JP2017192169A - Rotor and dynamoelectric machine - Google Patents

Rotor and dynamoelectric machine Download PDF

Info

Publication number
JP2017192169A
JP2017192169A JP2016078835A JP2016078835A JP2017192169A JP 2017192169 A JP2017192169 A JP 2017192169A JP 2016078835 A JP2016078835 A JP 2016078835A JP 2016078835 A JP2016078835 A JP 2016078835A JP 2017192169 A JP2017192169 A JP 2017192169A
Authority
JP
Japan
Prior art keywords
permanent magnet
end plate
magnet holding
shaft
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016078835A
Other languages
Japanese (ja)
Other versions
JP6688461B2 (en
Inventor
桑原 優
Masaru Kuwabara
優 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016078835A priority Critical patent/JP6688461B2/en
Publication of JP2017192169A publication Critical patent/JP2017192169A/en
Application granted granted Critical
Publication of JP6688461B2 publication Critical patent/JP6688461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotor and a dynamo-electric machine capable of increasing the number of revolutions considerably more than before, without increasing the thickness of a reinforcement member.SOLUTION: A rotor 13 has a reinforcement material 13a, a permanent magnet 13b, an end plate 13c, and the like. The end plate 13c has one end fixed to a shaft 16, and the other end in contact with the axial end face 13b1 of the permanent magnet 13b. By a centrifugal force generated during rotation, a permanent magnet holding part 13c1 at the other end deforms to come into contact with the axial end face 13b1 of the permanent magnet 13b. The end plate 13c has the permanent magnet holding part 13c1 for holding the permanent magnet 13b with a frictional force generated therebetween. With such an arrangement, a frictional force is generated between the end plate 13c and permanent magnet 13b, and the load on the reinforcement material 13a by centrifugal force of the permanent magnet 13b can be reduced. Consequently, the number of revolutions can be increased considerably, without increasing the thickness of the reinforcement material 13a.SELECTED DRAWING: Figure 1

Description

本発明は、シャフト,永久磁石,補強材を有する回転子と、当該回転子を含む回転電機に関する。   The present invention relates to a rotor having a shaft, a permanent magnet, and a reinforcing material, and a rotating electrical machine including the rotor.

従来では、例えば下記の特許文献1において、高速回転時の遠心力強度に対して十分な永久磁石の固定強度が得られ、永久磁石の破片が飛散するのを防止することを目的とする永久磁石式回転電機に関する技術の一例が開示されている。この永久磁石式回転電機は、接着剤,金具,ネジなどの固定手段により回転子シャフトの外表面に永久磁石を固定した後、回転子シャフトとともに永久磁石を円管状のバインドリングに圧入する。   Conventionally, for example, in Patent Document 1 below, a permanent magnet that has a sufficient permanent magnet fixing strength with respect to centrifugal force strength during high-speed rotation and prevents the fragments of the permanent magnet from scattering is obtained. An example of a technique related to a rotary electric machine is disclosed. In this permanent magnet type rotating electrical machine, a permanent magnet is fixed to the outer surface of a rotor shaft by fixing means such as an adhesive, a metal fitting, and a screw, and then the permanent magnet is press-fitted into a circular bind ring together with the rotor shaft.

特開2005−312250号公報JP 2005-312250 A

特許文献1に記載の永久磁石式回転電機は、特許文献1に明確な記載は見当たらないものの、回転数が3万[rpm]あたりまではバインドリングによる圧入の効果が維持されると考えられる。ところが、回転数が3万[rpm]を大幅に超えてゆくにつれて、バインドリングに加わる遠心力も大きくなる。回転数がn倍(nは正の実数)になれば、n2倍で遠心力が大きくなるので、バインドリングへの応力も大きくなる可能性がある。 Although the permanent magnet type rotating electrical machine described in Patent Document 1 is not clearly described in Patent Document 1, it is considered that the effect of press-fitting by the bind ring is maintained until the rotational speed is around 30,000 [rpm]. However, the centrifugal force applied to the bind ring increases as the rotational speed greatly exceeds 30,000 [rpm]. If the number of rotations is n times (n is a positive real number), the centrifugal force increases by n 2 times, so the stress on the bind ring may also increase.

バインドリングの剛性を高めるには、例えばバインドリングの厚みを増やすことが考えられる。しかしながら、バインドリングの厚みが増えると、固定子と回転子との間における磁気的エアギャップが増える。磁気的エアギャップの増加は、磁気抵抗が高まることを意味し、性能が低下するという問題がある。   In order to increase the rigidity of the bind ring, for example, it is conceivable to increase the thickness of the bind ring. However, as the thickness of the bind ring increases, the magnetic air gap between the stator and the rotor increases. An increase in the magnetic air gap means that the magnetic resistance is increased, and there is a problem that the performance is lowered.

本開示はこのような点に鑑みてなしたものであり、上述したバインドリングに相当する補強材の厚みを増やすことなく、従来よりも回転数を大幅に増やすことができる回転子および回転電機を提供することを目的とする。   The present disclosure has been made in view of such points, and a rotor and a rotating electrical machine that can significantly increase the number of revolutions compared to the related art without increasing the thickness of the reinforcing material corresponding to the above-described bind ring. The purpose is to provide.

上記課題を解決するためになされた第1の発明は、シャフト(16)と、前記シャフトの外周面に配置されて軸方向に延びる一以上の永久磁石(13b)と、前記一以上の永久磁石の外表面を覆って補強する補強材(13a)とを有する回転子(13)において、一方側端部が前記シャフトに固定され、かつ、他方側端部が前記永久磁石の軸方向端面(13b1)に接して配置され、回転時に生じる遠心力(F3)によって前記他方側端部が前記永久磁石の軸方向端面と接するように変形する端板(13c)を備え、前記端板は、前記一以上の永久磁石との間で生じる摩擦力(F1)によって、前記一以上の永久磁石を保持する永久磁石保持部(13c1)を有する。この構成によれば、回転時に生じる遠心力に伴って変形する端板によって摩擦力が生じ、端板が永久磁石を保持する。永久磁石の遠心力による補強材への負荷を低減できるので、回転数を大幅に増やすことができる。   The first invention made to solve the above-mentioned problems is a shaft (16), one or more permanent magnets (13b) disposed on the outer peripheral surface of the shaft and extending in the axial direction, and the one or more permanent magnets. In the rotor (13) having a reinforcing material (13a) that covers and reinforces the outer surface of the permanent magnet, one end portion is fixed to the shaft, and the other end portion is an axial end surface (13b1) of the permanent magnet. ), And is provided with an end plate (13c) that is deformed so that the end on the other side is in contact with the axial end surface of the permanent magnet by centrifugal force (F3) generated at the time of rotation. It has a permanent magnet holding part (13c1) which hold | maintains the said one or more permanent magnet by the frictional force (F1) produced between the above permanent magnets. According to this configuration, a frictional force is generated by the end plate that is deformed with the centrifugal force generated during rotation, and the end plate holds the permanent magnet. Since the load on the reinforcing material due to the centrifugal force of the permanent magnet can be reduced, the number of rotations can be greatly increased.

第2の発明は、前記端板は、前記永久磁石保持部よりも径方向に小さい小径部(13c2)をさらに有し、前記小径部と前記シャフトとは、締りばめ(17)またはネジ(18)で固定する。この構成によれば、小径部は永久磁石保持部よりも遠心力が小さいため、締りばめやネジによる固定でも端板が外れない。   According to a second aspect of the present invention, the end plate further includes a small-diameter portion (13c2) that is smaller in the radial direction than the permanent magnet holding portion, and the small-diameter portion and the shaft include an interference fit (17) or a screw ( Fix in 18). According to this configuration, the centrifugal force of the small diameter portion is smaller than that of the permanent magnet holding portion, and therefore the end plate cannot be removed even by fastening with an interference fit or a screw.

第3の発明は、前記永久磁石保持部は、前記永久磁石と接して保持する永久磁石保持面(13cs)を有し、前記小径部は、前記永久磁石保持面から軸方向に突出する。この構成によれば、小径部は永久磁石保持部よりも変形し難いために固定部となる。そのため、永久磁石保持部を永久磁石側に向けて変形させることができ、永久磁石と永久磁石保持部との摩擦力を確実に高めることができる。   In a third aspect of the invention, the permanent magnet holding portion has a permanent magnet holding surface (13cs) that holds the permanent magnet in contact with the permanent magnet, and the small diameter portion protrudes in the axial direction from the permanent magnet holding surface. According to this configuration, the small diameter portion is less likely to be deformed than the permanent magnet holding portion, and thus becomes a fixed portion. Therefore, the permanent magnet holding part can be deformed toward the permanent magnet side, and the frictional force between the permanent magnet and the permanent magnet holding part can be reliably increased.

第4の発明は、前記端板は、前記補強材との間で生じる摩擦力(F4)によって、前記補強材を保持する補強材保持部(13c4)をさらに有し、前記補強材保持部は、前記永久磁石保持部よりも剛性が弱くなるように設けられている。この構成によれば、遠心力による端板の変形力を補強材より永久磁石に伝えることができ、摩擦力をより有効に発生できる。   According to a fourth aspect of the present invention, the end plate further includes a reinforcing material holding portion (13c4) that holds the reinforcing material by a frictional force (F4) generated between the end plate and the reinforcing material. The rigidity is lower than that of the permanent magnet holding portion. According to this configuration, the deformation force of the end plate due to the centrifugal force can be transmitted from the reinforcing material to the permanent magnet, and the friction force can be generated more effectively.

第5の発明は、前記シャフトは、軸方向端部以外の部位に径方向に突出する一以上の突出部(16e)を有し、前記突出部の軸方向端面(16es)には、前記永久磁石が接して配置される。この構成によれば、摩擦力の発生点が増えることで、永久磁石の遠心力によって補強材に加わる負荷をより軽減できる。   According to a fifth aspect of the present invention, the shaft includes one or more projecting portions (16e) projecting in a radial direction at a portion other than the axial end portion, and the axial end surface (16es) of the projecting portion has the permanent end. Magnets are placed in contact. According to this configuration, the load applied to the reinforcing material by the centrifugal force of the permanent magnet can be further reduced by increasing the generation point of the frictional force.

第6の発明は、前記永久磁石保持部と前記永久磁石との接触面(13c5,13b2)は、テーパ状である。この構成によれば、接触面は径方向面と傾斜しているので、永久磁石保持部は永久磁石をより確実に保持することでができる。   In the sixth invention, the contact surfaces (13c5, 13b2) between the permanent magnet holding part and the permanent magnet are tapered. According to this configuration, since the contact surface is inclined with respect to the radial direction surface, the permanent magnet holding portion can hold the permanent magnet more reliably.

第7の発明は、前記端板は、前記永久磁石保持部の永久磁石保持面と反対側の面に第1溝部(13c6)を有する。この構成によれば、第1溝部が設けられた部位は他の部位に比べて剛性が弱いので、永久磁石保持部を永久磁石側に向けてより確実に変形させることができる。   In a seventh aspect of the invention, the end plate has a first groove (13c6) on a surface of the permanent magnet holding portion opposite to the permanent magnet holding surface. According to this structure, since the site | part in which the 1st groove part was provided is weak compared with another site | part, a permanent magnet holding | maintenance part can be more reliably deformed toward the permanent magnet side.

第8の発明は、前記端板は、前記永久磁石保持部の永久磁石保持面と同じ側の面に第2溝部(13c7)を有する。この構成によれば、第2溝部が設けられた部位は他の部位に比べて剛性が弱いので、永久磁石保持部を永久磁石側に向けてより確実に変形させることができる。   In an eighth aspect of the invention, the end plate has a second groove (13c7) on the same side as the permanent magnet holding surface of the permanent magnet holding portion. According to this structure, since the site | part in which the 2nd groove part was provided is weak compared with another site | part, a permanent magnet holding | maintenance part can be more reliably deformed toward the permanent magnet side.

第9の発明は、前記シャフトは、軸方向に延びて前記永久磁石保持部と接する凸状部(16b)を有し、前記永久磁石は、前記凸状部よりも軸方向に延びるオーバーハング部(13b3)を有し、前記オーバーハング部の一部は、前記永久磁石保持部と接する。この構成によれば、端板は遠心力によって変形しても、シャフトの突出部に接することなく、永久磁石に接する。そのため、端板の変形に伴う押圧力を永久磁石に伝えることができ、端板と永久磁石との間に生じる摩擦力を高めることができる。   In a ninth aspect of the invention, the shaft has a convex portion (16b) extending in the axial direction and in contact with the permanent magnet holding portion, and the permanent magnet extends in the axial direction from the convex portion. (13b3), and a part of the overhang portion is in contact with the permanent magnet holding portion. According to this configuration, even if the end plate is deformed by centrifugal force, the end plate is in contact with the permanent magnet without being in contact with the protruding portion of the shaft. Therefore, the pressing force accompanying the deformation of the end plate can be transmitted to the permanent magnet, and the frictional force generated between the end plate and the permanent magnet can be increased.

第10の発明は、前記端板は、固定前の前記永久磁石保持部と前記小径部とが鋭角(θ)をなし、固定後に前記永久磁石保持部が少なくとも前記永久磁石を付勢する。この構成によれば、固定に伴って変形した永久磁石保持部は少なくとも永久磁石を付勢する。摩擦力に付勢力が加わり、永久磁石をさらに確実に保持することでができる。   According to a tenth aspect of the present invention, in the end plate, the permanent magnet holding portion before fixing and the small diameter portion form an acute angle (θ), and the permanent magnet holding portion urges at least the permanent magnet after fixing. According to this configuration, the permanent magnet holding portion that is deformed as it is fixed biases at least the permanent magnet. A biasing force is added to the frictional force, and the permanent magnet can be held more securely.

第11の発明は、前記端板と前記永久磁石とのうちで少なくとも一方の接触面は、非平滑面、または、凹凸を有する凹凸面である。この構成によれば、非平滑面や凹凸面は、平滑面に比べて摩擦係数が高い。よって、摩擦力が高まって、永久磁石をより確実に保持することでができる。   In an eleventh aspect of the invention, at least one contact surface of the end plate and the permanent magnet is a non-smooth surface or an uneven surface having unevenness. According to this configuration, the non-smooth surface and the uneven surface have a higher friction coefficient than the smooth surface. Therefore, the frictional force is increased and the permanent magnet can be held more reliably.

第12の発明は、前記シャフトは、前記一以上の永久磁石が配置される部位の軸方向端面よりも、軸方向に凹ませた凹部(16d)を有する。この構成によれば、凹部があることで、端板が遠心力によって変形する空間が確保される。よって、回転時に生じる遠心力に伴って端板を確実に変形させることができる。   In a twelfth aspect of the invention, the shaft has a recess (16d) that is recessed in the axial direction from the axial end surface of the portion where the one or more permanent magnets are disposed. According to this configuration, a space in which the end plate is deformed by centrifugal force is ensured by the presence of the recess. Therefore, the end plate can be reliably deformed with the centrifugal force generated during rotation.

第13の発明は、前記端板と、前記シャフトの前記凹部との間には、空間(15)または弾性部材(19)が設けられる。この構成によれば、空間や弾性部材は、遠心力による端板の変形を確保する。そのため、回転時に生じる遠心力に伴って端板を確実に変形させることができる。   In a thirteenth aspect, a space (15) or an elastic member (19) is provided between the end plate and the concave portion of the shaft. According to this configuration, the space and the elastic member ensure the deformation of the end plate due to the centrifugal force. Therefore, the end plate can be reliably deformed with the centrifugal force generated during rotation.

第14の発明は、前記端板は、前記永久磁石保持部の端部から軸方向に延びる掛止部(13c8)を有し、前記掛止部は、前記補強材と接し、かつ、前記永久磁石の端部を掛止して保持する。この構成によれば、掛止部は補強材と接して摩擦力を生じさせて保持するとともに、永久磁石の端部を掛止して保持することができる。   In a fourteenth aspect of the invention, the end plate has a latching portion (13c8) extending in an axial direction from an end portion of the permanent magnet holding portion, the latching portion is in contact with the reinforcing material, and the permanent plate Hook and hold the end of the magnet. According to this configuration, the latching portion can be brought into contact with the reinforcing member to generate a frictional force and can be held, and the end of the permanent magnet can be latched and held.

第15の発明は、回転電機(10)は、第1の発明から第14の発明にかかる回転子と、前記回転子と空隙(G)を介して対向する固定子(11)とを有する。この構成によれば、永久磁石の遠心力による補強材への負荷を低減して、回転数を大幅に増やせる回転電機を提供することができる。   In a fifteenth aspect of the invention, a rotating electrical machine (10) includes the rotor according to the first to fourteenth aspects of the invention, and the stator (11) facing the rotor via a gap (G). According to this configuration, it is possible to provide a rotating electrical machine that can significantly increase the number of rotations by reducing the load on the reinforcing material due to the centrifugal force of the permanent magnet.

なお、「多相巻線」は固定子巻線と同義であり、一本状の巻線でもよく、複数の導体線やコイル等を電気的に接続して一本状にしたものでもよい。多相巻線の相数は、三相以上であれば問わない。「巻装」は巻いて装うことを意味し、巻き回す意味の「巻回」と同義である。「回転子」は、界磁巻線を含まず、永久磁石を有する。「補強材」は、永久磁石の外表面を覆って補強する部材であれば、物質(ただし材質や材料の意味を含む)や構成などを問わない。「回転電機」は、回転軸とも呼ぶシャフトを有する機器であれば任意であり、例えば発電機,電動機,電動発電機等が該当する。発電機には電動発電機が発電機として作動する場合を含み、電動機には電動発電機が電動機として作動する場合を含む。   The “multi-phase winding” is synonymous with the stator winding, and may be a single winding, or may be a single winding formed by electrically connecting a plurality of conductor wires or coils. The number of phases of the multiphase winding is not limited as long as it is three or more. “Wound” means to wind and wear and is synonymous with “winding” meaning to wind. The “rotor” does not include a field winding and has a permanent magnet. As long as the “reinforcing material” is a member that covers and reinforces the outer surface of the permanent magnet, any material (however, including the meaning of the material or the material) or the configuration may be used. The “rotary electric machine” is arbitrary as long as it is a device having a shaft that is also called a rotating shaft, and for example, a generator, a motor, a motor generator, and the like are applicable. The generator includes a case where the motor generator operates as a generator, and the motor includes a case where the motor generator operates as a motor.

回転電機の構成例を模式的に示す断面図である。It is sectional drawing which shows the structural example of a rotary electric machine typically. 図1に示すII−II線から見た回転子を示す斜視図である。It is a perspective view which shows the rotor seen from the II-II line | wire shown in FIG. 端板の第1構成例を模式的に示す斜視図である。It is a perspective view which shows typically the 1st structural example of an end plate. 第1構成例にかかる回転子の一部を拡大して示す断面図である。It is sectional drawing which expands and shows some rotors concerning a 1st structural example. シャフトの第1構成例を模式的に示す斜視図である。It is a perspective view showing the 1st example of composition of a shaft typically. 回転時に生じる遠心力を受けた端板の変形を説明する模式図である。It is a schematic diagram explaining the deformation | transformation of the end plate which received the centrifugal force produced at the time of rotation. 変形量と比率との関係例を示すグラフ図である。It is a graph which shows the example of a relationship between deformation amount and a ratio. 回転時に生じる摩擦力,押圧力,遠心力を説明する断面図である。It is sectional drawing explaining the frictional force, pressing force, and centrifugal force which arise at the time of rotation. 端板の第2構成例を模式的に示す斜視図である。It is a perspective view which shows the 2nd structural example of an end plate typically. 回転子の第2構成例を模式的に示す断面図である。It is sectional drawing which shows the 2nd structural example of a rotor typically. 第2構成例にかかる回転子の一部を拡大して示す断面図である。It is sectional drawing which expands and shows some rotors concerning a 2nd structural example. シャフトの第2構成例を模式的に示す斜視図である。It is a perspective view which shows the 2nd structural example of a shaft typically. 回転子の第3構成例を拡大して示す断面図である。It is sectional drawing which expands and shows the 3rd structural example of a rotor. 回転時に生じる摩擦力,押圧力,遠心力を説明する断面図である。It is sectional drawing explaining the frictional force, pressing force, and centrifugal force which arise at the time of rotation. 回転子の第2構成例にかかる変形例を示す断面図である。It is sectional drawing which shows the modification concerning the 2nd structural example of a rotor. 端板の第3構成例を模式的に示す斜視図である。It is a perspective view which shows the 3rd structural example of an end plate typically. 回転子の第3構成例を模式的に示す断面図である。It is sectional drawing which shows the 3rd structural example of a rotor typically. 第3構成例にかかる回転子の一部を拡大して示す断面図である。It is sectional drawing which expands and shows some rotors concerning a 3rd structural example. 回転子の第3構成例にかかる変形例を示す断面図である。It is sectional drawing which shows the modification concerning the 3rd structural example of a rotor. 回転子の第4構成例を模式的に示す断面図である。It is sectional drawing which shows typically the 4th structural example of a rotor. 第4構成例にかかる回転子の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of rotor concerning a 4th structural example. 回転子の第4構成例にかかる変形例を示す断面図である。It is sectional drawing which shows the modification concerning the 4th structural example of a rotor. 端板の第5構成例を模式的に示す斜視図である。It is a perspective view which shows typically the 5th structural example of an end plate. 回転子の第5構成例を模式的に示す断面図である。It is sectional drawing which shows typically the 5th structural example of a rotor. 第5構成例にかかる回転子の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of rotor concerning a 5th structural example. 回転子の第6構成例を模式的に示す断面図である。It is sectional drawing which shows typically the 6th structural example of a rotor. 図26に示すXXVII−XXVII線から見た回転子を示す斜視図である。It is a perspective view which shows the rotor seen from the XXVII-XXVII line shown in FIG. 回転子の第6構成例にかかる変形例を示す断面図である。It is sectional drawing which shows the modification concerning the 6th structural example of a rotor. 端板の第7構成例を模式的に示す断面図である。It is sectional drawing which shows the 7th structural example of an end plate typically. 第7構成例にかかる回転子の一部を拡大して示す断面図である。It is sectional drawing which expands and shows some rotors concerning a 7th structural example. 第8構成例にかかる回転子の一部を拡大して示す断面図である。It is sectional drawing which expands and shows some rotors concerning the 8th structural example. 第9構成例にかかる回転子の一部を拡大して示す断面図である。It is sectional drawing which expands and shows some rotors concerning the 9th structural example. 回転子の第10構成例を模式的に示す断面図である。It is sectional drawing which shows typically the 10th structural example of a rotor. 回転子の第11構成例を模式的に示す断面図である。It is sectional drawing which shows typically the 11th structural example of a rotor. 第12構成例にかかる回転子の一部を拡大して示す断面図である。It is sectional drawing which expands and shows some rotors concerning a 12th structural example. 第13構成例にかかる回転子の一部を拡大して示す断面図である。It is sectional drawing which expands and shows some rotors concerning a 13th structural example.

以下、本発明を実施するための形態について、図面に基づいて説明する。なお、特に明示しない限り、「接続する」という場合には電気的に接続することを意味する。各図は、本発明を説明するために必要な要素を図示し、実際の全要素を図示しているとは限らない。上下左右等の方向を言う場合には、図面の記載を基準とする。英数字の連続符号は記号「〜」を用いて略記する。回転子やシャフトが回転しているときを「回転時」と呼び、回転せずに停止しているときを「停止時」と呼ぶ。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. Note that unless otherwise specified, “connecting” means electrically connecting. Each figure shows elements necessary for explaining the present invention, and does not necessarily show all actual elements. When referring to directions such as up, down, left and right, the description in the drawings is used as a reference. Alphanumeric continuous codes are abbreviated using the symbol “˜”. When the rotor or the shaft is rotating, it is called “when rotating”, and when it is stopped without rotating, it is called “when stopping”.

〔実施の形態1〕
実施の形態1は図1〜図8を参照しながら説明する。図1に示す回転電機10は、回転子13やシャフト16の構成を除いて、本形態や後述する実施の形態2〜8に共通する構成例である。この回転電機10は、固定子11,回転子13,軸受14,シャフト16などをフレーム12内に有する。
[Embodiment 1]
The first embodiment will be described with reference to FIGS. The rotating electrical machine 10 shown in FIG. 1 is a configuration example common to the present embodiment and later-described Embodiments 2 to 8, except for the configuration of the rotor 13 and the shaft 16. The rotating electrical machine 10 includes a stator 11, a rotor 13, a bearing 14, a shaft 16 and the like in a frame 12.

「筐体」や「ハウジング」などに相当するフレーム12は、固定子11,回転子13,軸受14,シャフト16などを収容できれば、形状や物質等を任意に設定してよい。このフレーム12は、少なくとも固定子11を支持して固定するとともに、軸受14を介してシャフト16を回転自在に支持する。本形態のフレーム12は、非磁性体のフレーム部材12a,12bなどを含む。フレーム部材12a,12bは一体成形してもよく、個別に形成した後に固定部材を用いて固定してもよい。固定部材は、例えばボルト,ネジ,ピン等の締結部材を用いる締結や、母材を溶かして溶接等を行う接合などが該当する。   The frame 12 corresponding to the “housing” or “housing” may be arbitrarily set in shape, substance, etc., as long as it can accommodate the stator 11, the rotor 13, the bearing 14, the shaft 16, and the like. The frame 12 supports and fixes at least the stator 11 and rotatably supports the shaft 16 via a bearing 14. The frame 12 of this embodiment includes non-magnetic frame members 12a and 12b and the like. The frame members 12a and 12b may be integrally formed, or may be formed separately and then fixed using a fixing member. Examples of the fixing member include fastening using a fastening member such as a bolt, a screw, and a pin, and joining in which a base material is melted and welded.

「ステータ」や「電機子」などに相当する固定子11は、多相巻線11a,固定子コア11bなどを含む。「鉄心」に相当する固定子コア11bは、軟磁性体であれば任意に構成してよい。例えば、多数の電磁鋼板を軸方向に積層して構成する。   A stator 11 corresponding to “stator”, “armature”, and the like includes a multiphase winding 11 a, a stator core 11 b, and the like. The stator core 11b corresponding to the “iron core” may be arbitrarily configured as long as it is a soft magnetic material. For example, a large number of electromagnetic steel plates are laminated in the axial direction.

多相巻線11aは、三相以上の巻線であって、スロット11sに収容されて巻装される。この多相巻線11aは、電機子巻線,固定子巻線,ステータコイルなどに相当する。多相巻線11aの形態は任意であって、例えば断面が四角形状の平角線に限らず、断面が円形状の丸線や、断面が三角形状の三角線などでもよい。多相巻線11aを巻装する形態も任意であって、例えば全節巻,分布巻,集中巻,短節巻などが該当する。   The multiphase winding 11a is a winding of three or more phases, and is housed and wound in the slot 11s. The multiphase winding 11a corresponds to an armature winding, a stator winding, a stator coil, or the like. The form of the multiphase winding 11a is arbitrary. For example, the cross section is not limited to a rectangular flat wire, and may be a round wire having a circular cross section, a triangular wire having a triangular cross section, or the like. The form in which the multiphase winding 11a is wound is also arbitrary, and for example, full-pitch winding, distributed winding, concentrated winding, short-pitch winding, and the like are applicable.

「ロータ」に相当する回転子13は、固定子コア11bに対向して設けられるとともに、シャフト16に固定される。すなわち、回転子13とシャフト16は一体的に回転する。回転子13やシャフト16の構成例については後述する。回転子13と固定子11との間には、空隙Gが設けられる。空隙Gには、回転子13と固定子11との間で磁束が流れる範囲において任意の数値を設定してよい。   The rotor 13 corresponding to the “rotor” is provided to face the stator core 11 b and is fixed to the shaft 16. That is, the rotor 13 and the shaft 16 rotate integrally. Configuration examples of the rotor 13 and the shaft 16 will be described later. A gap G is provided between the rotor 13 and the stator 11. Arbitrary numerical values may be set in the gap G in a range in which magnetic flux flows between the rotor 13 and the stator 11.

回転子13は、図1,図2に示すように、補強材13a,永久磁石13b,端板13cなどを有する。永久磁石13bは、シャフト16(具体的には図5に示す本体部16c)の外周面に配置されて軸方向に延びる。配置する永久磁石13bの数は、必要とする極数に応じて任意に設定してよい。補強材13aは、永久磁石13bの外表面を覆って補強する部材である。本形態の補強材13aは、例えば繊維強化プラスチック(以下では「CFRP」と呼ぶ)で製造したものを用い、シャフト16の外周面に配置された永久磁石13bに対して圧入して設ける。   As shown in FIGS. 1 and 2, the rotor 13 includes a reinforcing member 13a, a permanent magnet 13b, an end plate 13c, and the like. The permanent magnet 13b is disposed on the outer peripheral surface of the shaft 16 (specifically, the main body portion 16c shown in FIG. 5) and extends in the axial direction. The number of permanent magnets 13b to be arranged may be arbitrarily set according to the required number of poles. The reinforcing material 13a is a member that covers and reinforces the outer surface of the permanent magnet 13b. The reinforcing material 13a of this embodiment is made of, for example, fiber reinforced plastic (hereinafter referred to as “CFRP”), and is press-fitted into the permanent magnet 13b disposed on the outer peripheral surface of the shaft 16.

端板13cは、図1に示すように、軸方向における補強材13aおよび永久磁石13bの両端に設けられる。端板13cは、内径側の一方側端部がシャフト16に固定され、かつ、外径側の他方側端部が永久磁石13bの軸方向端面13b1に接して配置される。また端板13cは、後述するように回転時に生じる遠心力によって、他方側端部が永久磁石13bの軸方向端面13b1と接するように変形する。   As shown in FIG. 1, the end plates 13c are provided at both ends of the reinforcing material 13a and the permanent magnet 13b in the axial direction. The end plate 13c is arranged such that one end on the inner diameter side is fixed to the shaft 16 and the other end on the outer diameter side is in contact with the axial end surface 13b1 of the permanent magnet 13b. Further, the end plate 13c is deformed so that the other side end is in contact with the axial end surface 13b1 of the permanent magnet 13b by a centrifugal force generated during rotation as will be described later.

図3,図4に示す第1構成例の端板13cは、永久磁石保持部13c1,小径部13c2,穴部13c3などを有する。永久磁石保持部13c1は、永久磁石13bや補強材13aと接する上記「他方側端部」を含む。永久磁石保持部13c1は、回転時に生じる遠心力によって変形して、永久磁石13bとの接触面で生じる摩擦力F1によって、永久磁石13bや補強材13aを保持する。小径部13c2は、永久磁石保持部13c1よりも径方向に径が小さく、永久磁石保持面13csから軸方向に突出する部位である。当該軸方向は、永久磁石13bが配置されている方向であって、図3の左下方向や図4の左方向に相当する。穴部13c3はシャフト16の軸部16aを通すために設けられる部位であって、本形態では永久磁石保持部13c1および小径部13c2を貫く貫通穴である。   The end plate 13c of the first configuration example shown in FIGS. 3 and 4 includes a permanent magnet holding portion 13c1, a small diameter portion 13c2, a hole portion 13c3, and the like. The permanent magnet holding portion 13c1 includes the “other end portion” in contact with the permanent magnet 13b and the reinforcing material 13a. The permanent magnet holding portion 13c1 is deformed by a centrifugal force generated at the time of rotation, and holds the permanent magnet 13b and the reinforcing material 13a by the frictional force F1 generated on the contact surface with the permanent magnet 13b. The small-diameter portion 13c2 is a portion having a smaller diameter in the radial direction than the permanent magnet holding portion 13c1 and protruding in the axial direction from the permanent magnet holding surface 13cs. The axial direction is a direction in which the permanent magnet 13b is arranged, and corresponds to the lower left direction in FIG. 3 and the left direction in FIG. The hole portion 13c3 is a portion provided to allow the shaft portion 16a of the shaft 16 to pass through. In this embodiment, the hole portion 13c3 is a through hole that penetrates the permanent magnet holding portion 13c1 and the small diameter portion 13c2.

本形態では、回転子13とシャフト16を締りばめで固定する。すなわち、穴部13c3の径を軸部16aの径よりも小さくし、締りばめにより固定した締りばめ部17とする。締りばめ部17は、実線のハッチングで示すように、少なくとも小径部13c2に対応する部位を含める。締りばめ部17は、二点鎖線のハッチングで示すように、さらに永久磁石保持部13c1に対応する部位を含めてもよい。   In this embodiment, the rotor 13 and the shaft 16 are fixed with an interference fit. That is, the diameter of the hole 13c3 is made smaller than the diameter of the shaft portion 16a, and the interference fit portion 17 is fixed by interference fit. The interference fit portion 17 includes at least a portion corresponding to the small diameter portion 13c2 as shown by the solid hatching. The interference fit portion 17 may further include a portion corresponding to the permanent magnet holding portion 13c1, as shown by the two-dot chain line hatching.

図4において、端板13cの永久磁石保持面13csと永久磁石13bの軸方向端面13b1とは、摩擦力を高めるため、少なくとも一方の接触面が非平滑面または凹凸面であるのが望ましい。非平滑面は平滑でない面であって、例えば金属の鋳肌やヤスリなどのようなザラザラした面が該当する。凹凸面は、表面に凹凸が設けられた面である。いずれにせよ、摩擦係数が大きいほど摩擦力が高まるので良い。   In FIG. 4, it is desirable that at least one contact surface of the permanent magnet holding surface 13cs of the end plate 13c and the axial end surface 13b1 of the permanent magnet 13b is a non-smooth surface or an uneven surface in order to increase the frictional force. A non-smooth surface is a non-smooth surface, for example, a rough surface such as a metal casting surface or a file. The uneven surface is a surface having unevenness on the surface. In any case, the larger the friction coefficient, the higher the friction force.

シャフト16は、図5に示すように、軸部16a,凸状部16b,本体部16c,凹部16dなどを有する。本形態のシャフト16は、軸部16a,凸状部16b,本体部16cを一体に成形する。軸部16aは、外部との間で動力を伝達する部位である。本体部16cは、軸部16aよりも大きな径の部位である。凸状部16bは本体部16cから軸方向両側に突出する部位であって、図4に示すように端板13cの永久磁石保持部13c1と接する。凹部16dは、図4に示すように、永久磁石13bが配置される部位の軸方向端面16bsよりも、軸方向に凹ませた部位である。   As shown in FIG. 5, the shaft 16 has a shaft portion 16a, a convex portion 16b, a main body portion 16c, a concave portion 16d, and the like. The shaft 16 of this embodiment is formed by integrally forming a shaft portion 16a, a convex portion 16b, and a main body portion 16c. The shaft portion 16a is a part that transmits power to the outside. The main body portion 16c is a portion having a larger diameter than the shaft portion 16a. The convex portion 16b protrudes from the main body portion 16c on both sides in the axial direction, and comes into contact with the permanent magnet holding portion 13c1 of the end plate 13c as shown in FIG. As shown in FIG. 4, the recess 16 d is a portion that is recessed in the axial direction from the axial end surface 16 bs of the portion where the permanent magnet 13 b is disposed.

回転時に端板13cが変形する原理について、図6を参照しながら説明する。図6では、停止時の通常状態を二点鎖線で示し、回転時の変形状態を実線で示す。遠心力は、物体の質量に比例するとともに、回転数に対応する角速度の二乗に比例することが知られている。図6に示す永久磁石保持部13c1と小径部13c2とを比べると、質量および角速度の双方について、明らかに永久磁石保持部13c1が小径部13c2よりも大きい。永久磁石保持部13c1に生じる遠心力Faは、小径部13c2に生じる遠心力Fbよりも格段に大きく、数式で表すとFa≫Fbになる。遠心力Faが大きくなるにつれて、永久磁石保持部13c1がシャフト16から離れるようになる。結果として、永久磁石保持部13c1は永久磁石13bに向かう方向(図6の矢印D1方向)に変形する。   The principle of deformation of the end plate 13c during rotation will be described with reference to FIG. In FIG. 6, the normal state at the time of a stop is shown with a dashed-two dotted line, and the deformation | transformation state at the time of rotation is shown with a continuous line. It is known that the centrifugal force is proportional to the mass of the object and proportional to the square of the angular velocity corresponding to the number of rotations. Comparing the permanent magnet holding part 13c1 and the small diameter part 13c2 shown in FIG. 6, the permanent magnet holding part 13c1 is clearly larger than the small diameter part 13c2 in both mass and angular velocity. The centrifugal force Fa generated in the permanent magnet holding portion 13c1 is much larger than the centrifugal force Fb generated in the small-diameter portion 13c2, and Fa >> Fb is expressed by a mathematical expression. As the centrifugal force Fa increases, the permanent magnet holding portion 13c1 moves away from the shaft 16. As a result, the permanent magnet holding portion 13c1 is deformed in the direction toward the permanent magnet 13b (the direction of the arrow D1 in FIG. 6).

図4に示す空間15は、端板13cと、シャフト16の凹部16dとの間に設けられる。空間15を設けることで、遠心力Faによって端板13cが変形し易くなる。もし空間15が無ければ、小径部13c2が凸状部16bに押さえ付けられるため、永久磁石保持部13c1が変形できなる。したがって、空間15は永久磁石保持部13c1や小径部13c2が変形する範囲内で確保すれば足りる。   The space 15 shown in FIG. 4 is provided between the end plate 13 c and the recess 16 d of the shaft 16. By providing the space 15, the end plate 13 c is easily deformed by the centrifugal force Fa. If there is no space 15, the small diameter portion 13c2 is pressed against the convex portion 16b, so that the permanent magnet holding portion 13c1 cannot be deformed. Therefore, it is sufficient to secure the space 15 within a range where the permanent magnet holding portion 13c1 and the small diameter portion 13c2 are deformed.

ここで、永久磁石保持部13c1の径方向長さをL1とし、小径部13c2の軸方向長さをL2とし、L2をL1で除した比率をrとし、永久磁石保持部13c1の変形量をmとする。比率rと変形量mとの関係は、例えば図7に示す特性線fのようになる。特性線fは、比率r1のときに変形量m1になり、比率r2までは比率rが大きくなるにつれて変形量mも大きくなる。比率r2のときに最大の変形量m2になった後は、変形量mも小さくなる。変形量mは、端板13cが永久磁石13bを押す押圧力になり、摩擦力にも影響する。比率rは、回転子13を所望の回転数で回転させる際に必要な摩擦力が得られるように設定するとよい。例えば、回転数が10万[rpm]のときに必要な摩擦力に対応する変形量mが変形量m1であれば、比率rが比率r1以上となるように設定する。   Here, the radial length of the permanent magnet holding portion 13c1 is L1, the axial length of the small diameter portion 13c2 is L2, the ratio of L2 divided by L1 is r, and the deformation amount of the permanent magnet holding portion 13c1 is m. And The relationship between the ratio r and the deformation amount m is, for example, a characteristic line f shown in FIG. The characteristic line f becomes the deformation amount m1 at the ratio r1, and the deformation amount m increases as the ratio r increases up to the ratio r2. After reaching the maximum deformation amount m2 at the ratio r2, the deformation amount m also decreases. The deformation amount m becomes a pressing force with which the end plate 13c presses the permanent magnet 13b, and also affects the frictional force. The ratio r may be set so as to obtain a frictional force necessary for rotating the rotor 13 at a desired rotational speed. For example, if the deformation amount m corresponding to the frictional force required when the rotational speed is 100,000 [rpm] is the deformation amount m1, the ratio r is set to be equal to or greater than the ratio r1.

回転時に回転子13に生じる摩擦力,押圧力,遠心力を図8に示す。回転子13を高速回転させると、永久磁石13bには遠心力F3が生じる。また、回転時に生じる遠心力Faに伴って端板13cが変形して永久磁石13bを押す押圧力F2が生じて、端板13cと永久磁石13bとの間に摩擦力F1が生じる。こうして変形する端板13cによって摩擦力F1が生じるので、端板13cが永久磁石13bを保持する。図示するように、遠心力F3と摩擦力F1は互いに反対方向に生じる。永久磁石13bの遠心力F3による補強材13aへの負荷を低減できるので、回転数を大幅に増やすことができる。   The frictional force, pressing force, and centrifugal force generated in the rotor 13 during rotation are shown in FIG. When the rotor 13 is rotated at a high speed, a centrifugal force F3 is generated in the permanent magnet 13b. Further, the end plate 13c is deformed along with the centrifugal force Fa generated at the time of rotation to generate a pressing force F2 that pushes the permanent magnet 13b, and a friction force F1 is generated between the end plate 13c and the permanent magnet 13b. Since the frictional force F1 is generated by the end plate 13c thus deformed, the end plate 13c holds the permanent magnet 13b. As shown in the figure, centrifugal force F3 and friction force F1 are generated in opposite directions. Since the load on the reinforcing member 13a due to the centrifugal force F3 of the permanent magnet 13b can be reduced, the number of rotations can be significantly increased.

上述した実施の形態1によれば、以下に示す各作用効果を得ることができる。   According to the first embodiment described above, the following operational effects can be obtained.

(1)回転子13は、図1に示すように、補強材13a,永久磁石13b,端板13cなどを有する。端板13cは、図4に示すように、一方側端部がシャフト16に固定され、かつ、他方側端部が永久磁石13bの軸方向端面13b1に接して配置される。図6に示すように、回転時に生じる遠心力Faによって他方側端部である永久磁石保持部13c1が永久磁石13bの軸方向端面13b1と接するように変形する。端板13cは、図8に示すように、永久磁石13bとの接触面で生じる摩擦力F1によって、永久磁石13bを保持する永久磁石保持部13c1を有する。この構成によれば、回転時に生じる遠心力F3に伴って変形する端板13cによって摩擦力F1が生じ、端板13cが永久磁石13bを保持する。永久磁石13bの遠心力F3による補強材13aへの負荷を低減できるので、補強材13aの厚みを増やすことなく、例えば5万〜数十万[rpm]のように回転数を大幅に増やすことができる。   (1) As shown in FIG. 1, the rotor 13 includes a reinforcing member 13a, a permanent magnet 13b, an end plate 13c, and the like. As shown in FIG. 4, the end plate 13c has one end fixed to the shaft 16 and the other end positioned in contact with the axial end surface 13b1 of the permanent magnet 13b. As shown in FIG. 6, the permanent magnet holding portion 13c1, which is the other end, is deformed so as to be in contact with the axial end surface 13b1 of the permanent magnet 13b by the centrifugal force Fa generated during rotation. As shown in FIG. 8, the end plate 13c has a permanent magnet holding portion 13c1 that holds the permanent magnet 13b by the frictional force F1 generated on the contact surface with the permanent magnet 13b. According to this configuration, the frictional force F1 is generated by the end plate 13c that is deformed with the centrifugal force F3 generated during rotation, and the end plate 13c holds the permanent magnet 13b. Since the load on the reinforcing member 13a due to the centrifugal force F3 of the permanent magnet 13b can be reduced, the number of revolutions can be significantly increased, for example, 50,000 to several hundred thousand [rpm] without increasing the thickness of the reinforcing member 13a. it can.

(2)端板13cは、図3,図4に示すように、永久磁石保持部13c1よりも径方向に小さい小径部13c2を有する。図6に示すように、小径部13c2とシャフト16とは締りばめで固定する。この構成によれば、小径部13c2は永久磁石保持部13c1よりも遠心力F3が小さいため、締りばめによる固定でも端板13cが外れない。   (2) As shown in FIGS. 3 and 4, the end plate 13 c has a small-diameter portion 13 c 2 that is smaller in the radial direction than the permanent magnet holding portion 13 c 1. As shown in FIG. 6, the small diameter portion 13c2 and the shaft 16 are fixed with an interference fit. According to this configuration, since the small-diameter portion 13c2 has a centrifugal force F3 smaller than that of the permanent magnet holding portion 13c1, the end plate 13c does not come off even when fixed by an interference fit.

(3)永久磁石保持部13c1は、図4に示すように、永久磁石13bと接して保持する永久磁石保持面13csを有する。小径部13c2は、図3,図4に示すように、永久磁石保持面13csから軸方向に突出する。この構成によれば、小径部13c2は永久磁石保持部13c1よりも変形し難いために固定部となる。そのため、永久磁石保持部13c1を永久磁石13b側に向けて変形させることができ、永久磁石13bと永久磁石保持部13c1との摩擦力F1を確実に高めることができる。   (3) As shown in FIG. 4, the permanent magnet holding portion 13 c 1 has a permanent magnet holding surface 13 cs that is held in contact with the permanent magnet 13 b. The small diameter portion 13c2 protrudes in the axial direction from the permanent magnet holding surface 13cs, as shown in FIGS. According to this structure, since the small diameter part 13c2 is hard to deform | transform than the permanent magnet holding part 13c1, it becomes a fixed part. Therefore, the permanent magnet holding part 13c1 can be deformed toward the permanent magnet 13b side, and the frictional force F1 between the permanent magnet 13b and the permanent magnet holding part 13c1 can be reliably increased.

(11)端板13cと永久磁石13bとのうちで少なくとも一方の接触面は、非平滑面、または、凹凸を有する凹凸面である。この構成によれば、非平滑面や凹凸面は、平滑面に比べて摩擦係数が高い。非平滑面や凹凸面によって摩擦力F1が高まるので、永久磁石13bをより確実に保持することでができる。   (11) At least one contact surface of the end plate 13c and the permanent magnet 13b is a non-smooth surface or an uneven surface having unevenness. According to this configuration, the non-smooth surface and the uneven surface have a higher friction coefficient than the smooth surface. Since the frictional force F1 is increased by the non-smooth surface or the uneven surface, the permanent magnet 13b can be held more reliably.

(12)シャフト16は、図4,図5に示すように、永久磁石13bが配置される部位の軸方向端面16bsよりも、軸方向に凹ませた凹部16dを有する。この構成によれば、凹部16dがあることで、端板13cが遠心力Faによって変形する空間15が確保される。そのため、端板13cを確実に変形させることができる。   (12) As shown in FIGS. 4 and 5, the shaft 16 has a recessed portion 16 d that is recessed in the axial direction from the axial end surface 16 bs of the portion where the permanent magnet 13 b is disposed. According to this configuration, the presence of the recess 16d ensures a space 15 in which the end plate 13c is deformed by the centrifugal force Fa. Therefore, the end plate 13c can be reliably deformed.

(13)図4に示すように、端板13cと、シャフト16の凹部16dとの間には、空間15が設けられる。この構成によれば、空間15は、遠心力F3による端板13cの変形を確保する。そのため、回転時に生じる遠心力F3に伴って端板13cを確実に変形させることができる。   (13) As shown in FIG. 4, a space 15 is provided between the end plate 13 c and the recess 16 d of the shaft 16. According to this configuration, the space 15 ensures the deformation of the end plate 13c due to the centrifugal force F3. Therefore, the end plate 13c can be reliably deformed with the centrifugal force F3 generated during rotation.

(15)図1に示すように、回転電機10は、上述した回転子13と、回転子13と空隙Gを介して対向する固定子11とを有する。この構成によれば、永久磁石13bの遠心力F3による補強材13aへの負荷を低減して、回転数を大幅に増やせる回転電機10を提供することができる。   (15) As shown in FIG. 1, the rotating electrical machine 10 includes the rotor 13 described above and the stator 11 that faces the rotor 13 with a gap G interposed therebetween. According to this configuration, it is possible to provide the rotating electrical machine 10 that can reduce the load on the reinforcing member 13a due to the centrifugal force F3 of the permanent magnet 13b and can significantly increase the rotational speed.

〔実施の形態2〕
実施の形態2は図9〜図11を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、主に実施の形態1と相違する点を説明する。
[Embodiment 2]
The second embodiment will be described with reference to FIGS. For simplicity of illustration and description, unless otherwise specified, the same elements as those used in the first embodiment are denoted by the same reference numerals and description thereof is omitted. Therefore, differences from the first embodiment will be mainly described.

図9に示す端板13cは、図3に示す端板13cに代わる第2構成例である。図9に示す端板13cは、さらに補強材保持部13c4を有する点で、図3に示す端板13cと相違する。補強材保持部13c4は、図10,図11に示すように、永久磁石保持部13c1よりも剛性を弱くしている。永久磁石保持部13c1よりも補強材保持部13c4の剛性を弱くする形態は任意に設定してよい。本形態では、図9〜図11に示すように、永久磁石保持部13c1よりも軸方向の厚みを薄くすることで剛性を弱くしている。図11に二点鎖線で示すように軸方向の厚みを次第に薄くする形態や、図示を省略するが一以上の凹部を設ける形態などによって、補強材保持部13c4の剛性を弱くしてもよい。   An end plate 13c shown in FIG. 9 is a second configuration example instead of the end plate 13c shown in FIG. The end plate 13c shown in FIG. 9 is different from the end plate 13c shown in FIG. 3 in that it further has a reinforcing material holding portion 13c4. As shown in FIGS. 10 and 11, the reinforcing material holding portion 13c4 is less rigid than the permanent magnet holding portion 13c1. You may set arbitrarily the form which weakens the rigidity of the reinforcing material holding | maintenance part 13c4 rather than the permanent magnet holding | maintenance part 13c1. In this embodiment, as shown in FIGS. 9 to 11, the rigidity is weakened by making the thickness in the axial direction thinner than that of the permanent magnet holding portion 13c1. As shown by a two-dot chain line in FIG. 11, the rigidity of the reinforcing material holding portion 13c4 may be weakened by a mode in which the thickness in the axial direction is gradually reduced or a mode in which one or more concave portions are provided although illustration is omitted.

補強材保持部13c4は、図11に示すように、補強材13aの軸方向端面と接し、補強材13aとの間で生じる摩擦力F4によって補強材13aを保持する。摩擦力F4は、永久磁石13bに生じる遠心力F3とは反対方向である。摩擦力F4は同じ方向に生じる摩擦力F1とともに遠心力F3に対抗するので、端板13cの変形力を補強材13aより永久磁石13bに伝えることができる。   As shown in FIG. 11, the reinforcing material holding portion 13c4 is in contact with the axial end surface of the reinforcing material 13a and holds the reinforcing material 13a by the frictional force F4 generated between the reinforcing material 13a and the reinforcing material 13a. The frictional force F4 is in the opposite direction to the centrifugal force F3 generated in the permanent magnet 13b. Since the frictional force F4 opposes the centrifugal force F3 together with the frictional force F1 generated in the same direction, the deformation force of the end plate 13c can be transmitted from the reinforcing member 13a to the permanent magnet 13b.

上述した実施の形態2によれば、実施の形態1と同様の作用効果を得ることができるとともに、次の作用効果を得ることができる。   According to the second embodiment described above, the same operational effects as those of the first embodiment can be obtained, and the following operational effects can be obtained.

(4)端板13cは、図11に示すように、補強材13aとの間で生じる摩擦力F4によって、補強材13aを保持する補強材保持部13c4を有する。補強材保持部13c4は、図10,図11に示すように、永久磁石保持部13c1よりも剛性が弱くなるように設けられている。この構成によれば、端板13cの変形力を補強材13aより永久磁石13bに伝えることができ、摩擦力F1をより高めることができる。   (4) As shown in FIG. 11, the end plate 13c has a reinforcing material holding portion 13c4 that holds the reinforcing material 13a by the frictional force F4 generated between the end plate 13c and the reinforcing material 13a. As shown in FIGS. 10 and 11, the reinforcing material holding portion 13c4 is provided so as to be less rigid than the permanent magnet holding portion 13c1. According to this configuration, the deformation force of the end plate 13c can be transmitted from the reinforcing material 13a to the permanent magnet 13b, and the frictional force F1 can be further increased.

〔実施の形態3〕
実施の形態3は図12〜図15を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1,2で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、主に実施の形態1,2と相違する点を説明する。なお、端板13cは実施の形態2で用いた構成を適用する。
[Embodiment 3]
The third embodiment will be described with reference to FIGS. For simplicity of illustration and description, unless otherwise specified, the same elements as those used in the first and second embodiments are denoted by the same reference numerals and description thereof is omitted. Therefore, differences from Embodiments 1 and 2 will be mainly described. The configuration used in the second embodiment is applied to the end plate 13c.

実施の形態3は、シャフト16と永久磁石13bが実施の形態2と相違する。図12に示すシャフト16は、図5に示すシャフト16に代わる第2構成例である。図12に示すシャフト16は、さらに突出部16eを有する点で、図5に示すシャフト16と相違する。突出部16eは、永久磁石13bが配置される本体部16cの外周面よりも径方向外側に向けて突出する部位である。本形態の突出部16eは、軸方向のバランスを保つため、シャフト16の中央部に設けている。   The third embodiment is different from the second embodiment in the shaft 16 and the permanent magnet 13b. A shaft 16 shown in FIG. 12 is a second configuration example instead of the shaft 16 shown in FIG. The shaft 16 shown in FIG. 12 is different from the shaft 16 shown in FIG. 5 in that it further has a protruding portion 16e. The protruding portion 16e is a portion that protrudes radially outward from the outer peripheral surface of the main body portion 16c where the permanent magnet 13b is disposed. The protrusion 16e of this embodiment is provided at the center of the shaft 16 in order to maintain the axial balance.

図13に示す永久磁石13bは、図10に示す永久磁石13bに代わる第2構成例である。第2構成例の永久磁石13bは、シャフト16に突出部16eが設けられるに伴って軸方向長さが短くなるとともに、本体部16cに配置する数が増える。突出部16eの軸方向端面16esは、本体部16cに配置された永久磁石13bと接する。軸方向端面16esと、軸方向端面16esに接する永久磁石13bの面は、摩擦力を高めるため、少なくとも一方の接触面が非平滑面または凹凸面であるのが望ましい。   A permanent magnet 13b shown in FIG. 13 is a second configuration example instead of the permanent magnet 13b shown in FIG. The permanent magnet 13b of the second configuration example has a shorter axial length as the projecting portion 16e is provided on the shaft 16, and the number of permanent magnets 13b arranged on the main body portion 16c increases. The axial end surface 16es of the protruding portion 16e is in contact with the permanent magnet 13b disposed on the main body portion 16c. It is desirable that at least one of the contact surfaces of the axial end surface 16es and the surface of the permanent magnet 13b in contact with the axial end surface 16es is a non-smooth surface or an uneven surface in order to increase the frictional force.

回転時に回転子13に生じる摩擦力,押圧力,遠心力を図14に示す。摩擦力F1,押圧力F2および遠心力F3は、実施の形態1における図8と同様である。回転時に端板13cが変形して永久磁石13bを押す押圧力F2によって、永久磁石13bは突出部16eに向けて押される。そのため、突出部16eと永久磁石13bとの間には摩擦力F5が生じる。図示するように、遠心力F3と摩擦力F1,F5は互いに反対方向に生じる。こうして永久磁石13bは、端板13cによる摩擦力F1だけでなく、突出部16eによる摩擦力F5も生じて保持される。永久磁石13bは、実施の形態2よりも軸方向長さが短くなるので質量が小さくなるため、回転時に受ける遠心力F3も小さくなる。摩擦力F1,F5および遠心力F3の相乗効果によって、補強材13aへの負荷を低減できるので、回転数を大幅に増やすことができる。   FIG. 14 shows the frictional force, pressing force, and centrifugal force generated in the rotor 13 during rotation. The frictional force F1, the pressing force F2, and the centrifugal force F3 are the same as those in FIG. 8 in the first embodiment. The permanent magnet 13b is pushed toward the protruding portion 16e by the pressing force F2 that deforms the end plate 13c and pushes the permanent magnet 13b during rotation. Therefore, a frictional force F5 is generated between the protruding portion 16e and the permanent magnet 13b. As illustrated, the centrifugal force F3 and the frictional forces F1 and F5 are generated in opposite directions. Thus, the permanent magnet 13b is generated and held not only by the frictional force F1 by the end plate 13c but also by the frictional force F5 by the protruding portion 16e. Since the permanent magnet 13b has a shorter axial length than that of the second embodiment and thus has a smaller mass, the centrifugal force F3 received during rotation is also smaller. Since the load on the reinforcing material 13a can be reduced by the synergistic effect of the frictional forces F1 and F5 and the centrifugal force F3, the number of rotations can be significantly increased.

上述した実施の形態3によれば、実施の形態2と同様の作用効果を得ることができるとともに、次の作用効果を得ることができる。   According to the third embodiment described above, the same operational effects as those of the second embodiment can be obtained, and the following operational effects can be obtained.

(5)シャフト16は、図12,図13に示すように、径方向に突出する突出部16eを有する。突出部16eの軸方向端面16esには、図14に示すように、永久磁石13bが接して配置される。この構成によれば、摩擦力の発生点は摩擦力F1だけでなく摩擦力F5も増えるので、永久磁石13bの遠心力F3によって補強材13aに加わる負荷をさらに軽減できる。   (5) As shown in FIGS. 12 and 13, the shaft 16 has a protruding portion 16 e that protrudes in the radial direction. As shown in FIG. 14, the permanent magnet 13b is disposed in contact with the axial end surface 16es of the protruding portion 16e. According to this configuration, since the generation point of the frictional force increases not only the frictional force F1 but also the frictional force F5, the load applied to the reinforcing member 13a by the centrifugal force F3 of the permanent magnet 13b can be further reduced.

上述した実施の形態3では、実施の形態2で用いた端板13cを適用した。この形態に代えて、図15に示すように、実施の形態1で用いた端板13cを適用してもよい。この場合は、上記(5)の作用効果とともに、実施の形態1と同様の作用効果が得られる。   In the above-described third embodiment, the end plate 13c used in the second embodiment is applied. Instead of this form, as shown in FIG. 15, the end plate 13c used in Embodiment 1 may be applied. In this case, the same effect as that of the first embodiment can be obtained together with the effect (5).

〔実施の形態4〕
実施の形態4は図16〜図19を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1〜3で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、主に実施の形態1〜3と相違する点を説明する。なお、端板13cは実施の形態2で用いた構成を適用する。
[Embodiment 4]
The fourth embodiment will be described with reference to FIGS. For simplicity of illustration and description, unless otherwise specified, the same elements as those used in the first to third embodiments are denoted by the same reference numerals and description thereof is omitted. Therefore, differences from Embodiments 1 to 3 will be mainly described. The configuration used in the second embodiment is applied to the end plate 13c.

図16に示す端板13cは、図9に示す端板13cに代わる第3構成例である。図16に示す端板13cは、さらにテーパ部13c5を有する点で、図9に示す端板13cと相違する。図3に示す端板13cに対しては、さらに補強材保持部13c4とテーパ部13c5とを設ける構成でもある。なお、補強材保持部13c4の構成は実施の形態2と同様であるので、以下では説明を省略する。   An end plate 13c shown in FIG. 16 is a third configuration example instead of the end plate 13c shown in FIG. The end plate 13c shown in FIG. 16 is different from the end plate 13c shown in FIG. 9 in that it further has a tapered portion 13c5. The end plate 13c shown in FIG. 3 is also configured to further include a reinforcing material holding portion 13c4 and a tapered portion 13c5. The configuration of the reinforcing material holding portion 13c4 is the same as that of the second embodiment, and thus the description thereof is omitted below.

図17,図18に示すように、永久磁石保持部13c1はテーパ部13c5を有し、永久磁石13bはテーパ部13c5に対応するテーパ部13b2を有する。テーパ部13c5は、径が大きくなるにつれて永久磁石13bに向かう永久磁石保持部13c1の軸方向幅が逓増する部位である。テーパ部13b2は、径が大きくなるにつれて永久磁石保持部13c1に向かう永久磁石13bの軸方向幅が逓減する部位である。   As shown in FIGS. 17 and 18, the permanent magnet holding portion 13c1 has a tapered portion 13c5, and the permanent magnet 13b has a tapered portion 13b2 corresponding to the tapered portion 13c5. The taper portion 13c5 is a portion where the axial width of the permanent magnet holding portion 13c1 toward the permanent magnet 13b gradually increases as the diameter increases. The taper portion 13b2 is a portion where the axial width of the permanent magnet 13b toward the permanent magnet holding portion 13c1 gradually decreases as the diameter increases.

テーパ部13c5とテーパ部13b2は、図示するように接する。テーパ部13c5およびテーパ部13b2の各接触面は、摩擦力を高めるため、少なくとも一方の接触面が非平滑面または凹凸面であるのが望ましい。   The tapered portion 13c5 and the tapered portion 13b2 are in contact with each other as illustrated. It is desirable that at least one of the contact surfaces of the tapered portion 13c5 and the tapered portion 13b2 is a non-smooth surface or an uneven surface in order to increase the frictional force.

上述した実施の形態4によれば、実施の形態2と同様の作用効果を得ることができるとともに、次の作用効果を得ることができる。   According to the fourth embodiment described above, the same operational effects as those of the second embodiment can be obtained, and the following operational effects can be obtained.

(6)図17,図18に示すように、永久磁石保持部13c1と永久磁石13bとの接触面は、テーパ状に設けられたテーパ部13c5とテーパ部13b2である。この構成によれば、テーパ部13c5は径が大きくなるにつれて永久磁石保持部13c1の軸方向幅が逓増するので、永久磁石保持部13c1は永久磁石13bをより確実に保持することでができる。   (6) As shown in FIGS. 17 and 18, the contact surfaces of the permanent magnet holding portion 13c1 and the permanent magnet 13b are a tapered portion 13c5 and a tapered portion 13b2 provided in a tapered shape. According to this configuration, since the axial width of the permanent magnet holding portion 13c1 increases as the diameter of the tapered portion 13c5 increases, the permanent magnet holding portion 13c1 can hold the permanent magnet 13b more reliably.

上述した実施の形態4では、実施の形態2で用いた端板13cに対してテーパ部13c5を設けた。この形態に代えて、図19に示すように、実施の形態1で用いた端板13cに対してテーパ部13c5を設けてもよい。この場合は、上記(6)の作用効果とともに、実施の形態1と同様の作用効果が得られる。   In Embodiment 4 mentioned above, the taper part 13c5 was provided with respect to the end plate 13c used in Embodiment 2. FIG. Instead of this form, as shown in FIG. 19, a tapered portion 13c5 may be provided on the end plate 13c used in the first embodiment. In this case, in addition to the effect (6), the same effect as in the first embodiment can be obtained.

〔実施の形態5〕
実施の形態5は図20〜図22を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1〜4で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、主に実施の形態1〜4と相違する点を説明する。なお、端板13cは実施の形態2で用いた構成を適用する。
[Embodiment 5]
The fifth embodiment will be described with reference to FIGS. For simplicity of illustration and description, unless otherwise specified, the same elements as those used in Embodiments 1 to 4 are denoted by the same reference numerals and description thereof is omitted. Therefore, the points different from the first to fourth embodiments will be mainly described. The configuration used in the second embodiment is applied to the end plate 13c.

実施の形態5は、端板13cとシャフト16が実施の形態2と相違する。図20に示す端板13cは、図9に示す端板13cに代わる第4構成例である。端板13cは、小径部13c2に代えて第1溝部13c6を有する点で、図9に示す端板13cと相違する。第1溝部13c6は、締りばめを行うための凸状部13ccができるように、永久磁石保持部13c1の永久磁石保持面13csとは反対側の面に設けられる。   In the fifth embodiment, the end plate 13c and the shaft 16 are different from the second embodiment. An end plate 13c shown in FIG. 20 is a fourth configuration example instead of the end plate 13c shown in FIG. The end plate 13c is different from the end plate 13c shown in FIG. 9 in that a first groove portion 13c6 is provided instead of the small diameter portion 13c2. The first groove portion 13c6 is provided on the surface of the permanent magnet holding portion 13c1 opposite to the permanent magnet holding surface 13cs so that a convex portion 13cc for performing an interference fit can be formed.

端板13cが小径部13c2を有しないので、シャフト16には小径部13c2を収容する部位が不要となる。よって、図20に示すシャフト16は、軸部16aや本体部16cを有し、図4,図5に示す凸状部16bや凹部16dを有しない。小径部13c2,凸状部16bおよび凹部16dが無いので、図4に示す空間15も無くなる。   Since the end plate 13c does not have the small-diameter portion 13c2, the shaft 16 does not need a portion for accommodating the small-diameter portion 13c2. Therefore, the shaft 16 shown in FIG. 20 has the shaft portion 16a and the main body portion 16c, and does not have the convex portion 16b and the concave portion 16d shown in FIGS. Since there are no small diameter portion 13c2, convex portion 16b and concave portion 16d, the space 15 shown in FIG. 4 is also eliminated.

図21に示す締りばめ部17は、実線のハッチングで示すように、少なくとも第1溝部13c6に対応する凸状部13ccを含める。締りばめ部17は、二点鎖線のハッチングで示すように、さらに永久磁石保持部13c1に対応する部位を含めてもよい。   The interference fit portion 17 shown in FIG. 21 includes at least a convex portion 13cc corresponding to the first groove portion 13c6, as shown by the solid line hatching. The interference fit portion 17 may further include a portion corresponding to the permanent magnet holding portion 13c1, as shown by the two-dot chain line hatching.

回転時に生じる遠心力によって、図6と同様にして、永久磁石保持部13c1は永久磁石13bに向かって変形する。すなわち、第1溝部13c6が設けられた部位の永久磁石保持部13c1が変形する。   The permanent magnet holding portion 13c1 is deformed toward the permanent magnet 13b by the centrifugal force generated during the rotation in the same manner as in FIG. That is, the permanent magnet holding portion 13c1 at the portion where the first groove portion 13c6 is provided is deformed.

上述した実施の形態5によれば、実施の形態2と同様の作用効果を得ることができるとともに、次の作用効果を得ることができる。   According to the fifth embodiment described above, the same operational effects as those of the second embodiment can be obtained, and the following operational effects can be obtained.

(7)端板13cは、図20,図21に示すように、永久磁石保持部13c1の永久磁石保持面13csと反対側の面に第1溝部13c6を有する。この構成によれば、永久磁石保持部13c1は第1溝部13c6が設けられた部位が他の部位よりも剛性が弱いので、永久磁石13b側に向けてより確実に変形させることができる。   (7) As shown in FIGS. 20 and 21, the end plate 13 c has a first groove portion 13 c 6 on the surface opposite to the permanent magnet holding surface 13 cs of the permanent magnet holding portion 13 c 1. According to this configuration, the permanent magnet holding portion 13c1 can be more reliably deformed toward the permanent magnet 13b because the portion where the first groove portion 13c6 is provided is less rigid than the other portions.

上述した実施の形態5では、実施の形態2で用いた端板13cに対して第1溝部13c6を設けた。この形態に代えて、図22に示すように、実施の形態1で用いた端板13cに対して第1溝部13c6を設けてもよい。この場合は、上記(7)の作用効果とともに、実施の形態1と同様の作用効果が得られる。   In the fifth embodiment described above, the first groove portion 13c6 is provided for the end plate 13c used in the second embodiment. Instead of this form, as shown in FIG. 22, a first groove 13c6 may be provided on the end plate 13c used in the first embodiment. In this case, in addition to the effect (7), the same effect as in the first embodiment can be obtained.

〔実施の形態6〕
実施の形態6は図23〜図25を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1〜5で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、主に実施の形態1〜5と相違する点を説明する。なお、端板13cは実施の形態2で用いた構成を適用する。
[Embodiment 6]
The sixth embodiment will be described with reference to FIGS. For simplicity of illustration and description, unless otherwise specified, the same elements as those used in Embodiments 1 to 5 are denoted by the same reference numerals and description thereof is omitted. Therefore, differences from Embodiments 1 to 5 will be mainly described. The configuration used in the second embodiment is applied to the end plate 13c.

図23に示す端板13cは、図9に示す端板13cに代わる第5構成例である。図23に示す端板13cは、さらに第2溝部13c7を有する点で、図9に示す端板13cと相違する。第2溝部13c7は、凸状部16bとの間に隙間が生じるように、さらに永久磁石保持部13c1の永久磁石保持面13csと同じ側の面に設けられる。   An end plate 13c shown in FIG. 23 is a fifth configuration example instead of the end plate 13c shown in FIG. The end plate 13c shown in FIG. 23 is different from the end plate 13c shown in FIG. 9 in that it further includes a second groove 13c7. The second groove portion 13c7 is further provided on the same surface as the permanent magnet holding surface 13cs of the permanent magnet holding portion 13c1 so that a gap is formed between the second groove portion 13c7 and the convex portion 16b.

図24,図25に示すように、永久磁石保持部13c1は第2溝部13c7を有する。端板13cは、第2溝部13c7を設けたことによって、永久磁石保持部13c1と凸状部16bとの間に隙間が生じる。また端板13cは、実施の形態1〜3,5と同様に永久磁石保持面13csを有するので、永久磁石13bと接して保持する。   As shown in FIGS. 24 and 25, the permanent magnet holding part 13c1 has a second groove part 13c7. Since the end plate 13c is provided with the second groove portion 13c7, a gap is generated between the permanent magnet holding portion 13c1 and the convex portion 16b. Moreover, since the end plate 13c has the permanent magnet holding surface 13cs as in the first to third and fifth embodiments, the end plate 13c is held in contact with the permanent magnet 13b.

回転時に生じる遠心力によって、図6と同様にして、永久磁石保持部13c1は永久磁石13bに向かって変形する。永久磁石保持部13c1と凸状部16bとの間には、第2溝部13c7に対応する隙間があるので、永久磁石保持部13c1は凸状部16bで阻害されずに変形し易くなる。   The permanent magnet holding portion 13c1 is deformed toward the permanent magnet 13b by the centrifugal force generated during the rotation in the same manner as in FIG. Since there is a gap corresponding to the second groove portion 13c7 between the permanent magnet holding portion 13c1 and the convex portion 16b, the permanent magnet holding portion 13c1 is easily deformed without being obstructed by the convex portion 16b.

上述した実施の形態6によれば、実施の形態2と同様の作用効果を得ることができるとともに、次の作用効果を得ることができる。   According to the sixth embodiment described above, the same operational effects as those of the second embodiment can be obtained, and the following operational effects can be obtained.

(8)端板13cは、図24,図25に示すように、永久磁石保持部13c1の永久磁石保持面13csと同じ側の面に第2溝部13c7を有する。この構成によれば、第2溝部13c7が設けられた部位は他の部位に比べて剛性が弱いので、永久磁石保持部13c1を永久磁石13b側に向けてより確実に変形させることができる。   (8) As shown in FIGS. 24 and 25, the end plate 13c has a second groove portion 13c7 on the same side as the permanent magnet holding surface 13cs of the permanent magnet holding portion 13c1. According to this configuration, the portion where the second groove portion 13c7 is provided has lower rigidity than the other portions, and thus the permanent magnet holding portion 13c1 can be more reliably deformed toward the permanent magnet 13b side.

上述した実施の形態6では、実施の形態2で用いた端板13cに対して第2溝部13c7を設けた。この形態に代えて、図26に示すように、実施の形態1で用いた端板13cに対して第2溝部13c7を設けてもよい。この場合は、上記(8)の作用効果とともに、実施の形態1と同様の作用効果が得られる。   In Embodiment 6 mentioned above, the 2nd groove part 13c7 was provided with respect to the end plate 13c used in Embodiment 2. FIG. Instead of this form, as shown in FIG. 26, a second groove 13c7 may be provided on the end plate 13c used in the first embodiment. In this case, in addition to the effect (8), the same effect as in the first embodiment can be obtained.

なお端板13cは、図24,図25に二点鎖線で示す第1溝部13c6をさらに設けてもよい。第1溝部13c6の具体的な構成は実施の形態6と同様であり、上記(7)の作用効果が得られる。   The end plate 13c may further be provided with a first groove portion 13c6 indicated by a two-dot chain line in FIGS. The specific configuration of the first groove 13c6 is the same as that of the sixth embodiment, and the effect (7) is obtained.

〔実施の形態7〕
実施の形態7は図26〜図28を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1〜6で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、主に実施の形態1〜6と相違する点を説明する。なお、端板13cは実施の形態2で用いた構成を適用する。
[Embodiment 7]
The seventh embodiment will be described with reference to FIGS. For simplicity of illustration and description, unless otherwise specified, the same elements as those used in Embodiments 1 to 6 are denoted by the same reference numerals and description thereof is omitted. Therefore, the points different from the first to sixth embodiments are mainly described. The configuration used in the second embodiment is applied to the end plate 13c.

図26,図27に示すシャフト16は、図5に示すシャフト16に代わる第3構成例である。第3構成例のシャフト16は、図10に示す凸状部16bよりも軸方向長さが短い。実施の形態6では、永久磁石保持部13c1と凸状部16bとの間に隙間を確保するため、端板13cに第2溝部13c7を設けた。これに対して本形態では、永久磁石保持部13c1と凸状部16bとの間に隙間を確保するため、凸状部16bの軸方向長さを短くする。凸状部16bの軸方向長さが短くなるに伴って、永久磁石13bは凸状部16bの軸方向端面よりも突出したオーバーハング部13b3を有する。   The shaft 16 shown in FIGS. 26 and 27 is a third configuration example instead of the shaft 16 shown in FIG. The shaft 16 of the third configuration example has a shorter axial length than the convex portion 16b shown in FIG. In the sixth embodiment, the second groove portion 13c7 is provided in the end plate 13c in order to secure a gap between the permanent magnet holding portion 13c1 and the convex portion 16b. On the other hand, in this embodiment, the axial length of the convex portion 16b is shortened in order to secure a gap between the permanent magnet holding portion 13c1 and the convex portion 16b. As the axial length of the convex portion 16b becomes shorter, the permanent magnet 13b has an overhang portion 13b3 that protrudes beyond the axial end surface of the convex portion 16b.

図26に示すように、凸状部16bの軸方向長さを短くしたことによって、永久磁石保持部13c1と凸状部16bとの間に隙間が生じる。端板13cは実施の形態1〜3,5,6と同様に永久磁石保持面13csを有するので、永久磁石13bと接して保持する。   As shown in FIG. 26, by shortening the axial length of the convex portion 16b, a gap is generated between the permanent magnet holding portion 13c1 and the convex portion 16b. Since the end plate 13c has the permanent magnet holding surface 13cs as in the first to third, third, fifth, and sixth embodiments, the end plate 13c is held in contact with the permanent magnet 13b.

回転時に生じる遠心力によって、図6と同様にして、永久磁石保持部13c1は永久磁石13bに向かって変形する。永久磁石保持部13c1と凸状部16bとの間には隙間があるので、永久磁石保持部13c1は凸状部16bで阻害されずに変形し易くなる。   The permanent magnet holding portion 13c1 is deformed toward the permanent magnet 13b by the centrifugal force generated during the rotation in the same manner as in FIG. Since there is a gap between the permanent magnet holding portion 13c1 and the convex portion 16b, the permanent magnet holding portion 13c1 is easily deformed without being obstructed by the convex portion 16b.

上述した実施の形態7によれば、実施の形態2と同様の作用効果を得ることができるとともに、次の作用効果を得ることができる。   According to the seventh embodiment described above, the same operational effects as those of the second embodiment can be obtained, and the following operational effects can be obtained.

(9)図26に示すように、シャフト16は軸方向に延びる凸状部16bを有する。永久磁石13bは、凸状部16bよりも相対的に軸方向に延びるオーバーハング部13b3を有する。オーバーハング部13b3の一面は、永久磁石保持部13c1と接する。この構成によれば、遠心力Faによって変形する端板13cは、シャフト16の凸状部16bに接することなく、永久磁石13bに接する。そのため、端板13cの変形に伴う押圧力F2を永久磁石13bに伝えることができ、端板13cと永久磁石13bとの接触面に生じる摩擦力F1を高めることができる。   (9) As shown in FIG. 26, the shaft 16 has a convex portion 16b extending in the axial direction. The permanent magnet 13b has an overhang portion 13b3 that extends in the axial direction relatively to the convex portion 16b. One surface of the overhang portion 13b3 is in contact with the permanent magnet holding portion 13c1. According to this configuration, the end plate 13c deformed by the centrifugal force Fa is in contact with the permanent magnet 13b without being in contact with the convex portion 16b of the shaft 16. Therefore, the pressing force F2 accompanying the deformation of the end plate 13c can be transmitted to the permanent magnet 13b, and the frictional force F1 generated on the contact surface between the end plate 13c and the permanent magnet 13b can be increased.

上述した実施の形態7は、凸状部16bの軸方向長さを短くする構成とした。この構成に代えて、図示を省略するが、補強材13a,永久磁石13b,小径部13c2の軸方向長さを長くする構成としてもよい。この構成によれば、図26に示す回転子13よりも軸方向長さが長くなるものの、永久磁石13bは凸状部16bの軸方向端面よりも突出したオーバーハング部13b3を有することになる。そのため、永久磁石保持部13c1と凸状部16bとの間に隙間を確保することができる。   Embodiment 7 mentioned above was set as the structure which shortens the axial direction length of the convex-shaped part 16b. Instead of this configuration, although not shown, the axial lengths of the reinforcing member 13a, the permanent magnet 13b, and the small diameter portion 13c2 may be increased. According to this configuration, although the axial length is longer than that of the rotor 13 shown in FIG. 26, the permanent magnet 13b has the overhang portion 13b3 protruding from the axial end surface of the convex portion 16b. Therefore, a gap can be secured between the permanent magnet holding part 13c1 and the convex part 16b.

上述した実施の形態7では、実施の形態2の端板13cを用いた。この形態に代えて、図28に示すように、実施の形態1の端板13cを用いてもよい。この場合は、上記(9)の作用効果とともに、実施の形態1と同様の作用効果が得られる。   In the seventh embodiment described above, the end plate 13c of the second embodiment is used. Instead of this form, as shown in FIG. 28, the end plate 13c of Embodiment 1 may be used. In this case, the same effect as that of the first embodiment can be obtained together with the effect (9).

〔実施の形態8〕
実施の形態8は図29,図30を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1〜7で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、主に実施の形態1〜7と相違する点を説明する。なお、端板13cは実施の形態1で用いた構成を適用する。
[Embodiment 8]
Embodiment 8 will be described with reference to FIGS. 29 and 30. FIG. For simplicity of illustration and description, unless otherwise specified, the same elements as those used in the first to seventh embodiments are denoted by the same reference numerals and description thereof is omitted. Therefore, the points different from the first to seventh embodiments will be mainly described. The configuration used in the first embodiment is applied to the end plate 13c.

図29に示す端板13cは、図3,図4に示す端板13cに代わる第6構成例である。図3,図4に示す端板13cは、永久磁石保持部13c1と小径部13c2とが直角になっている。これに対して、図29に示す端板13cは、永久磁石保持部13c1と小径部13c2とが鋭角θになっている。鋭角θは、後述する付勢力F6が所望の値となるように、例えば45°≦θ<90°の範囲内で任意に設定してよい。   An end plate 13c shown in FIG. 29 is a sixth configuration example instead of the end plate 13c shown in FIGS. In the end plate 13c shown in FIGS. 3 and 4, the permanent magnet holding portion 13c1 and the small diameter portion 13c2 are at right angles. On the other hand, in the end plate 13c shown in FIG. 29, the permanent magnet holding part 13c1 and the small diameter part 13c2 have an acute angle θ. The acute angle θ may be arbitrarily set within a range of 45 ° ≦ θ <90 °, for example, so that an urging force F6 described later takes a desired value.

図29に示す端板13cをシャフト16に固定するに当たって、図30に示すように締りばめする方向(図30の矢印D2方向)に移動させる。端板13cは、移動途中に永久磁石保持部13c1が補強材13aや永久磁石13bに接した後、永久磁石保持部13c1は弾性変形する。こうして、端板13cを締りばめでシャフト16に固定した後の状態を図30に示す。弾性変形した永久磁石保持部13c1は、補強材13aや永久磁石13bに対して付勢力F6で付勢する。この付勢力F6は、回転時や停止時を問わず、図8に示す摩擦力F1を高めるように寄与する。   In fixing the end plate 13c shown in FIG. 29 to the shaft 16, the end plate 13c is moved in the direction of interference fitting (in the direction of arrow D2 in FIG. 30) as shown in FIG. The end plate 13c is elastically deformed after the permanent magnet holding portion 13c1 is in contact with the reinforcing member 13a and the permanent magnet 13b during the movement. FIG. 30 shows a state after the end plate 13c is fixed to the shaft 16 with an interference fit. The elastically deformed permanent magnet holding portion 13c1 is urged by the urging force F6 against the reinforcing material 13a and the permanent magnet 13b. This urging force F6 contributes to increase the frictional force F1 shown in FIG. 8 regardless of whether it is rotating or stopped.

回転時に生じる遠心力によって、図6と同様にして、永久磁石保持部13c1は永久磁石13bに向かって変形して図8に示す押圧力F2を生じさせる。押圧力F2と付勢力F6は別個に作用するので、永久磁石保持部13c1と永久磁石13bとの接触面で生じる摩擦力F1を高めることができる。したがって、端板13cは永久磁石13bをより強固に保持することができる。   Due to the centrifugal force generated at the time of rotation, the permanent magnet holding portion 13c1 is deformed toward the permanent magnet 13b in the same manner as in FIG. 6 to generate the pressing force F2 shown in FIG. Since the pressing force F2 and the urging force F6 act separately, the frictional force F1 generated on the contact surface between the permanent magnet holding portion 13c1 and the permanent magnet 13b can be increased. Therefore, the end plate 13c can hold the permanent magnet 13b more firmly.

上述した実施の形態8によれば、実施の形態1と同様の作用効果を得ることができるとともに、次の作用効果を得ることができる。   According to the above-described eighth embodiment, the same operational effects as those of the first embodiment can be obtained, and the following operational effects can be obtained.

(10)端板13cは、図29に示すように固定前の永久磁石保持部13c1と小径部13c2とが鋭角θをなし、図30に示すように固定後に永久磁石保持部13c1が少なくとも永久磁石13bを付勢する。この構成によれば、固定に伴って弾性変形した永久磁石保持部13c1は少なくとも永久磁石13bを付勢する。摩擦力F1に付勢力F6が加わり、永久磁石13bをさらに強固に保持することでができる。   (10) In the end plate 13c, as shown in FIG. 29, the permanent magnet holding part 13c1 and the small diameter part 13c2 before fixing form an acute angle θ, and the permanent magnet holding part 13c1 after fixing is at least a permanent magnet as shown in FIG. 13b is energized. According to this configuration, the permanent magnet holding portion 13c1 that is elastically deformed as it is fixed biases at least the permanent magnet 13b. The biasing force F6 is applied to the frictional force F1, and the permanent magnet 13b can be held more firmly.

上述した実施の形態8では、実施の形態1の端板13cを用いた。この形態に代えて、実施の形態2〜4,6,7の端板13cを用いてもよい。すなわち、実施の形態2〜4,6,7の端板13cに含まれる永久磁石保持部13c1と小径部13c2との間を鋭角θにする。この場合は、実施の形態2〜7の作用効果が得られる。   In the eighth embodiment described above, the end plate 13c of the first embodiment is used. Instead of this form, the end plate 13c of the second to fourth, sixth, and seventh embodiments may be used. That is, an acute angle θ is set between the permanent magnet holding portion 13c1 and the small diameter portion 13c2 included in the end plates 13c of the second to fourth, fourth, sixth, and seventh embodiments. In this case, the effects of the second to seventh embodiments can be obtained.

〔他の実施の形態〕
以上では本発明を実施するための形態について説明したが、本発明は当該形態に何ら限定されるものではない。言い換えれば、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施することもできる。例えば、次に示す各形態を実現してもよい。
[Other Embodiments]
Although the form for implementing this invention was demonstrated above, this invention is not limited to the said form at all. In other words, various forms can be implemented without departing from the scope of the present invention. For example, the following forms may be realized.

上述した実施の形態1〜8では、図4,図11,図18,図21,図25,図30に示すように、端板13cとシャフト16とを締りばめで固定する構成とした。この形態に代えて、他の固定形態で固定する構成としてもよい。例えば、図31に示すように端板13cとシャフト16とをネジで固定してもよい。図31に示すネジ部18は、回転子13の穴部13c3と、シャフト16の軸部16aとのうちで一方に雄ネジを設け、他方に雌ネジを設けている。図示を省略するが、端板13cと軸部16aとを溶接して固定してもよい。複数の固定形態を任意に組み合わせて固定してもよい。固定形態が相違するに過ぎないので、実施の形態1〜8と同様の作用効果を得ることができる。   In the above-described first to eighth embodiments, as shown in FIGS. 4, 11, 18, 21, 25, and 30, the end plate 13c and the shaft 16 are fixed with an interference fit. Instead of this form, it may be configured to be fixed in another fixed form. For example, as shown in FIG. 31, the end plate 13c and the shaft 16 may be fixed with screws. The screw portion 18 shown in FIG. 31 is provided with a male screw on one of the hole 13c3 of the rotor 13 and the shaft portion 16a of the shaft 16 and a female screw on the other. Although illustration is omitted, the end plate 13c and the shaft portion 16a may be fixed by welding. A plurality of fixing forms may be arbitrarily combined and fixed. Since only the fixing forms are different, the same effects as those of the first to eighth embodiments can be obtained.

上述した実施の形態1〜8では、図1,図10,図13,図17,図20,図24,図26,図30に示すように、補強材13aの軸方向端面を永久磁石13bの軸方向端面13b1に合わせる構成とした。この形態に代えて、図32に示すように、補強材13aの軸方向長さを永久磁石13bの軸方向端面13b1よりも短くする構成としてもよい。図32に示す端板13cは、補強材13aの軸方向長さが短くなった分に対応して、永久磁石保持部13c1から補強材13aに向けて軸方向に延びる掛止部13c8をさらに有する。二点鎖線で示すように実施の形態4における端板13cがテーパ部13b2を有する場合、掛止部13c8はテーパ部13b2よりも補強材13aに向けて軸方向に突出して延ばす。いずれの構成にせよ、掛止部13c8は補強材13aと接して保持するとともに、永久磁石13bの端部を係止して保持する。端板13cは、実施の形態1〜8と同様に回転時に永久磁石保持部13c1が永久磁石13bに接して摩擦力F1が生じる。端板13cが掛止部13c8を有することで、次の作用効果を得ることができる。   In the first to eighth embodiments described above, as shown in FIGS. 1, 10, 13, 17, 20, 20, 24, 26, and 30, the axial end surface of the reinforcing member 13a is attached to the permanent magnet 13b. It was set as the structure match | combined with the axial direction end surface 13b1. Instead of this form, as shown in FIG. 32, the axial length of the reinforcing member 13a may be shorter than the axial end surface 13b1 of the permanent magnet 13b. The end plate 13c shown in FIG. 32 further includes a latching portion 13c8 extending in the axial direction from the permanent magnet holding portion 13c1 toward the reinforcing material 13a corresponding to the shortened axial length of the reinforcing material 13a. . When the end plate 13c in Embodiment 4 has the taper part 13b2 as shown with a dashed-two dotted line, the latching | locking part 13c8 protrudes and extends in the axial direction toward the reinforcement material 13a rather than the taper part 13b2. Regardless of the configuration, the latching portion 13c8 is held in contact with the reinforcing member 13a, and the end portion of the permanent magnet 13b is locked and held. In the end plate 13c, as in the first to eighth embodiments, the permanent magnet holding portion 13c1 contacts the permanent magnet 13b during rotation to generate the frictional force F1. Since the end plate 13c has the latching part 13c8, the following effects can be obtained.

(14)端板13cは、図32に示すように、永久磁石保持部13c1の端部から軸方向に延びる掛止部13c8を有する。掛止部13c8は、補強材13aと接し、かつ、永久磁石13bの端部を保持する。この構成によれば、掛止部13c8は補強材13aと接して摩擦力を生じさせて保持するとともに、永久磁石13bの端部を掛止して保持することができる。   (14) As shown in FIG. 32, the end plate 13c has a latching portion 13c8 extending in the axial direction from the end portion of the permanent magnet holding portion 13c1. The latching portion 13c8 is in contact with the reinforcing material 13a and holds the end portion of the permanent magnet 13b. According to this configuration, the latching portion 13c8 can be brought into contact with the reinforcing member 13a to generate and hold a frictional force, and the end portion of the permanent magnet 13b can be latched and held.

上述した実施の形態1〜4,6〜8では、図1,図4,図10,図13,図17,図24,図26,図30に示すように、端板13cと凹部16dとの間に空間15を設ける構成とした。この形態に代えて、図33に示すように、端板13cと凹部16dとの間に弾性部材19を設ける構成としてもよい。言い換えると、空間15を弾性部材19で埋める。弾性部材19は、例えばゴムや油などが該当する。弾性部材19を設けても、遠心力Faによって端板13cが変形するのを確保する。弾性部材19は小径部13c2を押さえ付ける作用もあるので、締りばめやネジの固定力を弱くしても端板13cをシャフト16に固定することができる。その他は、空間15か弾性部材19かの相違に過ぎないので、実施の形態1〜8と同様の作用効果を得ることができる。   In the first to fourth embodiments described above, as shown in FIGS. 1, 4, 10, 13, 13, 17, 24, 26, and 30, the end plate 13c and the recess 16d A space 15 is provided between them. Instead of this form, an elastic member 19 may be provided between the end plate 13c and the recess 16d as shown in FIG. In other words, the space 15 is filled with the elastic member 19. The elastic member 19 corresponds to rubber or oil, for example. Even if the elastic member 19 is provided, it is ensured that the end plate 13c is deformed by the centrifugal force Fa. Since the elastic member 19 also has an action of pressing the small diameter portion 13c2, the end plate 13c can be fixed to the shaft 16 even if the fastening force of the interference fit or screw is weakened. Other than that, only the difference between the space 15 and the elastic member 19 is the same as in the first to eighth embodiments.

上述した実施の形態3では、図12に示すように、シャフト16は一つの突出部16eを有する構成とした。この形態に代えて、図34に示すように、複数の突出部16eを有する構成としてもよい。突出部16eの増加に伴って、永久磁石13bは数が増える反面、遠心力F3に影響する質量が減る。軸方向に隣り合う突出部16eの相互間に配置される永久磁石13b(以下では単に「中間磁石」と呼ぶ)は、軸方向の両端面で突出部16eと接する。中間磁石と突出部16eとの接触面は、摩擦力を高めるため、少なくとも一方の接触面が非平滑面または凹凸面であるのが望ましい。よって中間磁石は、質量の減少による遠心力F3が減り、突出部16eとの接触によって摩擦力が生じるため、補強材13aに与える遠心力F3の影響が少なくなる。したがって、突出部16eの数が相違するに過ぎないので、実施の形態3と同様の作用効果を得ることができる。   In the third embodiment described above, as shown in FIG. 12, the shaft 16 is configured to have one protrusion 16e. Instead of this form, as shown in FIG. 34, it is good also as a structure which has several protrusion part 16e. As the number of the protrusions 16e increases, the number of permanent magnets 13b increases, but the mass affecting the centrifugal force F3 decreases. Permanent magnets 13b (hereinafter simply referred to as “intermediate magnets”) disposed between the protruding portions 16e adjacent in the axial direction are in contact with the protruding portions 16e at both end surfaces in the axial direction. It is desirable that at least one of the contact surfaces of the intermediate magnet and the protruding portion 16e is a non-smooth surface or an uneven surface in order to increase the frictional force. Therefore, the centrifugal force F3 due to the decrease in mass of the intermediate magnet is reduced, and a frictional force is generated by contact with the protruding portion 16e. Therefore, the influence of the centrifugal force F3 exerted on the reinforcing member 13a is reduced. Therefore, since only the number of protrusions 16e is different, the same effect as in the third embodiment can be obtained.

なお、図34に示す突出部16eの軸方向幅Wは任意に設定できる。例えば、突出部16eは図8に示す押圧力F2を中間磁石に伝達できない剛性を有する軸方向幅Wとしてもよい。また、突出部16eは図8に示す押圧力F2を中間磁石に伝達でき、かつ、破断等の損傷が生じない剛性を有する軸方向幅Wとしてもよい。軸方向幅Wが小さくなれば、中間磁石を含めた永久磁石13bが大きく確保されてトルクが高められる。さらに、押圧力F2によって中間磁石と突出部16eとの間に生じる摩擦力F1も大きくなるので、全ての永久磁石13bについて保持する保持力が高まる。   Note that the axial width W of the protrusion 16e shown in FIG. 34 can be arbitrarily set. For example, the protrusion 16e may have an axial width W having rigidity that prevents the pressing force F2 shown in FIG. 8 from being transmitted to the intermediate magnet. Further, the protrusion 16e may have an axial width W that can transmit the pressing force F2 shown in FIG. 8 to the intermediate magnet and has rigidity that does not cause damage such as breakage. If the axial width W is reduced, a large permanent magnet 13b including an intermediate magnet is secured and torque is increased. Furthermore, since the frictional force F1 generated between the intermediate magnet and the protruding portion 16e is also increased by the pressing force F2, the holding force for holding all the permanent magnets 13b is increased.

上述した実施の形態4では、図17,図18に示すように、永久磁石13bのテーパ部13b2と端板13cのテーパ部13c5とは平面状に構成した。この形態に代えて、図35に示すように、テーパ部13b2とテーパ部13c5とを曲面状に構成してもよい。図示を省略するが、断面から見ると所定形状(例えばS字状,J字状,C字状などの形状)で変化する曲面で構成してもよい。テーパ部13b2,13c5の形状が相違するに過ぎないので、実施の形態4と同様の作用効果を得ることができる。   In the fourth embodiment described above, as shown in FIGS. 17 and 18, the tapered portion 13b2 of the permanent magnet 13b and the tapered portion 13c5 of the end plate 13c are configured to be planar. Instead of this form, as shown in FIG. 35, the taper portion 13b2 and the taper portion 13c5 may be formed in a curved surface shape. Although not shown in the drawing, it may be configured by a curved surface that changes in a predetermined shape (for example, a shape such as an S shape, a J shape, or a C shape) when viewed from a cross section. Since only the shapes of the tapered portions 13b2 and 13c5 are different, the same effect as that of the fourth embodiment can be obtained.

上述した実施の形態1〜4,6〜8では、図1,図4,図10,図13,図17,図24,図26,図30に示すように、端板13cが軸方向に延びる小径部13c2を有する構成とした。この形態に代えて、図36に示すように、小径部13c2の端部から径方向に突出する嵌合部13c9をさらに有する構成としてもよい。嵌合部13c9は、シャフト16の凹部16dと嵌合する部位である。この構成によれば、嵌合部13c9は凹部16dと嵌合するので、端板13cはシャフト16と強固に固定される。空間15は、永久磁石保持部13c1,小径部13c2,嵌合部13c9,凸状部16bに囲まれて確保されるので、回転時に遠心力を受けた端板13cの変形を確保できる。その他については、実施の形態1〜4,6〜8と同様の作用効果を得ることができる。   In the first to fourth embodiments described above, the end plate 13c extends in the axial direction as shown in FIGS. 1, 4, 10, 13, 13, 17, 24, 26, and 30. It was set as the structure which has the small diameter part 13c2. Instead of this form, as shown in FIG. 36, it is good also as a structure which further has the fitting part 13c9 which protrudes in a radial direction from the edge part of the small diameter part 13c2. The fitting portion 13c9 is a portion that fits with the concave portion 16d of the shaft 16. According to this configuration, since the fitting portion 13c9 is fitted with the recess 16d, the end plate 13c is firmly fixed to the shaft 16. Since the space 15 is secured by being surrounded by the permanent magnet holding portion 13c1, the small diameter portion 13c2, the fitting portion 13c9, and the convex portion 16b, it is possible to ensure the deformation of the end plate 13c that receives the centrifugal force during rotation. About the other, the effect similar to Embodiment 1-4, 6-8 can be obtained.

上述した実施の形態1〜8では、図1,図10,図13,図17,図20,図24,図26,図30に示すように、軸部16a,凸状部16bおよび本体部16cを一体に成形したシャフト16を用いる構成とした。この形態に代えて、図示を省略するが、軸部16a,凸状部16b,本体部16cのうちで一以上の要素を別体で成形し、任意の固定形態(例えば締りばめ,ネジ,溶接等)で固定したシャフト16を用いる構成としてもよい。シャフト16の構成が相違するに過ぎないので、実施の形態1〜8と同様の作用効果を得ることができる。   In the first to eighth embodiments described above, as shown in FIGS. 1, 10, 13, 17, 20, 20, 24, 26, and 30, the shaft portion 16a, the convex portion 16b, and the main body portion 16c. The shaft 16 was formed integrally with the above. In place of this form, although not shown, one or more elements of the shaft part 16a, the convex part 16b, and the main body part 16c are separately formed, and any fixed form (for example, interference fit, screw, The shaft 16 fixed by welding or the like may be used. Since only the configuration of the shaft 16 is different, the same effects as those of the first to eighth embodiments can be obtained.

上述した実施の形態2では、図9に示すように、さらに補強材保持部13c4を有する端板13cを用いた。実施の形態4では、図16に示すように、さらにテーパ部13c5を有する端板13cを用いた。実施の形態5では、図20に示すように、さらに第1溝部13c6を有する端板13cを用いた。実施の形態6では、図22に示すように、さらに第2溝部13c7を有する端板13cを用いた。また、図32ではさらに掛止部13c8を有する端板13cを用いた。図示を省略するが、補強材保持部13c4,テーパ部13c5,第1溝部13c6,第2溝部13c7,掛止部13c8のうちで二以上の要素を組み合わせた端板13cを用いてもよい。要するに端板13cは、回転時に変形して、永久磁石保持部13c1が永久磁石13bに接して摩擦力を生じさせる構成であればよい。二以上の要素を組み合わせた端板13cであっても、組み合わせた要素に対応する実施の形態と同様の作用効果を得ることができる。   In Embodiment 2 mentioned above, as shown in FIG. 9, the end plate 13c which further has the reinforcing material holding | maintenance part 13c4 was used. In the fourth embodiment, as shown in FIG. 16, an end plate 13c further having a tapered portion 13c5 is used. In the fifth embodiment, as shown in FIG. 20, an end plate 13c having a first groove 13c6 is used. In the sixth embodiment, as shown in FIG. 22, an end plate 13c having a second groove 13c7 is used. Further, in FIG. 32, an end plate 13c having a latching portion 13c8 is further used. Although illustration is omitted, an end plate 13c in which two or more elements are combined among the reinforcing material holding portion 13c4, the tapered portion 13c5, the first groove portion 13c6, the second groove portion 13c7, and the latching portion 13c8 may be used. In short, the end plate 13c only needs to be configured to be deformed during rotation so that the permanent magnet holding portion 13c1 is in contact with the permanent magnet 13b to generate a frictional force. Even if the end plate 13c is a combination of two or more elements, the same effects as those of the embodiment corresponding to the combined elements can be obtained.

上述した実施の形態1〜8では、インナーロータ型の回転電機10に適用する構成とした。この形態に代えて、アウターロータ型の回転電機に適用する構成としてもよい。固定子11と回転子13の配置が相違するに過ぎないので、実施の形態1〜8と同様の作用効果が得られる。   In Embodiment 1-8 mentioned above, it was set as the structure applied to the inner rotor type rotary electric machine 10. As shown in FIG. Instead of this form, it may be configured to be applied to an outer rotor type rotating electrical machine. Since only the arrangement of the stator 11 and the rotor 13 is different, the same effect as in the first to eighth embodiments can be obtained.

10 回転電機
11 固定子
13 回転子
13a 補強材
13b 永久磁石
13b1 軸方向端部
13c 端板
13c1 永久磁石保持部
13c2 小径部
16 シャフト
DESCRIPTION OF SYMBOLS 10 Rotating electrical machine 11 Stator 13 Rotor 13a Reinforcing material 13b Permanent magnet 13b1 Axial end part 13c End plate 13c1 Permanent magnet holding part 13c2 Small diameter part 16 Shaft

Claims (15)

シャフト(16)の外周面に配置されて軸方向に延びる一以上の永久磁石(13b)と、前記一以上の永久磁石の外表面を覆って補強する補強材(13a)とを有する回転子(13)において、
一方側端部が前記シャフトに固定され、かつ、他方側端部が前記永久磁石の軸方向端面(13b1)に接して配置され、回転時に生じる遠心力(F3)によって前記他方側端部が前記永久磁石の軸方向端面と接するように変形する端板(13c)を備え、
前記端板は、前記一以上の永久磁石との間で生じる摩擦力(F1)によって、前記一以上の永久磁石を保持する永久磁石保持部(13c1)を有する回転子。
A rotor having one or more permanent magnets (13b) disposed on the outer peripheral surface of the shaft (16) and extending in the axial direction, and a reinforcing material (13a) for covering and reinforcing the outer surface of the one or more permanent magnets. 13)
One side end is fixed to the shaft, and the other side end is disposed in contact with the axial end surface (13b1) of the permanent magnet. The centrifugal force (F3) generated during rotation causes the other side end to be An end plate (13c) that is deformed so as to be in contact with the axial end surface of the permanent magnet;
The end plate is a rotor having a permanent magnet holding part (13c1) for holding the one or more permanent magnets by a frictional force (F1) generated between the end plate and the one or more permanent magnets.
前記端板は、前記永久磁石保持部よりも径方向に小さい小径部(13c2)をさらに有し、
前記小径部と前記シャフトとは、締りばめ(17)またはネジ(18)で固定する請求項1に記載の回転子。
The end plate further includes a small-diameter portion (13c2) that is smaller in the radial direction than the permanent magnet holding portion,
The rotor according to claim 1, wherein the small diameter portion and the shaft are fixed with an interference fit (17) or a screw (18).
前記永久磁石保持部は、前記永久磁石と接して保持する永久磁石保持面(13cs)を有し、
前記小径部は、前記永久磁石保持面から軸方向に突出する請求項1または2に記載の回転子。
The permanent magnet holding part has a permanent magnet holding surface (13cs) for holding in contact with the permanent magnet,
The rotor according to claim 1, wherein the small diameter portion protrudes in an axial direction from the permanent magnet holding surface.
前記端板は、前記補強材との間で生じる摩擦力(F4)によって、前記補強材を保持する補強材保持部(13c4)をさらに有し、
前記補強材保持部は、前記永久磁石保持部よりも剛性が弱くなるように設けられている請求項1から3のいずれか一項に記載の回転子。
The end plate further includes a reinforcing material holding portion (13c4) for holding the reinforcing material by a frictional force (F4) generated between the end plate and the reinforcing material,
The rotor according to any one of claims 1 to 3, wherein the reinforcing material holding portion is provided so as to be less rigid than the permanent magnet holding portion.
前記シャフトは、径方向に突出する一以上の突出部(16e)を有し、
前記突出部の軸方向端面(16es)には、前記永久磁石が接して配置される請求項1から4のいずれか一項に記載の回転子。
The shaft has one or more protrusions (16e) protruding in the radial direction,
The rotor according to any one of claims 1 to 4, wherein the permanent magnet is disposed in contact with an axial end surface (16es) of the protrusion.
前記永久磁石保持部と前記永久磁石との接触面(13c5,13b2)は、テーパ状である請求項1から5のいずれか一項に記載の回転子。   The rotor according to any one of claims 1 to 5, wherein a contact surface (13c5, 13b2) between the permanent magnet holding portion and the permanent magnet is tapered. 前記端板は、前記永久磁石保持部の永久磁石保持面と反対側の面に第1溝部(13c6)を有する請求項1から6のいずれか一項に記載の回転子。   The rotor according to any one of claims 1 to 6, wherein the end plate has a first groove (13c6) on a surface opposite to the permanent magnet holding surface of the permanent magnet holding portion. 前記端板は、前記永久磁石保持部の永久磁石保持面と同じ側の面に第2溝部(13c7)を有する請求項1から7のいずれか一項に記載の回転子。   The rotor according to any one of claims 1 to 7, wherein the end plate has a second groove (13c7) on a surface on the same side as the permanent magnet holding surface of the permanent magnet holding portion. 前記シャフトは、軸方向に延びる凸状部(16b)を有し、
前記永久磁石は、前記凸状部よりも相対的に軸方向に延びるオーバーハング部(13b3)を有し、
前記オーバーハング部の一面は、前記永久磁石保持部と接する請求項1から8のいずれか一項に記載の回転子。
The shaft has a convex portion (16b) extending in the axial direction,
The permanent magnet has an overhang portion (13b3) extending in the axial direction relatively to the convex portion,
The rotor according to claim 1, wherein one surface of the overhang portion is in contact with the permanent magnet holding portion.
前記端板は、固定前の前記永久磁石保持部と前記小径部とが鋭角(θ)をなし、固定後に前記永久磁石保持部が少なくとも前記永久磁石を付勢する請求項2から9のいずれか一項に記載の回転子。   10. The end plate according to claim 2, wherein the permanent magnet holding portion before fixing and the small diameter portion form an acute angle (θ), and the permanent magnet holding portion urges at least the permanent magnet after fixing. The rotor according to one item. 前記端板と前記永久磁石とのうちで少なくとも一方の接触面は、非平滑面、または、凹凸を有する凹凸面である請求項1から9のいずれか一項に記載の回転子。   The rotor according to claim 1, wherein at least one contact surface of the end plate and the permanent magnet is a non-smooth surface or an uneven surface having unevenness. 前記シャフトは、前記一以上の永久磁石が配置される部位の軸方向端面よりも、軸方向に凹ませた凹部(16d)を有する請求項1から11のいずれか一項に記載の回転子。   The rotor according to any one of claims 1 to 11, wherein the shaft has a recessed portion (16d) recessed in an axial direction from an axial end surface of a portion where the one or more permanent magnets are disposed. 前記端板と、前記シャフトの前記凹部との間には、空間(15)または弾性部材(19)が設けられる請求項12に記載の回転子。   The rotor according to claim 12, wherein a space (15) or an elastic member (19) is provided between the end plate and the concave portion of the shaft. 前記端板は、前記永久磁石保持部の端部から軸方向に延びる掛止部(13c8)を有し、
前記掛止部は、前記補強材と接し、かつ、前記永久磁石の端部を掛止して保持する請求項1から13のいずれか一項に記載の回転子。
The end plate has a latching portion (13c8) extending in the axial direction from an end portion of the permanent magnet holding portion,
The rotor according to any one of claims 1 to 13, wherein the hook portion is in contact with the reinforcing member and hooks and holds an end portion of the permanent magnet.
請求項1から14のいずれか一項に記載の回転子と、
前記回転子と空隙(G)を介して対向する固定子(11)とを有する回転電機(10)。
The rotor according to any one of claims 1 to 14,
A rotating electrical machine (10) having the rotor and a stator (11) facing each other through a gap (G).
JP2016078835A 2016-04-11 2016-04-11 Rotor and rotating electric machine Active JP6688461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016078835A JP6688461B2 (en) 2016-04-11 2016-04-11 Rotor and rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016078835A JP6688461B2 (en) 2016-04-11 2016-04-11 Rotor and rotating electric machine

Publications (2)

Publication Number Publication Date
JP2017192169A true JP2017192169A (en) 2017-10-19
JP6688461B2 JP6688461B2 (en) 2020-04-28

Family

ID=60085230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016078835A Active JP6688461B2 (en) 2016-04-11 2016-04-11 Rotor and rotating electric machine

Country Status (1)

Country Link
JP (1) JP6688461B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031651A1 (en) * 2018-08-09 2020-02-13 日機装株式会社 Canned motor and canned motor manufacturing method
US11018538B2 (en) 2018-03-29 2021-05-25 Nidec Corporation Rotor assembly, motor, blower, and vacuum cleaner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946944A (en) * 1995-07-28 1997-02-14 Daido Steel Co Ltd Rotor of electric motor
JP2000134839A (en) * 1998-10-22 2000-05-12 Hitachi Ltd Permanent-magnet rotor and electric machine therewith
JP2005051826A (en) * 2003-06-02 2005-02-24 Honda Motor Co Ltd Fixed structure of permanent magnet in rotor of rotating electric machine
JP2010011681A (en) * 2008-06-30 2010-01-14 Meidensha Corp Rotor structure of permanent magnet rotating machine
JP2010057233A (en) * 2008-08-27 2010-03-11 Meidensha Corp Rotor structure of permanent magnet rotating electric machine
JP2011254574A (en) * 2010-05-31 2011-12-15 Aisin Seiki Co Ltd Rotor of rotary electric machine
JP2016005306A (en) * 2014-06-13 2016-01-12 株式会社オティックス Rotary electric machine rotor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946944A (en) * 1995-07-28 1997-02-14 Daido Steel Co Ltd Rotor of electric motor
JP2000134839A (en) * 1998-10-22 2000-05-12 Hitachi Ltd Permanent-magnet rotor and electric machine therewith
JP2005051826A (en) * 2003-06-02 2005-02-24 Honda Motor Co Ltd Fixed structure of permanent magnet in rotor of rotating electric machine
JP2010011681A (en) * 2008-06-30 2010-01-14 Meidensha Corp Rotor structure of permanent magnet rotating machine
JP2010057233A (en) * 2008-08-27 2010-03-11 Meidensha Corp Rotor structure of permanent magnet rotating electric machine
JP2011254574A (en) * 2010-05-31 2011-12-15 Aisin Seiki Co Ltd Rotor of rotary electric machine
JP2016005306A (en) * 2014-06-13 2016-01-12 株式会社オティックス Rotary electric machine rotor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11018538B2 (en) 2018-03-29 2021-05-25 Nidec Corporation Rotor assembly, motor, blower, and vacuum cleaner
WO2020031651A1 (en) * 2018-08-09 2020-02-13 日機装株式会社 Canned motor and canned motor manufacturing method
JP2020028152A (en) * 2018-08-09 2020-02-20 日機装株式会社 Canned motor and manufacturing method for canned motor
CN112514206A (en) * 2018-08-09 2021-03-16 日机装株式会社 Canned motor and method for manufacturing canned motor
KR20210040975A (en) * 2018-08-09 2021-04-14 니기소 가부시키가이샤 Cand motor and manufacturing method of cand motor
EP3817196A4 (en) * 2018-08-09 2021-10-13 Nikkiso Co., Ltd. Canned motor and canned motor manufacturing method
TWI744669B (en) * 2018-08-09 2021-11-01 日商日機裝股份有限公司 Sealed motor and manufacturing method of sealed motor
JP7221008B2 (en) 2018-08-09 2023-02-13 日機装株式会社 Canned motor and manufacturing method of canned motor
US11728701B2 (en) 2018-08-09 2023-08-15 Nikkiso Co., Ltd. Canned motor and canned motor manufacturing method
KR102648347B1 (en) * 2018-08-09 2024-03-15 니기소 가부시키가이샤 Canned motor and manufacturing method of canned motor
CN112514206B (en) * 2018-08-09 2024-05-03 日机装株式会社 Shielded motor and method for manufacturing the same

Also Published As

Publication number Publication date
JP6688461B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
JP5958502B2 (en) Rotor and rotating electric machine using the same
JP5902563B2 (en) Rotor and rotating electric machine using the same
WO2014034344A1 (en) Rotating electric machine
JP5240593B2 (en) Rotating electric machine
WO2011155042A1 (en) Rotating electrical machine rotor
KR20080082390A (en) Rotor of motor
WO2015087773A1 (en) Embedded-permanent-magnet electric motor
JPWO2017141361A1 (en) Rotating electric machine and method of manufacturing rotating electric machine
JP2012115124A (en) Stator of rotary electric machine
JP5240592B2 (en) Rotating electric machine
JP3790774B2 (en) Permanent magnet rotating electric machine and automobile
WO2017126297A1 (en) Rotary electric machine
JP5386885B2 (en) Rotor structure of permanent magnet rotating machine
JP6610418B2 (en) Rotor, rotating electrical machine, and method of manufacturing rotor
JP6688461B2 (en) Rotor and rotating electric machine
GB2503480A (en) Wedging arrangement for electrical machine
JP5900180B2 (en) Rotor core of rotating electrical machine
JP5954279B2 (en) Rotating electric machine
JP2013223407A (en) Rotor of magnet-embedded permanent magnet rotary electric machine
JP6116108B2 (en) Permanent magnet synchronous machine
JP6485844B2 (en) Rotating electric machine
JP5901436B2 (en) Permanent magnet synchronous machine
JP2012044789A (en) Rotary electric machine and method for manufacturing the same
JP2011030303A (en) Rotating electrical machine
JP2010081754A (en) Permanent magnet rotary machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200318

R151 Written notification of patent or utility model registration

Ref document number: 6688461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250