.

また、いずれの多層配線板も、貫通スルーホールを有しており、その貫通スルーホールは、多層配線板の板厚方向全体にわたって配置されている。接続に必要な配線回路層以外の配線回路層には、貫通スルーホールとの電気的な接続を避けるため、貫通スルーホールを避けるように回路パターンが配置される。そのため、回路パターンの高密度化の妨げになっている。   Each multilayer wiring board has a through-hole, and the through-hole is arranged over the entire thickness direction of the multilayer wiring board. In a wiring circuit layer other than the wiring circuit layer necessary for connection, a circuit pattern is arranged so as to avoid the through through hole in order to avoid electrical connection with the through through hole. This hinders high density circuit patterns.

そこで、貫通スルーホールを用いない多層配線板が提案されており、例えば下記に示すような多層配線板が知られている。   Therefore, a multilayer wiring board that does not use a through-through hole has been proposed. For example, the following multilayer wiring board is known.

特許文献1では、不織布を含むプリプレグに穴明けを行い、その穴に導電性ペーストを充填し、その両面に回路板や銅箔等を重ね合わせて、加熱加圧による積層を行い一体化して形成した多層配線板が提案されている。   In Patent Document 1, a prepreg containing a non-woven fabric is drilled, a conductive paste is filled in the hole, a circuit board, a copper foil, etc. are stacked on both sides, and lamination is performed by heating and pressing to be integrated. A multilayer wiring board has been proposed.

特許文献2では、回路板や銅箔等の上にバンプを形成し、そのバンプに絶縁材料を押し付け、バンプを絶縁材料から貫通させ、その上に回路板や銅箔等を重ね合わせて、加熱加圧による積層を行い一体化して形成した多層配線板が提案されている。   In Patent Document 2, bumps are formed on a circuit board, copper foil, etc., an insulating material is pressed against the bumps, the bumps are penetrated from the insulating material, and a circuit board, copper foil, etc. are overlaid on the bumps and heated. There has been proposed a multilayer wiring board integrally formed by laminating under pressure.

特許文献3では、円錐状に形成されたスパイラル状接触子が回路板の表面に配置された2枚の配線板を対向させ、スパイラル状接触子同士を接触させること、または、片方の回路板のみにスパイラル状接触子を配置し、他方の回路板の回路導体と接触させることによって、電気的に接続した多層配線板が提案されている。   In Patent Document 3, a spiral contact formed in a conical shape makes two wiring boards disposed on the surface of a circuit board face each other, and the spiral contacts are brought into contact with each other, or only one circuit board is used. There has been proposed a multilayer wiring board that is electrically connected by disposing a spiral contact and contacting a circuit conductor of the other circuit board.

特許第3014365号公報Japanese Patent No. 3014365 特許第3654982号公報Japanese Patent No. 3655492 特許第4644756号公報Japanese Patent No. 4644756

多層配線板に実装される部品は、表面実装によるものが主流となっており、部品と多層配線板を接続するための接続端子は年々狭小化されてきている。さらに、実装される部品の点数も年々増加してきており、多層配線板の穴ピッチの狭小化や信号線数の増加が求められてきている。   The components mounted on the multilayer wiring board are mainly by surface mounting, and the connection terminals for connecting the components and the multilayer wiring board are becoming narrower year by year. Furthermore, the number of components to be mounted has been increasing year by year, and there has been a demand for narrowing the hole pitch of multilayer wiring boards and increasing the number of signal lines.

半導体検査用冶具用基板やマザーボード等に代表される板厚が5mmを超える大型高多層配線板分野においても、検査部品や実装部品の小型化、狭ピッチ化に伴い、配線板の穴ピッチの狭小化、信号線数の増大等が求められてきている。   In the field of large-scale, high-multilayer wiring boards with a thickness exceeding 5 mm, as represented by substrates for semiconductor inspection jigs and motherboards, the hole pitch of wiring boards is becoming narrower as inspection parts and mounting parts become smaller and narrower. There has been a demand for an increase in the number of signal lines.

従来の多層配線板では、貫通穴を形成するためにドリル加工により穴を形成し、その内壁を金属めっきにより電気的に接続しているが、多層配線板の板厚が厚く、アスペクト比(板厚/穴径)が高くなるにつれ、小径の穴明けが困難となる(ドリルが折れやすくなる)こと、めっき液の流動性の不足によりスローイングパワーが不足し、穴内のめっきが薄くなる等めっき付き性が低下すること等の課題がある。
図3は、従来の多層配線板の構造の一例を示す模式断面図である。
In conventional multilayer wiring boards, holes are formed by drilling to form through holes, and the inner walls are electrically connected by metal plating. However, the multilayer wiring board is thick and has an aspect ratio (board As the thickness / hole diameter increases, drilling of small diameters becomes difficult (drills are more likely to break), and there is insufficient plating solution fluidity. There is a problem such as a decrease in performance.
FIG. 3 is a schematic cross-sectional view showing an example of the structure of a conventional multilayer wiring board.

一般的に、アスペクト比25を超えると、小径の穴明けやめっき付き性に上記課題が発生し、上記課題の発生防止のためには、従来の多層配線板では、例えば、板厚5mmであれば、ドリル径の最小径が0.20mm以上、板厚7.4mmであれば、ドリル径の最小径が0.30mm以上となる。   Generally, when the aspect ratio exceeds 25, the above-mentioned problems occur in drilling small holes and plating properties. In order to prevent the above problems from occurring, a conventional multilayer wiring board may have a thickness of, for example, 5 mm. For example, if the minimum drill diameter is 0.20 mm or more and the plate thickness is 7.4 mm, the minimum drill diameter is 0.30 mm or more.

前述したように、穴間隔の狭ピッチ化や配線収容量を増加させるための手段として貫通する穴の小径化が困難となることから、穴を小径化せず狭ピッチ化した場合、穴間の間隙が狭くなり、信号線と穴との間の距離が狭くなるため絶縁性の確保が困難となる。そのため、穴間に配線可能な信号線数が減少し信号線密度が低下するため、従来の多層配線板の構造では、穴ピッチの狭小化が困難な状況にある。   As described above, it is difficult to reduce the pitch between holes as a means for reducing the pitch between holes and increasing the amount of wiring accommodated. Since the gap is narrowed and the distance between the signal line and the hole is narrowed, it is difficult to ensure insulation. For this reason, the number of signal lines that can be wired between the holes is reduced and the signal line density is lowered. Therefore, in the structure of the conventional multilayer wiring board, it is difficult to narrow the hole pitch.

また、従来の多層配線板にさらに必要層数に応じて絶縁層およびIVHによる電気的接続を行うビルドアップ付き多層配線板は、必要層数分を逐次積み重ね穴ピッチを狭小化していくため、絶縁材の貼り付け、ビア穴明け、めっき等を繰り返すことから、製造日程が長くなる状況にある。   In addition, the multilayer wiring board with build-up that performs electrical connection with an insulating layer and IVH according to the required number of layers in addition to the conventional multilayer wiring board is sequentially stacked by the required number of layers, so that the hole pitch is reduced. Since the pasting of materials, drilling of vias, plating, etc. are repeated, the production schedule is long.

また、貫通スルーホールを用いない構造としては、プリント配線板間を接続部材および絶縁材料を用いて、層間を接続する構造が用いられる。   In addition, as a structure that does not use a through-through hole, a structure in which printed wiring boards are connected to each other using a connecting member and an insulating material is used.

特許文献1では、絶縁材料として不織布を含むプリプレグを用いている。しかし、不織布を含んだ絶縁材料の場合、プリント配線板と一体化積層する際に、対向するプリント配線板の回路の凹凸に沿って変形しにくいため、絶縁材料の厚みバラツキが発生し、その結果、接続が不安定になる可能性がある。   In patent document 1, the prepreg containing a nonwoven fabric is used as an insulating material. However, in the case of insulating materials including non-woven fabrics, when laminated integrally with a printed wiring board, it is difficult to deform along the unevenness of the circuit of the opposing printed wiring board, resulting in variations in the thickness of the insulating material. The connection may become unstable.

さらに、特許文献2では、バンプを絶縁材料から貫通させる時に、アスペクト比の高い導電性バンプに圧力が加わることで導電性バンプの破損が生じたり、バンプ高さのばらつきやプリント配線板のそりの影響によりバンプが適切に貫通しなかったりすることがあり、歩留まりや信頼性の面での問題があった。   Further, in Patent Document 2, when a bump is penetrated from an insulating material, pressure is applied to the conductive bump having a high aspect ratio to cause damage to the conductive bump, variation in bump height, and warpage of the printed wiring board. The bump may not penetrate properly due to the influence, and there is a problem in terms of yield and reliability.

さらに、特許文献3では、スパイラル状の端子を接触することにより電気的な接続を保っているが、端子の先端がプリント基板の回路と接触する際に、回路が削られて、回路の断線が発生する可能性があり、信頼性が低下し、断線に至る可能性がある。   Furthermore, in Patent Document 3, electrical connection is maintained by contacting a spiral terminal. However, when the tip of the terminal comes into contact with the circuit of the printed circuit board, the circuit is scraped and the circuit is disconnected. May occur, reliability may be reduced, and disconnection may occur.

このようなことから、貫通スルーホール構造の多層配線板では、アスペクト比の増加により狭ピッチ化に対応した多層配線板を提供することが困難であり、さらに貫通スルーホールを用いない多層配線板では、回路の損傷、導電性バンプの損傷、プリント基板間の距離ばらつきによる接続不具合の発生が考えられる。   For this reason, it is difficult to provide a multilayer wiring board corresponding to a narrow pitch by increasing the aspect ratio in a multilayer wiring board having a through-through hole structure. It is conceivable that circuit failures, conductive bump damage, and connection failures due to variations in distance between printed circuit boards may occur.

上記実情に鑑み、本発明は、穴ピッチの狭小化や信号線数の増加に対応するため、板厚が薄い状態で小径の穴明けを行い狭ピッチ化したプリント配線板同士を導電性材料により電気的に接続した貫通スルーホールレス構造の高密度多層配線板を提供するものである。   In view of the above situation, in order to cope with the narrowing of the hole pitch and the increase in the number of signal lines, the present invention uses a conductive material to connect the printed wiring boards having a small diameter by making a small diameter with a thin plate thickness. A high-density multilayer wiring board having a through-through-hole structure that is electrically connected is provided.

本発明の貫通スルーホールレス構造の高多層多層配線板は、以下の各点に特徴を有している。
1.電気的に接続された貫通スルーホールの内部に非導電性の樹脂が穴埋めされた少なくとも2枚のプリント配線板の間を電気的に接続した多層配線板であって、前記少なくとも2枚のプリント配線板間を電気的に接続する接続部材が導電性材料(A)であり、かつ、前記接続部材が接続するプリント配線板の表面は導電性を有する金属層からなるパッドまたはランドが形成され、かつ、接続部材が配置されていないプリント配線板の層間が絶縁材料(B)で絶縁されているという点。
2.前記プリント配線板のうちの少なくとも1枚が、電気的に接続された貫通スルーホールの内部に穴埋めされた非導電性の樹脂を覆うように金属層(C)が形成されたプリント配線板であるという点。
3.前記金属層(C)の表面がAuからなるという点。
4.前記導電性材料(A)が導電材料(D)と熱硬化性樹脂(E)とを含み、前記導電材料(D)が第一の金属としてCu粒子またはAg、Au、Snのいずれかを被覆した金属被覆Cu粒子の少なくとも一方を含有し、かつ、第二の金属としてCu、Sn、Bi、Ag、Zn、Pdの金属のうち少なくとも1種以上を含有してなるという点。
5.前記導電材料(D)に含まれる少なくとも2種の金属同士が200℃以下の温度で溶融し金属間化合物を形成するものであり、かつ導電材料(D)の再溶融温度が250℃以上であるという点。
6.前記絶縁材料(B)が熱硬化性樹脂組成物を含み、かつ前記熱硬化性樹脂組成物のガラス転移温度が180℃以上であるという点。
7.前記絶縁材料(B)が強化材として粒子状または繊維状のフィラーを含むという点。
8.少なくとも1枚のプリント配線板が絶縁被覆されたワイヤを信号線としたマルチワイヤ配線板であるという点。
9.少なくとも1枚のプリント配線板の電気的に接続された貫通スルーホールのうち接続に不要な一部の金属が切削されているという点。
The multi-layer multilayer wiring board having a through-through-hole structure according to the present invention is characterized by the following points.
1. A multilayer wiring board that is electrically connected between at least two printed wiring boards in which a non-conductive resin is filled in a through-through hole that is electrically connected, and between the at least two printed wiring boards The connection member that electrically connects the conductive material is the conductive material (A), and the surface of the printed wiring board to which the connection member is connected is formed with a pad or land made of a conductive metal layer, and connected. The point that the interlayer of the printed wiring board in which no member is arranged is insulated by the insulating material (B).
2. A printed wiring board in which at least one of the printed wiring boards is formed with a metal layer (C) so as to cover a non-conductive resin buried in an electrically connected through-hole. That point.
3. The point that the surface of the metal layer (C) is made of Au.
4). The conductive material (A) includes a conductive material (D) and a thermosetting resin (E), and the conductive material (D) covers any one of Cu particles, Ag, Au, and Sn as a first metal. It contains at least one of the metal-coated Cu particles, and contains at least one or more of Cu, Sn, Bi, Ag, Zn, and Pd as the second metal.
5). At least two kinds of metals contained in the conductive material (D) are melted at a temperature of 200 ° C. or lower to form an intermetallic compound, and the remelting temperature of the conductive material (D) is 250 ° C. or higher. That point.
6). The point that the said insulating material (B) contains a thermosetting resin composition, and the glass transition temperature of the said thermosetting resin composition is 180 degreeC or more.
7). The point that the said insulating material (B) contains a particulate or fibrous filler as a reinforcement.
8). It is a multi-wire wiring board in which at least one printed wiring board uses a wire coated with insulation as a signal line.
9. A point that a part of metal unnecessary for connection is cut among electrically connected through-holes of at least one printed wiring board.

本発明によれば、従来の多層配線板で製造が出来なかった貫通スルーホールの小径化および穴ピッチの狭小化に対して、小径化および狭ピッチ化した薄いプリント配線板同士を電気的に接続することができ、狭ピッチ化に対応した貫通スルーホールレス構造の多層配線板を提供することができる。   According to the present invention, thin printed wiring boards having a reduced diameter and a reduced pitch are electrically connected to each other in response to a reduction in diameter of through-holes and a reduction in hole pitch, which could not be manufactured with a conventional multilayer wiring board. Therefore, it is possible to provide a multilayer wiring board having a through-through-less structure corresponding to a narrow pitch.

本発明に係る2枚のプリント配線板を電気的に接続した貫通スルーホールレス構造の高密度多層配線板の一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing an embodiment of a high-density multilayer wiring board having a through-through-hole structure in which two printed wiring boards according to the present invention are electrically connected. 本発明に係る3枚のプリント配線板を電気的に接続した貫通スルーホールレス構造の高密度多層配線板の一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing an embodiment of a high-density multilayer wiring board having a through-through-hole structure in which three printed wiring boards according to the present invention are electrically connected. 従来の貫通スルーホール構造の多層配線板を示す概略断面図である。It is a schematic sectional drawing which shows the multilayer wiring board of the conventional through through-hole structure.

以下、各図を用いて、本発明の貫通スルーホールレス構造の高密度多層配線板の実施の形態について説明するが、本発明はこれらに限定されるものではない。   Hereinafter, embodiments of a high-density multilayer wiring board having a through-through-hole structure according to the present invention will be described with reference to the drawings. However, the present invention is not limited to these.

図1は、本実施形態の貫通スルーホールレス構造の高密度多層配線板として、2枚のプリント配線板を電気的に接続した構造、図2は3枚のプリント配線板を電気的に接続した構造を説明するための概略断面図である。   FIG. 1 shows a structure in which two printed wiring boards are electrically connected as a high-density multilayer wiring board having a through-through-hole structure according to this embodiment. FIG. 2 shows three printed wiring boards electrically connected. It is a schematic sectional drawing for demonstrating a structure.

本実施形態の貫通スルーホールレス構造の高密度多層配線板1には、両面回路板を複数積層し一体化した後、接続に必要なところにドリルにより穴を設け、電気的な接続を行うため、銅めっき2を施し、表面回路を形成し、非導電性の材料3で穴内を充填した多層のプリント配線板4を複数枚用いる。   In the high-density multilayer wiring board 1 having a through-through-hole structure according to this embodiment, a plurality of double-sided circuit boards are stacked and integrated, and then a hole is provided by a drill where necessary for connection to make electrical connection. The copper plating 2 is applied to form a surface circuit, and a plurality of multilayer printed wiring boards 4 filled with the non-conductive material 3 are used.

少なくとも2枚の上記プリント配線板4をそれぞれ対向させて、対向する面同士が電気的に接続するプリント配線板の表面にはパッドまたはランド5が形成されている。対向するプリント配線板同士が電気的に接続するために、接続する部位には、導電性材料(A)6が配置され、接続しない部位には、絶縁材料(B)7が配置される。これにより、各プリント配線板間の必要な部位は導電性材料(A)6で電気的に接続される。   Pads or lands 5 are formed on the surface of the printed wiring board in which at least two printed wiring boards 4 are opposed to each other and the opposed surfaces are electrically connected to each other. In order to electrically connect the opposing printed wiring boards to each other, the conductive material (A) 6 is disposed at a portion to be connected, and the insulating material (B) 7 is disposed at a portion not to be connected. Thereby, necessary portions between the printed wiring boards are electrically connected by the conductive material (A) 6.

ここで、上記のプリント配線板4に用いられる基材やプリプレグは、特に種類は問わないが、積層時の加圧加熱による変形(寸法変化)を制御するために、ガラスクロス等の強化材を含有した絶縁基材が好ましく、さらにはNEMA(National Electrical Manufacturers Association)規格のFR(Flame Retardant)−5グレードの基材やポリイミド樹脂系のTg(ガラス転移温度)が高い基材が好ましい。   Here, the base material and the prepreg used for the printed wiring board 4 are not particularly limited, but a reinforcing material such as a glass cloth is used to control deformation (dimensional change) due to pressure heating at the time of lamination. The insulating base material contained is preferable, and further, a base material of FR (Flame Regentant) -5 grade of NEMA (National Electrical Manufacturers Association) standard or a base material having a high Tg (glass transition temperature) of polyimide resin is preferable.

本実施形態において用いられるプリント配線板は、貫通スルーホールが、非導電性の材料で穴内を埋められ、それを覆うように金属層(C)が形成された、いわゆる穴埋め、蓋めっきを施したプリント配線板であることが好ましい。プリント配線板の貫通スルーホールが非導電性材料で穴埋めされた状態の場合、パッドの中央部が非導電性材料となり、プリント配線板間を接続するために必要な導電性材料とプリント配線板の接続部の接触面積が低下する恐れがあるためである。   In the printed wiring board used in the present embodiment, a through-through hole is filled with a non-conductive material, and a metal layer (C) is formed so as to cover it, so-called hole filling and lid plating are performed. A printed wiring board is preferable. When the through-holes of the printed wiring board are filled with a non-conductive material, the central part of the pad becomes a non-conductive material, and the conductive material necessary for connecting the printed wiring boards and the printed wiring board This is because the contact area of the connection portion may be reduced.

本実施形態において、金属層(C)はAuであることが好ましい。通常貫通穴の接続性を確保したり、蓋めっきする場合、銅めっきが用いられることが多い。しかし、銅めっきを大気中に放置しておくと、表面に酸化銅皮膜を形成する場合があり、導電性材料との接続性が低下する場合がある。酸化劣化による接続性不良を抑制するためには、金が表面にあることが好ましい。   In the present embodiment, the metal layer (C) is preferably Au. Usually, copper plating is often used to ensure the connectivity of through holes or to perform lid plating. However, if the copper plating is left in the atmosphere, a copper oxide film may be formed on the surface, and the connectivity with the conductive material may be reduced. In order to suppress connectivity failure due to oxidative degradation, it is preferable that gold be on the surface.

本実施形態において、導電性材料(A)は、導電材料(D)と熱硬化性樹脂(E)とを含むことが好ましい。導電性材料(A)は導電材料(D)のみであることが好ましいが、導電材料(D)は粉末状態であるため取り扱い性に課題があり、粘性を確保するために樹脂を混合することが好ましく、導電性材料(A)の硬化特性を高めるためには、熱硬化性樹脂(E)であることがさらに好ましい。   In the present embodiment, the conductive material (A) preferably includes a conductive material (D) and a thermosetting resin (E). The conductive material (A) is preferably only the conductive material (D). However, since the conductive material (D) is in a powder state, there is a problem in handleability, and a resin may be mixed to ensure viscosity. Preferably, the thermosetting resin (E) is more preferable in order to improve the curing characteristics of the conductive material (A).

また、導電材料(D)は、第一の金属としてCu粒子またはAg、Au、Snのいずれかを被覆した金属被覆Cu粒子の少なくとも一方と、第二の金属としてSn、Bi、Ag、Zn、Pdの金属のうち少なくとも1種以上を含有してなることが好ましい。第二の金属は第一の金属と金属間化合物を形成するものであることが好ましく、少なくともSnを含む1種以上を含有してなることがより好ましい。   Further, the conductive material (D) includes at least one of Cu particles or metal-coated Cu particles coated with any one of Ag, Au, and Sn as the first metal, and Sn, Bi, Ag, Zn, as the second metal. It is preferable to contain at least one of Pd metals. The second metal preferably forms an intermetallic compound with the first metal, and more preferably contains at least one kind including Sn.

また、導電材料(D)は、200℃以下の温度で溶融し、導電材料(D)に含まれる少なくとも2種の金属同士が金属間化合物を形成し、かつ、金属間化合物形成後の再溶融温度が250℃以上であることが好ましい。200℃以下の温度で溶融し金属間化合物を形成することで、プリント配線板製造時における積層温度で接合することが可能となる。また、多層配線板は、部品実装の際に200℃以上の高温に晒される場合があり、その際に導電性材料(A)が溶融した場合、接続性に影響を与える可能性があるため、形成された金属間化合物は250℃以上の融点を持つことが好ましい。このような材料としては、例えば、HT−710(ORMET社製、商品名)、メタライズペーストMPA500(タツタ電線株式会社製、商品名)が挙げられる。   Further, the conductive material (D) is melted at a temperature of 200 ° C. or less, and at least two kinds of metals contained in the conductive material (D) form an intermetallic compound, and remelted after the formation of the intermetallic compound. The temperature is preferably 250 ° C. or higher. By melting at a temperature of 200 ° C. or lower to form an intermetallic compound, it becomes possible to bond at the lamination temperature at the time of manufacturing the printed wiring board. In addition, the multilayer wiring board may be exposed to a high temperature of 200 ° C. or higher during component mounting, and if the conductive material (A) is melted at that time, the connectivity may be affected. The formed intermetallic compound preferably has a melting point of 250 ° C. or higher. Examples of such materials include HT-710 (trade name, manufactured by ORMET) and metallized paste MPA500 (trade name, manufactured by Tatsuta Electric Wire Co., Ltd.).

また、絶縁材料(B)は、少なくとも2枚以上のプリント配線板間の接続部材が配置されていない部分に配置される。絶縁材料(B)は、絶縁性を有する材料であれば特に制限なく用いることできるが、熱硬化性樹脂組成物であることが好ましい。さらに、ポリマ成分を含有する熱硬化性樹脂組成物からなるフィルム材料であることがより好ましい。熱硬化性樹脂組成物であれば、部品実装時の高温処理に晒された場合でも、樹脂の流動が発生せず、耐熱性が向上する。   Moreover, an insulating material (B) is arrange | positioned in the part in which the connection member between at least 2 or more printed wiring boards is not arrange | positioned. The insulating material (B) can be used without particular limitation as long as it is an insulating material, but is preferably a thermosetting resin composition. Furthermore, it is more preferable that it is a film material which consists of a thermosetting resin composition containing a polymer component. If it is a thermosetting resin composition, even when it is exposed to the high temperature process at the time of component mounting, the flow of resin does not generate | occur | produce and heat resistance improves.

また、上記熱硬化性樹脂組成物のガラス転移温度が180℃以上であることが好ましい。部品実装時の高温処理温度が200℃を超えた場合、ガラス転移温度が低い場合、クラックやボイドが発生する場合がある。   Moreover, it is preferable that the glass transition temperature of the said thermosetting resin composition is 180 degreeC or more. When the high temperature processing temperature at the time of component mounting exceeds 200 ° C., cracks and voids may occur when the glass transition temperature is low.

ガラス転移温度は、次の方法で測定した。
(サンプル作製方法)
熱硬化性樹脂組成物を離型PET(帝人デュポンフィルム株式会社製、商品名:A−53)上にアプリケータを用いて、乾燥後の膜厚が100μmになるように塗布し、温度:130℃、時間:30分の条件で乾燥し、半硬化のフィルムを作製した。その後、離型PETから半硬化のフィルムを剥がし、2枚の金属製の枠に半硬化のフィルムを挟むことで固定させ、温度:185℃、時間:60分の条件で乾燥することで、硬化した熱硬化性樹脂組成物からなるフィルムを作製した。
(測定方法)
TAインスツルメント社製、商品名:TMA−2940を用い、冶具:引っ張り、チャック間距離:15mm、測定温度:室温〜350℃、昇温速度:10℃/min、引っ張り荷重:5gf、サンプルサイズ:幅5mm×長さ25mmで測定し、得られた温度−変位曲線から接線法によりガラス転移温度を求めた。
The glass transition temperature was measured by the following method.
(Sample preparation method)
The thermosetting resin composition is applied on release PET (manufactured by Teijin DuPont Films, trade name: A-53) using an applicator so that the film thickness after drying becomes 100 μm, and the temperature: 130 Drying was carried out at a temperature of 30 ° C. for 30 minutes to prepare a semi-cured film. Thereafter, the semi-cured film is peeled off from the release PET and fixed by sandwiching the semi-cured film between two metal frames, and cured by drying at a temperature of 185 ° C. and a time of 60 minutes. A film made of the thermosetting resin composition was prepared.
(Measuring method)
Made by TA Instruments Co., Ltd., trade name: TMA-2940, jig: tension, distance between chucks: 15 mm, measurement temperature: room temperature to 350 ° C., heating rate: 10 ° C./min, tensile load: 5 gf, sample size : Measured at a width of 5 mm x a length of 25 mm, and the glass transition temperature was determined from the obtained temperature-displacement curve by the tangential method.

また、絶縁材料(B)が強化材として粒子状または繊維状のフィラー等を含むことが好ましい。一般的な樹脂組成物のみでは、ガラス転移温度を超える温度に晒された場合、熱膨張率が大きくなるが、粒子状または繊維状のフィラー等を強化材として含むことで、熱膨張率を低減することができ、耐熱性が向上する。このような材料として、例えば、AS−9500(日立化成株式会社製、商品名)やAS−300HS(日立化成株式会社製、商品名)が挙げられる。   Moreover, it is preferable that an insulating material (B) contains a particulate or fibrous filler etc. as a reinforcing material. When only a general resin composition is exposed to a temperature exceeding the glass transition temperature, the coefficient of thermal expansion increases. However, by including a particulate or fibrous filler as a reinforcing material, the coefficient of thermal expansion is reduced. Heat resistance is improved. Examples of such a material include AS-9500 (trade name, manufactured by Hitachi Chemical Co., Ltd.) and AS-300HS (trade name, manufactured by Hitachi Chemical Co., Ltd.).

また、絶縁材料(B)がガラス繊維やカーボン繊維からなる不織布や、ガラスやカーボンの繊維を平織りしたクロス材を含まないことが好ましい。前記フィラー等の添加と同様に、不織布やクロス材を含むことで熱膨張率を低減することができ、耐熱性の向上が見込めるが、少なくとも2枚のプリント配線板間を電気的に接続する接続部材が配置される部位に絶縁材料(B)が不要であり、接続部材が配置される部位の絶縁材料(B)を除去するために、ドリルやレーザを用いて穴明けする。しかし、穴明け加工時に加わる力により、穴の周辺で、絶縁材料(B)と不織布やクロス材の界面が剥がれる可能性があること、また、絶縁材料(B)が不織布やクロス材を含む場合、プリント配線板と一体化積層する際に、絶縁材料(B)が対向するプリント配線板の回路の凹凸に沿って変形しにくいため、絶縁材料(B)の厚みバラツキが発生しやすく、その結果、回路間の距離にバラツキが発生し、接続部材の接続状態が不安定になることで、接続が不安定になる可能性がある。   Moreover, it is preferable that the insulating material (B) does not include a nonwoven fabric made of glass fiber or carbon fiber, or a cloth material plain-woven with glass or carbon fiber. As with the addition of the filler and the like, the thermal expansion coefficient can be reduced by including a non-woven fabric or cloth material, and an improvement in heat resistance can be expected, but the connection for electrically connecting at least two printed wiring boards Insulating material (B) is not required at the site where the member is disposed, and drilling or lasering is used to remove the insulating material (B) where the connecting member is disposed. However, there is a possibility that the interface between the insulating material (B) and the non-woven fabric or cloth material may be peeled around the hole due to the force applied during drilling, and the insulating material (B) contains the non-woven fabric or cloth material. When the laminate is integrally laminated with the printed wiring board, the insulating material (B) is not easily deformed along the unevenness of the circuit of the facing printed wiring board, so that the thickness variation of the insulating material (B) is likely to occur. The distance between the circuits may vary, and the connection state of the connection member may become unstable, which may result in unstable connection.

また、少なくとも1枚のプリント配線板の電気的に接続されたスルーホールのうち接続に不要な一部の金属が切削されていることが好ましい。一般的なプリント配線板は、基板を貫通するスルーホールで電気的に接続されている。プリント配線板内の信号線はスルーホールを介してプリント配線板の表層へ接続されているが、スルーホールの一部は接続に不要な領域となっている。この接続に不要な領域は、一般的に、スタブと呼ばれるが、接続に不要なスタブが存在することは、伝送損失増大の原因となる。そのため、スルーホールのうち接続に不要な金属部分をドリル等を用いて切削することで、不要なスタブを排除することができ、伝送損失の増大を抑制できる。   Moreover, it is preferable that a part of metal unnecessary for connection is cut in the electrically connected through hole of at least one printed wiring board. A general printed wiring board is electrically connected through a through hole penetrating the substrate. A signal line in the printed wiring board is connected to the surface layer of the printed wiring board through a through hole, but a part of the through hole is an area unnecessary for connection. The area unnecessary for this connection is generally called a stub, but the presence of a stub unnecessary for the connection causes an increase in transmission loss. Therefore, an unnecessary stub can be eliminated by cutting a metal portion unnecessary for connection in the through hole using a drill or the like, and an increase in transmission loss can be suppressed.

また、少なくとも1枚のプリント配線板が絶縁被覆されたワイヤを信号線としたマルチワイヤ配線板であることが好ましい。マルチワイヤ配線板は、絶縁被覆された銅ワイヤを信号線とするため、同一面内での交差配線が可能であり一般的なプリント配線板の信号線2〜4層分を1層で配線できる特長を有している。また、一般的なプリント配線板は、銅箔をエッチングすることによって信号線を形成するが、銅表面の粗さが大きく導体損失が大きいので、それが原因で伝送損失が増大している。これに比べ、マルチワイヤ配線板に用いられるワイヤは、ダイス方式で製造されており表面粗さが非常に小さく導体損失が小さいので、一般的なプリント配線板に比べ伝送損失が小さく良好である。   Moreover, it is preferable that it is a multi-wire wiring board which used the signal wire | line as the wire by which at least 1 printed wiring board was insulation-coated. Since the multi-wire wiring board uses insulation-coated copper wires as signal lines, cross wiring within the same plane is possible, and 2 to 4 signal lines of a general printed wiring board can be wired in one layer. Has features. Further, a general printed wiring board forms a signal line by etching a copper foil. However, the roughness of the copper surface is large and the conductor loss is large, which causes an increase in transmission loss. Compared to this, the wire used for the multi-wire wiring board is manufactured by a dice method, and the surface roughness is very small and the conductor loss is small. Therefore, the transmission loss is small and good compared with a general printed wiring board.

また、少なくとも2枚のプリント配線板は、異なるサイズや異なる形状を組み合わせてもよく、プリント配線板のサイズや形状を問わない。   Further, the at least two printed wiring boards may be combined with different sizes or different shapes, and the sizes and shapes of the printed wiring boards are not limited.

本発明の貫通スルーホールレス構造の高密度多層配線板は、次のような製法で作製することができる。
2枚のプリント配線板を接続した構造で例示するが、2枚のプリント配線板を電気的接続面が向かい合うように配置し、一方のプリント配線板の接続に必要な箇所に穴を設けた絶縁材料を貼り合わせ、開口している箇所に導電性材料を配置する。その後、もう一方のプリント配線板と重ね合わせ、一体化積層することで、2枚のプリント配線板を電気的に接続した貫通スルーホールレス構造の高密度多層配線板を得ることができる。また、本例示では、接続に必要な箇所に穴を設けた絶縁材料を貼り合わせたが、必要に応じ、絶縁材料を貼り合せた後、接続に必要な箇所に穴を形成することもできる。この際、前記製法に比べ、接合するプリント配線板の接続パッドに合わせて開口することができるため、位置精度の向上を図ることができる。
The through-holeless structure high-density multilayer wiring board of the present invention can be manufactured by the following manufacturing method.
An example of a structure in which two printed wiring boards are connected is shown, but the two printed wiring boards are placed with their electrical connection surfaces facing each other, and insulation is provided with holes at the locations necessary to connect one printed wiring board. The materials are bonded to each other, and the conductive material is disposed at the opening. Thereafter, by superimposing and integrally laminating with another printed wiring board, a high-density multilayer wiring board having a through-through-hole structure in which two printed wiring boards are electrically connected can be obtained. Moreover, in this example, although the insulating material which provided the hole in the location required for a connection was bonded together, a hole can also be formed in the location required for a connection after bonding an insulating material as needed. At this time, since the opening can be made in accordance with the connection pad of the printed wiring board to be bonded, the positional accuracy can be improved as compared with the above manufacturing method.

このように、少なくとも2枚以上のプリント配線板を導電部材で接続することによって、各々のプリント配線板のアスペクト比を低減できることから、小径穴明けやめっき付き性が向上し、狭ピッチ化および信号線数の増加に対応することができ、さらに狭ピッチ化および信号線数の増加の弊害となっていた貫通スルーホールを廃止でき、貫通スルーホールレス構造の高密度多層配線板を提供することができる。   In this way, by connecting at least two printed wiring boards with a conductive member, the aspect ratio of each printed wiring board can be reduced, so that small-diameter drilling and plating can be improved, narrow pitch and signal To provide a high-density multilayer wiring board with a through-through-hole-less structure that can cope with an increase in the number of wires, can eliminate the through-holes that have been a negative effect of narrowing the pitch and increasing the number of signal wires it can.

(実施例1)
サイズ:500mm×500mm、厚さ:1.95mm、最***ピッチ:0.40mm、最***径:φ0.15の仕様で作製したプリント配線板4を2枚準備し、絶縁材料(B)7にAS−300HS、接続部材6にMPA500を用いて総板厚が4.0mmの貫通スルーホールレス構造の高密度多層配線板を作製した。その結果、従来の貫通スルーホール構造とした場合、貫通スルーホールが54,000穴であったのに対し、貫通スルーホールを2枚のプリント配線板のIVHに分割し、IVH内の電気的接続が不要なIVHを除去することでプリント配線板の穴数を43,000穴に低減することができ、低減した11,000穴の領域に配線を収容することができるため、従来の貫通スルーホールを有する多層配線板構造と比較し、信号線の収容率が1割向上した。
Example 1
Two printed wiring boards 4 prepared with specifications of size: 500 mm × 500 mm, thickness: 1.95 mm, minimum hole pitch: 0.40 mm, and minimum hole diameter: φ0.15 are prepared, and the insulating material (B) 7 is prepared. A high-density multilayer wiring board having a through-through-hole structure with a total thickness of 4.0 mm was prepared using AS-300HS and MPA500 as the connection member 6. As a result, in the case of the conventional through-hole structure, the through-through hole was 54,000 holes, whereas the through-through hole was divided into two printed wiring boards IVH, and the electrical connection in the IVH By removing the unnecessary IVH, the number of holes in the printed wiring board can be reduced to 43,000 holes, and wiring can be accommodated in the reduced 11,000 hole region, so that conventional through-through holes Compared with a multilayer wiring board structure having a signal line, the signal line accommodation rate was improved by 10%.

(実施例2)
サイズ:500mm×500mm、厚さ:2.5mm、最***ピッチ:0.30mm、最***径:0.1mmの仕様で作製したプリント配線板4を2枚準備し、絶縁材料(B)7にAS−300HS、接続部材6にMPA500を用いて総板厚が5.1mmの貫通スルーホールレス構造の高密度多層配線板を作製した。その結果、従来の貫通スルーホールを有する多層配線板では、アスペクト比が51(総板厚5.1mm/穴径0.1mm)と高アスペクト比のため、ドリル穴明け時にドリル折れが発生し、製造できなかったが、厚さ2.5mmのプリント配線板4を2枚電気的に接続した貫通スルーホールレス構造とすることで、製造可能となり、高板厚、高アスペクト比となる仕様への対応が可能となり、狭ピッチ化ができた。
(Example 2)
Two printed wiring boards 4 prepared with the specifications of size: 500 mm × 500 mm, thickness: 2.5 mm, minimum hole pitch: 0.30 mm, and minimum hole diameter: 0.1 mm are prepared, and the insulating material (B) 7 is prepared. A high-density multilayer wiring board having a through-through-hole structure with a total board thickness of 5.1 mm was manufactured using AS-300HS and MPA500 as the connection member 6. As a result, the multilayer wiring board having the conventional through-hole has a high aspect ratio of 51 (total board thickness 5.1 mm / hole diameter 0.1 mm), so that drill breakage occurs when drilling, Although it could not be manufactured, it becomes possible to manufacture by making a through-hole-less structure in which two printed wiring boards 4 having a thickness of 2.5 mm are electrically connected, and to a specification with a high plate thickness and a high aspect ratio. It was possible to cope with it, and the pitch was narrowed.

(比較例1)
絶縁材料(B)7に平織りしたガラスクロスを有するガラスポリイミドプリプレグI−671(日立化成株式会社製、商品名)を使用した以外は、実施例1と同様に作製した。その結果、2枚のプリント配線板の回路が形成されている凸部が重なった部分で、層間の厚みが厚くなり、その周辺に配置されたプリント配線板間を接続する接続部材が片方のプリント配線板の接続するパッドと接触せず、接続不良が発生した。さらに、回路間の隙間を充分に埋めるだけの樹脂がないため、回路間に空隙が発生した。
(Comparative Example 1)
It was produced in the same manner as in Example 1 except that glass polyimide prepreg I-671 (trade name, manufactured by Hitachi Chemical Co., Ltd.) having a glass cloth woven into the insulating material (B) 7 was used. As a result, the thickness of the interlayer is increased at the portion where the convex portions on which the circuits of the two printed wiring boards are formed overlap, and the connection member connecting the printed wiring boards arranged on the periphery is printed on one side Connection failure occurred without contact with the pads connected to the wiring board. Furthermore, since there was not enough resin to fill the gaps between the circuits, gaps were generated between the circuits.

1…多層配線板、2…銅めっき、3…非導電性の材料、4…プリント配線板、5…パッドまたはランド、6…導電性材料(A)(接続部材)、7…絶縁材料(B)   DESCRIPTION OF SYMBOLS 1 ... Multilayer wiring board, 2 ... Copper plating, 3 ... Nonelectroconductive material, 4 ... Printed wiring board, 5 ... Pad or land, 6 ... Conductive material (A) (connection member), 7 ... Insulating material (B )

Claims (9)

電気的に接続された貫通スルーホールの内部に非導電性の樹脂が穴埋めされた少なくとも2枚のプリント配線板の間を電気的に接続した多層配線板であって、前記少なくとも2枚のプリント配線板間を電気的に接続する接続部材が導電性材料(A)であり、かつ、前記接続部材が接続する前記プリント配線板の表面には導電性を有する金属層からなるパッドまたはランドが形成され、かつ、前記接続部材が配置されていないプリント配線板の層間が不織布またはクロス材を含まない絶縁材料(B)で絶縁されていることを特徴とする貫通スルーホールレス構造の高密度多層配線板。   A multilayer wiring board that is electrically connected between at least two printed wiring boards in which a non-conductive resin is filled in a through-through hole that is electrically connected, and between the at least two printed wiring boards A connecting member for electrically connecting the connecting member is a conductive material (A), and a pad or land made of a conductive metal layer is formed on the surface of the printed wiring board to which the connecting member is connected; and A high-density multilayer wiring board having a through-through-hole structure, characterized in that the interlayer of the printed wiring board on which the connecting member is not disposed is insulated with an insulating material (B) that does not include a nonwoven fabric or a cloth material. 前記プリント配線板のうちの少なくとも1枚が、電気的に接続された貫通スルーホールの内部に穴埋めされた非導電性の樹脂を覆うように金属層(C)が形成されたプリント配線板であることを特徴とする請求項1に記載の貫通スルーホールレス構造の高密度多層配線板。   A printed wiring board in which at least one of the printed wiring boards is formed with a metal layer (C) so as to cover a non-conductive resin buried in an electrically connected through-hole. 2. A high-density multilayer wiring board having a through-through-hole structure according to claim 1. 前記金属層(C)の表面がAuからなることを特徴とする請求項1または2に記載の貫通スルーホールレス構造の高密度多層配線板。   The through-holeless structure high-density multilayer wiring board according to claim 1 or 2, wherein the surface of the metal layer (C) is made of Au. 前記導電性材料(A)が導電材料(D)と熱硬化性樹脂(E)とを含み、前記導電材料(D)が第一の金属としてCu粒子またはAg、Au、Snのいずれかを被覆した金属被覆Cu粒子の少なくとも一方を含有し、かつ、第二の金属としてCu、Sn、Bi、Ag、Zn、Pdの金属のうち少なくとも1種以上を含有してなることを特徴とする請求項1〜3のいずれかに記載の貫通スルーホールレス構造の高密度多層配線板。   The conductive material (A) includes a conductive material (D) and a thermosetting resin (E), and the conductive material (D) covers any one of Cu particles, Ag, Au, and Sn as a first metal. The metal-coated Cu particles are contained, and at least one of Cu, Sn, Bi, Ag, Zn and Pd metals is contained as the second metal. A high-density multilayer wiring board having a through-through-hole structure according to any one of 1 to 3. 前記導電材料(D)に含まれる少なくとも2種の金属同士が200℃以下の温度で溶融し金属間化合物を形成するものであり、かつ前記導電材料(D)の再溶融温度が250℃以上であることを特徴とする請求項1〜4のいずれかに記載の貫通スルーホールレス構造の高密度多層配線板。   At least two kinds of metals contained in the conductive material (D) are melted at a temperature of 200 ° C. or lower to form an intermetallic compound, and the remelting temperature of the conductive material (D) is 250 ° C. or higher. The high-density multilayer wiring board having a through-through-hole structure according to any one of claims 1 to 4, wherein 前記絶縁材料(B)が熱硬化性樹脂組成物を含み、かつ前記熱硬化性樹脂組成物のガラス転移温度が180℃以上であることを特徴とする請求項1〜5のいずれかに記載の貫通スルーホールレス構造の高密度多層配線板。   The said insulating material (B) contains a thermosetting resin composition, and the glass transition temperature of the said thermosetting resin composition is 180 degreeC or more, The any one of Claims 1-5 characterized by the above-mentioned. High-density multilayer wiring board with through-holeless structure. 前記絶縁材料(B)が強化材として粒子状または繊維状のフィラーを含むことを特徴とする請求項1〜6のいずれかに記載の貫通スルーホールレス構造の高密度多層配線板。   The through-hole-less high-density multilayer wiring board according to any one of claims 1 to 6, wherein the insulating material (B) includes a particulate or fibrous filler as a reinforcing material. 少なくとも1枚の前記プリント配線板が絶縁被覆されたワイヤを信号線としたマルチワイヤ配線板であることを特徴とする請求項1〜7のいずれかに記載の貫通スルーホールレス構造の高密度多層配線板。   The through-through-hole-less high-density multilayer according to any one of claims 1 to 7, wherein at least one of the printed wiring boards is a multi-wire wiring board using a wire with an insulation coating as a signal line. Wiring board. 少なくとも1枚の前記プリント配線板の電気的に接続された貫通スルーホールのうち接続に不要な一部の金属が切削されていることを特徴とする請求項1〜8のいずれかに記載の貫通スルーホールレス構造の高密度多層配線板。   9. The through-hole according to claim 1, wherein a part of the metal unnecessary for connection is cut out of the through-through hole electrically connected to at least one of the printed wiring boards. High-density multilayer wiring board with through-hole-less structure.
JP2016112672A 2016-06-06 2016-06-06 High density multilayer wiring board of penetration through holeless structure Pending JP2017220518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016112672A JP2017220518A (en) 2016-06-06 2016-06-06 High density multilayer wiring board of penetration through holeless structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016112672A JP2017220518A (en) 2016-06-06 2016-06-06 High density multilayer wiring board of penetration through holeless structure

Publications (1)

Publication Number Publication Date
JP2017220518A true JP2017220518A (en) 2017-12-14

Family

ID=60656261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016112672A Pending JP2017220518A (en) 2016-06-06 2016-06-06 High density multilayer wiring board of penetration through holeless structure

Country Status (1)

Country Link
JP (1) JP2017220518A (en)

Similar Documents

Publication Publication Date Title
JP5010737B2 (en) Printed wiring board
US9288910B2 (en) Substrate with built-in electronic component and method for manufacturing substrate with built-in electronic component
WO2007091582A1 (en) Method for manufacturing multilayer wiring board
JP6903654B2 (en) Manufacturing method of multi-layer wiring board
JP2020182007A (en) Method for manufacturing multilayer wiring board
TWI511634B (en) Method for manufacturing circuit board
TWI511628B (en) Package circuit board, method for manufactuing same and package structure
JP4899409B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2017220518A (en) High density multilayer wiring board of penetration through holeless structure
JP5515210B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP4892924B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP7057792B2 (en) Laminated body and its manufacturing method
JP4351939B2 (en) Multilayer wiring board and manufacturing method thereof
JP2014007256A (en) Wiring board and method for manufacturing the same
JP4522282B2 (en) Manufacturing method of multilayer flexible circuit wiring board
US20220248530A1 (en) Wiring substrate
JP2009081334A (en) Multi-layer printed wiring board, and manufacturing method thereof
JP4302045B2 (en) Multilayer flexible circuit wiring board and manufacturing method thereof
CN113993293A (en) Preparation method of fine circuit board
TW202339570A (en) Multilayer substrate, multilayer substrate production method, and electronic device
KR101551177B1 (en) Imbedded printed circuit board within wire redistribution layer and Method of fabricating the same
JP2010212345A (en) Multilayer wiring board and method of manufacturing the same
JP2004172309A (en) Interlayer connection method for substrate and circuit board using the same
JP2011171404A (en) Tab tape for semiconductor device, and method of manufacturing the same