JP2017219404A - Vehicle and battery state detection system thereof - Google Patents

Vehicle and battery state detection system thereof Download PDF

Info

Publication number
JP2017219404A
JP2017219404A JP2016113498A JP2016113498A JP2017219404A JP 2017219404 A JP2017219404 A JP 2017219404A JP 2016113498 A JP2016113498 A JP 2016113498A JP 2016113498 A JP2016113498 A JP 2016113498A JP 2017219404 A JP2017219404 A JP 2017219404A
Authority
JP
Japan
Prior art keywords
state
battery
charge
open circuit
circuit voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016113498A
Other languages
Japanese (ja)
Other versions
JP2017219404A5 (en
JP6674139B2 (en
Inventor
前田 謙一
Kenichi Maeda
謙一 前田
大祐 保坂
Daisuke Hosaka
大祐 保坂
悠 宇田川
Yuu UDAGAWA
悠 宇田川
有広 ▲櫛▼部
有広 ▲櫛▼部
Arihiro Kushibe
哲也 松本
Tetsuya Matsumoto
哲也 松本
近藤 隆文
Takafumi Kondo
隆文 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016113498A priority Critical patent/JP6674139B2/en
Publication of JP2017219404A publication Critical patent/JP2017219404A/en
Publication of JP2017219404A5 publication Critical patent/JP2017219404A5/ja
Application granted granted Critical
Publication of JP6674139B2 publication Critical patent/JP6674139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle and charge state detection system thereof that can accurately detect a state of charge of an on-board lead battery on the basis of a battery parameter such as open circuit voltage OCV or internal resistance R, or the like of the lead battery.SOLUTION: A standard relation between an OCV of a lead battery and SOC thereof is preliminarily registered in a corresponding relation storage unit 101. An SOH calculation unit 103 is configured to calculate SOH of the lead battery. A new battery discrimination unit 104 is configured to discriminate whether the on-board lead battery is interchanged with a new lead battery. An OVC measurement unit 105 is configured to calculate an average value OCVave0 of a plurality of OCVs. A correction coefficient calculation unit 106 is configured to calculate a correction coefficient Kocv on the basis of open circuit voltages OCVmap and OCVave0 in a state of full charge to be obtained from the standard corresponding relation. An OCV calibration unit 107 is configured to calibrate a current open circuit voltage OCV0 on the basis of the correction coefficient Kocv. An SOC calculation unit 108 is configured to apply a calibrated OCV'0 to the corresponding relation to calculate the state of charge SOC of the lead battery.SELECTED DRAWING: Figure 2

Description

本発明は、車両およびその電池状態検知システムに係り、特に、車載電池の製造バラツキ等に起因する個体差にかかわらず電池パラメータに基づいて充電状態を正確に検知できる車両およびその電池状態検知システムに関する。   The present invention relates to a vehicle and a battery state detection system thereof, and more particularly, to a vehicle and a battery state detection system thereof that can accurately detect a charge state based on battery parameters regardless of individual differences caused by manufacturing variations of in-vehicle batteries. .

近年、エンジン自動車による排ガスの削減に対応するため、エンジンの自動停止および再始動(ISS:アイドルストップ・スタート)の機能を備えた車両が普及し、車載の鉛電池をアイドルストップ可能な状態に保つ技術が望まれている。   In recent years, vehicles equipped with automatic engine stop and restart (ISS: idle stop / start) functions have become widespread in order to cope with the reduction of exhaust gas generated by engine cars, and in-vehicle lead-acid batteries are kept in a state where idling can be stopped. Technology is desired.

すなわち、ISSを搭載する自動車(車両)では、エンジン停止中のエアコン、カーステレオなどの負荷は全て鉛電池からの電力で賄われる。このため、従来に較べて鉛電池の深い放電が増加し、鉛電池の充電状態が低下する傾向にある。   That is, in an automobile (vehicle) equipped with an ISS, loads such as an air conditioner and a car stereo while the engine is stopped are all covered by power from the lead battery. For this reason, the deep discharge of a lead battery increases compared with the past, and it exists in the tendency for the charge condition of a lead battery to fall.

鉛電池の出力はその充電状態に依存するため、エンジン停止中に鉛電池の充電状態が低下すると、エンジンを始動するのに充分な出力が得られなくなり、エンジン停止後の再始動ができなくなるおそれがある。   Since the output of the lead battery depends on its state of charge, if the state of charge of the lead battery drops while the engine is stopped, it will not be possible to obtain sufficient output to start the engine, making it impossible to restart after stopping the engine. There is.

そのため、エンジンの再始動が可能な状態を保つためには、鉛電池の充電状態(例えば、SOC:State Of Charge)を演算(推定)してエンジン始動に必要な出力の有無を監視し、エンジン始動に必要な出力がある場合にはアイドルストップを許可する一方、エンジン始動に必要な出力がない場合にはアイドルストップを禁止すると共に鉛電池を充電するなどの信号を車両側のコンピュータに送信する必要がある。   Therefore, in order to maintain a state where the engine can be restarted, the charge state of the lead battery (for example, SOC: State Of Charge) is calculated (estimated) and the presence or absence of output necessary for engine start is monitored. When there is an output required for starting, idling stop is permitted, but when there is no output necessary for starting the engine, idling stop is prohibited and a signal such as charging a lead battery is transmitted to the vehicle computer. There is a need.

特許文献1,2には、鉛電池の充電状態を、その開回路電圧(OCV)を計測することにより求める技術が開示されている。この先行技術では、充電状態とOCVとの関係が一次式で表されることを利用して、車両停止時に計測したOCVを一次式に代入することにより充電状態が算出される。   Patent Documents 1 and 2 disclose a technique for determining the state of charge of a lead battery by measuring its open circuit voltage (OCV). In this prior art, the state of charge is calculated by substituting the OCV measured when the vehicle is stopped into the linear equation using the fact that the relationship between the state of charge and the OCV is expressed by a linear equation.

特許文献3には、鉛電池の内部抵抗Rを計測することにより、その充電状態を推定する技術が開示されている。この先行技術では、充電状態と内部抵抗Rとの関係を近似式で表し、車両停止時に測定したRをこの近似式に代入することにより充電状態が算出される。   Patent Document 3 discloses a technique for estimating the state of charge by measuring the internal resistance R of a lead battery. In this prior art, the relationship between the state of charge and the internal resistance R is expressed by an approximate expression, and the state of charge is calculated by substituting R measured when the vehicle is stopped into this approximate expression.

特開平4-264371号公報JP-A-4-264371 特開2009-241633号公報JP 2009-241633 JP 特許第3687628号公報Japanese Patent No. 3687628

図7は、同一仕様の複数の電池について、OCVとSOCとの実測値の関係を示した図であり、同一仕様の電池であっても、製造条件のばらつきや保管条件のばらつき等が原因でOCVとSOCとの関係に個体差が生じることが知られている。   FIG. 7 is a diagram showing the relationship between the measured values of OCV and SOC for a plurality of batteries of the same specification. Even with the same specification of the battery, due to variations in manufacturing conditions and storage conditions, etc. It is known that individual differences occur in the relationship between OCV and SOC.

したがって、1つの近似式でOCVからSOCを精度良く推定することは困難であり、特に充電状態が実際よりも高めに推定されてしまうと、アイドルストップ・スタート時にバッテリの電力によりエンジンの始動ができないという事態に陥る場合がある。このような現象は、内部抵抗RとSOCとの関係についても同様である。   Therefore, it is difficult to accurately estimate the SOC from the OCV using a single approximate expression. Especially when the state of charge is estimated to be higher than the actual state, the engine cannot be started due to the power of the battery at the time of idling stop / start. May fall into the situation. Such a phenomenon is the same for the relationship between the internal resistance R and the SOC.

本発明の目的は、上記の技術課題を解決し、開回路電圧OCVや内部抵抗Rなどの電池パラメータに基づいて、その充電状態を精度よく検知できる車両およびその充電状態検知システムを提供することにある。   An object of the present invention is to solve the above technical problem and provide a vehicle capable of accurately detecting the state of charge based on battery parameters such as open circuit voltage OCV and internal resistance R, and a state of charge detection system thereof. is there.

上記の目的を達成するために、本発明は、車載電池の充電状態を検知する電池状態検知システムにおいて、以下の構成を具備した点に特徴がある。   In order to achieve the above object, the present invention is characterized in that a battery state detection system for detecting a charge state of a vehicle-mounted battery has the following configuration.

(1) 車載電池の開回路電圧を計測する手段と、開回路電圧と充電状態との標準的な対応関係を記憶する手段と、新規に車載された電池の開回路電圧と前記対応関係における満充電状態の開回路電圧との関係を補正する補正係数を算出する手段と、補正係数に基づいて車載電池の開回路電圧の計測結果を補正する手段と、補正後の開回路電圧を前記対応関係に適用して充電状態を求める手段とを具備した。   (1) means for measuring the open circuit voltage of the in-vehicle battery, means for storing a standard correspondence between the open circuit voltage and the state of charge, Means for calculating a correction coefficient for correcting the relationship with the open circuit voltage of the charged state, means for correcting the measurement result of the open circuit voltage of the in-vehicle battery based on the correction coefficient, and the correspondence relationship between the corrected open circuit voltage And a means for obtaining the state of charge by applying to the above.

(2) 車載電池の劣化状態を検知する手段をさらに具備し、前記対応関係を記憶する手段は、車載電池の開回路電圧と充電状態との標準的な対応関係を劣化状態ごとに記憶し、前記充電状態を求める手段は、補正後の開回路電圧を前記劣化状態に対応した対応関係に適用して充電状態を求めるようにした。   (2) It further comprises means for detecting the deterioration state of the in-vehicle battery, and the means for storing the correspondence relationship stores a standard correspondence relationship between the open circuit voltage of the in-vehicle battery and the charge state for each deterioration state, The means for obtaining the state of charge obtains the state of charge by applying the corrected open circuit voltage to the correspondence corresponding to the deteriorated state.

本発明によれば、以下のような効果が達成される。   According to the present invention, the following effects are achieved.

(1) 電池パラメータと充電状態との標準的な対応関係を予め求めて登録する一方、各電池に固有の満充電時における電池パラメータに基づいて前記対応関係に対する補正係数Kを求め、この補正係数Kにより電池パラメータの計測結果が較正されるので、各電池の個体差にかかわらず、予め求めておいた電池パラメータと充電状態との典型的な対応関係に基づいて充電状態を正確に推定できるようになる。   (1) While obtaining and registering in advance a standard correspondence between battery parameters and state of charge, a correction coefficient K for the correspondence is obtained based on battery parameters at the time of full charge specific to each battery, and this correction coefficient Since the battery parameter measurement results are calibrated by K, the state of charge can be accurately estimated based on the typical correspondence between the battery parameter and the state of charge obtained in advance, regardless of the individual difference of each battery. become.

(2) 電池パラメータと充電状態との対応関係を表す近似式あるいはマップを電池の劣化状態ごとに構築して登録しておき、劣化状態に応じた対応関係に基づいて充電状態が推定されるようにすれば、電池の劣化状態にかかわらず、その充電状態を電池パラメータに基づいて正確に推定できるようになる。   (2) An approximate expression or map representing the correspondence between the battery parameters and the state of charge is constructed and registered for each deterioration state of the battery so that the state of charge is estimated based on the correspondence according to the deterioration state. In this way, the state of charge can be accurately estimated based on the battery parameters regardless of the deterioration state of the battery.

本発明の一実施形態に係る電池状態検知システム1の構成を示した機能ブロック図である。It is the functional block diagram which showed the structure of the battery state detection system 1 which concerns on one Embodiment of this invention. 充電状態SOCを推定する機能を示したブロック図である。It is the block diagram which showed the function which estimates charge condition SOC. 本発明の一実施形態に係る充電状態SOCの推定手順を示したフローチャートである。It is the flowchart which showed the estimation procedure of charge condition SOC which concerns on one Embodiment of this invention. 5つのサンプル電池に関して、補正係数Kocvを用いて計算したSOC推定値および用いずに計算したSOC推定値の各真値との誤差を示した図である。It is the figure which showed the difference | error with each true value of the SOC estimated value calculated using the correction coefficient Kocv, and the estimated SOC value not used about five sample batteries. 鉛電池の内部抵抗Rと充電状態SOCとの関係を示した図である。It is the figure which showed the relationship between the internal resistance R of a lead battery, and charge condition SOC. 5つのサンプル電池に関して補正係数KRを用いて計算したSOC推定値および用いずに計算したSOC推定値の各真値との誤差を示した図である。With respect to five samples the battery is a diagram showing the error between the true value of the SOC estimation value calculated without calculating the SOC estimated value and using the correction factor K R. 鉛電池の開回路電圧OCVと充電状態SOCとの関係に個体差があることを示した図である。It is the figure which showed that there exist individual differences in the relationship between the open circuit voltage OCV of a lead battery, and charge condition SOC.

以下、図面を参照して本発明の実施の形態について詳細に説明する。図1は、本発明の一実施形態に係る電池状態検知システム1の主要部の構成を示した機能ブロック図であり、ここでは、ISS機能を備えて鉛電池12を搭載するガソリンエンジン車への適用を例にして説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a functional block diagram showing a configuration of a main part of a battery state detection system 1 according to an embodiment of the present invention. Here, a gasoline engine vehicle equipped with a lead battery 12 having an ISS function is shown. Application will be described as an example.

電池状態検知システム1は、鉛電池12の温度を測定するサーミスタ等の温度センサ2、差動増幅回路等を有して鉛電池12の外部端子に接続された電圧測定部3、ホール素子等の電流センサ4および鉛電池12の電池状態を検知するマイクロコンピュータ(以下、マイコン)10を主要な構成としている。   The battery state detection system 1 includes a temperature sensor 2 such as a thermistor for measuring the temperature of the lead battery 12, a voltage measuring unit 3 having a differential amplifier circuit or the like and connected to an external terminal of the lead battery 12, a hall element, and the like. A microcomputer (hereinafter referred to as a microcomputer) 10 that detects the battery state of the current sensor 4 and the lead battery 12 is a main component.

鉛電池12は、電池容器となる略角型の電槽を有しており、電槽内には合計6組の極板群が収容されている。電槽の材質には、例えば、ポリエチレン(PE)等の高分子樹脂を用いることができる。各極板群は複数枚の負極板および正極板がセパレータを介して積層されており、セル電圧は2.0Vである。このため、鉛電池12の公称電圧は12Vとされている。電槽の上部は、電槽の上部開口を密閉するPE等の高分子樹脂製の上蓋に接着ないし溶着されている。上蓋には、鉛電池12を電源として外部へ電力を供給するためのロッド状正極端子および負極端子が立設されている。なお、上述した温度センサは電槽の側面部または底面部に固定されている。   The lead battery 12 has a substantially rectangular battery case serving as a battery container, and a total of six electrode plate groups are accommodated in the battery case. As the material of the battery case, for example, a polymer resin such as polyethylene (PE) can be used. Each electrode plate group is formed by laminating a plurality of negative plates and positive plates with a separator interposed therebetween, and the cell voltage is 2.0V. For this reason, the nominal voltage of the lead battery 12 is set to 12V. The upper part of the battery case is bonded or welded to an upper lid made of a polymer resin such as PE that seals the upper opening of the battery case. A rod-like positive electrode terminal and a negative electrode terminal for supplying electric power to the outside using the lead battery 12 as a power source are erected on the upper lid. In addition, the temperature sensor mentioned above is being fixed to the side part or bottom face part of a battery case.

鉛電池12の正極端子は、電流センサ4を介してイグニッションスイッチ(以下、IGN)5の中央端子に接続されている。IGN5は、中央端子とは別にOFF端子、ON/ACC端子およびSTART端子を有しており、中央端子とOFF,ON/ACCおよびSTARTの各端子のいずれかとはロータリ式に切り替え接続が可能である。   A positive terminal of the lead battery 12 is connected to a central terminal of an ignition switch (hereinafter, IGN) 5 through a current sensor 4. The IGN5 has an OFF terminal, ON / ACC terminal, and START terminal in addition to the central terminal, and the central terminal and any of the OFF, ON / ACC, and START terminals can be switched in a rotary manner. .

START端子はエンジン始動用セルモータ(スタータ)9に接続されている。セルモータ9は、図示しないクラッチ機構を介してエンジン8の回転軸に回転駆動力の伝達が可能である。ON/ACC端子は、エアコン、ラジオ、ランプ等の補機6および一方向への電流の流れを許容する整流素子を含むレギュレータを介してエンジン8の回転により発電する発電機7の一端に接続されている。すなわち、レギュレータのアノード側は発電機7の一端に、カソード側はON/ACC端子に接続されている。   The START terminal is connected to an engine starting cell motor (starter) 9. The cell motor 9 can transmit a rotational driving force to the rotating shaft of the engine 8 via a clutch mechanism (not shown). The ON / ACC terminal is connected to one end of a generator 7 that generates electricity by the rotation of the engine 8 through an auxiliary device 6 such as an air conditioner, a radio, and a lamp, and a regulator including a rectifying element that allows a current flow in one direction. ing. That is, the anode side of the regulator is connected to one end of the generator 7, and the cathode side is connected to the ON / ACC terminal.

エンジン8の回転軸は、図示しないクラッチ機構を介して発電機7に動力の伝達が可能である。このため、エンジン8が回転状態にあるときは、クラッチ機構を介して発電機7が作動し、その発電電力が補機6や鉛電池12に供給(充電)される。OFF端子はいずれにも接続されていない。   The rotating shaft of the engine 8 can transmit power to the generator 7 via a clutch mechanism (not shown). For this reason, when the engine 8 is in a rotating state, the generator 7 is operated via the clutch mechanism, and the generated power is supplied (charged) to the auxiliary machine 6 and the lead battery 12. The OFF terminal is not connected to either.

電圧測定部3の出力は、マイコン10に内蔵されたA/Dコンバータに接続されている。また、温度センサ2および電流センサ4の出力は、マイコン10に内蔵されたA/Dコンバータにそれぞれ接続されている。このため、マイコン10は、鉛電池12の電圧、温度および鉛電池12に流れる電流を所定時間毎にデジタル値で取り込むことができる。なお、マイコン10は、I/Oを介して上位の車両制御システム11と通信可能である。   The output of the voltage measuring unit 3 is connected to an A / D converter built in the microcomputer 10. The outputs of the temperature sensor 2 and the current sensor 4 are connected to an A / D converter built in the microcomputer 10, respectively. For this reason, the microcomputer 10 can take in the voltage and temperature of the lead battery 12 and the current flowing through the lead battery 12 as digital values every predetermined time. The microcomputer 10 can communicate with the host vehicle control system 11 via the I / O.

マイコン10は、中央演算処理装置として機能するCPU、電池状態検知システム12の基本制御プログラムや後述するマップや数式等のプログラムデータが格納されたROM、CPUのワークエリアとして働くとともにデータを一時的に記憶するRAM、不揮発性のEEPROM等を含んで構成される。   The microcomputer 10 functions as a CPU that functions as a central processing unit, a ROM that stores basic control programs for the battery state detection system 12, program data such as maps and mathematical formulas described later, and a work area for the CPU and temporarily stores the data. It is configured to include RAM to store, nonvolatile EEPROM, etc.

発電機7、セルモータ9および補機6の他端、鉛電池12の負極端子およびマイコン10は、それぞれグランド(自動車のシャーシと同電位)に接続されている。なお、本実施形態のマイコン10は、電圧、電流および温度を所定時間毎に(例えば、電圧、電流をそれぞれ2m秒間隔、温度を1秒間隔で)それぞれサンプリングし、サンプリング結果をRAMに格納する。また、電流については、放電電流と充電電流とに分けて、それぞれの積算値を算出している。   The other end of the generator 7, the cell motor 9 and the auxiliary machine 6, the negative terminal of the lead battery 12, and the microcomputer 10 are each connected to the ground (the same potential as the chassis of the automobile). Note that the microcomputer 10 of the present embodiment samples the voltage, current, and temperature at predetermined time intervals (for example, the voltage and current are each 2 milliseconds and the temperature is 1 second), and the sampling result is stored in the RAM. . Further, regarding the current, the integrated values are calculated separately for the discharge current and the charge current.

マイコン10に実装されたCPUは、IGN5の電圧に基づいて、その端子位置を判断し、さらにはエンジン状態を検知する。なお、IGN5が端子位置を代表する信号を出力するタイプであれば、その信号または車両制御システム11からの信号によりエンジン状態を検知してもよい。一般に、ガソリンエンジン車やディーゼルエンジン車等の内燃機関を有する自動車では、鉛電池から電力を供給しセルモータを回して、エンジンを始動する。   The CPU mounted on the microcomputer 10 determines the terminal position based on the voltage of the IGN 5, and further detects the engine state. If the IGN 5 is a type that outputs a signal representative of the terminal position, the engine state may be detected based on the signal or a signal from the vehicle control system 11. In general, in an automobile having an internal combustion engine such as a gasoline engine car or a diesel engine car, electric power is supplied from a lead battery and a cell motor is rotated to start the engine.

CPUは、エンジン停止後、鉛電池12の分極反応が解消する所定時間が経過すると、電圧測定部3を介して測定した鉛電池12の端子電圧を開回路電圧OCVとして取り込み、それ以降、所定の周期でタイマ割り込みによりOCVの取り込みを繰り返し、それ以外のタイミングでは、タイマのみを作動させそれ制御動作を行わない省電力モードに入る。   When a predetermined time for eliminating the polarization reaction of the lead battery 12 elapses after the engine is stopped, the CPU takes in the terminal voltage of the lead battery 12 measured through the voltage measuring unit 3 as an open circuit voltage OCV. The OCV is repeatedly fetched by a timer interrupt at a cycle, and at other timings, only the timer is activated and the power saving mode is entered in which no control operation is performed.

図2は、マイコン10が電池12のOCVに基づいて、その充電状態SOCを推定する機能を示したブロック図であり、マイコン10のCPUがROMあるいはEEPROMに予め記憶されているプログラムおよび各種のデータに基づいて動作することで実現される。   FIG. 2 is a block diagram showing the function of the microcomputer 10 estimating the state of charge SOC based on the OCV of the battery 12, and the program and various data stored in the ROM or EEPROM by the CPU of the microcomputer 10 in advance. This is realized by operating based on the above.

本実施形態では、車載電池12と同一仕様の多数の鉛電池を対象に環境温度を変えながらOCVとSOCとの関係を求め、これらを統計的に処理することにより、基準温度(例えば、25°C)におけるOCVとSOCとの典型的あるいは標準的な対応関係を求め、これが近似式あるいはマップ形式で対応関係記憶部101に予め登録されている。   In the present embodiment, the relationship between the OCV and the SOC is obtained while changing the environmental temperature for a number of lead batteries having the same specifications as the in-vehicle battery 12, and these are statistically processed to obtain a reference temperature (for example, 25 ° A typical or standard correspondence between the OCV and the SOC in C) is obtained, and this is registered in advance in the correspondence storage 101 in an approximate expression or a map format.

SOH計算部103は、電池の健康状態SOH(State Of Health)を周期的に計算する。鉛電池のSOHは、車載電池と同一仕様の多数の鉛電池を種々の劣化状態において予め測定しておいた内部抵抗RとSOHとの関係を表すSOHマップ102に内部抵抗Rの計測結果を適用することにより求められる。鉛電池のSOHは、一般に劣化品満充電容量/新品満充電容量×100%で定義され、次式(1)に示すように、内部抵抗R、温度T、開回路電圧OCVの関数として表される。   The SOH calculation unit 103 periodically calculates the battery health state SOH (State Of Health). For the SOH of the lead battery, the measurement result of the internal resistance R is applied to the SOH map 102 representing the relationship between the internal resistance R and the SOH measured in advance for various lead batteries having the same specifications as the in-vehicle battery in various deterioration states. Is required. The SOH of a lead battery is generally defined as degraded full charge capacity / new full charge capacity x 100%, and is expressed as a function of internal resistance R, temperature T, and open circuit voltage OCV as shown in the following equation (1). The

新品電池判別部104は、車載の鉛電池12が新品と交換されたか否かを判別する。本実施形態では、前記SOH計算部103により計算されるSOHの更新値と前回のSOHとを比較し、SOHが若返っていると車載電池が新品に交換されたと判別される。   The new battery discriminating unit 104 discriminates whether or not the in-vehicle lead battery 12 has been replaced with a new one. In the present embodiment, the SOH update value calculated by the SOH calculation unit 103 is compared with the previous SOH, and if the SOH is rejuvenated, it is determined that the in-vehicle battery has been replaced with a new one.

OVC計測部105は、電池の分極反応が解消してOVCが安定しているタイミングで計測された複数のOCVに基づいて、その平均値OCVave0を算出する。補正係数計算部106は、前記標準的な対応関係から求まる満充電状態における開回路電圧OCVmap、および前記OCV計測部105により計測された開回路電圧OCVの平均値OCVave0を次式(2)に適用して補正係数Kocvを計算する。   The OVC measuring unit 105 calculates an average value OCVave0 based on a plurality of OCVs measured at a timing when the polarization reaction of the battery is eliminated and the OVC is stable. The correction coefficient calculation unit 106 applies the open circuit voltage OCVmap in the fully charged state obtained from the standard correspondence relationship and the average value OCVave0 of the open circuit voltage OCV measured by the OCV measurement unit 105 to the following equation (2). To calculate the correction coefficient Kocv.

OCV較正部107は、現在の開回路電圧OCV0および前記補正係数Kocvを次式(3)に適用することにより較正済OCV'0を計算する。   The OCV calibration unit 107 calculates the calibrated OCV′0 by applying the current open circuit voltage OCV0 and the correction coefficient Kocv to the following equation (3).

SOC計算部108は、前記較正済OCV'0を前記対応関係の近似式またはマップに適用して鉛電池12の充電状態SOCを計算し、その結果を出力する。   The SOC calculation unit 108 calculates the state of charge SOC of the lead battery 12 by applying the calibrated OCV′0 to the approximate expression or map of the correspondence relationship, and outputs the result.

図3は、本発明の一実施形態に係る充電状態SOCの推定手順を示したフローチャートであり、ステップS1では、前記SOH計算部103により計算されたSOHに基づいて、車載の鉛電池12が新品と交換されたか否かが、前記新品電池判別部104により判別される。   FIG. 3 is a flowchart showing a procedure for estimating the state of charge SOC according to an embodiment of the present invention. In step S1, the in-vehicle lead battery 12 is a new one based on the SOH calculated by the SOH calculation unit 103. Whether or not the battery has been replaced is determined by the new battery determination unit 104.

新品の電池に交換されていればステップS2へ進み、エンジン停止後の経過時間が参照される。その結果、電池の分極反応が解消するのに要する時間(例えば、2時間以上)が経過していると判断されればステップS3へ進み、前記OCV計測部105により現在の開回路電圧OCV0が計測される。   If the battery has been replaced with a new battery, the process proceeds to step S2, and the elapsed time after the engine is stopped is referred to. As a result, if it is determined that the time required for eliminating the polarization reaction of the battery (for example, 2 hours or more) has elapsed, the process proceeds to step S3, where the OCV measuring unit 105 measures the current open circuit voltage OCV0. Is done.

ステップS4では計測回数nのカウンタがインクリメントされる。ステップS5では、計測回数nが5回に達したか否かが判定される。5回未満であればステップS3へ戻り、所定の周期(例えば、1秒)でOCV計測が繰り返される。その後、計測回数nが5回に達するとステップS6へ進み、5回分の計測結果から最小値OCVminおよび最大値OCVmaxを除いた残りOCV0の平均値OCVave0が計算される。   In step S4, the counter of the number of times of measurement n is incremented. In step S5, it is determined whether or not the number of measurements n has reached five. If it is less than 5 times, the process returns to step S3, and OCV measurement is repeated at a predetermined cycle (for example, 1 second). Thereafter, when the number of times n reaches 5, the process proceeds to step S6, and the average value OCVave0 of the remaining OCV0 is calculated by removing the minimum value OCVmin and the maximum value OCVmax from the measurement results for 5 times.

ステップS7では、前記平均値OCVave0を上式(2)に代入することで補正係数Kocvが算出される。ステップS8では、開回路電圧OCV0および前記補正係数Kocvを上式(3)に適用することで較正済みOCV'0が計算される。ステップS9では、前記対応関係の近似式またはマップに較正済みOCV'0を適用することで、電池の個体差が補償された充電状態SOCが計算される。   In step S7, the correction coefficient Kocv is calculated by substituting the average value OCVave0 into the above equation (2). In step S8, the calibrated OCV'0 is calculated by applying the open circuit voltage OCV0 and the correction coefficient Kocv to the above equation (3). In step S9, the calibrated OCV'0 is applied to the approximate expression or map of the correspondence relationship to calculate the state of charge SOC in which the individual differences of the batteries are compensated.

図4は、5つのサンプル電池に関して、前記補正係数Kocvを用いて計算した本発明によるSOC推定値(上段)および用いずに計算したSOC推定値(下段)の各真値との誤差(推定値−真値)を示した図であり、本発明を適用することによりSOC推定値の誤差が減少していることが解る。   FIG. 4 shows the error (estimated value) of the SOC estimated value (upper stage) according to the present invention calculated using the correction coefficient Kocv and the estimated SOC value (lower stage) calculated without using the five sample batteries. It is a diagram showing (true value), and it can be seen that the error of the SOC estimation value is reduced by applying the present invention.

このように、本実施形態によれば各電池に固有の満充電時における開回路電圧OCVに基づいて補正係数Kocvが求められ、この補正係数KocvによりOCVの計測結果が較正されるので、各電池の個体差にかかわらず、一つの近似式またはマップで車載電池の充電状態をOCVに基づいて正確に推定できるようになる。   Thus, according to the present embodiment, the correction coefficient Kocv is obtained based on the open circuit voltage OCV at the time of full charge specific to each battery, and the measurement result of the OCV is calibrated by this correction coefficient Kocv. Regardless of the individual difference, it is possible to accurately estimate the state of charge of the in-vehicle battery based on the OCV with one approximate expression or map.

なお、上記の実施形態では電池の充電状態を推定する電池パラメータとしてOCVを採用するものとして説明したが、本発明はこれのみに限定されるものではなく、図5に示したように、OCVと同様に環境温度ごとに充電状態SOCと所定の相関関係を示す電池の内部抵抗Rを前記開回路電圧OCVの代わりに採用しても良い。   In the above embodiment, the OCV is used as the battery parameter for estimating the state of charge of the battery. However, the present invention is not limited to this, and as shown in FIG. Similarly, the internal resistance R of the battery showing a predetermined correlation with the state of charge SOC for each environmental temperature may be employed instead of the open circuit voltage OCV.

この場合は、車載電池と同一仕様の多数の電池を対象に、環境温度Tを変えながら内部抵抗Rと充電状態SOCとの関係を求め、これらを統計的に処理することにより、基準温度おける内部抵抗Rと充電状態SOCとの標準的な対応関係を表す近似式あるいはマップを前記対応関係記憶部101に登録しておけばよい。そして、上記と同様の手順で内部抵抗Rに関する補正係数KRを求め、内部抵抗Rの最新値と補正係数KRとに基づいて内部抵抗Rを較正すれば良い。 In this case, for a large number of batteries with the same specifications as in-vehicle batteries, the relationship between the internal resistance R and the state of charge SOC is determined while changing the environmental temperature T, and these are statistically processed to determine the internal temperature at the reference temperature. An approximate expression or map representing a standard correspondence relationship between the resistance R and the state of charge SOC may be registered in the correspondence relationship storage unit 101. Then, a correction factor K R relating to the internal resistance R in the same procedure as described above, may be calibrated internal resistance R based on the most recent value of the internal resistance R and the correction coefficient K R.

図6は、5つのサンプル電池に関して、補正係数KRを用いて計算したSOC推定値(上段)および補正係数KRを用いずに計算したSOC推定値(下段)の各真値との誤差(推定値−真値)を示した図であり、補正係数KRを用いることによりSOC推定値の誤差が減少していることが解る。 FIG. 6 shows the difference between the SOC estimated value calculated using the correction coefficient K R (upper) and the SOC estimated value calculated without using the correction coefficient K R (lower) for each of the five sample batteries ( estimate - a view showing a true value), it can be seen that error in SOC estimation value is decreased by using the correction coefficient K R.

ところで、上記の実施形態では、開回路電圧OCVあるいは内部抵抗Rと充電状態SOCとの標準的、典型的な対応関係が唯一であるものとして説明したが、一般的に鉛電池の開回路電圧OCVあるいは内部抵抗Rと充電状態SOCとの関係は電池の劣化状態に応じて異なることが知られている。   By the way, in the above embodiment, the description has been made assuming that the standard and typical correspondence relationship between the open circuit voltage OCV or the internal resistance R and the state of charge SOC is unique, but generally the open circuit voltage OCV of a lead battery. Alternatively, it is known that the relationship between the internal resistance R and the state of charge SOC varies depending on the deterioration state of the battery.

したがって、車載電池と同一仕様で劣化状態の異なる多数の電池を対象に、環境温度Tを変えながら開回路電圧OCVあるいは内部抵抗Rと充電状態SOCとの関係を求め、これらを統計的に処理することにより、基準温度おける開回路電圧OCVあるいは内部抵抗Rと充電状態SOCとの対応関係を表す近似式あるいはマップを電池の劣化状態ごとに構築して対応関係憶部101に登録しておき、劣化状態に応じた対応関係に基づいて充電状態SOCが推定されるようにしても良い。鉛電池の劣化状態を代表する指標としては、前記健康状態SOHを採用できる。   Therefore, for a large number of batteries with the same specifications as in-vehicle batteries and different deterioration states, the relationship between the open circuit voltage OCV or the internal resistance R and the state of charge SOC is calculated while changing the environmental temperature T, and these are processed statistically. Thus, an approximate expression or map representing the correspondence relationship between the open circuit voltage OCV or the internal resistance R and the state of charge SOC at the reference temperature is constructed for each deterioration state of the battery, and is registered in the correspondence storage unit 101. The state of charge SOC may be estimated based on the correspondence according to the state. The health state SOH can be adopted as an index representing the deterioration state of the lead battery.

このようにすれば、電池の劣化状態にかかわらず、その充電状態SOCを開回路電圧OCVあるいは内部抵抗Rに基づいて正確に推定できるようになる。   This makes it possible to accurately estimate the state of charge SOC based on the open circuit voltage OCV or the internal resistance R regardless of the deterioration state of the battery.

1…電池状態検知システム,2…温度センサ,3…電圧測定部,4…電流センサ,5…IGN,6…補機,7…発電機,8…エンジン,9…エンジン始動用セルモータ,10…マイコン,12…鉛電池,101…対応関係記憶部,102…SOHマップ,103…SOH計算部,104…新品電池判別部,105…OVC計測部,106…補正係数計算部,O107…CV較正部,108…SOC計算部   DESCRIPTION OF SYMBOLS 1 ... Battery state detection system, 2 ... Temperature sensor, 3 ... Voltage measuring part, 4 ... Current sensor, 5 ... IGN, 6 ... Auxiliary machine, 7 ... Generator, 8 ... Engine, 9 ... Cell motor for engine starting, 10 ... Microcomputer, 12 ... Lead battery, 101 ... Correspondence storage unit, 102 ... SOH map, 103 ... SOH calculation unit, 104 ... New battery discrimination unit, 105 ... OVC measurement unit, 106 ... Correction coefficient calculation unit, O107 ... CV calibration unit , 108 ... SOC calculation part

Claims (9)

車載電池の充電状態を検知する電池状態検知システムにおいて、
車載電池の開回路電圧を計測する手段と、
車載電池の開回路電圧と充電状態との標準的な対応関係を記憶する手段と、
新規に車載された電池の開回路電圧と前記対応関係における満充電状態の開回路電圧との関係を補正する補正係数を算出する手段と、
前記補正係数に基づいて、前記車載電池の開回路電圧の計測結果を補正する手段と、
前記補正後の開回路電圧を前記対応関係に適用して充電状態を求める手段とを具備したことを特徴とする電池状態検知システム。
In the battery state detection system that detects the charge state of the vehicle battery,
Means for measuring the open circuit voltage of the vehicle battery;
Means for storing a standard correspondence between the open circuit voltage of the in-vehicle battery and the state of charge;
Means for calculating a correction coefficient for correcting the relationship between the open circuit voltage of a newly mounted battery and the open circuit voltage in a fully charged state in the corresponding relationship;
Means for correcting the measurement result of the open circuit voltage of the in-vehicle battery based on the correction coefficient;
Means for applying the corrected open circuit voltage to the correspondence to obtain a state of charge.
前記対応関係が基準温度における開回路電圧と充電状態との関係を表し、
前記補正係数が前記基準温度の換算値であり、
前記充電状態を求める手段は、前記基準温度での充電状態を求めることを特徴とする請求項1に記載の電池状態検知システム。
The correspondence relationship represents the relationship between the open circuit voltage at the reference temperature and the state of charge,
The correction coefficient is a converted value of the reference temperature;
The battery state detection system according to claim 1, wherein the means for obtaining the state of charge obtains a state of charge at the reference temperature.
車載電池の劣化状態を検知する手段をさらに具備し、
前記対応関係を記憶する手段は、車載電池の開回路電圧と充電状態との標準的な対応関係を劣化状態ごとに記憶し、
前記充電状態を求める手段は、前記補正後の開回路電圧を、前記劣化状態に対応した対応関係に適用して充電状態を求めることを特徴とする請求項1または2に記載の電池状態検知システム。
It further comprises means for detecting the deterioration state of the in-vehicle battery,
The means for storing the correspondence relationship stores a standard correspondence relationship between the open circuit voltage of the in-vehicle battery and the charged state for each deterioration state,
The battery state detection system according to claim 1 or 2, wherein the means for obtaining the state of charge obtains the state of charge by applying the corrected open circuit voltage to a correspondence relationship corresponding to the deteriorated state. .
前記電池の劣化状態がSOCであることを特徴とする請求項3に記載の電池状態検知システム。   The battery state detection system according to claim 3, wherein the deterioration state of the battery is SOC. 車載電池が新品に交換されたか否かを判別する手段を具備し、
前記補正係数を算出する手段は、車載電池が新品に交換されると補正係数を算出することを特徴とする請求項1ないし4のいずれかに記載の電池状態検知システム。
Comprising means for determining whether or not the in-vehicle battery has been replaced with a new one,
5. The battery state detection system according to claim 1, wherein the means for calculating the correction coefficient calculates the correction coefficient when the in-vehicle battery is replaced with a new one.
前記補正係数を算出する手段は、車載電池の開回路電圧を複数回計測し、最大値および最小値を除いた残りの複数の値に基づいて開回路電圧を求めることを特徴とする請求項1ないし5のいずれかに記載の電池状態検知システム。   The means for calculating the correction coefficient measures the open circuit voltage of the on-vehicle battery a plurality of times, and obtains the open circuit voltage based on a plurality of remaining values excluding the maximum value and the minimum value. The battery state detection system according to any one of 5 to 5. 前記対応関係が、開回路電圧と充電状態との関係を示す近似式であることを特徴とする請求項1ないし6のいずれかに記載の電池状態検知システム。   The battery state detection system according to any one of claims 1 to 6, wherein the correspondence relationship is an approximate expression indicating a relationship between an open circuit voltage and a state of charge. 前記対応関係が、開回路電圧と充電状態との関係を示すマップであることを特徴とする請求項1ないし6のいずれかに記載の電池状態検知システム。   7. The battery state detection system according to claim 1, wherein the correspondence relationship is a map showing a relationship between an open circuit voltage and a charge state. 前記請求項1ないし8のいずれかに記載の電池状態検知システムを用いて車載電池の状態を検知することを特徴とする車両。   A vehicle characterized by detecting a state of an in-vehicle battery using the battery state detection system according to any one of claims 1 to 8.
JP2016113498A 2016-06-07 2016-06-07 Vehicle and its battery state detection system Active JP6674139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016113498A JP6674139B2 (en) 2016-06-07 2016-06-07 Vehicle and its battery state detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016113498A JP6674139B2 (en) 2016-06-07 2016-06-07 Vehicle and its battery state detection system

Publications (3)

Publication Number Publication Date
JP2017219404A true JP2017219404A (en) 2017-12-14
JP2017219404A5 JP2017219404A5 (en) 2019-01-31
JP6674139B2 JP6674139B2 (en) 2020-04-01

Family

ID=60656978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016113498A Active JP6674139B2 (en) 2016-06-07 2016-06-07 Vehicle and its battery state detection system

Country Status (1)

Country Link
JP (1) JP6674139B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109061521A (en) * 2018-10-30 2018-12-21 四川长虹电源有限责任公司 Battery group state-of-charge calculation method and system
CN110058177A (en) * 2019-05-06 2019-07-26 奇瑞新能源汽车技术有限公司 A kind of power battery electricity SOC modification method
CN110970670A (en) * 2019-03-04 2020-04-07 重庆长安新能源汽车科技有限公司 Power battery management method and device and computer readable storage medium
JP2020076628A (en) * 2018-11-07 2020-05-21 トヨタ自動車株式会社 Battery control device
KR20230096864A (en) * 2021-12-23 2023-06-30 아푸 이파워 씨오., 엘티디. Battery management system and battery management method
CN116581402A (en) * 2023-07-13 2023-08-11 北京索云科技股份有限公司 Intelligent operation maintenance method and system for universal storage battery
JP7414697B2 (en) 2020-11-27 2024-01-16 株式会社東芝 Battery deterioration determination device, battery management system, battery equipped equipment, battery deterioration determination method, and battery deterioration determination program

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799070A (en) * 1993-09-29 1995-04-11 Japan Storage Battery Co Ltd Strage battery device with dry-up detecting function
JP2003129927A (en) * 2001-10-26 2003-05-08 Furukawa Electric Co Ltd:The Method and device for judging condition of secondary battery mounted in vehicle
JP2004130909A (en) * 2002-10-10 2004-04-30 Shin Kobe Electric Mach Co Ltd Battery state detection system
JP2004179097A (en) * 2002-11-29 2004-06-24 Shin Kobe Electric Mach Co Ltd Uniform charging system of lead battery
JP2007024673A (en) * 2005-07-15 2007-02-01 Furukawa Electric Co Ltd:The Method and device for detecting state-of-charge of storage battery
JP2008307973A (en) * 2007-06-13 2008-12-25 Shin Kobe Electric Mach Co Ltd Battery state detection system and automobile
JP2015108579A (en) * 2013-12-05 2015-06-11 パナソニックIpマネジメント株式会社 Battery residual capacity estimation device, method of determining battery residual capacity and program of determining battery residual capacity
WO2015129117A1 (en) * 2014-02-25 2015-09-03 三菱電機株式会社 Soc estimation device for secondary battery
US20160041229A1 (en) * 2014-08-05 2016-02-11 Hyundai Mobis Co., Ltd. Apparatus and method for estimating a battery state of charge

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799070A (en) * 1993-09-29 1995-04-11 Japan Storage Battery Co Ltd Strage battery device with dry-up detecting function
JP2003129927A (en) * 2001-10-26 2003-05-08 Furukawa Electric Co Ltd:The Method and device for judging condition of secondary battery mounted in vehicle
JP2004130909A (en) * 2002-10-10 2004-04-30 Shin Kobe Electric Mach Co Ltd Battery state detection system
JP2004179097A (en) * 2002-11-29 2004-06-24 Shin Kobe Electric Mach Co Ltd Uniform charging system of lead battery
JP2007024673A (en) * 2005-07-15 2007-02-01 Furukawa Electric Co Ltd:The Method and device for detecting state-of-charge of storage battery
JP2008307973A (en) * 2007-06-13 2008-12-25 Shin Kobe Electric Mach Co Ltd Battery state detection system and automobile
JP2015108579A (en) * 2013-12-05 2015-06-11 パナソニックIpマネジメント株式会社 Battery residual capacity estimation device, method of determining battery residual capacity and program of determining battery residual capacity
WO2015129117A1 (en) * 2014-02-25 2015-09-03 三菱電機株式会社 Soc estimation device for secondary battery
US20160041229A1 (en) * 2014-08-05 2016-02-11 Hyundai Mobis Co., Ltd. Apparatus and method for estimating a battery state of charge

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109061521A (en) * 2018-10-30 2018-12-21 四川长虹电源有限责任公司 Battery group state-of-charge calculation method and system
CN109061521B (en) * 2018-10-30 2021-03-16 四川长虹电源有限责任公司 Storage battery pack charge state calculation method and system
JP2020076628A (en) * 2018-11-07 2020-05-21 トヨタ自動車株式会社 Battery control device
JP7119921B2 (en) 2018-11-07 2022-08-17 トヨタ自動車株式会社 battery controller
CN110970670A (en) * 2019-03-04 2020-04-07 重庆长安新能源汽车科技有限公司 Power battery management method and device and computer readable storage medium
CN110058177A (en) * 2019-05-06 2019-07-26 奇瑞新能源汽车技术有限公司 A kind of power battery electricity SOC modification method
JP7414697B2 (en) 2020-11-27 2024-01-16 株式会社東芝 Battery deterioration determination device, battery management system, battery equipped equipment, battery deterioration determination method, and battery deterioration determination program
KR20230096864A (en) * 2021-12-23 2023-06-30 아푸 이파워 씨오., 엘티디. Battery management system and battery management method
KR102592319B1 (en) 2021-12-23 2023-10-20 아푸 이파워 씨오., 엘티디. Battery management system and battery management method
JP7397951B2 (en) 2021-12-23 2023-12-13 亞福儲能股▲分▼有限公司 Battery management system and battery management method
CN116581402A (en) * 2023-07-13 2023-08-11 北京索云科技股份有限公司 Intelligent operation maintenance method and system for universal storage battery
CN116581402B (en) * 2023-07-13 2023-11-17 北京索云科技股份有限公司 Intelligent operation maintenance method and system for universal storage battery

Also Published As

Publication number Publication date
JP6674139B2 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
JP6674139B2 (en) Vehicle and its battery state detection system
JP5070790B2 (en) Battery state detection system and automobile equipped with the same
US7962300B2 (en) Battery state judging method, and battery state judging apparatus
US8645088B2 (en) Systems and methods for determining the state of charge of a battery utilizing confidence values
JP4288958B2 (en) Degradation estimation method
JP4032854B2 (en) Battery state detection system and automobile equipped with the system
JP4066732B2 (en) Battery remaining capacity estimation method
JP5644190B2 (en) Battery state estimation device and battery information notification device
JP5163229B2 (en) Battery state detection system and automobile equipped with the same
JP5162971B2 (en) Battery state detection system and automobile
JP4844044B2 (en) Battery state detection system and automobile equipped with the same
JP2009241646A (en) Battery state determination system, and automobile having the system
JP6604478B2 (en) Vehicle and its battery state detection system
JP2008074257A (en) Battery deterioration determination device
JP4548011B2 (en) Deterioration degree judging device
JP4702115B2 (en) Battery status judgment device
JP6607353B2 (en) Vehicle and its battery state detection system
JP5163739B2 (en) Battery state detection system and automobile equipped with the same
JP2005292035A (en) Method of detecting battery condition
JP4178898B2 (en) Battery status detection system
JP2005274214A (en) Residual capacity detection device of vehicle battery
JP4872513B2 (en) Battery current-voltage characteristic detection device and internal resistance detection device using the same
JP4572518B2 (en) Battery status detection method
JP2010052582A (en) Battery state detection system
JP2008291660A (en) Vehicle condition determination device and automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200218

R151 Written notification of patent or utility model registration

Ref document number: 6674139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250