JP4548011B2 - Deterioration degree judging device - Google Patents

Deterioration degree judging device Download PDF

Info

Publication number
JP4548011B2
JP4548011B2 JP2004190881A JP2004190881A JP4548011B2 JP 4548011 B2 JP4548011 B2 JP 4548011B2 JP 2004190881 A JP2004190881 A JP 2004190881A JP 2004190881 A JP2004190881 A JP 2004190881A JP 4548011 B2 JP4548011 B2 JP 4548011B2
Authority
JP
Japan
Prior art keywords
storage battery
current
amount
deterioration degree
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004190881A
Other languages
Japanese (ja)
Other versions
JP2006010601A (en
Inventor
哲郎 大越
孝之 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2004190881A priority Critical patent/JP4548011B2/en
Publication of JP2006010601A publication Critical patent/JP2006010601A/en
Application granted granted Critical
Publication of JP4548011B2 publication Critical patent/JP4548011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は劣化度判定装置に係り、特に、蓄電池の温度を検出する温度検出部と、蓄電池に流れる充放電電流を検出する電流検出部と、蓄電池の交換を検出する電池交換検出部と、蓄電池の劣化度を演算する劣化度演算部とを備えた蓄電池の劣化度判定装置に関する。   The present invention relates to a deterioration degree determination device, and in particular, a temperature detection unit that detects the temperature of a storage battery, a current detection unit that detects charge / discharge current flowing in the storage battery, a battery replacement detection unit that detects replacement of the storage battery, and a storage battery The present invention relates to a deterioration degree determination device for a storage battery including a deterioration degree calculation unit that calculates the deterioration degree of the battery.

従来、車両に搭載された鉛蓄電池は、走行中、常にオルタネータによりフロート充電され、また、負荷もランプ類などに限られていたため、あまり深い充電はされず、ほぼ常時満充電付近に保たれ使用されてきた。しかし、近年、環境意識の高まりから、車両からの二酸化炭素の排出を削減する必要が生じ、特に、大型バスやトラック等では、信号待ちなどの停車時にエンジンを停止させるアイドルストップ機能を有するシステム車が増加してきている。   Conventionally, lead-acid batteries mounted on vehicles are always float-charged by an alternator during driving, and the load is limited to lamps, etc., so it is not charged too deep and is almost always fully charged and used. It has been. In recent years, however, environmental awareness has increased, and it has become necessary to reduce carbon dioxide emissions from vehicles. Especially in large buses and trucks, a system vehicle with an idle stop function that stops the engine when the vehicle is stopped, such as waiting for a signal. Has been increasing.

システム車では、エンジン停止中のエアコン、カーステレオなどの負荷はすべてバッテリ(蓄電池)からの電力で賄われるため、従来に比べ深い放電状態が増え、バッテリの残容量が少なくなるケースが増加することが予想される。また、これに伴って、バッテリの劣化も早くなる事態も予測される。一方、バッテリの出力は、残容量や劣化に依存するため、エンジン停止中にバッテリの残容量が小さくなると、エンジンが起動するのに充分な出力がなくなり、アイドルストップ後の再起動時に、エンジンがかからなくなるおそれがある。従って、システム車では、バッテリの寿命を判定することが非常に重要なこととなる。   In system cars, loads such as air conditioners and car stereos when the engine is stopped are all covered by power from the battery (storage battery), which increases the number of deep discharges compared to conventional cases and increases the number of remaining battery capacity. Is expected. Along with this, it is predicted that the battery will deteriorate quickly. On the other hand, since the output of the battery depends on the remaining capacity and deterioration, if the remaining capacity of the battery becomes small while the engine is stopped, there is not enough output to start the engine, and the engine There is a risk that it will be lost. Therefore, in a system vehicle, it is very important to determine the battery life.

このような要請に応えるため、内部抵抗により劣化度(SOH)を判定する技術が種々開示されている(例えば、特許文献1〜3参照)。
特開2002−334725号公報 特開2003−129927号公報 特開2002−236156号公報
In order to meet such demands, various techniques for determining the degree of deterioration (SOH) based on internal resistance have been disclosed (see, for example, Patent Documents 1 to 3).
JP 2002-334725 A JP 2003-129927 A JP 2002-236156 A

しかしながら、上記特許文献1の技術では、交流電圧を印加し応答電圧、位相差により内部抵抗を測定するため、車載用バッテリに適用する場合には、煩雑な測定、演算装置が必要となりコスト高となる、という課題がある。また、上記特許文献2の技術では、エンジン始動時の0〜10ms間の電流垂下波形とピーク電圧とから内部抵抗を測定するため、高分解能かつ1ms以下で測定可能な電流、電圧センサと、1ms間隔のデータを処理可能な高精度マイコンが必要となりコスト高となると共に、誤差が大きく誤判定を生み出しやすい、という課題がある。更に、上記特許文献3では、エンジン始動時の電流および、回復時の電流、電圧データを採取し回帰分析により内部抵抗を測定するため、特許文献2の技術と同様に、電流、電圧センサ及びマイコンのコスト高を招き、誤判定を生じやすい、という課題がある。   However, in the technique of the above-mentioned Patent Document 1, an AC voltage is applied and an internal resistance is measured by a response voltage and a phase difference. Therefore, when applied to an in-vehicle battery, a complicated measurement and calculation device is required, and the cost is high. There is a problem of becoming. Further, in the technique of Patent Document 2, the internal resistance is measured from the current drooping waveform and the peak voltage for 0 to 10 ms when the engine is started. Therefore, the current and voltage sensor that can be measured with high resolution and 1 ms or less, and 1 ms There is a problem that a high-precision microcomputer capable of processing the interval data is required, resulting in high costs and a large error, which is likely to generate erroneous determination. Further, in Patent Document 3 described above, the current, voltage sensor, and microcomputer are used in the same manner as in the technique of Patent Document 2 in order to collect current data at the time of starting the engine, current data at the time of recovery, and measure internal resistance by regression analysis. There is a problem that the cost is high and misjudgment is likely to occur.

本発明は上記事案に鑑み、精度よく蓄電池の劣化を判定すると共に、低コストの劣化度判定装置を提供することを課題とする。   This invention makes it a subject to provide the low-cost deterioration degree determination apparatus while determining the deterioration of a storage battery accurately in view of the said case.

上記課題を解決するために、本発明の第1の態様は、蓄電池の温度を検出する温度検出部と、蓄電池に流れる充放電電流を検出する電流検出部と、蓄電池の交換を検出する電池交換検出部と、蓄電池の劣化度を演算する劣化度演算部とを備えた蓄電池の劣化度判定装置であって、前記劣化度演算部は、前記電流検出部により検出された充放電電流を充電側と放電側とに分けて積算すると共に、前記電池交換検出部により蓄電池の交換が検出されたときに前記充電側及び放電側の電流積算量をそれぞれリセット可能な電流積算手段と、前記温度検出部により検出された蓄電池の平均温度を算出すると共に、前記電池交換検出部により蓄電池の交換が検出されたときに前記算出された平均温度をリセット可能な平均温度算出手段と、前記平均温度算出手段で算出された蓄電池の平均温度と、前記電流積算手段で積算された充電側の電流積算量を放電側の電流積算量で除算した量として表される充放電収支とにより蓄電池の寿命までの放電積算量を予測し、該予測した蓄電池の寿命までの放電積算量に対する前記電流積算手段で積算された放電側の電流積算量の比率により蓄電池の劣化度を算出する劣化度算出手段と、を有する。   In order to solve the above-described problems, a first aspect of the present invention includes a temperature detection unit that detects the temperature of a storage battery, a current detection unit that detects charge / discharge current flowing in the storage battery, and a battery replacement that detects replacement of the storage battery. A deterioration determination device for a storage battery comprising a detection unit and a deterioration degree calculation unit for calculating a deterioration degree of the storage battery, wherein the deterioration degree calculation unit is configured to charge and discharge the charge / discharge current detected by the current detection unit. Current integrating means capable of resetting the current integration amount on the charge side and the discharge side when the battery replacement detection unit detects replacement of the storage battery, and the temperature detection unit. An average temperature calculating means for calculating the average temperature of the storage battery detected by the battery replacement detecting unit, and capable of resetting the calculated average temperature when the battery replacement detection unit detects the replacement of the storage battery, and the average temperature The life of the storage battery is calculated based on the average temperature of the storage battery calculated by the output means and the charge / discharge balance expressed as an amount obtained by dividing the current accumulated amount on the charging side accumulated by the current integrating means by the current accumulated amount on the discharge side. A deterioration degree calculating means for calculating a deterioration degree of the storage battery based on a ratio of the accumulated current amount on the discharge side accumulated by the current integrating means with respect to the estimated cumulative discharge amount until the life of the storage battery. Have

第1の態様は、蓄電池の寿命までの放電積算量が、充放電収支及び温度に大きく依存するという知見に基づいてなされたものである。蓄電池は、例えば、車載での使用環境により、充放電収支、温度が大きく異なる。充放電収支がある一定値以下では、充電不足気味に推移し、寿命が短くなる傾向、すなわち、寿命までの放電積算量が小さくなる傾向がある。その際、蓄電池を構成する部材である、負極あるいは正極活物質に不還元性の硫酸鉛が蓄積し、寿命モードとなっている。一方、充放電収支がある一定値を越え、充電量が充分となると、正極活物質の軟化が寿命モードになる。本発明では、充放電収支と寿命までの放電積算量との関係を利用して、平均温度に応じて、寿命までの放電積算量を予測し、その値に対する放電側の電流積算量の比率により蓄電池の劣化度を算出する。   A 1st aspect is made | formed based on the knowledge that the discharge integration amount to the lifetime of a storage battery is largely dependent on charging / discharging balance and temperature. For example, the charge / discharge balance and temperature of the storage battery vary greatly depending on the use environment in the vehicle. When the charge / discharge balance is below a certain value, the battery tends to be insufficiently charged and the life tends to be shortened, that is, the integrated discharge amount until the life tends to be small. At that time, nonreducible lead sulfate accumulates in the negative electrode or the positive electrode active material, which is a member constituting the storage battery, and is in a life mode. On the other hand, when the charge / discharge balance exceeds a certain value and the charge amount is sufficient, the softening of the positive electrode active material becomes the life mode. In the present invention, by utilizing the relationship between the charge / discharge balance and the accumulated amount of discharge until the lifetime, the accumulated amount of discharge until the lifetime is predicted according to the average temperature, and the ratio of the accumulated current amount on the discharge side to the value is estimated. The degree of deterioration of the storage battery is calculated.

また、上記課題を解決するために、本発明の第2の態様は、蓄電池の温度を検出する温度検出部と、蓄電池に流れる充放電電流を検出する電流検出部と、蓄電池の交換を検出する電池交換検出部と、蓄電池の劣化度を演算する劣化度演算部とを備えた蓄電池の劣化度判定装置であって、前記劣化度演算部は、前記電流検出部により検出された充放電電流を充電側と放電側とに分けて積算すると共に、前記電池交換検出部により蓄電池の交換が検出されたときに前記充電側及び放電側の電流積算量をそれぞれリセット可能な電流積算手段と、前記温度検出部により検出された蓄電池の平均温度を算出すると共に、前記電池交換検出部により蓄電池の交換が検出されたときに前記算出された平均温度をリセット可能な平均温度算出手段と、前記平均温度算出手段で算出された蓄電池の平均温度と、予め定められ充電側の電流積算量から放電側の電流積算量を減算した量として表される過充電電気量とにより前記平均温度における蓄電池の寿命までの過充電電気量を予測し、該予測した蓄電池の寿命までの過充電電気量に対する前記電流積算手段で積算された充電側の電流積算量から放電側の電流積算量を減算して得られる過充電電気量の比率により蓄電池の劣化度を算出する劣化度算出手段と、を有する。   Moreover, in order to solve the said subject, the 2nd aspect of this invention detects the replacement | exchange of a storage battery, the temperature detection part which detects the temperature of a storage battery, the current detection part which detects the charging / discharging electric current which flows into a storage battery. A deterioration determination device for a storage battery comprising a battery replacement detection unit and a deterioration degree calculation unit for calculating a deterioration degree of the storage battery, wherein the deterioration degree calculation unit calculates the charge / discharge current detected by the current detection unit. A current integrating means for integrating the charge side and the discharge side separately, and capable of resetting the current integrated amount on the charge side and the discharge side when the battery replacement detection unit detects replacement of the storage battery, and the temperature An average temperature calculating means for calculating an average temperature of the storage battery detected by the detection unit, and capable of resetting the calculated average temperature when replacement of the storage battery is detected by the battery replacement detection unit; The life of the storage battery at the average temperature is calculated by the average temperature of the storage battery calculated by the temperature calculation means and the overcharged electricity amount expressed as a predetermined amount obtained by subtracting the current integration amount on the discharge side from the current integration amount on the charge side. Obtained by subtracting the current accumulated amount on the discharge side from the current accumulated amount on the charging side accumulated by the current accumulating means for the estimated amount of overcharge until the life of the storage battery. Deterioration degree calculating means for calculating the deterioration degree of the storage battery based on the ratio of the amount of overcharged electricity.

第2の態様は、蓄電池の寿命までの過充電電気量が、温度によって決定されるある閾値以上になると寿命になるという知見に基づいてなされたものである。すなわち、蓄電池の構成部材である正極の格子は充電時酸化され腐食する。腐食に応じて、格子全体に応力がかかり格子伸びが進行し、対極の負極の極板溶接部に接触し、短絡にいたる。該短絡に至るまでの過充電電気量は、温度に応じて、ほぼ一定値で定まるものである。本発明では、予め定められた蓄電池の寿命までの過充電電気量から、平均温度に応じて、寿命までの過充電電気量を予測し、その値に対する充電側の電流積算量から放電側の電流積算量を減算して得られる比率により蓄電池の劣化度を演算する。   A 2nd aspect is made | formed based on the knowledge that it will become a lifetime when the amount of overcharge electricity until the lifetime of a storage battery becomes more than a certain threshold value determined by temperature. That is, the grid of the positive electrode that is a constituent member of the storage battery is oxidized and corroded during charging. In response to the corrosion, stress is applied to the entire lattice, and the lattice elongation proceeds, and contacts the electrode plate weld of the negative electrode of the counter electrode, leading to a short circuit. The amount of electricity overcharged up to the short circuit is determined at a substantially constant value according to the temperature. In the present invention, the overcharge electricity amount until the lifetime is predicted according to the average temperature from the predetermined amount of overcharge electricity until the lifetime of the storage battery, and the current on the discharge side is calculated from the accumulated current amount on the charge side for the value. The deterioration degree of the storage battery is calculated from the ratio obtained by subtracting the integrated amount.

更に、上記課題を解決するために、本発明の第3の態様は、蓄電池の温度を検出する温度検出部と、蓄電池に流れる充放電電流を検出する電流検出部と、蓄電池の交換を検出する電池交換検出部と、蓄電池の劣化度を演算する劣化度演算部とを備えた蓄電池の劣化度判定装置であって、前記劣化度演算部は、前記電流検出部により検出された充放電電流を充電側と放電側とに分けて積算すると共に、前記電池交換検出部により蓄電池の交換が検出されたときに前記充電側及び放電側の電流積算量をそれぞれリセット可能な電流積算手段と、前記温度検出部により検出された蓄電池の平均温度を算出すると共に、前記電池交換検出部により蓄電池の交換が検出されたときに前記算出された平均温度をリセット可能な平均温度算出手段と、前記平均温度算出手段で算出された蓄電池の平均温度と、前記電流積算手段で積算された充電側の電流積算量を放電側の電流積算量で除算した量として表される充放電収支とにより蓄電池の寿命までの放電積算量を予測し、該予測した蓄電池の寿命までの放電積算量に対する前記電流積算手段で積算された放電側の電流積算量の比率により蓄電池の第1の劣化度を算出し、かつ、前記平均温度算出手段で算出された蓄電池の平均温度と、予め定められ充電側の電流積算量から放電側の電流積算量を減算した量として表される過充電電気量とにより前記平均温度における蓄電池の寿命までの過充電電気量を予測し、該予測した蓄電池の寿命までの過充電電気量に対する前記電流積算手段で積算された充電側の電流積算量から放電側の電流積算量を減算して得られる過充電電気量の比率により蓄電池の第2の劣化度を算出し、前記算出された第1及び第2の劣化度のうち劣化の進行が大きい方の劣化度を蓄電池の劣化度として算出する劣化度算出手段と、を有する。   Furthermore, in order to solve the said subject, the 3rd aspect of this invention detects the replacement | exchange of a storage battery, the temperature detection part which detects the temperature of a storage battery, the current detection part which detects the charging / discharging electric current which flows into a storage battery. A deterioration determination device for a storage battery comprising a battery replacement detection unit and a deterioration degree calculation unit for calculating a deterioration degree of the storage battery, wherein the deterioration degree calculation unit calculates the charge / discharge current detected by the current detection unit. A current integrating means for integrating the charge side and the discharge side separately, and capable of resetting the current integrated amount on the charge side and the discharge side when the battery replacement detection unit detects replacement of the storage battery, and the temperature An average temperature calculating means for calculating an average temperature of the storage battery detected by the detection unit, and capable of resetting the calculated average temperature when replacement of the storage battery is detected by the battery replacement detection unit; The life of the storage battery is calculated based on the average temperature of the storage battery calculated by the temperature calculation means and the charge / discharge balance expressed as an amount obtained by dividing the current integration amount on the charging side integrated by the current integration means by the current integration amount on the discharge side. A first accumulated degree of deterioration of the storage battery is calculated from a ratio of the accumulated current amount on the discharge side accumulated by the current integrating means to the estimated accumulated discharge amount until the lifetime of the storage battery, and The average temperature of the storage battery calculated by the average temperature calculating means and the overcharge electric amount expressed as a predetermined amount obtained by subtracting the current integration amount on the discharge side from the current integration amount on the charge side at the average temperature. Predict the overcharge electricity amount until the life of the storage battery, and subtract the accumulated current amount on the discharge side from the accumulated current amount on the charge side accumulated by the current integration means for the estimated overcharge amount of electricity until the life of the storage battery The second deterioration degree of the storage battery is calculated from the ratio of the amount of overcharged electricity obtained in this manner, and the deterioration degree of the larger deterioration of the calculated first and second deterioration degrees is set as the deterioration degree of the storage battery. Deterioration degree calculating means for calculating.

第3の態様は、第1に、寿命までの放電積算量は充放電収支、温度で定まり(放電側の劣化)、第2に、寿命までの過充電電気量は、温度の影響による一定値で定まり(充電側の劣化)、第1の劣化及び第2の劣化は、別々に進行するという知見に基づいてなされたものである。劣化度算出手段により、第1及び第2の劣化度が算出され、両者のうち劣化の進行が大きい方の劣化度が蓄電池の劣化度とされる。   In the third mode, firstly, the accumulated discharge amount up to the lifetime is determined by the charge / discharge balance and temperature (deterioration on the discharge side), and secondly, the overcharged electricity amount until the lifetime is a constant value due to the influence of temperature. Thus, the first deterioration and the second deterioration are made based on the knowledge that they proceed separately. The first and second deterioration degrees are calculated by the deterioration degree calculating means, and the deterioration degree with the larger deterioration progress is set as the deterioration degree of the storage battery.

上記第1〜第3の態様において、劣化度演算部は、劣化度算出手段により算出された蓄電池の劣化度が予め設定された設定値未満のときに蓄電池が寿命となったと判定する寿命判定手段を更に有するようにしてもよい。また、第2及び第3の態様において、電池交換検出部が予め定められた過充電電気量を検出し、劣化度演算手段が電池交換検出部により検出された過充電電気量により蓄電池の劣化度を算出するようにしてもよい。更に、蓄電池は鉛蓄電池であることが望ましい。   In the first to third aspects, the deterioration degree calculating unit determines that the storage battery has reached the end of its life when the deterioration degree of the storage battery calculated by the deterioration degree calculating means is less than a preset set value. You may make it have further. Further, in the second and third aspects, the battery replacement detection unit detects a predetermined overcharge electricity amount, and the deterioration degree calculation means detects the deterioration degree of the storage battery based on the overcharge electricity amount detected by the battery replacement detection unit. May be calculated. Further, the storage battery is preferably a lead storage battery.

本発明によれば、交流電圧やエンジン始動直後の微小時間の計測量を用いることなく、平均温度と電流積算量とから放電側の劣化及び/又は充電側の劣化を蓄電池の劣化度として算出するので、低コストかつ精度のよい蓄電池の劣化度判定装置を得ることができると共に、蓄電池が交換されても平均温度及び電流積算量をリセットするので、交換された新たな蓄電池についても同様に劣化度を算出することができる、という効果を得ることができる。   According to the present invention, the deterioration on the discharge side and / or the deterioration on the charge side is calculated as the deterioration degree of the storage battery from the average temperature and the accumulated current amount without using the measurement amount of the AC voltage or the minute time immediately after the engine is started. Therefore, it is possible to obtain a low-cost and accurate storage battery deterioration degree determination device, and even if the storage battery is replaced, the average temperature and the accumulated current amount are reset. Can be obtained.

以下、図面を参照して、本発明を、車載用鉛蓄電池の劣化度を判定する劣化度判定装置に適用した実施の形態について説明する。   Hereinafter, an embodiment in which the present invention is applied to a deterioration degree determination device that determines the deterioration degree of an in-vehicle lead acid battery will be described with reference to the drawings.

(構成)
図1に示すように、本実施形態の劣化度判定装置100は、エンジン等の車両側の制御を行う車両コントローラ80の下位装置として機能し、電圧検出部としての電圧検出回路30、温度検出部の一部としての温度検出回路40、鉛蓄電池20の電池仕様を検出する、電池交換検出部の一部としての仕様検出回路50、電流検出部の一部としての電流検出回路60、並びに、電池交換検出部の一部、劣化度演算部及び寿命判定手段としてのバッテリコントローラ70を有している。
(Constitution)
As shown in FIG. 1, the degradation degree determination apparatus 100 of the present embodiment functions as a subordinate device of a vehicle controller 80 that controls a vehicle such as an engine, and includes a voltage detection circuit 30 as a voltage detection unit, and a temperature detection unit. A temperature detection circuit 40 as a part of the battery, a specification detection circuit 50 as a part of the battery replacement detection part for detecting a battery specification of the lead storage battery 20, a current detection circuit 60 as a part of the current detection part, and a battery A battery controller 70 is provided as a part of the replacement detection unit, a deterioration degree calculation unit, and a life determination unit.

本実施形態では、鉛蓄電池20に容積9リットルの液式鉛蓄電池が用いられており、後述する図4〜図7の関係グラフはこの鉛蓄電池20に従って例示したものである。鉛蓄電池20は容器となる角形の電槽を有しており、電槽の材質には成形性、電気的絶縁性、耐腐食性及び耐久性等に優れる、例えば、アクリルブタジエンスチレン(ABS)等の高分子樹脂が用いられている。電槽の中央部の隔壁にはセンサ挿入孔が形成されている。センサ挿入孔にはサーミスタ等の温度検出部の一部としての温度センサ45が挿入されており、温度センサ45は接着剤でセンサ挿入孔内に固定されている。なお、温度センサ45の出力端子は温度検出回路40に接続されている。   In the present embodiment, a 9 liter liquid lead acid battery is used for the lead acid battery 20, and the relationship graphs of FIGS. 4 to 7 to be described later are illustrated according to the lead acid battery 20. The lead storage battery 20 has a rectangular battery case serving as a container, and the battery case is excellent in moldability, electrical insulation, corrosion resistance, durability, and the like, for example, acrylic butadiene styrene (ABS), etc. The high molecular resin is used. A sensor insertion hole is formed in the partition wall at the center of the battery case. A temperature sensor 45 as a part of a temperature detection unit such as a thermistor is inserted into the sensor insertion hole, and the temperature sensor 45 is fixed in the sensor insertion hole with an adhesive. The output terminal of the temperature sensor 45 is connected to the temperature detection circuit 40.

電槽の上部は、電槽の上部開口部を密閉するABS等の高分子樹脂製の上蓋に溶着されている。上蓋には、電槽の内圧を所定値以下に維持するための制御弁が配設されていると共に、外部へ電力を供給するためのロッド状正極外部出力端子及び負極外部出力端子が立設されている。また、上蓋の上部かつ制御弁及び温度センサ45の配設位置を避けた部分には、鉛蓄電池20の電池仕様を記憶した仕様情報記憶回路55が固着されている。   The upper part of the battery case is welded to an upper lid made of a polymer resin such as ABS that seals the upper opening of the battery case. The upper lid is provided with a control valve for maintaining the internal pressure of the battery case below a predetermined value, and is provided with a rod-shaped positive external output terminal and a negative external output terminal for supplying electric power to the outside. ing. In addition, a specification information storage circuit 55 that stores the battery specifications of the lead storage battery 20 is fixed to an upper portion of the upper lid and a portion where the control valve and the temperature sensor 45 are avoided.

図2に示すように、仕様情報記憶回路55は、複数の抵抗及びツェナーダイオード等を有しており、抵抗値を適宜設定することで、鉛蓄電池20の電池仕様に関するパラメータ情報を出力可能に構成されている。このパラメータ情報の中には、後述するように、鉛蓄電池20の個体を特定する情報や25°C(常温)における鉛蓄電池20の寿命までの過充電電気量に関する情報も含まれている。仕様情報記憶回路55は、仕様検出回路50に接続されている。仕様検出回路50は、OPアンプ、A/Dコンバータ、D/Aコンバータを有して構成されている。OPアンプの+入力端子は仕様情報記憶回路55の出力側に接続されており、OPアンプの出力端子はA/Dコンバータを介してバッテリコントローラ70に接続されている。また、OPアンプの−入力端子は基準電圧を付与するD/Aコンバータの出力側に接続されており、D/Aコンバータの入力側はバッテリコントローラ70に接続されている。   As shown in FIG. 2, the specification information storage circuit 55 includes a plurality of resistors, Zener diodes, and the like, and is configured to be able to output parameter information related to the battery specifications of the lead storage battery 20 by appropriately setting the resistance value. Has been. As will be described later, the parameter information includes information for specifying the individual lead storage battery 20 and information on the amount of overcharged electricity until the life of the lead storage battery 20 at 25 ° C. (normal temperature). The specification information storage circuit 55 is connected to the specification detection circuit 50. The specification detection circuit 50 includes an OP amplifier, an A / D converter, and a D / A converter. The + input terminal of the OP amplifier is connected to the output side of the specification information storage circuit 55, and the output terminal of the OP amplifier is connected to the battery controller 70 via the A / D converter. The negative input terminal of the OP amplifier is connected to the output side of the D / A converter that applies the reference voltage, and the input side of the D / A converter is connected to the battery controller 70.

鉛蓄電池20の正極外部出力端子は、イグニッションスイッチ(以下、IGNと略称する。)90の中央端子に接続されている。IGN90は、中央端子とは別に、OFF端子、ON/ACC端子及びSTART端子を有しており、中央端子とこれらOFF、ON/ACC及びSTART端子のいずれかとは、ロータリー式に切り替え接続が可能である。IGN90のON/ACC端子、START端子側には、鉛蓄電池20の負荷となり、モータジェネレータ、スタータ、発電機等を表すMG10が接続されている。一方、鉛蓄電池20の負極外部出力端子は、ホール素子等の電流検出部の一部としての電流センサ65を介してグランドに接続されている。電流センサ65はホール素子に流れる電流に応じて変化するホール電圧により電流を検出することが可能であり、電流センサ65の出力端子は電流検出回路60に接続されている。   A positive external output terminal of the lead storage battery 20 is connected to a central terminal of an ignition switch (hereinafter abbreviated as IGN) 90. The IGN90 has an OFF terminal, ON / ACC terminal, and START terminal in addition to the central terminal, and the central terminal and any one of these OFF, ON / ACC, and START terminals can be switched in a rotary manner. is there. An MG 10 representing a motor generator, a starter, a generator and the like is connected to the ON / ACC terminal and the START terminal side of the IGN 90 as a load of the lead storage battery 20. On the other hand, the negative external output terminal of the lead storage battery 20 is connected to the ground via a current sensor 65 as a part of a current detection unit such as a Hall element. The current sensor 65 can detect a current based on a Hall voltage that changes in accordance with the current flowing through the Hall element, and an output terminal of the current sensor 65 is connected to the current detection circuit 60.

電圧検出回路30、温度検出回路40及び電流検出回路60は、A/Dコンバータを有しており、図1に示すように、それぞれバッテリコントローラ70に接続されている。バッテリコントローラ70は、中央演算処理装置として機能するCPUと、劣化度判定装置100の基本制御プログラム及び後述するように種々の理論式等が格納されたROMと、CPUのワークエリアとして働くと共にデータを一時的に記憶するRAMとを有するマイコン71、マイコン71の外部バスに接続され不揮発性メモリとして機能するEPROM72、及び、車両コントローラ80との通信を行うためのインターフェイスを含んで構成されており、通信線により車両コントローラ80と接続されている。   The voltage detection circuit 30, the temperature detection circuit 40, and the current detection circuit 60 have an A / D converter, and are each connected to a battery controller 70 as shown in FIG. The battery controller 70 functions as a CPU that functions as a central processing unit, a basic control program for the deterioration degree determination apparatus 100, a ROM that stores various theoretical formulas as will be described later, a work area for the CPU, and data. It includes a microcomputer 71 having a RAM for temporarily storing, an EPROM 72 connected to an external bus of the microcomputer 71 and functioning as a nonvolatile memory, and an interface for communicating with the vehicle controller 80. A line is connected to the vehicle controller 80.

従って、バッテリコントローラ70のマイコン71は、電圧検出回路30、温度センサ45及び温度検出回路40、仕様検出回路50、電流センサ65及び電流検出回路60により、鉛蓄電池20の両端電圧、温度、電池仕様及び鉛蓄電池20に流れる電流をデジタル値として取り込むことが可能である。   Therefore, the microcomputer 71 of the battery controller 70 includes the voltage detection circuit 30, the temperature sensor 45 and the temperature detection circuit 40, the specification detection circuit 50, the current sensor 65 and the current detection circuit 60, and the voltage across the lead storage battery 20, the temperature and the battery specification. And it is possible to take in the electric current which flows into lead acid battery 20 as a digital value.

(動作)
次に、フローチャートを参照して、本実施形態の劣化度判定装置100の動作についてマイコン71のCPUを主体として説明する。なお、マイコン71のCPUは、マイコン71に電源が投入されると、鉛蓄電池20の劣化度を判定するための劣化度判定ルーチンを実行する。
(Operation)
Next, with reference to a flowchart, operation | movement of the degradation degree determination apparatus 100 of this embodiment is demonstrated centering on CPU of the microcomputer 71. FIG. The CPU of the microcomputer 71 executes a deterioration degree determination routine for determining the deterioration degree of the lead storage battery 20 when the microcomputer 71 is turned on.

図3に示すように、この劣化度判定ルーチンでは、まず、ステップ202において、車両コントローラ80からIGN90がON端子に接続された旨の通知があるまで待機し、通知があると、次のステップ204で前回の劣化度判定ルーチン終了時にEPROM72に書き込まれた充電側の電流積算量(Qcha)、放電側の電流積算量(Qdis)、平均温度(Tave)に関するデータ及び鉛蓄電池20の電池仕様を読み出すと共に、仕様検出回路50を介して仕様情報記憶回路55に記憶された鉛蓄電池20の電池仕様を取り込む。   As shown in FIG. 3, in this deterioration level determination routine, first, in step 202, the vehicle controller 80 waits until a notification that the IGN 90 is connected to the ON terminal. The data on the charge side integrated current (Qcha), the discharge side integrated current (Qdis), the average temperature (Tave) and the battery specification of the lead storage battery 20 written in the EPROM 72 at the end of the previous deterioration degree determination routine are read out. At the same time, the battery specification of the lead storage battery 20 stored in the specification information storage circuit 55 is taken in via the specification detection circuit 50.

次にステップ206では、EPROM72から読み出した鉛蓄電池20の電池仕様と、仕様情報記憶回路55を介して取り込んだ鉛蓄電池20の電池仕様とが一致するか否かを判断することにより、鉛蓄電池20が新品の鉛蓄電池に交換されたか否かを判断する。否定判断のときは、ステップ210へ進み、肯定判断のときは、次のステップ208で、充電側の電流積算量(Qcha)及び放電側の電流積算量(Qdis)をそれぞれ0にリセットすると共に、平均温度(Tave)を25°Cにリセットした後、ステップ210へ進む。   Next, in step 206, it is determined whether or not the battery specifications of the lead storage battery 20 read from the EPROM 72 and the battery specifications of the lead storage battery 20 taken in via the specification information storage circuit 55 match, whereby the lead storage battery 20. Is replaced with a new lead-acid battery. If a negative determination is made, the process proceeds to step 210. If an affirmative determination is made, in the next step 208, the charge-side current integration amount (Qcha) and the discharge-side current integration amount (Qdis) are reset to 0, respectively. After the average temperature (Tave) is reset to 25 ° C., the process proceeds to Step 210.

ステップ210では、車両コントローラ80からIGN90がOFF端子に接続された旨の通知があるか否かを判断し、否定判断のときは、次のステップ212で鉛蓄電池20に流れる電流値を取り込み(電流を測定し)、ステップ214において電流積算処理を行う。この電流積算処理では、ステップ212で取り込んだ電流値が充電側(正)であるか、放電側(負)であるかを判定し、充電側であれば充電側の電流積算量(Qcha)側に、放電側であれば放電側の電流積算量(Qdis)側に充電電気量を積算する。電流積算量は、電流値をI、サンプリング時間を1secとすると、下式(1)、(2)表される。   In step 210, it is determined whether or not there is a notification from the vehicle controller 80 that the IGN 90 is connected to the OFF terminal. If the determination is negative, the current value flowing in the lead storage battery 20 is fetched in the next step 212 (current). In step 214, current integration processing is performed. In this current integration process, it is determined whether the current value acquired in step 212 is the charge side (positive) or the discharge side (negative). If it is the charge side, the current integration amount (Qcha) side on the charge side On the discharge side, the amount of charge electricity is integrated on the current integration amount (Qdis) side on the discharge side. The current integration amount is expressed by the following equations (1) and (2), where I is the current value and 1 sec is the sampling time.

次に、ステップ216では、下式(3)、(4)に示すように、ステップ214で算出した充電側の電流積算量(Qcha)及び放電側の電流積算量(Qdis)を用いて、鉛蓄電池20の現時点における充放電収支(Qb)並びに過充電電気量(Qchaover)を算出する。   Next, in step 216, as shown in the following equations (3) and (4), the charge-side current integration amount (Qcha) and the discharge-side current integration amount (Qdis) calculated in step 214 are used to lead The current charge / discharge balance (Qb) and the amount of overcharge electricity (Qchaover) of the storage battery 20 are calculated.

ステップ218では鉛蓄電池20の温度を取り込み(測定し)、次のステップ220において、ステップ204で読み出した平均温度(Tave)に関するデータ(鉛蓄電池20の測定温度の累計及び測定回数)に今回測定した鉛蓄電池20の温度分を加えて平均温度(Tave)を算出する。   In step 218, the temperature of the lead storage battery 20 is taken (measured), and in the next step 220, data relating to the average temperature (Tave) read out in step 204 (cumulative measured temperature and number of measurements of the lead storage battery 20) is measured this time. The temperature of the lead storage battery 20 is added to calculate the average temperature (Tave).

次いでステップ222では、充放電収支(Qb)、平均温度(Tave)から、鉛蓄電池20の寿命までの放電側の電流積算量(Qdis_max)を算出する。図4に充放電収支(Qb)と鉛蓄電池20の寿命までの放電側の電流積算量(Qdis_max)との関係を示す。なお、図4は、充放電収支(Qb)が105%のときを100としたグラフである。充放電収支(Qb)が105%以上では、寿命までの放電側の電流積算量(Qdis_max)は一定である。105%未満では、放電側の電流積算量(Qdis_max)は低下する。これは、充電が不足し、鉛蓄電池20を構成する部材である、負極あるいは正極活物質に不還元性の硫酸鉛が蓄積し、寿命モードとなっているためである。一方、充放電収支(Qb)がある一定値を越え、充電が充分にされるようになると、正極活物質の軟化が寿命モードとなり、寿命までの放電側の電流積算量はほぼ一定値となる。図5に、25°Cを100としたときの平均温度(Tave)と寿命までの放電側の電流積算量(Qdis_max)との関係を示す。従って、ステップ222では、充放電収支(Qb)から放電側の電流積算量(Qdis_max)を算出し、算出された放電側の電流積算量(Qdis_max)を温度補正することで、平均温度を考慮した鉛蓄電池20の寿命までの放電側の電流積算量(QTdis_max)を算出(予測)することができる。   Next, at step 222, the current integration amount (Qdis_max) on the discharge side from the charge / discharge balance (Qb) and the average temperature (Tave) to the life of the lead storage battery 20 is calculated. FIG. 4 shows the relationship between the charge / discharge balance (Qb) and the accumulated current on the discharge side (Qdis_max) until the life of the lead storage battery 20. FIG. 4 is a graph in which 100 is taken when the charge / discharge balance (Qb) is 105%. When the charge / discharge balance (Qb) is 105% or more, the integrated current (Qdis_max) on the discharge side until the lifetime is constant. If it is less than 105%, the current integration amount (Qdis_max) on the discharge side decreases. This is because charging is insufficient and non-reducing lead sulfate accumulates in the negative electrode or positive electrode active material, which is a member constituting the lead storage battery 20, and the life mode is set. On the other hand, when the charge / discharge balance (Qb) exceeds a certain value and charging is sufficiently performed, the softening of the positive electrode active material becomes the life mode, and the accumulated current on the discharge side until the life becomes a substantially constant value. . FIG. 5 shows the relationship between the average temperature (Tave) when 25 ° C. is set to 100 and the accumulated current (Qdis_max) on the discharge side until the lifetime. Therefore, in step 222, the average current is taken into account by calculating the discharge-side current integration amount (Qdis_max) from the charge / discharge balance (Qb) and correcting the calculated discharge-side current integration amount (Qdis_max) with temperature. The accumulated current (QTdis_max) on the discharge side until the life of the lead storage battery 20 can be calculated (predicted).

続いてステップ224において、ステップ204で読み出した電池仕様のうち25°Cにおける鉛蓄電池20の寿命までの過充電電気量に関する情報と、ステップ220で算出した平均温度(Tave)とから、平均温度を考慮した鉛蓄電池20の寿命までの過充電電気量(QTchaover_max)を算出(予測)する。25°Cにおける鉛蓄電池20の寿命までの過充電電気量を100とすると、平均温度(Tave)と寿命までの過充電電気量との関係はアレニウス(Arrhenius)則により周知のため、アレニウス則を用いることで、寿命までの過充電電気量(QTchaover_max)を単純な演算で算出することができる。なお、25°Cにおける鉛蓄電池20の寿命までの過充電電気量は、電池サイズや格子デザインによって決定される値である。   Subsequently, in step 224, the average temperature is calculated from the information on the overcharged electricity amount up to the lifetime of the lead storage battery 20 at 25 ° C. among the battery specifications read out in step 204 and the average temperature (Tave) calculated in step 220. The amount of overcharged electricity (QTchaover_max) until the lifetime of the lead storage battery 20 considered is calculated (predicted). Assuming that the overcharged electricity amount up to the lifetime of the lead storage battery 20 at 25 ° C. is 100, the relationship between the average temperature (Tave) and the overcharged electricity amount until the lifetime is well known by the Arrhenius law. By using it, the overcharge electricity amount (QTchaover_max) up to the lifetime can be calculated by a simple calculation. In addition, the overcharge electric quantity until the lifetime of the lead storage battery 20 at 25 ° C. is a value determined by the battery size and the lattice design.

次のステップ226では、鉛蓄電池20の劣化度(SOH)を演算する。この劣化度は、初期の容量に対する、容量の残存率で定義される。すなわち、初期(新品や交換直後)では100%であり、劣化の進行に伴い、劣化度(SOH)は100(%)より小さい値をとるようになる。まず、ステップ226では、放電側の電流積算量(Qdis)と、ステップ222で算出した寿命までの放電側の電流積算量(QTdis_max)とから放電による劣化度(SOH_dis)を算出する。実用上、鉛蓄電池20の寿命を、SOHが50%となった時点と考えると、放電による劣化度(SOH_dis)と放電側の電流積算量(Qdis)との関係は、図6のように表されることが判明した。また、この関係式は下式(5)で表される。   In the next step 226, the deterioration degree (SOH) of the lead storage battery 20 is calculated. This degree of deterioration is defined by the capacity remaining rate with respect to the initial capacity. That is, it is 100% at the initial stage (new or immediately after replacement), and the degree of deterioration (SOH) takes a value smaller than 100 (%) as the deterioration progresses. First, in step 226, the degree of deterioration (SOH_dis) due to discharge is calculated from the current integration amount (Qdis) on the discharge side and the current integration amount (QTdis_max) on the discharge side until the lifetime calculated in step 222. Assuming that the life of the lead storage battery 20 is practically the time when the SOH reaches 50%, the relationship between the degree of deterioration due to discharge (SOH_dis) and the accumulated current on the discharge side (Qdis) is as shown in FIG. Turned out to be. This relational expression is expressed by the following expression (5).

次いで、ステップ226では、ステップ216で算出した過充電電気量(Qchaover)と、ステップ224で算出した鉛蓄電池20の寿命までの過充電電気量(QTchaover_max)とから充電による劣化度(SOH_cha)を算出する。実用上、鉛蓄電池20の寿命を、SOHが50%となった時点と考えると、充電による劣化度(SOH_cha)と寿命までの過充電電気量(QTchaover_max)との関係は、図6のように表されることが判明した。また、この関係式は下式(6)で表される。   Next, in step 226, the deterioration degree (SOH_cha) due to charging is calculated from the overcharge electricity amount (Qchaover) calculated in step 216 and the overcharge electricity amount (QTchaover_max) until the life of the lead storage battery 20 calculated in step 224. To do. In practical terms, when the life of the lead storage battery 20 is considered as the time when the SOH reaches 50%, the relationship between the degree of deterioration due to charging (SOH_cha) and the amount of overcharged electricity (QTchaover_max) until the life is as shown in FIG. Turned out to be represented. This relational expression is expressed by the following expression (6).

更に、ステップ226では、上述のように算出した放電による劣化度(SOH_dis)と充電による劣化度(SOH_cha)とを比較し、値の小さい方(劣化の進行の大きい方)を鉛蓄電池20のSOHとして選択(算出)する。   Furthermore, in step 226, the deterioration degree due to discharge (SOH_dis) calculated as described above is compared with the deterioration degree due to charging (SOH_cha), and the smaller value (the one where deterioration progresses more) is compared with the SOH of the lead storage battery 20. Is selected (calculated).

次にステップ228では、ステップ226で算出した鉛蓄電池20のSOHが50%未満か否かを判断し、否定判断のときはステップ210へ戻り、肯定判断のときは、次のステップ230において、車両コントローラ80に鉛蓄電池20が寿命となった旨を報知する。車両コントローラ80は、例えば、インストールメントパネルにその旨を表示させる。これにより、ドライバは鉛蓄電池20が寿命となったことを知ることができる。   Next, in step 228, it is determined whether or not the SOH of the lead storage battery 20 calculated in step 226 is less than 50%. If a negative determination is made, the process returns to step 210. The controller 80 is notified that the lead-acid battery 20 has reached the end of its life. For example, the vehicle controller 80 displays that fact on the installation panel. Thereby, the driver can know that the lead storage battery 20 has reached the end of its life.

一方、ステップ210で肯定判断のときは、ステップ232において、充電側の電流積算量(Qcha)、放電側の電流積算量(Qdis)、平均温度(Tave)に関するデータ及び鉛蓄電池20の電池仕様をEPROM72に書き込んで劣化度判定ルーチンを終了する。   On the other hand, when the determination in step 210 is affirmative, in step 232, the data on the charge-side current integrated amount (Qcha), the discharge-side current integrated amount (Qdis), the average temperature (Tave), and the battery specifications of the lead storage battery 20 are obtained. Writing to the EPROM 72 and the deterioration degree determination routine are completed.

なお、本実施形態の劣化度判定装置100は、上述したように電圧検出回路30を有しており、マイコン71のCPUは、電圧検出回路30を介して取り込んだ開路電圧から鉛蓄電池20の充電状態(SOC)等の算出を行い車両コントローラ80に報知する。   Note that the degradation degree determination apparatus 100 of the present embodiment has the voltage detection circuit 30 as described above, and the CPU of the microcomputer 71 charges the lead storage battery 20 from the open circuit voltage taken in via the voltage detection circuit 30. The state (SOC) and the like are calculated and notified to the vehicle controller 80.

(作用等)
次に、本実施形態の劣化度判定装置100の作用等について説明する。
(Action etc.)
Next, the operation and the like of the degradation level determination device 100 of the present embodiment will be described.

本実施形態の劣化度判定装置100では、鉛蓄電池20の放電による劣化度(SOH_cha)と充電による劣化度(SOH_dis)とは別個に進行するという知見を元に、それぞれの劣化度の演算を行っている。すなわち、放電による劣化度(SOH_cha)については、平均温度(Tave)と、充電側の電流積算量(Qcha)を放電側の電流積算量(Qdis)で除算した量として表される充放電収支(Qb)とにより鉛蓄電池20の寿命までの放電積算量(QTdis_max)を予測し(ステップ222)、寿命までの放電積算量(QTdis_max)に対する放電側の電流積算量(Qdis)の比率により算出する(ステップ226、式(5)参照)。一方、充電による劣化度(SOH_dis)については、平均温度(Tave)と、仕様情報記憶回路55に記憶された寿命までの過充電電気量に関する情報とにより、平均温度を考慮した鉛蓄電池20の寿命までの過充電電気量(QTchaover_max)を予測し(ステップ224)、寿命までの過充電電気量(QTchaover_max)に対する、充電側の電流積算量(Qcha)から放電側の電流積算量(Qdis)を減算して得られる過充電電気量(Qchaover)の比率により算出する(ステップ226、式(6)参照)。そして、放電による劣化度(SOH_cha)及び充電による劣化度(SOH_dis)の小さい方を鉛蓄電池20の劣化度(SOH)として算出し(ステップ228)、SOHが50%未満のときに車両コントローラ80に報知する。   In the degradation level determination device 100 of the present embodiment, the degradation level is calculated based on the knowledge that the degradation level (SOH_cha) due to discharging of the lead storage battery 20 and the degradation level (SOH_dis) due to charging proceed separately. ing. That is, for the degree of deterioration due to discharge (SOH_cha), the charge / discharge balance (average temperature (Tave)) and the charge-side current integrated amount (Qcha) divided by the discharge-side current integrated amount (Qdis) ( Qb) is used to predict the accumulated amount of discharge (QTdis_max) until the life of the lead storage battery 20 (step 222), and is calculated by the ratio of the accumulated current amount (Qdis) on the discharge side to the accumulated amount of discharge (QTdis_max) until the end of life (Qd). Step 226, see equation (5)). On the other hand, regarding the degree of deterioration due to charging (SOH_dis), the life of the lead storage battery 20 in consideration of the average temperature based on the average temperature (Tave) and information on the amount of overcharged electricity until the life stored in the specification information storage circuit 55 Overcharged electricity amount (QTchaover_max) is predicted (step 224), and the accumulated current amount (Qdis) on the discharge side is subtracted from the accumulated current amount on the charge side (Qcha) with respect to the overcharged electricity amount (QTchaover_max) until the lifetime. It calculates by the ratio of the amount of overcharge electricity (Qchaover) obtained by this (refer step 226, Formula (6)). Then, the smaller one of the deterioration degree due to discharge (SOH_cha) and the deterioration degree due to charging (SOH_dis) is calculated as the deterioration degree (SOH) of the lead storage battery 20 (step 228), and when the SOH is less than 50%, the vehicle controller 80 Inform.

従って、本実施形態の劣化度判定装置100では、従来技術のように交流電圧やエンジン始動直後の微小時間の計測量を用いることなく、平均温度(Tave)と電流積算量(Qcha、Qdis)とから鉛蓄電池20の劣化度を算出するので、高分解能かつ微小時間内で測定可能な電流、電圧センサやデータを高速処理可能なマイコンが不要となり、低コストかつ精度のよい劣化度判定装置を得ることができる。また、本実施形態の劣化度判定装置100では、鉛蓄電池20が交換されると、平均温度(Tave)及び電流積算量(Qcha、Qdis)をリセットするので(ステップ208)、交換された新たな蓄電池についても同様に劣化度を算出することができる。   Therefore, in the degradation degree determination apparatus 100 of the present embodiment, the average temperature (Tave) and the current integrated amount (Qcha, Qdis) are obtained without using the AC voltage or the measurement amount of the minute time immediately after the engine start as in the prior art. Since the deterioration degree of the lead storage battery 20 is calculated from the above, a microcomputer capable of high-speed processing of current, voltage sensors and data that can be measured in high resolution and in a minute time is not required, and a low-cost and accurate deterioration degree determination device is obtained. be able to. Moreover, in the deterioration degree determination apparatus 100 of the present embodiment, when the lead storage battery 20 is replaced, the average temperature (Tave) and the current integrated amount (Qcha, Qdis) are reset (step 208), so that a new replaced one is obtained. The degree of deterioration can be calculated similarly for the storage battery.

なお、本実施形態では、電圧検出回路30、温度検出回路40、仕様検出回路50及び電流検出回路路60をバッテリコントローラ70とは別に構成した例を示したが、本発明はこれに限定されず、これらの全部又は一部をバッテリコントローラ70内に設けるようにしてもよい。また、本実施形態では、放電による劣化度(SOH_cha)及び充電による劣化度(SOH_dis)の小さい方を鉛蓄電池20の劣化度(SOH)として算出する例を示したが、放電による劣化度(SOH_cha)及び充電による劣化度(SOH_dis)のいずれか一方により鉛蓄電池20の劣化度を算出するようにしてもよい。更に、本実施形態では、鉛蓄電池20が新品の鉛蓄電池に交換されたときに、ステップ208で平均温度を25°Cにリセットした例を示したが、例えば、ヌルにリセットするようにしてもよく、また、ステップ208とステップ210との間のステップ210でIGN90がOFF端子に接続されたか否かを判断する例を示したが、ステップ210を割り込み処理とするようにしてもよい。そして、本実施形態では、車両コントローラ80に鉛蓄電池20が寿命となった旨を報知する例を示したが、劣化度判定装置100が報知装置を有し、この報知装置からドライバに鉛蓄電池20が寿命となった旨を報知するようにしてもよい。   In the present embodiment, the voltage detection circuit 30, the temperature detection circuit 40, the specification detection circuit 50, and the current detection circuit path 60 are configured separately from the battery controller 70. However, the present invention is not limited to this. All or a part of these may be provided in the battery controller 70. In the present embodiment, an example is shown in which the smaller one of the deterioration degree due to discharge (SOH_cha) and the deterioration degree due to charging (SOH_dis) is calculated as the deterioration degree (SOH) of the lead storage battery 20, but the deterioration degree due to discharge (SOH_cha) ) And the deterioration degree due to charging (SOH_dis), the deterioration degree of the lead storage battery 20 may be calculated. Further, in the present embodiment, when the lead storage battery 20 is replaced with a new lead storage battery, the example in which the average temperature is reset to 25 ° C. in step 208 has been shown. However, for example, it may be reset to null. In addition, although an example in which it is determined in step 210 between step 208 and step 210 whether or not the IGN 90 is connected to the OFF terminal has been shown, step 210 may be an interrupt process. And in this embodiment, although the example which alert | reports that the lead storage battery 20 became the lifetime was shown to the vehicle controller 80, the degradation degree determination apparatus 100 has a notification apparatus, and the lead storage battery 20 is provided to a driver from this notification apparatus. You may make it alert | report that the lifetime became.

本発明は精度よく蓄電池の劣化を判定すると共に、低コストの劣化度判定装置を提供するため、劣化度判定装置の製造、販売に寄与するので、産業上の利用可能性を有する。   The present invention accurately determines the deterioration of the storage battery and provides a low-cost deterioration degree determination device, which contributes to the manufacture and sale of the deterioration degree determination device, and thus has industrial applicability.

本発明が適用可能な実施形態の劣化度判定装置のブロック回路図である。1 is a block circuit diagram of a degradation degree determination device according to an embodiment to which the present invention is applicable. 鉛蓄電池に固着された仕様情報回路と、仕様情報回路に記憶された電池仕様を検出する仕様検出回路とを模式的に示す回路図である。It is a circuit diagram which shows typically the specification information circuit fixed to the lead acid battery, and the specification detection circuit which detects the battery specification memorize | stored in the specification information circuit. バッテリコントローラのマイコンのCPUが実行する劣化度判定ルーチンのフローチャートである。It is a flowchart of the deterioration degree determination routine which CPU of the microcomputer of a battery controller performs. 充放電収支と鉛蓄電池の寿命までの放電側の電流積算量との関係を示すグラフである。It is a graph which shows the relationship between charging / discharging balance and the electric current integration amount by the side of discharge until the lifetime of lead acid battery. 平均温度と鉛蓄電池の寿命までの放電側の電流積算量との関係を示すグラフである。It is a graph which shows the relationship between average temperature and the electric current integration amount by the side of discharge until the lifetime of lead acid battery. 放電による劣化度と鉛蓄電池の寿命までの放電積算量との関係を示すグラフである。It is a graph which shows the relationship between the deterioration degree by discharge, and the discharge integrated amount to the lifetime of a lead storage battery. 充電による劣化度と鉛蓄電池の寿命までの過充電電気量との関係を示すグラフである。It is a graph which shows the relationship between the deterioration degree by charge, and the amount of overcharge electricity until the lifetime of a lead storage battery.

符号の説明Explanation of symbols

20 鉛蓄電池(蓄電池)
40 温度検出回路(温度検出部の一部)
45 温度センサ(温度検出部の一部)
50 仕様検出回路(電池交換検出部の一部)
60 電流検出回路(電流検出部の一部)
65 電流センサ(電流検出部の一部)
70 バッテリコントローラ(電池交換検出部の一部、劣化度演算部、寿命判定手段)
71 マイコン
72 EPROM
100 劣化度判定装置
20 Lead storage battery (storage battery)
40 Temperature detection circuit (part of temperature detection unit)
45 Temperature sensor (part of temperature detector)
50 Specification detection circuit (part of battery replacement detector)
60 Current detection circuit (part of current detection unit)
65 Current sensor (part of current detector)
70 Battery controller (part of battery replacement detection unit, deterioration level calculation unit, life determination means)
71 Microcomputer 72 EPROM
100 Deterioration degree judging device

Claims (6)

蓄電池の温度を検出する温度検出部と、蓄電池に流れる充放電電流を検出する電流検出部と、蓄電池の交換を検出する電池交換検出部と、蓄電池の劣化度を演算する劣化度演算部とを備えた蓄電池の劣化度判定装置であって、前記劣化度演算部は、
前記電流検出部により検出された充放電電流を充電側と放電側とに分けて積算すると共に、前記電池交換検出部により蓄電池の交換が検出されたときに前記充電側及び放電側の電流積算量をそれぞれリセット可能な電流積算手段と、
前記温度検出部により検出された蓄電池の平均温度を算出すると共に、前記電池交換検出部により蓄電池の交換が検出されたときに前記算出された平均温度をリセット可能な平均温度算出手段と、
前記平均温度算出手段で算出された蓄電池の平均温度と、前記電流積算手段で積算された充電側の電流積算量を放電側の電流積算量で除算した量として表される充放電収支とにより蓄電池の寿命までの放電積算量を予測し、該予測した蓄電池の寿命までの放電積算量に対する前記電流積算手段で積算された放電側の電流積算量の比率により蓄電池の劣化度を算出する劣化度算出手段と、
を有することを特徴とする劣化度判定装置。
A temperature detection unit that detects the temperature of the storage battery, a current detection unit that detects charge / discharge current flowing in the storage battery, a battery replacement detection unit that detects replacement of the storage battery, and a deterioration degree calculation unit that calculates the deterioration degree of the storage battery. A storage battery deterioration degree determination device provided with the deterioration degree calculation unit,
The charge / discharge current detected by the current detection unit is accumulated separately for the charge side and the discharge side, and when the storage battery replacement is detected by the battery replacement detection unit, the current integration amount on the charge side and the discharge side is detected. Current integrating means capable of resetting each,
Calculating an average temperature of the storage battery detected by the temperature detection unit, and an average temperature calculation means capable of resetting the calculated average temperature when replacement of the storage battery is detected by the battery replacement detection unit;
The storage battery based on the average temperature of the storage battery calculated by the average temperature calculating means and the charge / discharge balance expressed as an amount obtained by dividing the charge-side current integration amount integrated by the current integration means by the discharge-side current integration amount Degradation calculation for predicting the accumulated amount of discharge until the life of the battery and calculating the degree of degradation of the storage battery by the ratio of the accumulated current amount on the discharge side accumulated by the current integrating means to the estimated accumulated amount of discharge until the lifetime of the storage battery Means,
A deterioration degree determination device characterized by comprising:
蓄電池の温度を検出する温度検出部と、蓄電池に流れる充放電電流を検出する電流検出部と、蓄電池の交換を検出する電池交換検出部と、蓄電池の劣化度を演算する劣化度演算部とを備えた蓄電池の劣化度判定装置であって、前記劣化度演算部は、
前記電流検出部により検出された充放電電流を充電側と放電側とに分けて積算すると共に、前記電池交換検出部により蓄電池の交換が検出されたときに前記充電側及び放電側の電流積算量をそれぞれリセット可能な電流積算手段と、
前記温度検出部により検出された蓄電池の平均温度を算出すると共に、前記電池交換検出部により蓄電池の交換が検出されたときに前記算出された平均温度をリセット可能な平均温度算出手段と、
前記平均温度算出手段で算出された蓄電池の平均温度と、予め定められ充電側の電流積算量から放電側の電流積算量を減算した量として表される過充電電気量とにより前記平均温度における蓄電池の寿命までの過充電電気量を予測し、該予測した蓄電池の寿命までの過充電電気量に対する前記電流積算手段で積算された充電側の電流積算量から放電側の電流積算量を減算して得られる過充電電気量の比率により蓄電池の劣化度を算出する劣化度算出手段と、
を有することを特徴とする劣化度判定装置。
A temperature detection unit that detects the temperature of the storage battery, a current detection unit that detects charge / discharge current flowing in the storage battery, a battery replacement detection unit that detects replacement of the storage battery, and a deterioration degree calculation unit that calculates the deterioration degree of the storage battery. A storage battery deterioration degree determination device provided with the deterioration degree calculation unit,
The charge / discharge current detected by the current detection unit is accumulated separately for the charge side and the discharge side, and when the storage battery replacement is detected by the battery replacement detection unit, the current integration amount on the charge side and the discharge side is detected. Current integrating means capable of resetting each,
Calculating an average temperature of the storage battery detected by the temperature detection unit, and an average temperature calculation means capable of resetting the calculated average temperature when replacement of the storage battery is detected by the battery replacement detection unit;
The storage battery at the average temperature is calculated by the average temperature of the storage battery calculated by the average temperature calculation means and an overcharged electric amount expressed as a predetermined amount obtained by subtracting the current integration amount on the discharge side from the current integration amount on the charge side. Predicting the overcharged electricity amount until the lifetime of the battery, subtracting the accumulated current amount on the discharge side from the accumulated current amount on the charge side accumulated by the current integrating means for the estimated overcharged electricity amount until the life of the storage battery A deterioration degree calculating means for calculating the deterioration degree of the storage battery by the ratio of the amount of overcharged electricity obtained;
A deterioration degree determination device characterized by comprising:
蓄電池の温度を検出する温度検出部と、蓄電池に流れる充放電電流を検出する電流検出部と、蓄電池の交換を検出する電池交換検出部と、蓄電池の劣化度を演算する劣化度演算部とを備えた蓄電池の劣化度判定装置であって、前記劣化度演算部は、
前記電流検出部により検出された充放電電流を充電側と放電側とに分けて積算すると共に、前記電池交換検出部により蓄電池の交換が検出されたときに前記充電側及び放電側の電流積算量をそれぞれリセット可能な電流積算手段と、
前記温度検出部により検出された蓄電池の平均温度を算出すると共に、前記電池交換検出部により蓄電池の交換が検出されたときに前記算出された平均温度をリセット可能な平均温度算出手段と、
前記平均温度算出手段で算出された蓄電池の平均温度と、前記電流積算手段で積算された充電側の電流積算量を放電側の電流積算量で除算した量として表される充放電収支とにより蓄電池の寿命までの放電積算量を予測し、該予測した蓄電池の寿命までの放電積算量に対する前記電流積算手段で積算された放電側の電流積算量の比率により蓄電池の第1の劣化度を算出し、かつ、前記平均温度算出手段で算出された蓄電池の平均温度と、予め定められ充電側の電流積算量から放電側の電流積算量を減算した量として表される過充電電気量とにより前記平均温度における蓄電池の寿命までの過充電電気量を予測し、該予測した蓄電池の寿命までの過充電電気量に対する前記電流積算手段で積算された充電側の電流積算量から放電側の電流積算量を減算して得られる過充電電気量の比率により蓄電池の第2の劣化度を算出し、前記算出された第1及び第2の劣化度のうち劣化の進行が大きい方の劣化度を蓄電池の劣化度として算出する劣化度算出手段と、
を有することを特徴とする劣化度判定装置。
A temperature detection unit that detects the temperature of the storage battery, a current detection unit that detects charge / discharge current flowing in the storage battery, a battery replacement detection unit that detects replacement of the storage battery, and a deterioration degree calculation unit that calculates the deterioration degree of the storage battery. A storage battery deterioration degree determination device provided with the deterioration degree calculation unit,
The charge / discharge current detected by the current detection unit is accumulated separately for the charge side and the discharge side, and when the storage battery replacement is detected by the battery replacement detection unit, the current integration amount on the charge side and the discharge side is detected. Current integrating means capable of resetting each,
Calculating an average temperature of the storage battery detected by the temperature detection unit, and an average temperature calculation means capable of resetting the calculated average temperature when replacement of the storage battery is detected by the battery replacement detection unit;
The storage battery based on the average temperature of the storage battery calculated by the average temperature calculating means and the charge / discharge balance expressed as an amount obtained by dividing the charge-side current integration amount integrated by the current integration means by the discharge-side current integration amount The first accumulated degree of deterioration of the storage battery is calculated from the ratio of the accumulated current amount on the discharge side accumulated by the current integrating means to the estimated accumulated discharge amount until the lifetime of the storage battery. And the average temperature of the storage battery calculated by the average temperature calculation means and the overcharged electric amount expressed as a predetermined amount obtained by subtracting the current integration amount on the discharge side from the current integration amount on the charge side. Predicting the amount of overcharged electricity until the life of the storage battery at temperature, and the amount of current accumulated on the discharge side from the current accumulated amount on the charge side accumulated by the current integrating means for the estimated amount of overcharged battery life The second deterioration degree of the storage battery is calculated from the ratio of the amount of overcharged electricity obtained by subtraction, and the deterioration degree of the larger deterioration of the calculated first and second deterioration degrees is determined as the deterioration of the storage battery. A deterioration degree calculating means for calculating the degree,
A deterioration degree determination device characterized by comprising:
前記劣化度演算部は、前記劣化度算出手段により算出された蓄電池の劣化度が予め設定された設定値未満のときに前記蓄電池が寿命となったと判定する寿命判定手段を更に有することを特徴とする請求項1乃至請求項3のいずれか1項に記載の劣化度判定装置。   The deterioration degree calculation unit further includes life determination means for determining that the storage battery has reached the end of its life when the deterioration degree of the storage battery calculated by the deterioration degree calculation means is less than a preset set value. The degradation degree determination apparatus according to any one of claims 1 to 3. 前記電池交換検出部は前記予め定められた過充電電気量を検出し、前記劣化度演算手段は前記電池交換検出部により検出された過充電電気量に基づいて前記蓄電池の劣化度を算出することを特徴とする請求項2又は請求項3に記載の劣化度判定装置。   The battery replacement detection unit detects the predetermined amount of overcharge electricity, and the deterioration degree calculation means calculates the deterioration degree of the storage battery based on the overcharge amount of electricity detected by the battery replacement detection unit. The degradation degree determination apparatus according to claim 2 or claim 3, wherein 前記蓄電池が鉛蓄電池であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の劣化度判定装置。   The deterioration determination apparatus according to any one of claims 1 to 5, wherein the storage battery is a lead storage battery.
JP2004190881A 2004-06-29 2004-06-29 Deterioration degree judging device Expired - Fee Related JP4548011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004190881A JP4548011B2 (en) 2004-06-29 2004-06-29 Deterioration degree judging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004190881A JP4548011B2 (en) 2004-06-29 2004-06-29 Deterioration degree judging device

Publications (2)

Publication Number Publication Date
JP2006010601A JP2006010601A (en) 2006-01-12
JP4548011B2 true JP4548011B2 (en) 2010-09-22

Family

ID=35778012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004190881A Expired - Fee Related JP4548011B2 (en) 2004-06-29 2004-06-29 Deterioration degree judging device

Country Status (1)

Country Link
JP (1) JP4548011B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2713433A1 (en) 2012-09-28 2014-04-02 Fujitsu Limited State evaluation apparatus of secondary battery, state evaluation method of secondary battery, and computer-readable medium storing state evaluation program of secondary battery

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797640B2 (en) * 2006-01-18 2011-10-19 トヨタ自動車株式会社 Secondary battery life estimation device
JP4442660B2 (en) 2007-08-10 2010-03-31 株式会社デンソー Vehicle system
JP5104191B2 (en) * 2007-10-18 2012-12-19 新神戸電機株式会社 battery
JP4763006B2 (en) * 2008-03-06 2011-08-31 古河電気工業株式会社 Battery state detection sensor device and battery state detection method
JP5277819B2 (en) * 2008-09-16 2013-08-28 パナソニック株式会社 Power storage device
KR101906928B1 (en) * 2012-02-08 2018-10-11 에스케이이노베이션 주식회사 State-Of-Health estimation method of a battery with respect to capacity
JP6642099B2 (en) * 2016-02-24 2020-02-05 株式会社Gsユアサ Energy storage element state estimation device and energy storage element state estimation method
JP7249155B2 (en) * 2018-09-20 2023-03-30 積水化学工業株式会社 Storage battery management device and storage battery management method
JP7286336B2 (en) * 2019-02-12 2023-06-05 一般財団法人電力中央研究所 Method for detecting signs of occurrence of dendrites in batteries
CN118318174A (en) * 2021-12-10 2024-07-09 古河电气工业株式会社 Lead storage battery system and degradation estimation method for lead storage battery
WO2023106301A1 (en) * 2021-12-10 2023-06-15 古河電気工業株式会社 Lead-acid battery system and lead-acid battery deterioration estimation method
WO2023218982A1 (en) * 2022-05-10 2023-11-16 ソニーグループ株式会社 Charging control device, mobile terminal device, charging control method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2713433A1 (en) 2012-09-28 2014-04-02 Fujitsu Limited State evaluation apparatus of secondary battery, state evaluation method of secondary battery, and computer-readable medium storing state evaluation program of secondary battery

Also Published As

Publication number Publication date
JP2006010601A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JP5070790B2 (en) Battery state detection system and automobile equipped with the same
JP5061907B2 (en) Battery state determination method and battery state determination device
JP5338807B2 (en) Battery state determination method and automobile
WO2007105595A1 (en) Battery state judging device
EP2378303A1 (en) Cell abnormality detection circuit and power supply device
JP4548011B2 (en) Deterioration degree judging device
JP6674139B2 (en) Vehicle and its battery state detection system
JP5644190B2 (en) Battery state estimation device and battery information notification device
JP4844044B2 (en) Battery state detection system and automobile equipped with the same
JP5163229B2 (en) Battery state detection system and automobile equipped with the same
JP4457781B2 (en) Deterioration degree estimation method and deterioration degree estimation apparatus
JP4670778B2 (en) Battery status notification method
JP2009241646A (en) Battery state determination system, and automobile having the system
JP2008074257A (en) Battery deterioration determination device
JP4702115B2 (en) Battery status judgment device
JP6604478B2 (en) Vehicle and its battery state detection system
JP2007261433A (en) Battery control device and battery control method
JP2005292035A (en) Method of detecting battery condition
JP4374982B2 (en) Storage battery deterioration determination device and storage battery provided with the same
JP4835355B2 (en) Battery deterioration judgment device
JP2007170953A (en) Deterioration determining device of secondary battery
JP4572518B2 (en) Battery status detection method
JP4770683B2 (en) Battery state determination device and lead battery for automobile
JP4442262B2 (en) Battery state detection device
JP4670256B2 (en) Battery status detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R150 Certificate of patent or registration of utility model

Ref document number: 4548011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees