JP2017207423A - エンコーダ装置、駆動装置、ステージ装置、及びロボット装置 - Google Patents

エンコーダ装置、駆動装置、ステージ装置、及びロボット装置 Download PDF

Info

Publication number
JP2017207423A
JP2017207423A JP2016101328A JP2016101328A JP2017207423A JP 2017207423 A JP2017207423 A JP 2017207423A JP 2016101328 A JP2016101328 A JP 2016101328A JP 2016101328 A JP2016101328 A JP 2016101328A JP 2017207423 A JP2017207423 A JP 2017207423A
Authority
JP
Japan
Prior art keywords
pattern
unit
detection unit
signal
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016101328A
Other languages
English (en)
Other versions
JP6786873B2 (ja
Inventor
桂 阿部
Katsura Abe
桂 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2016101328A priority Critical patent/JP6786873B2/ja
Publication of JP2017207423A publication Critical patent/JP2017207423A/ja
Application granted granted Critical
Publication of JP6786873B2 publication Critical patent/JP6786873B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Transform (AREA)

Abstract

【課題】エンコーダ装置の回転部と検出部とを高精度な位置関係で設置可能にする。【解決手段】エンコーダ装置は、測定対象の回転軸に固定され、回転軸を中心とする同心円状の複数のパターンが形成された回転部と、複数のパターンを介した光を検出する検出部と、検出部からの出力信号のレベルの変動に基づいて、回転部と検出部との位置精度を判定する算出部と、を備える。【選択図】図3

Description

本発明は、エンコーダ装置、駆動装置、ステージ装置、及びロボット装置に関する。
回転情報を検出するエンコーダ装置は、各種装置に搭載されている(例えば、下記の特許文献1参照)。エンコーダ装置は、例えば、測定対象の回転軸に固定され、所定のパターンを有する回転部と、所定のパターンを検出する検出部とを備える。
特開平09−061195号公報
エンコーダ装置は、例えば、回転部および検出部を各種装置に取り付ける際の取付誤差などによって、回転部と検出部との相対的な位置のずれが生じることがある。エンコーダ装置は、回転部と検出部とが高精度な位置関係で設置可能であることが望まれる。
本発明の第1の態様に従えば、測定対象の回転軸に固定され、回転軸を中心とする同心円状の複数のパターンが形成された回転部と、複数のパターンを介した光を検出する検出部と、検出部からの出力信号のレベルの変動に基づいて、回転部と検出部との位置精度を算出する算出部と、を備えるエンコーダ装置が提供される。
本発明の第2の態様に従えば、第1の態様のエンコーダ装置と、回転軸に駆動力を供給する駆動部と、を備える駆動装置が提供される。
本発明の第3の態様に従えば、移動物体と、移動物体を移動させる第2の態様の駆動装置と、を備えるステージ装置が提供される。
本発明の第4の態様に従えば、第2の態様の駆動装置を備えるロボット装置が提供される。
実施形態に係るエンコーダ装置を示す図である。 実施形態に係る回転部のパターンの一部および検出部を示す図である。 実施形態に係るエンコーダ装置を示すブロック図である。 実施形態に係る検出部からの出力信号の一例を示す図である。 実施形態に係る検出部からの出力信号の他の例を示す図である。 実施形態に係る算出部の動作の一例を示すフローチャートである。 実施形態に係る駆動装置を示す図である。 実施形態に係るステージ装置を示す図である。 実施形態に係るロボット装置を示す図である。
以下、図面を参照しながら、実施形態について説明する。図1は、実施形態に係るエンコーダ装置を示す図である。エンコーダ装置ECは、モータM(駆動部)の回転軸SFの回転情報(回転位置情報)を検出する。回転軸SFは、例えばモータMのシャフト(回転子)であるが、負荷に接続される作用軸(出力軸)でもよい。作用軸は、例えば、モータMのシャフトに変速機などの動力伝達部を介して接続される。エンコーダ装置ECが検出した回転情報は、モータMの制御部に供給される。この制御部は、エンコーダ装置ECから供給された回転情報を使って、回転軸SFの回転を制御する。
回転情報は、回転軸SFの回転の数を表す多回転情報、及び回転軸SFの1回転未満の角度位置(回転角)を表す角度位置情報を含む。多回転情報は、例えば、1回転、2回転というように回転の数を整数で表した情報でもよいし、360°、720°というように回転の数を角度(例、360°の整数倍)で表した情報でもよい。角度位置情報は、90°、120°、270°といった情報であり、回転情報は、例えば、1回転と90°(450°)というように、1回転未満の回転角と1回転以上の回転角とを区別可能な情報である。回転情報、多回転情報、及び角度位置情報の少なくとも一つは、例えば、その数値が2進数など(例、所定のビット数のデジタルデータ)で表されるが、その他の形式で表されてもよい。なお、回転情報、多回転情報、及び角度位置情報の少なくとも一つは、度(°)以外の次元(例、ラジアン)で表されてもよい。
エンコーダ装置ECは、回転部1と、照射部2と、検出部3と、信号処理部4とを備える。回転部1は、測定対象の回転軸SFに固定される。回転部1(図1(B)参照)には、回転軸SFを中心とする同心円状の複数のパターン5が形成されている。照射部2は、回転部1の複数のパターン5に光を照射する。検出部3は、複数のパターン5を介した光を検出する。例えば、エンコーダ装置ECは、反射型であり、検出部3は、複数のパターン5のそれぞれで反射した光を検出する。エンコーダ装置ECは透過型でもよく、この場合、検出部3は、複数のパターン5のそれぞれを透過した光を検出してもよい。信号処理部4は、検出部3による検出結果(検出部3からの出力信号)を処理し、回転部1の回転情報を検出(算出)する。
信号処理部4には、算出部6(後に図3に示す)が設けられる。算出部6は、検出部3からの出力信号のレベルの変動に基づいて、回転部1と検出部3との位置精度を算出する。算出部6が算出した位置精度は、例えば、回転部1と検出部3とを測定対象のモータ等に取り付けた際の位置精度が許容範囲内であるか否かの判定に用いられる。例えば、ユーザは、算出部6が算出した位置精度を用いて、回転部1と検出部3との相対位置を調整することができる。例えば、算出部6が算出した位置精度を用いた回転部1と検出部3との相対位置の調整によって、エンコーダ装置ECは、回転部と検出部とを高精度な位置精度で設置可能である。以下、エンコーダ装置ECの各部について説明する。
図1(B)は、回転部1を示す図である。回転部1は、例えば円板状の部材である。回転部1の複数のパターン5は、例えば同一の部材に形成され、互いの位置関係が変化しないように設けられる。複数のパターン5は、例えば、インクリメンタルパターン5a(インクリメンタルスケール)、及びアブソリュートパターン5b(アブソリュートスケール)を含む。インクリメンタルパターン5a(以下、INCパターン5aと略記する)、及びアブソリュートパターン5b(以下、ABSパターン5bと略記する)は、回転軸SFの角度位置情報の検出に用いられる。
INCパターン5aおよびABSパターン5bは、それぞれ、円環状である。INCパターン5aおよびABSパターン5bは、それぞれの中心が一致するように配置される。例えば、回転部1は、円板状の部材であり、INCパターン5aの中心およびABSパターン5bの中心は、回転部1の回転対称軸上に配置される。INCパターン5aは、例えば、ABSパターン5bの外側に配置される。
また、複数のパターン5は、第1パターン5c、及び第2パターン5dを含む。第1パターン5cおよび第2パターン5dは、多回転情報の検出に用いられる。第1パターン5cおよび第2パターンは、それぞれ、円環状である。第1パターン5cおよび第2パターン5dは、それぞれの中心が一致するように配置される。例えば、第1パターン5cの中心および第2パターン5dの中心は、回転部1の回転対称軸上に配置される。
第1パターン5cは、INCパターン5aの隣に配置される。第1パターン5cは、例えば、回転部1の径方向において、INCパターン5aの外側に配置される。第1パターン5cは、例えば、INCパターン5aに関して、ABSパターン5bと反対側に配置される。第2パターン5dは、ABSパターン5bの隣に配置される。第2パターン5dは、例えば、回転部1の径方向において、ABSパターン5bの内側に配置される。第2パターン5dは、例えば、ABSパターン5bに関して、INCパターン5aと反対側に配置される。
第1パターン5cおよび第2パターン5dは、それぞれ、回転部1の周方向において光学特性が変化する。ここで、パターンの光学特性とは、光の反射又は透過に関するパターンの特性をいい、例えば、反射率、吸収率、透過率などが挙げられる。例えば、第1パターン5cは、回転部1の周方向に並ぶ反射部7および吸収部8を備える。反射部7は、吸収部8と比較して、照射部2からの光に対する反射率(光学特性)が高い。吸収部8は、反射部7と比較して、照射部2からの光に対する吸収率(光学特性)が高い。反射部7および吸収部8は、例えば、それぞれ回転部1の周方向において約180°の範囲にわたって配置される。例えば、反射部7と吸収部8とは、回転部1の周方向における角度位置が180°ずれて配置され、回転部1の周方向において連続的に配置される。反射部7は、例えば、回転部1の周方向において、光学特性(例、反射率、吸収率、透過率)が均一である。吸収部8は、例えば、回転部1の周方向において、光学特性(例、反射率、吸収率、透過率)が均一である。例えば、第1パターン5cは、回転部1の周方向において、反射部7と吸収部8との境界あるいはその近傍で光学特性が切替わる(例、明暗が切替わる)。
第2パターン5dは、第1パターン5cと同様の構造であり、反射部9および吸収部10を備える。第2パターン5dは、回転部1の周方向で第1パターン5cと異なる位相で光学特性が切り替わる。例えば、回転部1の周方向において、第2パターン5dの反射部9の角度位置は、第1パターン5cの反射部9の角度位置と90°ずれており、光学特性が切り替わる位相は第1パターン5cと第2パターン5dとで90°ずれている。
図2は、実施形態に係る回転部のパターンの一部、照射部および検出部を示す図である。照射部2は、例えば、LED(発光ダイオード)、LD(レーザーダイオード)などの固体光源を含む。照射部2は、例えば、支持部材11に取り付けられている。支持部材11は、照射部2からの光がパターン5に入射するように、エンコーダ装置ECが搭載される装置(例、駆動装置)に取り付けられる。支持部材11は、エンコーダ装置ECの筐体の一部であってもよい。
検出部3は、例えば、照射部2と所定の位置関係となるように、支持部材11に取り付けられる。例えば、照射部2および検出部3は、双方が同じ部材(支持部材11)に固定されることで、ユニット化される。検出部3は、例えば、検出部3aから検出部3dを含む。検出部3aから検出部3dは、それぞれ、フォトダイオードなどの光検出器(光電変換素子)を含み、入射した光の光量に応じたレベルの信号(例、電圧波形)を出力する。ここで信号のレベルとは、信号の強さ、大きさ、又は振幅を意味し、例えば、電圧や電流の大きさで表される。検出部3aから検出部3dは、それぞれ、複数のパターン5のいずれかに対応して設けられる。検出部3aから検出部3dは、それぞれ、対応するパターンを経由した光が入射する位置に配置されるが、図2(A)では、説明の便宜上、対応関係にあるパターンと検出部とを重ねて図示した。
検出部3aは、INCパターン5aを経由した光を検出する。INCパターン5aは、例えば、図2(B)に示すように4種類の要素(12aから12d)を含む。要素12a、要素12b、要素12c、及び要素12dは、回転部1の周方向において繰り返し(周期的に)配置されている。要素12aからの光を検出した検出結果および要素12cからの光を検出した検出結果は、例えば、差動回路を経てINCパターン5aに関するA相信号に利用される。要素12bからの光を検出した検出結果および要素12dからの光を検出した検出結果は、例えば、差動回路を経てINCパターン5aに関するB相信号に利用される。また、検出部3aの出力信号は、例えば、複数のパターン5に照射される光の光量を調整することに利用される(後に図3を参照して説明する)。
検出部3bは、ABSパターン5bを経由した光を検出する。上述の検出部3aの出力信号は、例えば、ABSパターン5bからの光を検出した検出結果に対応する出力信号のレベルの基準を定めることに利用される。例えば、信号処理部4は、検出部3aの出力信号(A相信号およびB相信号)を所定の期間(例、1周期)にわたって積算した値を、ABSパターン5bに対応する出力信号の基準電位として用いられる。
検出部3cは、第1パターン5cを経由した光を検出する。検出部3dは、第2パターン5dを経由した光を検出する。第2パターン5dは、光学特性が切り替わる位相が第1パターン5cと異なる。検出部3cの出力信号と検出部3dの出力信号とのうち、一方の出力信号は多回転情報を検出する際のA相信号に利用され、他方の出力信号は多回転情報を検出する際のB相信号に利用される。ここでは、INCパターン5aの隣に配置される第1パターン5cに関する検出部3cの出力信号がB相信号に利用され、ABSパターン5bの隣に配置される第2パターン5dに関する検出部3dの出力信号がA相信号に利用されるものとする。
図3は、実施形態に係るエンコーダ装置を示すブロック図である。図3において、「INC−A」は、検出部3aがINCパターン5aの要素12aおよび要素12cを検出した検出結果に相当する信号(例、INCパターン5aに関するA相信号)であり、以下、INC−A信号と称する。また、「INC−B」は、検出部3aがINCパターン5aの要素12bおよび要素12dを検出した検出結果に相当する信号(例、INCパターン5aに関するB相信号)であり、以下、INC−B信号と称する。また、「ABS」は、検出部3bがABSパターン5bを検出した検出結果に相当する信号であり、以下、ABS信号と称する。また、「MT−A」は、検出部3cが第1パターン5cを検出した検出結果に相当する信号(例、多回転情報用のA相信号)であり、以下、MT−A信号と称する。また、「MT−B」は、検出部3dが第2パターン5dを検出した検出結果に相当する信号(例、多回転情報用のB相信号)であり、以下、MT−B信号と称する。
信号処理部4は、例えば、増幅回路部15、A/Dコンバータ16、増幅回路部17、二値化回路部18、処理回路部19、I/F回路部20、及び光量調整部22を備える。増幅回路部15には、例えば、検出部3aからアナログ形式のINC−A信号、アナログ形式のINC−B信号が入力される。増幅回路部15は、INC−A信号、INC−B信号をそれぞれ増幅する。増幅回路部15は、増幅されたINC−A信号、INC−B信号をそれぞれA/Dコンバータ16に出力する。A/Dコンバータ16(アナログデジタルコンバータ)は、INC−A信号およびINC−B信号をそれぞれアナログ形式からデジタル形式に変換する。A/Dコンバータ16は、デジタル形式のINC−A信号、デジタル形式のINC−B信号をそれぞれ処理回路部19に出力する。
増幅回路部17には、例えば、検出部3c、検出部3dからアナログ形式のMT−A信号、アナログ形式のMT−B信号が入力される。増幅回路部17は、MT−A信号、MT−B信号をそれぞれ増幅する。増幅回路部17は、増幅されたMT−A信号、MT−B信号をそれぞれ二値化回路部18に出力する。二値化回路部18は、例えば比較器(例、アナログコンパレータ)であり、MT−A信号のレベルを閾値と比較して、MT−A信号を二値化する。例えば、二値化回路部18は、アナログ形式のMT−B信号を、信号のレベル(例、電位)がハイレベル(H)とローレベル(L)とで二値的に切替わる信号へ変換する。同様に、二値化回路部18は、MT−B信号のレベルを閾値と比較して、MT−B信号を二値化する。二値化回路部18は、二値化したMT−A信号、二値化したMT−B信号をそれぞれ処理回路部19に出力する。
光量調整部22は、複数のパターン5(図1参照)に照射される光の光量を調整する光量調整処理を行う。例えば、照射部2は、複数のパターン5に照射する光の光量が経年劣化によって変化する場合がある。光量調整部22は、照射部2から照射される光の光量の変化を補償する(例、一定に保つ、所定値に近づける)ように、照射部2に供給される電力を調整する。光量調整部22は、例えば、INC−A信号を所定の期間にわたって積算した値と、INC−B信号を所定の期間にわたって積算した値とを加えた合算値が所定値に近づくように、照射部2に供給される電力を調整する。例えば、複数のパターン5に照射する光の光量が減少した場合、INC−A信号のレベルおよびINC−B信号のレベルが低下することで上記の合算値が低下し、光量調整部22は、上記の合算値に基づいて照射部2へ供給される電力を増加させる。光量調整部22は、例えば、増幅回路部15と電気的に接続され、増幅回路部15から出力されるアナログ形式のINC−A信号およびINC−B信号を用いて、上記の光量調整処理を行う。なお、光量調整部22は、増幅回路部15が増幅する前のINC−A信号およびINC−B信号を用いて、上記の光量調整処理を行ってもよい。
なお、光量調整部22は、A/Dコンバータ16がデジタル形式に変換したINC−A信号およびINC−B信号を用いて、光量調整処理を行ってもよい。例えば、光量調整部22は、処理回路部19に設けられ、デジタル形式のINC−A信号およびINC−B信号を用いて、照射部2から照射される光の光量の変化を補償するように、照射部2に供給される電力の調整量を算出してもよい。また、光量調整部22は、算出した調整量に基づいて、照射部2に電力を供給する電源系を制御してもよい。なお、光量調整部22は、処理回路部19以外に設けられてもよい。
処理回路部19は、例えば、回転情報算出部21、及び算出部6(位置精度算出部)を備える。回転情報算出部21は、例えば、ABS信号を使って第1分解能の角度位置(角度位置情報)を検出する。また、回転情報算出部21は、INC信号(INC−A信号およびINC−B信号)を使って、第1分解能の角度位置に内挿演算を行うことにより、第1分解能よりも高い第2分解能の角度位置(角度位置情報)を検出する。また、回転情報算出部21は、例えば、MT−A信号およびMT−B信号を使って回転軸SFの回転の数(多回転情報)を検出する。回転情報算出部21は、例えば、第2分解能の角度位置情報と多回転情報とを合成して、回転情報を生成する。回転情報は、例えば、固定データ長のデジタルデータで表される。処理回路部19は、回転情報をI/F回路部20(インターフェース回路部)に出力する。I/F回路部20は、例えば出力部であり、回転情報をエンコーダ装置ECの外部(例、図1のモータMの制御部)へ出力する。
算出部6は、検出部3からの出力信号のレベルの変動に基づいて、回転部1と検出部3との位置精度を算出する。以下、予め定められた回転部1と検出部3との相対位置を、適宜、設計位置という。設計位置は、例えば、使用状態において推奨される回転部1と検出部3との相対位置である。回転部1と検出部3との相対位置が取付誤差などによって設計位置からずれている場合や、使用しているうちに回転部1と検出部3との相対位置がずれてきた場合、検出部3に入射する検出対象の光の光量、あるいは検出部3に入射する検出対象以外の光(例、迷光)の光量が変化する。上記の検出対象の光は、例えば、検出部に対して、この検出部と対応関係にあるパターン(例えば、検出部が検出部3aの場合、INCパターン5a)から入射する光である。また、上記の検出対象以外の光は、例えば、検出部に対して、この検出部と対応関係にないパターン(例えば、検出部が検出部3aの場合、第1パターン5c)から入射する光である。かかる光量の変化により、検出部からの出力信号のレベルが変動するので、算出部6は、当該レベルの変動に基づいて、回転部1の径方向における回転部1と検出部3との相対位置のずれの有無や大きさを算出することができる。算出部は、算出した位置精度を指標値として数値化してもよい。さらに、算出部は、当該指標値が所定の閾値の範囲に入るか否かを判断し、位置のずれが許容できるものか、取り付け直すことが必要か判定してもよい。当該判定は、算出部とは別に設けられた判定部で行ってもよく、かかる判定部は、エンコーダ装置ECの内部に配置しても、外部に配置してもよい。
図4は、実施形態に係る検出部からの出力信号の一例を示す図である。図4において、横軸は、回転軸SFの角度位置であり、縦軸は各出力信号のレベル(電圧の大きさ)である。図4(A)は、回転部1と検出部3との位置精度が高い状態である。この状態は、例えば、回転部1と検出部3との相対位置と設計位置とのずれ量が所定値以下の状態である。例えば、回転部1と検出部3との相対位置が設計位置と同じである場合、図4(A)に示すように、INC信号の振幅は各角度位置でほぼ同じになる。
図4(B)は、回転部1と検出部3との位置精度が低い状態である。この状態は、例えば、回転部1(図1(B)参照)の径方向において回転部1と検出部3との相対位置が所定の向きにずれた状態である。この状態は、例えば図1(B)の場合、回転部1に対して検出部3が回転部1の中心から離れる向き(図1(B)中、上方向)にずれた状態である。この状態は、例えば、複数のパターン5の配置面(回転部1の表面)に平行な面方向において、設計位置を基準として検出部3aが第1パターン5cに接近した状態である。
INCパターン5a(図1(B)参照)の隣には、例えば、多回転情報用のB相信号に対応する第1パターン5cが配置される。図4(B)の状態は、例えば、INCパターン5aに対応する検出部3aに対して、INCパターン5aからの反射光(検出対象の光)に加えて、第1パターン5cからの反射光(検出対象以外の光、迷光)が入射する。この場合、第1パターン5cから検出部3aに入射する光の光量は、例えば、第1パターン5cの光学特性の変化に応じて、変化する。算出部6は、例えば、第1パターン5cの光学特性が切り替わる前の期間T1と後の期間T2とで検出部3aの出力信号のレベルを比較して、位置精度を算出する。
例えば、第1パターン5cの光学特性が切り替わる前の期間T1は、検出部3cの下を、第1パターン5cの吸収部8が通過するため、MT−B信号のレベルがローレベルである期間(角度位置が0°から180°の範囲)に対応する。例えば、第1パターン5cの光学特性が切り替わる後の期間T2は、検出部3cの下を、第1パターン5cの反射部7が通過するため、MT−B信号のレベルがハイレベルである期間(角度位置が180°から360°の範囲)に対応する。MT−B信号がハイレベルになる期間(T2)は、検出部3aも、第1パターン5cの反射部7からの迷光を検出するため、ローレベルになる期間(T1)と比べて、INC信号(INC−A信号、INC−B信号)の振幅が大きくなる。
算出部6は、例えば、MT−B信号がローレベルになる期間(T1)の少なくとも一部におけるINC信号の振幅の平均値V1を算出する。また、算出部6は、例えば、MT−B信号がハイレベルになる期間(T2)の少なくとも一部におけるINC信号の振幅の平均値V2を算出する。算出部6は、例えば、平均値V1と平均値V2とを比較して、位置精度を算出する。算出部6は、平均値V1と平均値V2との差を求めて指標値とし、当該指標値が所定の閾値と比較して、位置精度が許容範囲内であるか否かを判定してもよい。なお、当該判定は、エンコーダ装置ECの内部又は外部に算出部とは別に設けた判定部が行ってもよい。この閾値は、例えば、回転部1と検出部3との相対位置のずれ量が許容される上限である場合の平均値V1と平均値V2と差を予め測定した値でもよい。算出部6は、平均値V1と平均値V2との差が上記の閾値以下である場合に、位置精度が許容範囲内であると判定してもよい。
また、算出部6が算出する指標値は、上述のとおり平均値V1と平均値V2との差分値でもよいし、平均値V1と平均値V2との差分値を階調で表した値(例、0、1、2・・・)でもよいし、平均値V1と平均値V2との差から算出される値(例、ずれ量に相当する長さへ換算した値)でもよい。例えば、設計位置からの相対位置のずれ量と、上記指標値との関係を示す参照情報(例、数式、テーブルデータ)が記憶部(図示せず)に予め記憶されており、算出部6は、検出部3aの検出結果から算出される指標値を上記の参照情報と照合し、ずれ量を算出してもよい。この参照情報は、例えば、測定あるいはシミュレーションを用いて予め求めた情報でもよい。
算出部6は、例えば、MT−B信号のレベルがハイレベルとローレベルとで切り替わったことを、INC信号の振幅の算出を開始あるいは停止するトリガーに用いて、上記の平均値V1あるいは平均値V2を算出してもよい。例えば、算出部6は、MT−B信号がローレベルからハイレベルに立ち上がった時点(図4(B)の角度位置180°)、あるいはこの時点から所定の時間経過した時点で、平均値V2の算出に用いられるINC信号の振幅の算出を開始してもよい。また、算出部6は、MT−B信号がハイレベルからローレベルに立ち下がった時点(図4(B)の角度位置0、360°)で、平均値V2の算出に用いられるINC信号の振幅の算出を終了してもよい。平均値V1の算出についても同様に、算出部6は、INC信号の振幅の算出を開始あるいは終了するタイミングとして、MT−B信号が立ち上がるタイミング、あるいは立ち下がるタイミングを利用してもよい。
また、算出部6は、例えば、MT−A信号のレベルがハイレベルとローレベルとで切り替わったことをINC信号の振幅の算出を開始あるいは停止のトリガーに用いて、上記の平均値V1あるいは平均値V2を算出してもよい。例えば、MT−A信号のレベルがハイレベルとローレベルとで切り替わった際(図4(B)で角度位置90°、270°)に、MT−B信号のレベルはハイレベルまたはローレベルを維持した状態である。算出部6は、例えば、MT−A信号のレベルがローレベルからハイレベルに立ち上がった時点(図4(B)の角度位置90°)でINC信号の振幅の算出を開始して平均値V1を算出してもよい。平均値V2の算出についても同様に、算出部6は、INC信号の振幅の算出を開始あるいは停止するタイミングとして、MT−A信号が立ち下がるタイミングを利用してもよい。
図5は、実施形態に係る検出部からの出力信号の他の例を示す図である。図5において、横軸は、回転軸SFの角度位置であり、縦軸は各出力信号のレベル(例、電圧や電流の大きさ)である。なお、ABSパターン5bがランダムパターン(例、M系列コード)である場合、ABS信号のレベルは角度位置によって異なるが、図5ではABS信号をピークとバリュー(電圧)の包絡線を用いて概念的に図示した。例えば、図5のABS信号に関する縦軸は、回転部1と検出部3との相対位置が設計位置と同じである場合のABS信号を基準として、ABS信号を規格化した値でもよい。
図5(A)は、回転部1と検出部3との位置精度が高い状態である。例えば、回転部1と検出部3との相対位置が設計位置と同じである場合、図5(A)に示すように、ABS信号の振幅は各角度位置でほぼ同じになる。図5(B)は、回転部1と検出部3との位置精度が低い状態である。この状態は、例えば、回転部1(図1(B)参照)の径方向において回転部1と検出部3との相対位置が図4(B)の状態と反対向きにずれた状態である。この状態は、例えば図1(B)の場合、回転部1に対して検出部3が回転部1の中心へ近づく向き(図1(B)中、下方向)にずれた状態である。この状態は、例えば、複数のパターン5の配置面(回転部1の表面)に平行な面方向において、設計位置を基準として検出部3bが第2パターン5dに接近した状態である。
ABSパターン5b(図1(B)参照)の隣には、例えば、多回転情報用のA相信号に対応する第2パターン5dが配置される。図5(B)の状態では、例えば、ABSパターン5bに対応する検出部3bに対して、ABSパターン5bからの反射光に加えて、第2パターン5dからの反射光(検出対象以外の光、迷光)が入射する。この場合、第2パターン5dから検出部3bに入射する光の光量は、例えば、第2パターン5dの光学特性の変化に応じて、変化する。算出部6は、例えば、第2パターン5dの光学特性が切り替わる前の期間T3と後の期間T4とで検出部3bの出力信号のレベルを比較して、位置精度を算出する。例えば、図5(B)に示される期間T3は、MT−A信号のレベルがローレベルである期間(角度位置が0°から90°、270°から360°の範囲)に対応する。期間T4は、MT−A信号のレベルがハイレベルである期間(角度位置が90°から270°の範囲)に対応する。例えば、MT−A信号がハイレベルになる期間(T4)は、検出部3dの下を、第2パターン5dの反射部9が通過する期間であり、検出部3bも、第2パターン5dの反射部9からの迷光を検出する。したがって、期間(T4)では、MT−A信号がローレベルになる期間(T3)と比べて、ABS信号の振幅が大きくなる。
算出部6は、例えば、MT−A信号がローレベルになる期間(T3)の少なくとも一部におけるABS信号の振幅の平均値V3を算出する。また、算出部6は、例えば、MT−B信号がハイレベルになる期間(T4)の少なくとも一部におけるABS信号の振幅の平均値V4を算出する。算出部6は、例えば、平均値V3と平均値V4とを比較して、位置精度を算出する。算出部6は、図4を用いて説明したのと同様に、例えば、算出部6は、平均値V3と平均値V4との差を指標値として求め、当該指標値を所定の閾値と比較して、位置精度が許容範囲内であるか否かを判定してもよい。なお、当該判定は、エンコーダ装置ECの内部又は外部に算出部と別に設けた判定部が行ってもよい。
また、算出部6は、例えば、MT−A信号のレベルがハイレベルとローレベルとで切り替わったことを、ABS信号の振幅の算出を開始または停止するトリガーに用いて、上記の平均値V3あるいは平均値V4を算出してもよい。また、算出部6は、例えば、MT−B信号のレベルがハイレベルとローレベルとで切り替わったことを、ABS信号の振幅の算出を開始するトリガーに用いて、上記の平均値V3あるいは平均値V4を算出してもよい。
なお、ABS信号の基準電位を定める上でINC−A信号およびINC−B信号が用いられる場合、図4(B)に示したようにINC信号の振幅が変化すると、ABS信号の基準電位が変化することで、ABS信号のレベルが変化する。算出部6は、このようなABS信号のレベルの変化を位置精度の算出に用いてもよい。
算出部6は、例えば、ユーザーからの指令に基づいて上述の位置精度の算出処理を実行する。例えば、算出部6は、エンコーダ装置ECが駆動装置などに取り付けられる際に、位置精度の算出処理を行う。算出部6は、算出した位置精度が所定の閾値の範囲内であるか否か判断することによって、ずれ量が許容範囲内か否かの情報(位置精度情報、取付精度情報)をI/F回路部20に出力する。I/F回路部20は、例えば、位置精度情報を報知部(図示せず)に出力する。この報知部は、算出部6が算出した位置精度情報を音、光、あるいは画像などによってユーザに報知する。
例えば、報知部は、位置精度が許容範囲内である場合に、第1の色の光(例、青)を発するランプなどを点灯させてもよい。また、報知部は、位置精度が許容範囲外である場合に、第1の色と異なる第2の色の光(例、赤)を発するランプなどを点灯させてもよい。このような報知部は、エンコーダ装置ECが備えてもよいし、エンコーダ装置ECの外部に備えられてもよい。
本実施形態において、例えばユーザは、算出部6が算出した位置精度に応じて、適宜、回転部1と検出部3との相対位置を調整することができる。実施形態に係るエンコーダ装置は、検出部からの出力信号のレベルの変動に基づいて、回転部と検出部との位置精度を算出するので、例えば、シンプルな装置構成で位置精度を算出することができる。
なお、算出部6が位置精度の算出処理を実行する時期は、エンコーダ装置ECの設置時でなくてもよく、例えば、定期または不定期のメンテナンス時であってもよいし、回転軸SFが任意の時間だけ駆動された時期などでもよい。例えば、算出部6は、回転部1と検出部3との相対位置の経年変化に伴う位置精度の変化を算出してもよい。
図6は、実施形態に係る算出部の動作の一例を示すフローチャートである。ステップS1において、算出部6は、MT−B信号の立上り前(立下り後)の期間におけるINC信号の振幅(図4(B)の平均値V1)を算出する。ステップS2において、算出部6は、MT−B信号の立上り後(立下り前)の期間におけるINC信号の振幅(図4(B)の平均値V2)を算出する。ステップS3において、算出部6は、ステップS1で算出した振幅とステップS2で算出した振幅との差を指標値として求め、当該指標値が閾値以下であるか否かを判定する。算出部6は、振幅の差が閾値を超えると判定した場合(ステップS3;No)、回転部1と検出部3との相対位置が第1側(所定の向き)にずれている旨の位置精度情報を出力する。
算出部6は、振幅の差が閾値以下であると判定した場合(ステップS3;Yes)、ステップS5の処理を行う。ステップS5において、算出部6は、MT−A信号の立上り前(立下り後)の期間におけるABS信号の振幅(図5(B)の平均値V3)を算出する。ステップS6において、算出部6は、MT−A信号の立上り後(立下り前)の期間におけるABS信号の振幅(図5(B)の平均値V4)を算出する。ステップS7において、算出部6は、ステップS5で算出した振幅とステップS6で算出した振幅との差を指標値として求め、当該指標値が閾値以下であるか否かを判定する。算出部6は、振幅の差が閾値を超えると判定した場合(ステップS7;No)、回転部1と検出部3との相対位置が第2側(所定の向きと反対向き)にずれている旨の位置精度情報を出力する。
算出部6は、指標値が閾値以下であると判定した場合(ステップS7;Yes)、ステップS9において回転部1と検出部3との相対位置と設計位置とのずれが許容される旨の取り付け情報を出力する。なお、算出部6は、ステップS9の処理を行わなくてもよい。例えば、ユーザは、ステップS4の位置精度情報およびステップS8の位置精度情報が出力されないことにより、位置精度が許容範囲内であることを知ることができる。
なお、回転部1は、複数のパターン5の少なくとも1つのパターンが他のパターンと異なる部材に設けられるものでもよい。例えば、回転部1は、1つのパターンが設けられた部材と他のパターンが設けられた部材とが接合などにより固定(一体化、ユニット化)されたものでもよい。また、エンコーダ装置ECは、第1パターン5cおよび第2パターン5dを多回転情報の検出に用いなくてもよい。例えば、エンコーダ装置ECは、磁気式エンコーダあるいはダブルエンコーダ等によって多回転情報を検出し、第1パターン5cおよび第2パターン5dを位置精度の検出のみに用いてもよい。この場合、検出部3cおよび検出部3dは、省略可能である。エンコーダ装置ECは、第1パターン5cおよび第2パターンを多回転情報の検出および位置精度の検出の双方に用いる場合、例えば、多回転情報を別に検出する場合と比較して、装置構成をシンプルにすることができる。
なお、第1パターン5cと第2パターン5dとの少なくとも一方は、回転部1の周方向において光学特性が3以上の段階に切り替わるものでもよいし、回転部1の周方向において光学特性が連続的に変化するものでもよい。また、エンコーダ装置ECは、第1パターン5cと第2パターン5dとの少なくとも一方を備えなくてもよい。例えば、照射部2と複数のパターン5との位置ずれによって各パターン(例、INCパターン5a)に入射する光の光量が変化する場合、このパターン(例、INCパターン5a)を介して検出部(例、検出部3a)に入射する光の光量が変化し、算出部6は、このような光量の変化に基づいて位置精度を算出してもよい。
また、図1(B)に示すエンコーダ装置ECでは、内側から、第2パターン5d、ABSパターン5b、INCパターン5a、及び第1パターン5cの順に並んでいるが、各パターンの順序はこれと異なってもよい。パターンの順序と、検出部に入射する光の光量の変化に応じて、回転部1と検出部3がどの方向にずれたのか判断することができる。
なお、エンコーダ装置ECは、回転部1と検出部3との相対位置について、所定の向きに関する位置精度、又は所定の向きの反対向きに関する位置精度を算出しなくてもよい。例えば、算出部6は、図6のステップS5からステップS8の処理を行わなくてもよく、ステップS3において振幅の差が閾値以下であると判定した場合(ステップS3;Yes)にステップS9の処理を行ってもよい。例えば、ユーザは、エンコーダ装置ECを駆動装置などに取り付ける際に、回転部1と検出部3との相対位置を設計位置に対して所定の向きにずらして仮止めしておき、ステップS4の位置精度情報が出力されなくなるまで、所定の向きと反対向きに相対位置を調整することで、エンコーダ装置ECを高精度に取り付けることができる、同様に、算出部6は、図6のステップS1からステップS4の処理を行わなくてもよい。
なお、算出部6は、回転部1と検出部3との位置精度が許容範囲内であるか否かの判定を行わなくてもよい。例えば、算出部6は、位置精度のレベルを示す位置精度情報(例、数値)を算出し、ユーザあるいはエンコーダ装置ECの外部の装置は、エンコーダ装置ECから出力される位置精度情報を用いて、位置精度が許容範囲内であるか否かの判定を行ってもよい。
なお、信号処理部4は、例えば回路(ハードウェア)によって各種処理を実行するが、各種処理の少なくとも一部をソフトウェアによって実行するものでもよい。例えば、信号処理部4は汎用のプロセッサを備え、このプロセッサは、プログラムに従って、回転情報の算出処理および位置精度の算出処理の少なくとも一部を実行してもよい。
[駆動装置]
次に、実施形態に係る駆動装置について説明する。図7は、実施形態に係る駆動装置MTRの一例を示す図である。以下の説明において、上記した実施形態と同一または同等の構成部分については、適宜、同一符号を付けて説明を省略または簡略化する。この駆動装置MTRは、電動モータを含むモータ装置である。駆動装置MTRは、回転軸SFと、回転軸SFに回転軸に駆動力を供給する駆動部BD(動力供給部、本体部)と、回転軸SFの回転情報を検出するエンコーダ装置ECと、制御部MCとを備える。駆動部BDは、回転軸SFを回転駆動する。
回転軸SFは、負荷側端部SFaと、反負荷側端部SFbとを有する。負荷側端部SFaは、減速機など他の動力伝達機構に接続される。反負荷側端部SFbには、固定部を介してスケールS(回転部)が固定される。エンコーダ装置ECは、スケールSの固定とともに、駆動装置MTRに実装(搭載)される。エンコーダ装置ECは、上述した実施形態に係るエンコーダ装置ECである。制御部MCは、エンコーダ装置ECの検出結果を使って、駆動部BDを制御する。駆動装置MTRは、例えば、エンコーダ装置ECを高精度な位置精度で取付可能であるので、回転軸SFの回転情報を高精度に検出することができ、回転軸SFの回転を高精度に制御することができる。なお、駆動装置MTRは、モータ装置に限定されず、油圧や空圧を利用して回転する軸部を有する他の駆動装置であってもよい。
[ステージ装置]
次に、実施形態にステージ装置について説明する。図8は、ステージ装置STGの一例を示す図である。このステージ装置STGは、図7に示した駆動装置MTRの回転軸SFのうち負荷側端部SFaに、回転テーブル(移動物体)TBを取り付けた構成である。以下の説明において、上記した実施形態と同一または同等の構成部分については、適宜、同一符号を付けて説明を省略または簡略化する。
ステージ装置STGは、駆動装置MTRを駆動して回転軸SFを回転させ、この回転が回転テーブルTBに伝達される。その際、エンコーダ装置ECは、回転軸SFの回転情報を検出する。ステージ装置STGは、例えば、エンコーダ装置ECからの出力を用いることにより、回転テーブルTBの角度位置を検出することができる。なお、駆動装置MTRの負荷側端部SFaと回転テーブルTBとの間に減速機等が配置されてもよい。ステージ装置STGは、例えば、駆動装置MTRにおいてエンコーダ装置ECを高精度な位置精度で取付可能であるので、回転軸SFの回転情報を高精度に検出することができ、回転テーブルTBの角度位置を高精度に制御することができる。なお、ステージ装置STGは、例えば、旋盤等の工作機械に備える回転テーブル等に適用できる。
[ロボット装置]
次に、ロボット装置について説明する。図9は、ロボット装置RBTの一例を示す斜視図である。なお、図9には、ロボット装置RBTの一部(関節部分)を模式的に示した。以下の説明において、上記した実施形態と同一または同等の構成部分については、適宜、同一符号を付けて説明を省略または簡略化する。このロボット装置RBTは、第1アームAR1と、第2アームAR2と、関節部JTとを有している。第1アームAR1は、関節部JTを介して、第2アームAR2と接続されている。
第1アームAR1は、腕部101、軸受101a、及び軸受101bを備えている。第2アームAR2は、腕部102および接続部102aを有する。接続部102aは、関節部JTにおいて、軸受101aと軸受101bの間に配置されている。接続部102aは、回転軸SF2と一体的に設けられている。回転軸SF2は、関節部JTにおいて、軸受101aと軸受101bの両方に挿入されている。回転軸SF2のうち軸受101bに挿入される側の端部は、軸受101bを貫通して減速機RGに接続されている。
減速機RGは、駆動装置MTRに接続されており、駆動装置MTRからの回転を例えば100分の1等に減速して回転軸SF2に伝達する。駆動装置MTRの回転軸SF(図9には図示せず、図7参照)のうち負荷側端部SFaは、減速機RGに接続されている。また、駆動装置MTRの回転軸SFのうち反負荷側端部SFbには、エンコーダ装置ECのスケールSが取り付けられている。
ロボット装置RBTは、駆動装置MTRを駆動して回転軸SFを回転させ、この回転が減速機RGを介して回転軸SF2に伝達される。回転軸SF2の回転により接続部102aが一体的に回転し、これにより第2アームAR2が、第1アームAR1に対して回転する。その際、エンコーダ装置ECは、回転軸SFの角度位置等を検出する。ロボット装置RBTは、エンコーダ装置ECからの出力を用いることにより、例えば、第2アームAR2の角度位置を検出することができる。ロボット装置RBTは、例えば、駆動装置MTRにおいてエンコーダ装置ECを高精度な位置精度で取付可能であるので、回転軸SFの回転情報を高精度に検出することができ、第2アームAR2の位置を高精度に制御することができる。なお、ロボット装置RBTは、上記の構成に限定されず、駆動装置MTRは、関節を備える各種ロボット装置に適用できる。
なお、本発明の技術範囲は、上述の実施形態などで説明した態様に限定されるものではない。上述の実施形態などで説明した要件の1つ以上は、省略されることがある。また、上述の実施形態などで説明した要件は、適宜組み合わせることができる。また、法令で許容される限りにおいて、上述の実施形態などで引用した全ての文献の開示を援用して本文の記載の一部とする。
1・・・回転部、3・・・検出部、5・・・複数のパターン、5a・・・インクリメンタルパターン、5b・・・アブソリュートパターン、5c・・・第1パターン、5d・・・第2パターン、6・・・算出部、22・・・光量調整部、BD・・・駆動部、EC・・・エンコーダ装置、RBT・・・ロボット装置、STG・・・ステージ装置

Claims (14)

  1. 測定対象の回転軸に固定され、前記回転軸を中心とする同心円状の複数のパターンが形成された回転部と、
    前記複数のパターンを介した光を検出する検出部と、
    前記検出部からの出力信号のレベルの変動に基づいて、前記回転部と前記検出部との位置精度を算出する算出部と、を備えるエンコーダ装置。
  2. 前記複数のパターンは、インクリメンタルパターンを含み、
    前記検出部は、前記インクリメンタルパターンを介した光を検出する第1検出部を含み、
    前記算出部は、前記回転部の角度位置が異なる複数の期間における前記第1検出部からの出力信号のレベルを比較して、前記位置精度を算出する、請求項1に記載のエンコーダ装置。
  3. 前記複数のパターンは、前記回転部の径方向において前記インクリメンタルパターンの隣に配置され前記回転部の周方向で光学特性が切り替わる第1パターンを含み、
    前記算出部は、前記第1パターンの光学特性が切り替わる前の期間と後の期間とで前記第1検出部の出力信号のレベルを比較して、前記位置精度を算出する、
    請求項2に記載のエンコーダ装置。
  4. 前記算出部は、前記前の期間と前記後の期間との前記第1検出部の出力信号のレベルの差を閾値と比較することによって、前記位置精度を算出する、請求項3に記載のエンコーダ装置。
  5. 前記第1検出部の出力信号のレベルを用いて、前記複数のパターンに照射される光の光量を調整する光量調整部を備える、請求項2から請求項4のいずれか一項に記載のエンコーダ装置。
  6. 前記複数のパターンは、アブソリュートパターンを含み、
    前記検出部は、前記アブソリュートパターンを介した光を検出する第2検出部を含み、
    前記算出部は、前記回転部の角度位置が異なる複数の期間で前記第2検出部からの出力信号のレベルを比較して、前記位置精度を算出する、請求項1から請求項5のいずれか一項に記載のエンコーダ装置。
  7. 前記複数のパターンは、前記回転部の径方向において前記インクリメンタルパターンの隣に配置され前記回転部の周方向で光学特性が切り替わる第2パターンを含み、
    前記算出部は、前記第2パターンの光学特性が切り替わる前の期間と後の期間とで前記第1検出部の出力信号のレベルを比較して、前記位置精度を算出する、請求項6に記載のエンコーダ装置。
  8. 前記算出部は、前記前の期間と前記後の期間との前記第2検出部の出力信号のレベルの差を閾値と比較することによって、前記位置精度を算出する、請求項7に記載のエンコーダ装置。
  9. 前記複数のパターンは、
    インクリメンタルパターンと、
    アブソリュートパターンと、
    前記回転部の径方向において前記インクリメンタルパターンに対して前記アブソリュートパターンと反対側に配置され、前記回転部の周方向で光学特性が切り替わる第1パターンと、
    前記回転部の径方向において前記アブソリュートパターンに対して前記インクリメンタルパターンと反対側に配置され、前記回転部の周方向で前記第1パターンと異なる位相で光学特性が切り替わる第2パターンと、を含み、
    前記検出部は、
    前記インクリメンタルパターンを介した光を検出する第1検出部と、
    前記アブソリュートパターンを介した光を検出する第2検出部と、
    前記第1パターンを介した光を検出する第3検出部と、
    前記第2パターンを介した光を検出する第4検出部と、を含み、
    前記第1検出部の検出結果および前記第2検出部の検出結果を用いて前記回転軸の角度位置情報を算出し、前記第3検出部の検出結果および前記第4検出部の検出結果を用いて、前記回転軸の多回転情報を算出する、請求項1から請求項8のいずれか一項に記載のエンコーダ装置。
  10. 前記算出部は、
    前記第1検出部の検出結果に基づいて前記回転部の径方向における所定の向きの前記位置精度を算出し、
    前記第2検出部の検出結果に基づいて前記回転部の径方向における前記所定の向きと反対向きの前記位置精度を算出する、請求項9に記載のエンコーダ装置。
  11. 前記算出部は、
    前記第2パターンの光学特性が切り替わる際の前記第1検出部の検出結果を用いて、所定の向きの前記位置精度を算出し、
    前記第1パターンの光学特性が切り替わる際の前記第2検出部の検出結果を用いて、前記反対向きの前記位置精度を算出する、請求項10に記載のエンコーダ装置。
  12. 請求項1から請求項11のいずれか一項に記載のエンコーダ装置と、
    前記回転軸に駆動力を供給する駆動部と、を備える駆動装置。
  13. 移動物体と、
    前記移動物体を移動させる請求項12に記載の駆動装置と、を備えるステージ装置。
  14. 請求項12に記載の駆動装置を備えるロボット装置。
JP2016101328A 2016-05-20 2016-05-20 エンコーダ装置、駆動装置、ステージ装置、及びロボット装置 Active JP6786873B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016101328A JP6786873B2 (ja) 2016-05-20 2016-05-20 エンコーダ装置、駆動装置、ステージ装置、及びロボット装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016101328A JP6786873B2 (ja) 2016-05-20 2016-05-20 エンコーダ装置、駆動装置、ステージ装置、及びロボット装置

Publications (2)

Publication Number Publication Date
JP2017207423A true JP2017207423A (ja) 2017-11-24
JP6786873B2 JP6786873B2 (ja) 2020-11-18

Family

ID=60417114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016101328A Active JP6786873B2 (ja) 2016-05-20 2016-05-20 エンコーダ装置、駆動装置、ステージ装置、及びロボット装置

Country Status (1)

Country Link
JP (1) JP6786873B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059750A1 (ja) * 2019-10-31 2022-03-24 株式会社ニコン エンコーダ装置、その使用方法、その位置決め方法、及び位置検出方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774074A (en) * 1997-01-21 1998-06-30 Hewlett-Packard Company Multi-track position encoder system
JP2010112949A (ja) * 2008-11-07 2010-05-20 Dr Johannes Heidenhain Gmbh 位置測定装置及び位置測定装置の動作方法
JP2011220805A (ja) * 2010-04-08 2011-11-04 Nikon Corp エンコーダ
JP2014025713A (ja) * 2012-07-24 2014-02-06 Nikon Corp エンコーダ、移動情報検出方法、駆動装置、ロボット装置及びパワーステアリング装置
JP2014178227A (ja) * 2013-03-15 2014-09-25 Canon Inc 位置検出装置、レンズ装置、撮像システム、および、工作装置
JP2015105829A (ja) * 2013-11-28 2015-06-08 株式会社ニコン エンコーダ用スケール、エンコーダ、駆動装置、及びステージ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774074A (en) * 1997-01-21 1998-06-30 Hewlett-Packard Company Multi-track position encoder system
JP2010112949A (ja) * 2008-11-07 2010-05-20 Dr Johannes Heidenhain Gmbh 位置測定装置及び位置測定装置の動作方法
JP2011220805A (ja) * 2010-04-08 2011-11-04 Nikon Corp エンコーダ
JP2014025713A (ja) * 2012-07-24 2014-02-06 Nikon Corp エンコーダ、移動情報検出方法、駆動装置、ロボット装置及びパワーステアリング装置
JP2014178227A (ja) * 2013-03-15 2014-09-25 Canon Inc 位置検出装置、レンズ装置、撮像システム、および、工作装置
JP2015105829A (ja) * 2013-11-28 2015-06-08 株式会社ニコン エンコーダ用スケール、エンコーダ、駆動装置、及びステージ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059750A1 (ja) * 2019-10-31 2022-03-24 株式会社ニコン エンコーダ装置、その使用方法、その位置決め方法、及び位置検出方法

Also Published As

Publication number Publication date
JP6786873B2 (ja) 2020-11-18

Similar Documents

Publication Publication Date Title
US10514255B2 (en) Eccentricity calculating method, rotary encoder, robotic arm and robot apparatus
US8698071B2 (en) Rotary encoder having multiple slit arrays, which detects rotation angle
JP2015090307A (ja) エンコーダ、エンコーダ付きモータ、サーボシステム、エンコーダの信号処理方法
JP2015200613A (ja) エンコーダ、エンコーダ付きモータ、サーボシステム
JP2015232448A (ja) エンコーダ、サーボシステム、エンコーダの位置データ生成方法
US10209104B2 (en) Absolute encoder, processing method, program, driving apparatus, and industrial machine
US20200378804A1 (en) Grating disc and feedback system
US20140021341A1 (en) Optical encoder, motor apparatus, and method for processing signal of optical encoder
EP3032225A2 (en) Encoder and motor with encoder
JP2016118486A (ja) エンコーダ及びエンコーダ付きモータ
JP4737598B2 (ja) エンコーダ
JP6786873B2 (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP6842680B2 (ja) エンコーダ、サーボモータ、サーボシステム
JP2006284520A (ja) エンコーダおよびエンコーダ監視システム
JP6010876B1 (ja) エンコーダ及びエンコーダ付きモータ
JP6924419B2 (ja) エンコーダ、サーボモータ、サーボシステム
US20150123587A1 (en) Encoder, motor with encoder, and servo system
EP1564530A1 (en) Optical encoder for detection of rotary and axial movement
JP6037258B2 (ja) エンコーダ及びエンコーダ付きモータ
KR101540709B1 (ko) 모터의 엔코더 신호처리장치 및 방법
JP6607423B1 (ja) エンコーダ、サーボモータ、サーボシステム
JP2006284521A (ja) エンコーダ
WO2015151230A1 (ja) エンコーダ、エンコーダ制御装置及びエンコーダの異常検出方法
CN220708412U (zh) 一种狭缝部、光电编码器、伺服电机和伺服***
JP2020118502A (ja) ロータリーエンコーダ及びロータリーエンコーダの発光素子の光量調整方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201012

R150 Certificate of patent or registration of utility model

Ref document number: 6786873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250