JP2017199566A - 絶縁電線及びその製造方法並びに電気機器の製造方法 - Google Patents

絶縁電線及びその製造方法並びに電気機器の製造方法 Download PDF

Info

Publication number
JP2017199566A
JP2017199566A JP2016089671A JP2016089671A JP2017199566A JP 2017199566 A JP2017199566 A JP 2017199566A JP 2016089671 A JP2016089671 A JP 2016089671A JP 2016089671 A JP2016089671 A JP 2016089671A JP 2017199566 A JP2017199566 A JP 2017199566A
Authority
JP
Japan
Prior art keywords
insulating layer
insulated wire
resin
conductor
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016089671A
Other languages
English (en)
Inventor
義昭 岡部
Yoshiaki Okabe
義昭 岡部
新太郎 武田
Shintaro Takeda
新太郎 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016089671A priority Critical patent/JP2017199566A/ja
Priority to US15/459,121 priority patent/US20170316849A1/en
Publication of JP2017199566A publication Critical patent/JP2017199566A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0216Two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • H01B13/145Pretreatment or after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/003Apparatus or processes specially adapted for manufacturing conductors or cables using irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/301Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen or carbon in the main chain of the macromolecule, not provided for in group H01B3/302
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/308Wires with resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/122Insulating between turns or between winding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/085Forming windings by laying conductors into or around core parts by laying conductors into slotted stators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)

Abstract

【課題】生産性の低下及び製造コストの増加を抑制しつつ、従来よりも絶縁破壊を確実に防止することができる絶縁電線及びその製造方法並びに電気機器の製造方法を提供する。
【解決手段】導体と、該導体の外表面に形成された第1絶縁層と、該第1絶縁層の外表面に形成された第2絶縁層と、を備える絶縁電線である。この絶縁電線において、第1絶縁層は、ポリフェニレンサルファイド又はポリエーテルエーテルケトンからなる熱可塑性樹脂層であり、第2絶縁層は、熱硬化性樹脂層である。
【選択図】図1

Description

本発明は、絶縁電線及びその製造方法並びに電気機器の製造方法に関する。
従来から最外層に自己融着層を有し、内層の絶縁層がポリフェニレンサルファイドからなる自己融着性絶縁電線が知られている(下記特許文献1を参照)。このような自己融着性絶縁電線は、耐冷媒性、耐熱性、耐湿熱性に優れ、主に圧縮機用電動機などに用いられる。
また、直流送電用オレフィン系樹脂絶縁電力ケーブル(直流電力ケーブル)の絶縁体の電気性能を向上させ、異物混入機会を低減することができる樹脂添加剤に関する発明が開示されている(下記特許文献2を参照)。特許文献2には、直流電力ケーブルの製造に際して、ポリオレフィン系樹脂に対して特定の樹脂添加剤を配合し、これを直流電力ケーブルの絶縁体層として押出被覆することが記載されている。
特開平4―73811号公報 特開2009―114267号公報
家庭用又は産業用電気機器、並びに船舶、鉄道、及び電気自動車等は、例えばモータ等、絶縁電線を巻回したコイルを有する電気機器を備えており、この絶縁電線のコイルを有する電気機器に対するさらなる小型化や高出力化が要求されている。コイルを有する電気機器の小型化や高出力化のためには、近接した絶縁電線間の部分放電やサージ電圧によって発生する絶縁破壊をより確実に防止する必要がある。
前記特許文献1には、自己融着性絶縁電線の最外層の自己融着層の形成方法として、架橋性樹脂組成物を用い、塗布、焼き付けによって形成することが記載されている。しかし、絶縁破壊をより確実に防止することができる厚さの自己融着層を形成するには、架橋性樹脂組成物を用いた塗布、焼き付けを多数回に亘って繰り返す必要があり、生産性の低下及び製造コストの増加を招く虞がある。
一方、前記特許文献2に記載された直流電力ケーブルは、電力ケーブルの導体の外周に内部半導電層を設け、さらにその外周にポリオレフィン系樹脂を押出被覆して絶縁体層を形成し、その外周に外部半導電層を設けた後、架橋工程を行うことにより製造される。押出被覆では、絶縁体層の材料を加熱する温度を架橋工程における加熱温度よりも低くしなければならない。そのため、絶縁体層の材料の溶融温度が高い場合には、押出被覆による絶縁体層の形成ができない虞がある。
本発明は、前記課題に鑑みてなされたものであり、生産性の低下及び製造コストの増加を抑制しつつ、従来よりも絶縁破壊を確実に防止することができる絶縁電線及びその製造方法並びに電気機器の製造方法を提供することを目的とする。
前記目的を達成すべく、本発明の絶縁電線は、導体と、該導体の外表面に形成された第1絶縁層と、該第1絶縁層の外表面に形成された第2絶縁層と、を備える絶縁電線であって、前記第1絶縁層は、ポリフェニレンサルファイド又はポリエーテルエーテルケトンからなる熱可塑性樹脂層であり、前記第2絶縁層は、未硬化の熱硬化性樹脂からなる熱硬化性樹脂層であることを特徴とする。
本発明によれば、生産性の低下及び製造コストの増加を抑制しつつ、従来よりも絶縁破壊を確実に防止することができる絶縁電線及びその製造方法並びに電気機器の製造方法を提供することができる。
本発明の実施形態に係る絶縁電線の断面図。 本発明の実施形態に係る絶縁電線の製造方法のフロー図。 図2に示す第1成形工程を説明する模式図。 図2に示す第2成形工程及びプラズマ処理工程を説明する模式図。 本発明の実施形態に係る電気機器であるモータの一部を示す平面図。 絶縁電線の引張強さ(接着力)を測定するための試験片の斜視図。
以下では、まず本発明の絶縁電線及びその製造方法の実施形態について説明し、次に本発明の絶縁電線を用いた電気機器の製造方法の実施形態について説明する。
[絶縁電線]
図1は、本発明の実施形態に係る絶縁電線1の断面図である。本実施形態の絶縁電線1は、例えば、家庭用又は産業用電気機器、並びに船舶、鉄道、及び電気自動車等が備えるモータやインバータ等の電気機器のコイルの巻線として使用される。
絶縁電線1は、導体10と、該導体10の外表面に形成された第1絶縁層11と、該第1絶縁層11の外表面に形成された第2絶縁層12と、を備える。本実施形態の絶縁電線1は、第1絶縁層11がポリフェニレンサルファイド(PPS)又はポリエーテルエーテルケトン(PEEK)からなる熱可塑性樹脂層であり、第2絶縁層12が未硬化の熱硬化性樹脂からなる熱硬化性樹脂層であることを最大の特徴としている。未硬化の熱硬化性樹脂とは、エポキシ基や硬化剤、硬化促進剤等が混錬され、前記第1絶縁層に被覆された状態であって、加熱処理による架橋(硬化)反応がなされていない熱硬化性樹脂をいう。
導体10は、一般的な絶縁電線の芯線と同様の線状の導体であり、例えば、断面形状が円形の丸線でもよく、断面形状が矩形の平角線でもよく、断面形状が八角形の八角線でもよい。また、導体10は、一本の導体で形成される単線でもよく、複数本の導体が撚り合わされた撚り線でもよい。
導体10は、例えば、銅線、アルミ線、又は、これらの合金線である。銅線の材質は、例えば、タフピッチ銅、無酸素銅、又は脱酸銅である。また、銅線は、例えば、軟銅線若しくは硬銅線、又は、錫、ニッケル、銀、アルミニウム等が表面にめっきされためっき銅線である。アルミ線は、例えば、硬アルミ線又は半硬アルミ線である。合金線の材質は、例えば、銅−錫合金、銅−銀合金、銅−亜鉛合金、銅−クロム合金、銅−ジルコニウム合金、アルミニウム−銅合金、アルミニウム−銀合金、アルミニウム−亜鉛合金、アルミニウム−鉄合金、又は、イ号アルミ合金(Aldrey Aluminium)である。
導体10の外表面に形成されたPPS又はPEEKからなる第1絶縁層11の厚さは、例えば50μm以上かつ250μm以下とすることが好ましく、例えば80μm以上かつ200μm以下とすることがより好ましい。第1絶縁層11の厚さが50μm以上であれば、例えば絶縁電線1の巻回時に絶縁電線1同士が密着する高密度な状態において、絶縁電線1の絶縁破壊をより確実に防止するのに十分な耐圧性、すなわち耐熱性及び耐電圧性を確保することができる。しかし、第1絶縁層11の厚さが250μmを超えると、絶縁電線1の巻回時にクラックが発生しやすくなる。なお、第1絶縁層11は、PPS又はPEEK以外に、密着性や成形性を改良するため各種添加剤を含むことができる。
未硬化の熱硬化性樹脂からなる第2絶縁層12は、伸び率が室温で150%以上かつ200%以下であることが好ましい。第2絶縁層12の伸び率は、例えば、JIS C 3005:2014に規定された伸びの算出方法に基づいて算出することができる。なお、絶縁電線1は、30%伸ばした後に直径と同じ曲率で曲げてもクラックや剥離が起こらない性能が要求されるため、第2絶縁層12の伸び率は160%以上であることがより好ましい。
また、第2絶縁層12は、硬化後の貯蔵弾性率が200℃で10Pa以上であることが好ましい。貯蔵弾性率は、例えば市販の粘弾性アナライザによって測定することができる。ここで、硬化後とは、加熱処理による架橋(硬化)反応がなされた状態をいう。
第2絶縁層12を構成する熱硬化性樹脂は、例えば、フェノキシ樹脂、エポキシ樹脂、ポリアミド樹脂、及びエポキシ硬化剤を含むことができる。より具体的には、第2絶縁層12を構成する熱硬化性樹脂は、フェノキシ樹脂を50重量%以上かつ80重量%以下、エポキシ樹脂を5重量%以上かつ15重量%以下、ポリアミド樹脂を12重量%以上かつ36重量%以下、及びエポキシ硬化剤を5重量%以上かつ15重量%以下の比率で含むことができる。
このように、第2絶縁層12を構成する熱硬化性樹脂は、熱硬化性樹脂成分のフェノキシ樹脂とエポキシ樹脂硬化物との間に、単体で伸び率が大きく耐熱性に優れた熱可塑性のポリアミド樹脂を含むことができる。フェノキシ樹脂は、伸び率が例えば60%程度と大きく、優れた強靭性と柔軟性をもった熱可塑性樹脂である。そのため、フェノキシ樹脂とエポキシ硬化物の海にポリアミド樹脂を島になる構造で加えることで、第2絶縁層12の伸び率を向上させることができる。換言すると、第2絶縁層12を構成する熱硬化性樹脂は、フェノキシ樹脂とエポキシ樹脂との混合物にポリアミド樹脂が分散した構造を有している。
ポリアミド樹脂は、第2絶縁層12を構成する熱硬化性樹脂の伸び率を向上させるために用いられる。ポリアミド単体の伸び率は、例えば400%から600%程度である。熱硬化性樹脂に配合するポリアミド樹脂の割合を増加すると、熱硬化性樹脂の伸び率は増加するが、ポリアミド樹脂は熱可塑性樹脂であるため、架橋密度と貯蔵弾性率は低下する。そのため、ポリアミド樹脂の配合量は12重量%以上かつ36重量%以下であることが好ましい。第2絶縁層12を構成する熱硬化性樹脂が、12重量%以上のポリアミド樹脂を含むことで、伸び率を150%以上とすることができ、36重量%以下とすることで貯蔵弾性率を200℃で10Pa以上とすることができる。
エポキシ硬化剤は、例えば、芳香族エポキシ樹脂、脂環族エポキシ樹脂、ノボラックエポキシ樹脂、脂肪族エポキシ樹脂、グリシジルエステルエポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルアクリル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、又は、ポリエステル型エポキシ樹脂等である。架橋密度を高めるためには、多官能エポキシ樹脂が好ましい。さらに、硬化剤としてフェノール樹脂や酸無水物を用いることができる。例えば、フェノール樹脂としては、フェノールアラルキル樹脂(フェニレン骨格、ジフェニレン骨格等を有する)、ナフトールアラルキル樹脂およびポリオキシスチレン樹脂が挙げられる。また、フェノール樹脂としては、アニリン変性レゾール樹脂、ジメチルエーテルレゾール樹脂等のレゾール型フェノール樹脂、フェノールノボラック樹脂、クレゾールノボラック樹脂、tert−ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂、及び、ジシクロペンタジエン変性フェノール樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂等の特殊フェノール樹脂が挙げられる。ポリオキシスチレン樹脂としては、ポリ(p−オキシスチレン)が挙げられる。その中でフェノールノボラック系のmpが100℃以下のH−4が好ましい。酸無水物としてテトラヒドロ無水フタル酸やヘキサヒドロ無水フタル酸などが挙げられる。また、エポキシ樹脂の硬化促進剤として、押出成形時に架橋反応が進まない、高温タイプのイミダゾール類が挙げられる。
また、第2絶縁層12を構成する熱硬化性樹脂には、エポキシシラン、アミノシラン、ウレイドシラン、ビニルシラン、アルキルシラン、有機チタネート、アルミニウムアルキレート等の公知のカップリング剤を、単体又は二種類以上組み合あせて、必要に応じて配合することができる。また、熱硬化性樹脂には、赤燐、燐酸、燐酸エステル、メラミン、メラミン誘導体、トリアジン環を有する化合物、シアヌル酸誘導体、イソシアヌル酸誘導体の窒素含有化合物、シクロホスファゼン等の燐窒素含有化合物、酸化亜鉛、酸化鉄、参加モリブデン、フェロセン等の金属化合物、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン等の酸化アンチモン、ブロム化エポキシ樹脂等の難燃剤を、単独、あるいは二種類以上組み合わせて配合することができる。
第2絶縁層12の厚さは、例えば20μm以上かつ80μm以下であることが好ましい。第2絶縁層12の厚さが20μm以上であれば、押出成形によって第2絶縁層12を形成するときに厚さを均一に保持するのが容易になる。また、第2絶縁層12の厚さが80μm以下であれば、絶縁電線1をコイルの巻線として用いる場合に、コイルの占積率を向上させることができる。
また、本実施形態の絶縁電線1において、第1絶縁層11と硬化後の第2絶縁層12との接着力は、温度に関わらず、200N以上かつ800N以下であることが好ましい。第1絶縁層11と硬化後の第2絶縁層12との接着力は、後述するように、JIS C 2103:2013の付属書JCに規定された常温での固着力(ストラッカ法)を参考にして作成した試験片の引張試験によって測定することができる。
第1絶縁層11と硬化後の第2絶縁層12との接着力が200N以上であれば、例えばモータ等の振動による第1絶縁層11からの第2絶縁層12の剥離をより確実に防止することができる。なお、第1絶縁層11と硬化後の第2絶縁層12との接着力が800Nを超える範囲については、試験片に対する荷重が800Nを超えると、導体10から第1絶縁層11が剥離するため、測定することができない。
[絶縁電線の製造方法]
次に、本発明の本実施形態に係る絶縁電線1の製造方法について説明する。図2は、本実施形態の絶縁電線1の製造方法を示すフロー図である。
本実施形態の絶縁電線1の製造方法は、前述のように、導体10と、該導体10の外表面に形成された第1絶縁層11と、該第1絶縁層11の外表面に形成された第2絶縁層12と、を備える絶縁電線1の製造方法である。本実施形態の絶縁電線1の製造方法は、主に、第1成形工程S1と、第2成形工程S2と、を有している。また、本実施形態の絶縁電線1の製造方法は、第1成形工程S1の後、第2成形工程S2の前に、プラズマ処理工程SPを有してもよい。
図3は、第1成形工程S1を説明する模式図である。第1成形工程S1では、導体10の外表面にPPS又はPEEKを押出成形することによって熱可塑性樹脂層である第1絶縁層11を形成する。より具体的には、まず、導体10をアセトン等で十分に洗浄し、不図示の引取機によって送りながら加熱炉101に通し、例えば約300℃程度の温度に予備加熱し、予備加熱された導体10を押出機102に導入する。
押出機102に導入された導体10は、押出機102のクロスヘッド及びダイスを通過することで、線径が所定の線径に減少するまで引き伸ばされる伸線加工が施される。なお、導体10の外表面と第1絶縁層11との接着性を向上させるために、導体10の外表面に対して、例えばシランカップリング剤等の有機金属化合物による表面処理を施してもよい。
また、押出機102のホッパーにペレット状のPPS又はPEEKを投入する。ペレット状のPPS又はPEEKに替えて、又は、ペレット状のPPS又はPEEKとともに、押出機のホッパーにPPS又はPEEKを主体として予め調製された樹脂組成物を投入してもよい。また、押出機102のホッパーに、第1絶縁層11に含有させる各種の樹脂材料や無機フィラー等を投入してもよい。樹脂組成物に混合する樹脂材料は、第1絶縁層11の耐熱性、絶縁性、及び導体10との接着性を損なわず、第2絶縁層12を構成する熱可塑性樹脂の融点以上の融点を有する限り、特に制限はない。
押出機102のホッパーに投入された熱可塑性樹脂やその他の材料は、シリンダに供給され、シリンダ内で加熱されて軟化又は溶融した熱可塑性樹脂とともに混練され、クロスヘッドダイに供給される。クロスヘッドダイに供給された第1絶縁層11の材料は、導体10の外表面を被覆し、導体10とともに押出機102から押し出される。これにより、押出機102を通過した導体10の外表面には、押出機102のシリンダ内で加熱及び混練された第1絶縁層11の材料の層11aが形成される。このときの成形温度は、例えば280℃以上かつ360℃以下である。
押出機102を通過した導体10とその外表面の第1絶縁層11の材料の層11aは、結晶化のために、例えば約140℃に調温された電気炉103を通過し、図示を省略する冷却装置の水槽内で冷却される。これにより、導体10の外表面に第1絶縁層11が形成される。この第1絶縁層11は、PPS若しくはPEEK、又はその樹脂組成物からなるので、押出成形によって導体10の外表面に厚膜成形が可能であり、通常のエナメル線の絶縁層と比較して、絶縁性と耐熱性に優れている。なお、第1絶縁層11を複数の絶縁層によって形成するには、導体10を複数回に亘って押出機102に通過させることができる。
図4は、第2成形工程S2及びプラズマ処理工程SPを説明する模式図である。第2成形工程S2では、第1絶縁層11の外表面に未硬化の熱硬化性樹脂を押出成型することによって第2絶縁層12を形成する。より具体的には、まず、外表面に第1絶縁層11が形成された導体10を引取機によって送りながら、図示を省略する加熱炉によって例えば約140℃程度に加熱して押出機104に導入する。
また、第1成形工程S1と同様に、押出機104のホッパーにペレット状の第2絶縁層12の材料を投入する。また、押出機104のホッパーに、第2絶縁層12に含有させる各種の樹脂材料や無機フィラー等を投入してもよい。押出機104のホッパーに投入された熱硬化性樹脂やその他の材料は、第1成形工程S1と同様に加熱及び混練され、クロスヘッドダイに供給される。第2成形工程S2において、押出成形時の熱硬化性樹脂の温度は、例えば100℃以上かつ145℃以下とすることができる。
押出機104のクロスヘッドダイに供給された第2絶縁層12の材料は、導体10の外表面に形成された第1絶縁層11を被覆し、導体10とともに押出機104から押し出される。これにより、押出機104を通過した導体10の第1絶縁層11の外表面には、第2絶縁層12の材料の層12aが形成される。
押出機104を通過した導体10の第1絶縁層11の外表面の第2絶縁層12の材料の層12aは、例えば図示を省略する冷却装置の水槽内で冷却される。これにより、導体10と、該導体10の外表面に形成された第1絶縁層11と、該第1絶縁層11の外表面に形成された第2絶縁層12と、を備える絶縁電線1が製造される。
ここで、本実施形態の絶縁電線1の製造方法は、第1成形工程S1の後、第2成形工程S2の前に、プラズマ処理工程SPを有している。プラズマ処理工程SPでは、導体10の外表面に形成された第1絶縁層11の外表面をプラズマ処理する。
より具体的には、第1成形工程S1によって導体10の外表面に形成された第1絶縁層11を挟むように、大気圧プラズマ装置のノズル105が設置される。大気圧プラズマ装置としては、例えばプラズマトリート社製のFG5001プラズマジェネレーターを用いることができる。ガスは窒素や空気、酸素などを用いることができる。
ノズル105からはプラズマPが照射され、第1絶縁層11の表面の改質が行われる。本実施形態においては、外表面に第1絶縁層11が形成された導体10を挟むように設置された二つのノズル105が例示されているが、ノズル105の配置は特に限定されない。例えば、導体10に沿って複数のノズル105を設置してもよい。また、ノズル105の断面形状は、円状でも矩形でもよい。
このように、第1成形工程S1の後で、第2成形工程S2の前のプラズマ処理工程SPにおいて、第1絶縁層11の外表面をプラズマ処理が施されたプラズマ処理面に加工することで、第2成形工程S2において、第1絶縁層11のプラズマ処理面に第2絶縁層12を形成することができる。
これにより、第1絶縁層11と第2絶縁層12との接着性を向上させ、第1絶縁層11と硬化後の第2絶縁層12との接着力を200N以上にすることができる。さらに、第2絶縁層12の硬化後の貯蔵弾性率が200℃で10Pa以上である場合には、第1絶縁層11の外表面のプラズマ処理によって、第1絶縁層11と硬化後の第2絶縁層12との接着力を200℃で300N以上にすることができる。
第1絶縁層11を構成するPPS又はPEEKは、樹脂表面に官能基を有しないため、第2絶縁層12との接着性が課題となるが、第1絶縁層11の外表面のプラズマ処理によって第1絶縁層11と第2絶縁層12との接着性を改善することができる。すなわち、大気圧プラズマは、比較的低温であり、放電損傷がなく、連続して通常気圧下で発生する。そのため、第1絶縁層11の外表面のクリーニングや外表面の樹脂の分解、水酸基やアミノ基の付与、ラジカルの影響等により、第1絶縁層11と第2絶縁層12との接着性を向上させることができる。また、プラズマ処理は、第1絶縁層11の外表面をオゾンや強酸などで酸化したり、化学的なカップリング処理を施したりする場合と比較して、処理後の外表面の汚染や加工時の傷の発生の危険性を大幅に低減することができる。
以上説明したように、本実施形態の絶縁電線1は、十分な厚さの第1絶縁層11及び第2絶縁層12を押出成形によって形成することができる。したがって、生産性の低下及び製造コストの増加を抑制しつつ、従来よりも絶縁破壊を確実に防止することができる絶縁電線1及びその製造方法を提供することができる。
[電気機器の製造方法]
次に、本発明の実施形態に係る電気機器の製造方法について説明する。図5は、本実施形態の電気機器であるモータMのステータSの一部を示す模式的な平面図である。モータMのステータS以外の構成は、図示を省略している。ステータSは、ステータコアSCと、コイルCとを備えている。ステータコアSCは、径方向外側から内側へ延びる複数のティースTと、ティースTの間に形成されたスロットSLを有している。コイルCは、前述の絶縁電線1を巻回することによって形成され、ステータコアSCのスロットSLに配置されている。
以下、本実施形態の電気機器の製造方法について説明する。
本実施形態の電気機器の製造方法は、前述の絶縁電線1が巻回されたコイルCを備えたモータMの製造方法である。本実施形態のモータMの製造方法は、絶縁電線1を巻回する巻回工程と、巻回された絶縁電線1を加熱して第2絶縁層12の熱硬化性樹脂を硬化させ、自己融着させて一体化させる熱硬化工程と、を有することを特徴としている。本実施形態のモータMは、ステータSにコイルCを固定する工程以外の工程については、公知の方法によって製造することができるため、説明を省略する。
巻回工程では、前述の絶縁電線1を巻回してステータコアSCのスロットSLに配置する。ここで、絶縁電線1は、導体10の外表面に形成された第1絶縁層11がPPS又はPEEKからなる熱可塑性樹脂層であり、第1絶縁層11の外表面に形成された第2絶縁層12は、未硬化の熱硬化性樹脂からなる熱硬化性樹脂層である。そのため、絶縁電線1の巻回時に第2絶縁層12にクラック等の損傷が発生することが防止される。絶縁電線1の巻回時に第2絶縁層12に対する損傷を防止する効果は、第2絶縁層12の伸び率が室温で150%以上かつ200%以下である場合には、より顕著になる。
熱硬化工程では、巻回された絶縁電線1を加熱して第2絶縁層12の熱硬化性樹脂を硬化させ、自己融着させて一体化させる。絶縁電線1の第2絶縁層12を構成する未硬化の熱硬化性樹脂は、加熱によって流動し、自己融着後、熱架橋する。そのため、コイルCを固着させるために含浸ワニスを使用する必要がなく、製造工程を簡略化して生産性を向上させ、製造コストを低減することができる。なお、熱硬化工程で絶縁電線1を加熱する温度は、例えば150℃以上かつ200℃以下である。加熱時間は、例えば1時間以上かつ3時間以下であるが、できるだけ短時間であることが好ましい。
例えば絶縁電線の最外層の絶縁層としてPPS又はPEEKを用いた場合には、ワニスによる固着処理を行っても、200℃程度の高温における接着性が不十分であり、ワニスと絶縁電線との接着性が課題となる。これに対し、本実施形態の絶縁電線1では、PPS又はPEEKからなる第1絶縁層11の外表面に形成された第2絶縁層12よって絶縁電線1が自己融着するため、絶縁電線1の接着性の課題を解決することができる。
また、絶縁電線1の第2絶縁層12が、硬化後の貯蔵弾性率が200℃で10Pa以上である場合には、第1絶縁層11との接着性が向上し、モータMの耐熱性、耐振動性等の耐久性を向上させることができる。特に、絶縁電線1の第1絶縁層11の外表面にプラズマ処理を施して、第1絶縁層11と第2絶縁層12との接着力を200N以上とすることで、モータMの耐熱性、耐振動性等の耐久性をさらに向上させ、高温での信頼性を向上させることが可能である。
以上、本実施形態の電気機器であるモータMの製造方法について説明した。本実施形態の製造方法において用いられる絶縁電線1は、巻回時に第1絶縁層11と第2絶縁層12にクラックや剥離が発生せず、加熱により自己融着して架橋して固着されるため、モータM等の回転電機のコイルCの巻線として好適である。また、絶縁電線1の第2絶縁層12は、熱硬化性樹脂の硬化前に第1絶縁層11を構成するPPS又はPEEKとの接着性に優れ、高い伸び率を有している。
本実施形態の電気機器の製造方法によって製造されたモータM等の電気機器は、耐熱性及び耐圧性に優れた絶縁電線1を備えることにより、例えば、家庭用若しくは産業用電気機器、又は、船舶、鉄道、若しくは電気自動車等における動力発生装置や発電装置として好適である。特に小型又は高出力の回転電機においても、熱、部分放電、サージ電圧等によって絶縁破壊を生じ難い性質を有する。
以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。
次に、本発明の実施例について説明する。
[実施例1]
導体として断面の寸法が2.0mm×3.2mmの平角銅線を用意し、アセトンで十分に洗浄して300℃に予備加熱した後、第1絶縁層の材料を溶融及び混練して300℃のクロスヘッドダイを通過させて押出成形し、140℃に調温して結晶化させた。これにより、導体の外表面に150μmの厚さの第1絶縁層を形成した。第1絶縁層の材料として、PPS(東レ株式会社製、トレリナT1881)を用いた。
次に、導体の外表面に形成された第1絶縁層の外表面に、前述の実施形態で説明した絶縁電線の製造方法と同様に、大気圧プラズマ処理を実施し、第1絶縁層の外表面の全面は大気圧プラズマ処理(窒素ガス)を施したプラズマ処理面とした。
次に、導体の外表面に形成された第1絶縁層の外表面を140℃の温度に予備加熱し、第2絶縁層の材料を125℃の温度で溶融及び混練し、140℃の温度で押出成形することで、第1絶縁層の外表面に50μmの第2絶縁層を形成し、実施例1の絶縁電線を得た。
より詳細には、第2絶縁層の材料をポリエチレン袋に入れて大まかにブレンドした後、二軸混練器に入れて125℃の温度でかつ20rpmの回転数で混練し、ペレット状の熱硬化性樹脂を得た。そして、導体の外表面に形成された第1絶縁層を加熱炉で140℃に加熱しつつ、押出機のホッパーにペレット状の熱硬化性樹脂を投入して、140℃の温度で押出成形して冷却することで、第1絶縁層の外表面に50μmの第2絶縁層を形成した。なお、第2絶縁層の材料の押出速度や粘度、導体の送り速度等によって第2絶縁層の厚さは変化する。
第2絶縁層の材料としては、フェノキシ樹脂(新日鉄住金化学株式会社製、YP-70)を69重量%、エポキシ樹脂(プリンテック株式会社製、TECHMORE VG3101)を10.3重量%、エポキシ樹脂硬化剤(日立化成株式会社製、HN-2200)を6.9重量%、エポキシ樹脂の硬化促進剤であるイミダゾール(四国化成工業株式会社製、2PHZ-PW)を0.9重量%、ポリアミド樹脂(宇部興産株式会社製、UBESTA XPA 9035F)を12.9重量%の比率で用いた。
次に、未硬化の第2絶縁層の伸び率、硬化後の第2絶縁層の貯蔵弾性率、第2絶縁層を自己融着させて硬化させた絶縁電線の試験片の引張強さ(接着力)、第2絶縁層が未硬化の絶縁電線の曲げ加工性を測定及び検証した。
未硬化の第2絶縁層の伸び率は、以下のように求めた。まず、前述の二軸混練器のノズルから採取した未硬化の熱硬化性樹脂を6m/分の速度で引っ張り、直径100μm以上かつ300μm以下のファイバーを作製した。このファイバーを、引張試験機(株式会社島津製作所製、オートグラフAGS-100G型、Load cell SBE1kN)を用い、標線距離を127mmとして、50mm/分の速度で引っ張った。そして、JIS C 3005:2014に規定された伸びの算出方法に基づき、以下の式(1)によって伸び率を求めた。
(数1)
ε={(l−l)/l}×100 …(1)
上記の式(1)において、εは伸び率(%)、lは切断時の標線間の長さ、lは標線距離である。
硬化後の第2絶縁層の貯蔵弾性率は、以下のように測定した。まず、前述の二軸混練器で混練して得られたペレット状の未硬化の熱硬化性樹脂を、真空プレスによって1MPaの圧力を加えて180℃の温度で1時間に亘って加熱して硬化させ、厚さ1.0mmの硬化後の熱硬化性樹脂を得た。この硬化後の熱硬化性樹脂を厚さ0.5mm、幅4mm、長さ3cmの試験片とし、動的粘弾性測定装置(アイティー計測制御株式会社製、itk DVA-225)を用い、5℃/分の昇温速度で引張モードにより試験片の貯蔵弾性率(E’)を求めた。測定温度は、室温から300℃までとした。
図6は、本実施例における絶縁電線1の引張強さ(接着力)を測定するための試験片TSの斜視図である。本実施例における絶縁電線1の引張強さ(接着力)は、以下の手順によって測定した。まず、コイルの巻回工程を模擬して絶縁電線1を30%伸長させた後、10cmの長さに切断した。これを、図6に示すようにワイヤWで固定して5kgの荷重を加えつつ、180℃の温度で1時間に亘って加熱して絶縁電線1を自己融着により固着させるとともに、第2絶縁層を硬化させ、試験片TSを得た。
この試験片を示差走査熱量測定装置(Differential scanning calorimeter)で室温から250℃の温度まで5℃/分の昇温速度で昇温させたが、熱硬化性樹脂の架橋に伴う発熱は観測されなかった。これにより、試験片TSにおいて、絶縁電線1は、180℃の温度で1時間に亘って加熱されたことで架橋が終了していることが確認された。その後、12cmの間隔で試験片TSの両端をクランプで挟み、万能引張り試験機を用いて5mm/分の引張り速度で引張り試験を行い、自己融着面が破壊される最大の引張強さ(接着力)を評価した。引張り試験は、室温と200℃で行った。
また、第2絶縁層が未硬化の絶縁電線の曲げ加工性は、エッジワイズ試験によって以下のように評価した。まず、第2絶縁層が未硬化の絶縁電線を30%伸長させたサンプルを用意し、曲げ加工機としてハンドベンダ(Oxford General Industries製、Duo-Mite)を用い、サンプルをR=3.2mmの180°曲げを行った。このとき、絶縁電線の3.2mm×2.0mmの断面の長辺が曲げ半径となるように曲げ加工を行った。その後、顕微鏡によって絶縁電線の曲げ部の樹脂層の割れ、クラック、剥離を観察した。
以下の表1に、実施例1の絶縁電線の第2絶縁層の組成の重量比と、第1絶縁層の外表面に対する大気圧プラズマ処理の有無、未硬化の第2絶縁層の伸び率、硬化後の第2絶縁層の貯蔵弾性率、引張強さ(接着力)、及び第2絶縁層が未硬化の絶縁電線の曲げ加工性を示す。なお、絶縁電線の曲げ加工性は、絶縁電線の曲げ部の樹脂層の割れ、クラック、剥離の有無を示す。
Figure 2017199566
表1に示すように、実施例1の絶縁電線は、未硬化の第2樹脂層伸び率が155%であり、硬化後の第2樹脂層の200℃での貯蔵弾性率は、2.6×10Pa、引張強さ(接着力)は室温で750N、200℃で360N、割れ等は無く曲げ加工性は良好であった。
[実施例2]
第2絶縁層の材料を実施例1の絶縁電線と異ならせた以外は、実施例1の絶縁電線と同様に実施例2の絶縁電線を作製した。具体的には、エポキシ樹脂として、プリンテック株式会社製のTECHMORE VG3101に替えてDIC株式会社製のEPICLON EXA-4700を9.6重量%、エポキシ硬化剤として、日立化成株式会社製のHN-2200に替えて明和化成株式会社製のMEH-7800を9.6重量%用いた。また、第2絶縁層の材料として、実施例1の絶縁電線と同種のフェノキシ樹脂、イミダゾール、及びポリアミド樹脂を、それぞれ、67.3重量%、1.0重量%、及び12.5重量%の重量比で用いた。
表1に示すように、実施例2の絶縁電線は、未硬化の第2樹脂層伸び率が160%であり、硬化後の第2樹脂層の200℃での貯蔵弾性率は、1.3×10Pa、引張強さ(接着力)は室温で800N、200℃で400N、割れ等は無く曲げ加工性は良好であった。なお、引張強さ(接着力)の測定において、800Nよりも大きい荷重では第1絶縁層が導体から剥離し、引張強さ(接着力)が測定できなかった。
[実施例3]
第2絶縁層の材料を実施例1及び2の絶縁電線と異ならせた以外は、実施例1及び2の絶縁電線と同様に実施例3の絶縁電線を作製した。具体的には、第2絶縁層の材料として、実施例1の絶縁電線と同種のフェノキシ樹脂、エポキシ硬化剤、イミダゾール、及びポリアミド樹脂を、それぞれ、72.1重量%、9.0重量%、0.9重量%、及び10.8重量%の重量比で用いた。また、第2絶縁層の材料として、実施例2の絶縁電線と同種のエポキシ樹脂を7.2重量%の重量比で用いた。
表1に示すように、実施例3の絶縁電線は、未硬化の第2樹脂層伸び率が175%であり、硬化後の第2樹脂層の200℃での貯蔵弾性率は、2.9×10Pa、引張強さ(接着力)は室温で700N、200℃で380N、割れ等は無く曲げ加工性は良好であった。
[実施例4]
第2絶縁層の材料を実施例1から3の絶縁電線と異ならせた以外は、実施例1から3の絶縁電線と同様に実施例4の絶縁電線を作製した。具体的には、第2絶縁層の材料として、実施例1の絶縁電線と同種のフェノキシ樹脂、イミダゾール、及びポリアミド樹脂を、それぞれ、54.1重量%、0.9重量%、及び13.5重量%の重量比で用いた。また、エポキシ樹脂として、実施例1の絶縁電線で用いたプリンテック株式会社製のTECHMORE VG3101に替えて、三菱化学株式会社製のエポキシ樹脂YL6121Hを18.0重量%の重量比で用い、エポキシ樹脂硬化剤として、日立化成株式会社製のHN-2200に替えて、明和化成株式会社製のエポキシ樹脂硬化剤H-4を13.5重量%の重量比で用いた。
表1に示すように、実施例4の絶縁電線は、未硬化の第2樹脂層伸び率が165%であり、硬化後の第2樹脂層の200℃での貯蔵弾性率は、3.6×10Pa、引張強さ(接着力)は室温で650N、200℃で400N、割れ等は無く曲げ加工性は良好であった。
[実施例5]
第2絶縁層の材料を実施例1から4の絶縁電線と異ならせた以外は、実施例1から4の絶縁電線と同様に実施例5の絶縁電線を作製した。具体的には、第2絶縁層の材料として、実施例1の絶縁電線と同種のフェノキシ樹脂、エポキシ硬化剤、及びポリアミド樹脂を、それぞれ、62.5重量%、11.7重量%、及び10.2重量%の重量比で用いた。また、第2絶縁層の材料として、実施例2の絶縁電線と同種のエポキシ樹脂を15.6重量%の重量比で用いた。
表1に示すように、実施例5の絶縁電線は、未硬化の第2樹脂層伸び率が185%であり、硬化後の第2樹脂層の200℃での貯蔵弾性率は、1.3×10Pa、引張強さ(接着力)は室温で650N、200℃で320N、割れ等は無く曲げ加工性は良好であった。
[実施例6]
第2絶縁層の材料を実施例1から5の絶縁電線と異ならせた以外は、実施例1から5の絶縁電線と同様に実施例6の絶縁電線を作製した。具体的には、第2絶縁層の材料として、実施例1の絶縁電線と同種のフェノキシ樹脂及びイミダゾールを、それぞれ79.2重量%及び1.0重量%の重量比で用いた。また、第2絶縁層の材料として、実施例4の絶縁電線と同種のエポキシ樹脂を9.9重量%の重量比で用い、実施例2の絶縁電線と同種のエポキシ樹脂硬化剤を9.9重量%の重量比で用いた。なお、第2絶縁層の材料として、ポリアミド樹脂は用いなかった。
表1に示すように、実施例6の絶縁電線は、未硬化の第2樹脂層の伸び率が60%であり、硬化後の第2樹脂層の200℃での貯蔵弾性率は、3.9×10Pa、引張強さ(接着力)は室温で750N、200℃で300Nであった。しかし、曲げ加工性の評価において、未硬化の第2樹脂層の伸び率が150%以上である場合には見られなかったクラックが見られ、実施例1から5と比較して曲げ加工性が低下した。これにより、未硬化の第2樹脂層の伸び率は、150%以上が好ましいことが分かった。
[実施例7]
第2絶縁層の材料を実施例1から6の絶縁電線と異ならせた以外は、実施例1から6の絶縁電線と同様に実施例7の絶縁電線を作製した。具体的には、第2絶縁層の材料として、実施例1の絶縁電線と同種のフェノキシ樹脂、イミダゾール、及びポリアミド樹脂を、それぞれ、61.4重量%、0.9重量%、及び11.4重量%の重量比で用い、実施例2の絶縁電線と同種のエポキシ硬化剤を13.2重量%の重量比で用いた。また、エポキシ樹脂として、実施例1の絶縁電線で用いたプリンテック株式会社製のTECHMORE VG3101に替えて、三菱化学株式会社製の2官能のエポキシ樹脂jER1011を13.2重量%の重量比で用いた。
表1に示すように、実施例7の絶縁電線は、未硬化の第2樹脂層の伸び率が160%であるが、硬化後の第2樹脂層の200℃での貯蔵弾性率は、樹脂の架橋密度が低く、測定時に樹脂が破断して測定できなかった。そのため、引張強さ(接着力)は室温で850Nであったが、200℃では100Nに低下した。したがって、エポキシ樹脂は3官能以上が好ましいことが分かった。
[実施例8]
大気圧プラズマ処理を省略した以外は、実施例1の絶縁電線と同様に実施例8の絶縁電線を作製した。表1に示すように、実施例8の絶縁電線は、未硬化の第2樹脂層の伸び率、硬化後の第2樹脂層の200℃での貯蔵弾性率、及び引張強さ(接着力)は、実施例1の絶縁電線と同様であったが、曲げ加工性の評価でクラックが見られ、曲げ加工性が低下した。したがって、絶縁電線の第1絶縁層の外表面に対する大気圧プラズマ処理は、絶縁電線の曲げ加工性の向上に寄与することが分かった。
1 絶縁電線
10 導体
11 第1絶縁層
12 第2絶縁層
C コイル
M モータ(電気機器)
S1 第1成形工程
S2 第2成形工程
SP プラズマ処理工程

Claims (10)

  1. 導体と、該導体の外表面に形成された第1絶縁層と、該第1絶縁層の外表面に形成された第2絶縁層と、を備える絶縁電線であって、
    前記第1絶縁層は、ポリフェニレンサルファイド又はポリエーテルエーテルケトンからなる熱可塑性樹脂層であり、
    前記第2絶縁層は、未硬化の熱硬化性樹脂からなる熱硬化性樹脂層であることを特徴とする絶縁電線。
  2. 前記第2絶縁層は、未硬化の熱可塑性樹脂の伸び率が室温で150%以上かつ200%以下であることを特徴とする請求項1に記載の絶縁電線。
  3. 前記第2絶縁層は、硬化後の貯蔵弾性率が200℃で10Pa以上であることを特徴とする請求項1に記載の絶縁電線。
  4. 前記熱硬化性樹脂は、フェノキシ樹脂、エポキシ樹脂、ポリアミド樹脂、及びエポキシ硬化剤を含むことを特徴とする請求項1に記載の絶縁電線。
  5. 前記熱硬化性樹脂は、フェノキシ樹脂を50重量%以上かつ80重量%以下、エポキシ樹脂を5重量%以上かつ15重量%以下、ポリアミド樹脂を12重量%以上かつ36重量%以下、及びエポキシ硬化剤を5重量%以上かつ15重量%以下の比率で含むことを特徴とする請求項4に記載の絶縁電線。
  6. 導体と、該導体の外表面に形成された第1絶縁層と、該第1絶縁層の外表面に形成された第2絶縁層と、を備える絶縁電線の製造方法であって、
    前記導体の外表面にポリフェニレンサルファイド又はポリエーテルエーテルケトンを押出成形することによって前記第1絶縁層を形成する第1成形工程と、
    前記第1絶縁層の外表面に未硬化の熱硬化性樹脂を押出成形することによって前記第2絶縁層を形成する第2成形工程と、を有することを特徴とする絶縁電線の製造方法。
  7. 前記第1成形工程の後、前記第2成形工程の前に、前記第1絶縁層の外表面をプラズマ処理するプラズマ処理工程を有することを特徴とする請求項6に記載の絶縁電線の製造方法。
  8. 前記第2成形工程において、押出成形時の前記熱硬化性樹脂の温度が100℃以上かつ145℃以下であることを特徴とする請求項6に記載の絶縁電線の製造方法。
  9. 請求項1から請求項5のいずれか一項に記載の絶縁電線が巻回されたコイルを備えた電気機器の製造方法であって、
    前記絶縁電線を巻回する巻回工程と、
    巻回された前記絶縁電線を加熱して前記第2絶縁層の前記熱硬化性樹脂を硬化させ自己融着させて一体化させる熱硬化工程と、を有することを特徴とする電気機器の製造方法。
  10. 前記熱硬化工程において、前記絶縁電線を加熱する温度が150℃以上かつ200℃以下であることを特徴とする請求項9に記載の電気機器の製造方法。
JP2016089671A 2016-04-27 2016-04-27 絶縁電線及びその製造方法並びに電気機器の製造方法 Pending JP2017199566A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016089671A JP2017199566A (ja) 2016-04-27 2016-04-27 絶縁電線及びその製造方法並びに電気機器の製造方法
US15/459,121 US20170316849A1 (en) 2016-04-27 2017-03-15 Insulation wire, manufacturing method of the same, and manufacturing method of electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016089671A JP2017199566A (ja) 2016-04-27 2016-04-27 絶縁電線及びその製造方法並びに電気機器の製造方法

Publications (1)

Publication Number Publication Date
JP2017199566A true JP2017199566A (ja) 2017-11-02

Family

ID=60159019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016089671A Pending JP2017199566A (ja) 2016-04-27 2016-04-27 絶縁電線及びその製造方法並びに電気機器の製造方法

Country Status (2)

Country Link
US (1) US20170316849A1 (ja)
JP (1) JP2017199566A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102929A1 (ja) * 2017-11-24 2019-05-31 住友電工ウインテック株式会社 自己融着性樹脂組成物及び自己融着性絶縁電線
WO2020137972A1 (ja) * 2018-12-28 2020-07-02 日鉄ケミカル&マテリアル株式会社 高耐熱性熱可塑性樹脂組成物及び、その成形物
JP2020524190A (ja) * 2017-06-20 2020-08-13 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー 層状構造物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190055077A (ko) * 2016-09-13 2019-05-22 후루카와 덴키 고교 가부시키가이샤 절연 전선, 코일 및 전기·전자 기기

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020524190A (ja) * 2017-06-20 2020-08-13 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー 層状構造物
JP7214663B2 (ja) 2017-06-20 2023-01-30 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー 層状構造物
WO2019102929A1 (ja) * 2017-11-24 2019-05-31 住友電工ウインテック株式会社 自己融着性樹脂組成物及び自己融着性絶縁電線
WO2020137972A1 (ja) * 2018-12-28 2020-07-02 日鉄ケミカル&マテリアル株式会社 高耐熱性熱可塑性樹脂組成物及び、その成形物
CN113227252A (zh) * 2018-12-28 2021-08-06 日铁化学材料株式会社 高耐热性热塑性树脂组合物及其成形物
JPWO2020137972A1 (ja) * 2018-12-28 2021-11-11 日鉄ケミカル&マテリアル株式会社 高耐熱性熱可塑性樹脂組成物及び、その成形物
JP7373504B2 (ja) 2018-12-28 2023-11-02 日鉄ケミカル&マテリアル株式会社 高耐熱性熱可塑性樹脂組成物及び、その成形物

Also Published As

Publication number Publication date
US20170316849A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
JP5454804B2 (ja) 絶縁ワイヤ
JP6016846B2 (ja) 絶縁ワイヤおよびその製造方法
JP5778332B1 (ja) 耐曲げ加工性に優れる絶縁電線、それを用いたコイルおよび電子・電気機器
KR101988092B1 (ko) 절연 와이어, 코일 및 전기전자기기와 피막박리 방지 절연 와이어의 제조방법
EP2843669B1 (en) Invertor-surge resistant insulated wire
US20160042836A1 (en) Insulated Wire, Rotary Electric Machine, and Method for Manufacturing Insulated Wire
JP4974147B2 (ja) 多層絶縁電線及びそれを用いた変圧器
US10037833B2 (en) Insulated wire, coil, and electrical or electronic equipment, and method of producing the insulated wire
JP2017199566A (ja) 絶縁電線及びその製造方法並びに電気機器の製造方法
EP3118859B1 (en) Flat-type insulated wire, coil, and electric/electronic equipment
JP5584657B2 (ja) 自己修復性積層構造体及び自己融着絶縁電線
EP3089170A1 (en) Multilayer insulated wire, coil and electrical/electronic device
EP3385960A1 (en) Self-fusible insulated wire, coil and electrical/electronic device
WO2017073643A1 (ja) 絶縁電線、絶縁電線の製造方法、コイル、回転電機および電気・電子機器
US20230250234A1 (en) Resin composition, self-fusing insulated electric wire and wire bundle
US20180048205A1 (en) Insulation wire, rotary electric machine, and manufacturing method of insulation wire
CN109564798B (zh) 绝缘电线、线圈和电气电子设备
WO2015121999A1 (ja) 絶縁電線、回転電機及び絶縁電線の製造方法
JP2016195090A (ja) 絶縁電線、該絶縁電線の製造方法および該絶縁電線を用いたコイル
JP2017157491A (ja) 絶縁電線及びその製造方法
JP2017076560A (ja) 絶縁電線およびその製造方法
JPWO2019138971A1 (ja) 絶縁電線
WO2016021036A1 (ja) 回転電機用固定子及び回転電機
JP6887967B2 (ja) 絶縁電線、その製造方法、コイル、電気・電子機器および電気・電子機器の製造方法
JP2016039045A (ja) 絶縁電線、回転電機及び絶縁電線の製造方法