JP2017188426A - Method for producing a cell for a solid oxide fuel cell - Google Patents

Method for producing a cell for a solid oxide fuel cell Download PDF

Info

Publication number
JP2017188426A
JP2017188426A JP2017000744A JP2017000744A JP2017188426A JP 2017188426 A JP2017188426 A JP 2017188426A JP 2017000744 A JP2017000744 A JP 2017000744A JP 2017000744 A JP2017000744 A JP 2017000744A JP 2017188426 A JP2017188426 A JP 2017188426A
Authority
JP
Japan
Prior art keywords
cell
protective film
base material
solid oxide
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017000744A
Other languages
Japanese (ja)
Other versions
JP6906310B2 (en
Inventor
孝之 中尾
Takayuki Nakao
孝之 中尾
井上 修一
Shuichi Inoue
修一 井上
英正 野中
Hidemasa Nonaka
英正 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Publication of JP2017188426A publication Critical patent/JP2017188426A/en
Application granted granted Critical
Publication of JP6906310B2 publication Critical patent/JP6906310B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an SOFC cell with high power generation performance by suppressing generation of MnCrOhaving a large electric resistance inside a base material of an intercell connecting member.SOLUTION: A method for manufacturing a cell for a solid oxide fuel cell formed by joining an intercell connecting member 1 and an air electrode 31, includes: a protective film forming step of forming a protective film 12 on a surface of a base material 11 of the intercell connecting member 1; and a joining step of joining the intercell connecting member 1 and the air electrode 31 via a joining layer. The base material 11 is mainly made of a stainless-steel alloy containing Mn. The protective film 12 is mainly composed of a spinel type metal oxide containing Mn and Co. The joining layer is baked at a temperature of 1050°C or higher in the joining step.SELECTED DRAWING: Figure 3

Description

本発明は、固体酸化物形燃料電池用セルの製造方法に関する。   The present invention relates to a method for producing a solid oxide fuel cell.

固体酸化物形燃料電池(以下、適宜「SOFC」と記載する。)用セルは、電解質層の一方面側に空気極を接合すると共に、同電解質層の他方面側に燃料極を接合してなる単セルを、空気極又は燃料極に対して電子の授受を行う一対の電子伝導性のセル間接続部材により挟み込んで積層した構造を有する。
そして、このようなSOFC用セルでは、例えば700〜900℃程度の作動温度で作動し、空気極側から燃料極側への電解質膜を介した酸化物イオンの移動に伴って、一対の電極の間に起電力が発生し、その起電力を外部に取り出し利用することができる。
A cell for a solid oxide fuel cell (hereinafter referred to as “SOFC” where appropriate) has an air electrode joined to one surface side of the electrolyte layer and a fuel electrode joined to the other surface side of the electrolyte layer. A single cell is sandwiched and stacked between a pair of electron conductive inter-cell connecting members that exchange electrons with the air electrode or the fuel electrode.
And in such a cell for SOFC, for example, it operates at an operating temperature of about 700 to 900 ° C., and with the movement of oxide ions through the electrolyte membrane from the air electrode side to the fuel electrode side, the pair of electrodes An electromotive force is generated in the meantime, and the electromotive force can be taken out and used.

このようなSOFC用セルで利用されるセル間接続部材は、電子伝導性及び耐熱性に優れたCrを含有する材料で製作される。また、このような合金の耐熱性は、この合金の表面に形成されるクロミア(Cr23)の緻密な被膜に由来する。近年、SOFC用セルの動作温度が下がってきており、セル間接続部材の材料としてステンレス合金が用いられるようになった。セル間接続部材の基材の表面には、Cr飛散の抑制のため、金属酸化物等の保護膜が形成される。 The inter-cell connecting member used in such a SOFC cell is manufactured from a material containing Cr that is excellent in electron conductivity and heat resistance. Further, the heat resistance of such an alloy is derived from a dense film of chromia (Cr 2 O 3 ) formed on the surface of the alloy. In recent years, the operating temperature of SOFC cells has decreased, and stainless steel alloys have been used as materials for inter-cell connection members. A protective film such as a metal oxide is formed on the surface of the base material of the inter-cell connecting member in order to suppress Cr scattering.

特開昭60−169546号公報JP-A-60-169546

Hideto Kurokawa et al., "Oxidation behavior of Fe-16Cr alloy interconnect for SOFC under hydrogen potential gradient", Solid State Ionics 168 (2004) 13-21Hideto Kurokawa et al., "Oxidation behavior of Fe-16Cr alloy interconnect for SOFC under hydrogen potential gradient", Solid State Ionics 168 (2004) 13-21 William Qu et al., "Electrical and microstructural characterization of spinel phases as potential coatings for SOFC metallic interconnects", Journal of Power Sources 153 (2006) 114-124William Qu et al., "Electrical and microstructural characterization of spinel phases as potential coatings for SOFC metallic interconnects", Journal of Power Sources 153 (2006) 114-124

ここでステンレス合金には主成分のFe、Crの他に、耐熱性や耐食性の付与のために様々な元素が添加されている。これらの微量な添加元素が、金属/保護膜界面の近傍の酸素ポテンシャルによって、金属の内部に酸化物の膜状領域を形成することが報告されている(非特許文献1)。この文献では、金属の内部にMnとCrの複合酸化物(スピネル化合物)が形成されることが報告されている。   Here, in addition to the main components Fe and Cr, various elements are added to the stainless alloy in order to impart heat resistance and corrosion resistance. It has been reported that these trace amounts of additive elements form an oxide film-like region inside the metal due to the oxygen potential in the vicinity of the metal / protective film interface (Non-patent Document 1). In this document, it is reported that a complex oxide (spinel compound) of Mn and Cr is formed inside a metal.

MnとCrの複合酸化物は、MnとCrとの組成比が変わると、導電性が大きく変化することが報告されている(非特許文献2)。例えばCrリッチなMnCr24は、SOFCの作動環境下(例えば、750℃)で、クロミア(Cr23)の約9倍の大きさの電気抵抗を有する。 It has been reported that the composite oxide of Mn and Cr changes greatly in conductivity when the composition ratio of Mn and Cr changes (Non-Patent Document 2). For example, Cr-rich MnCr 2 O 4 has an electrical resistance about nine times that of chromia (Cr 2 O 3 ) in the SOFC operating environment (eg, 750 ° C.).

SOFC用セルは単セルとセル間接続部材とを交互に積層して構成されるから、セル間接続部材の電気抵抗を可及的小さくすることが求められる。上述したMnCr24のような電気抵抗の大きな酸化物がセル間接続部材の基材の内部に生じると、SOFC用セルの発電性能が大きく低下することが懸念される。なお特許文献1では、フェライト系ステンレス鋼において、Mnの含有量が増加するとMnCr24スケールが生成することが報告されている。 Since the SOFC cell is configured by alternately stacking single cells and inter-cell connection members, it is required to reduce the electrical resistance of the inter-cell connection members as much as possible. When an oxide having a large electrical resistance such as MnCr 2 O 4 described above is generated inside the base material of the inter-cell connecting member, there is a concern that the power generation performance of the SOFC cell is greatly reduced. Patent Document 1 reports that in ferritic stainless steel, an MnCr 2 O 4 scale is generated when the Mn content increases.

本発明は上述の課題に鑑みてなされたものであり、その目的は、電気抵抗の大きなMnCr24がセル間接続部材の基材の内部に生成することを抑制して、発電性能の高いSOFC用セルを提供することにある。 The present invention has been made in view of the above problems, and its object is large MnCr 2 O 4 of the electric resistance is suppressed to be generated inside the substrate cell joined members, high power generation performance The object is to provide a cell for SOFC.

上記目的を達成するための本発明に係る固体酸化物形燃料電池用セルの製造方法の特徴構成は、
前記セル間接続部材の基材の表面に保護膜を形成する保護膜形成ステップと、
前記セル間接続部材と空気極とを接合層を介して接合する接合ステップとを有し、
前記基材は、Mnを含有するステンレス合金を主材料とし、
前記保護膜は、MnとCoとを含有するスピネル型金属酸化物を主材料とし、
前記接合ステップにおける前記接合層の焼き付けが1050℃以上の温度で行われる点にある。
In order to achieve the above object, the characteristic configuration of the method for producing a solid oxide fuel cell according to the present invention is as follows:
A protective film forming step of forming a protective film on the surface of the base material of the inter-cell connecting member;
A bonding step of bonding the inter-cell connecting member and the air electrode via a bonding layer;
The base material is mainly a stainless alloy containing Mn,
The protective film is mainly composed of a spinel metal oxide containing Mn and Co,
The bonding layer is baked at a temperature of 1050 ° C. or higher in the bonding step.

発明者らは、セル間接続部材と空気極とを接合する接合層の焼き付け温度により、セル間接続部材および接合層の電気抵抗の大きさが変化する現象を見出した。そして、接合層の焼き付け温度が1000℃の場合には、基材の内部にMnCr24が生成しており、1050℃以上の場合には、MnCr24の生成が抑制されていることを確認して、本発明の完成に至った。すなわち上記の特徴構成によれば、電気抵抗の大きなMnCr24がセル間接続部材の基材の内部に生成することを抑制して、発電性能の高いSOFC用セルを提供することができる。 The inventors have found a phenomenon in which the magnitude of the electrical resistance of the inter-cell connecting member and the joining layer varies depending on the baking temperature of the joining layer that joins the inter-cell connecting member and the air electrode. When the baking temperature of the bonding layer is 1000 ° C. is generated by MnCr 2 O 4 in the interior of the substrate, in the case of more than 1050 ° C. is that the generation of MnCr 2 O 4 is suppressed As a result, the present invention was completed. That is, according to the above characteristic structure, it is possible to large MnCr 2 O 4 of the electric resistance is suppressed to be generated inside the substrate cell joined members, to provide a high power generation performance SOFC cell.

前記接合ステップにおける前記接合層の焼き付けが1075℃以下の温度で行われると、電気抵抗の大きなMnCr24がセル間接続部材の基材の内部に生成することを抑制して、発電性能の高いSOFC用セルを提供することができ好適である。なお接合層の焼き付けを1075℃を超えて高い温度で行うと、保護膜と基材との間で剥離が生じたり、酸化被膜(クロミア)成長が増進されたり等の抵抗が増大する可能性が高くなるため、好ましくない。 When baking of the bonding layer in the bonding step is performed at a temperature of 1075 ° C. or less, the generation of MnCr 2 O 4 having a large electric resistance is suppressed in the base material of the inter-cell connecting member, and the power generation performance is reduced. A high SOFC cell can be provided, which is preferable. If the bonding layer is baked at a high temperature exceeding 1075 ° C., there is a possibility that the resistance such as separation between the protective film and the base material or the growth of the oxide film (chromia) is increased. Since it becomes high, it is not preferable.

さらに前記接合ステップにおける前記接合層の焼き付けが1075℃未満の温度で行われると、固体酸化物型燃料電池の実際の作動環境である700℃〜800℃における抵抗値を低く抑えることができ好ましい。   Further, when the bonding layer is baked in the bonding step at a temperature lower than 1075 ° C., the resistance value at 700 ° C. to 800 ° C., which is the actual operating environment of the solid oxide fuel cell, can be kept low.

本発明に係る固体酸化物形燃料電池用セルの製造方法の別の特徴構成は、前記基材の主材料のステンレス合金がSiを含有する点にある。   Another characteristic configuration of the method for producing a solid oxide fuel cell according to the present invention is that a stainless steel alloy as a main material of the base material contains Si.

基材の主材料のステンレス合金がSiを含有する場合には、保護膜形成ステップと接合ステップとを経た基材において、表面の近傍にSiO2の層が形成されていることが確認された。そしてその層は、接合層の焼き付けが1000℃の場合に比べて、1050℃以上の場合には、より厚くなっている。この層は、ステンレス合金内部からのMnの拡散を阻害して、基材の内部でのMnCr24の生成を抑制する効果があると考えられる。すなわち上記の特徴構成によれば、MnCr24の生成を更に効果的に抑制して、発電性能の高いSOFC用セルを提供することができる。 In the case where the stainless steel alloy as the main material of the base material contains Si, it was confirmed that a SiO 2 layer was formed in the vicinity of the surface of the base material after the protective film forming step and the joining step. The layer is thicker at 1050 ° C. or higher than when the bonding layer is baked at 1000 ° C. This layer is considered to have an effect of inhibiting Mn diffusion from the inside of the stainless alloy and suppressing the formation of MnCr 2 O 4 inside the base material. That is, according to the above characteristic structure, it is possible to further effectively suppress the formation of MnCr 2 O 4, to provide high power generation performance SOFC cell.

本発明に係る固体酸化物形燃料電池用セルの製造方法の別の特徴構成は、前記基材の主材料のステンレス合金がTiを含有する点にある。   Another characteristic configuration of the method for producing a solid oxide fuel cell according to the present invention is that a stainless alloy as a main material of the base material contains Ti.

基材の主材料のステンレス合金がTiを含有する場合には、保護膜形成ステップと接合ステップとを経た基材において、表面の近傍にTiO2の層が形成されていることが確認された。そしてその層は、接合層の焼き付けが1000℃の場合に比べて、1050℃以上の場合には、より厚くなっている。この層は、ステンレス合金内部からのMnの拡散を阻害して、基材の内部でのMnCr24の生成を抑制する効果があると考えられる。すなわち上記の特徴構成によれば、MnCr24の生成を更に効果的に抑制して、発電性能の高いSOFC用セルを提供することができる。 When the stainless steel alloy as the main material of the base material contains Ti, it was confirmed that a TiO 2 layer was formed in the vicinity of the surface of the base material that had undergone the protective film forming step and the joining step. The layer is thicker at 1050 ° C. or higher than when the bonding layer is baked at 1000 ° C. This layer is considered to have an effect of inhibiting Mn diffusion from the inside of the stainless alloy and suppressing the formation of MnCr 2 O 4 inside the base material. That is, according to the above characteristic structure, it is possible to further effectively suppress the formation of MnCr 2 O 4, to provide high power generation performance SOFC cell.

本発明に係る固体酸化物形燃料電池用セルの製造方法の別の特徴構成は、前記保護膜の主材料が、コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)または、亜鉛コバルトマンガン系酸化物ZnzCoxMny4(0<x、y、z<3、x+y+z=3)である点にある。 Another characteristic feature of the manufacturing method of the solid oxide fuel cell according to the present invention, a main material of the protective layer is comprised of cobalt manganese oxide Co x Mn y O 4 (0 <x, y <3, x + y = 3) or lies in a zinc-cobalt-manganese-based oxide Zn z Co x Mn y O 4 (0 <x, y, z <3, x + y + z = 3).

上記の特徴構成によれば、保護膜の熱膨張率と基材や空気極の熱膨張率との不一致を小さくすることができ、SOFC用セルの耐久性を高めることができ好適である。   According to said characteristic structure, the mismatch with the thermal expansion coefficient of a protective film and the thermal expansion coefficient of a base material or an air electrode can be made small, and durability of a SOFC cell can be improved and it is suitable.

本発明に係る固体酸化物形燃料電池用セルの製造方法の別の特徴構成は、前記保護膜の主材料が、Co1.5Mn1.54またはCo2MnO4である点にある。 Another characteristic configuration of the method for producing a solid oxide fuel cell according to the present invention is that the main material of the protective film is Co 1.5 Mn 1.5 O 4 or Co 2 MnO 4 .

保護膜の主材料がCo2MnO4であるサンプルを用いた実験にて、MnCr24の生成が抑制されることが確認されている。同系統のスピネル型金属酸化物であるCo1.5Mn1.54についても同様の結果となることが強く推認される。すなわち上記の特徴構成によれば、電気抵抗の大きなMnCr24がセル間接続部材の基材の内部に生成することを抑制して、発電性能の高いSOFC用セルを提供することができる。 In an experiment using a sample in which the main material of the protective film is Co 2 MnO 4 , it has been confirmed that the production of MnCr 2 O 4 is suppressed. It is strongly inferred that the same result is obtained with Co 1.5 Mn 1.5 O 4 which is a spinel metal oxide of the same family. That is, according to the above characteristic structure, it is possible to large MnCr 2 O 4 of the electric resistance is suppressed to be generated inside the substrate cell joined members, to provide a high power generation performance SOFC cell.

本発明に係る固体酸化物形燃料電池用セルの製造方法の別の特徴構成は、前記保護膜形成ステップにおいて、前記保護膜が電着塗装により形成される点にある。   Another characteristic configuration of the method for producing a solid oxide fuel cell according to the present invention is that the protective film is formed by electrodeposition coating in the protective film forming step.

上記特徴構成によれば、緻密で強固な保護膜を実現することができ、好適である。   According to the above characteristic configuration, a dense and strong protective film can be realized, which is preferable.

固体酸化物形燃料電池用セルの概略図Schematic diagram of solid oxide fuel cell 固体酸化物形燃料電池の作動時の反応の説明図Explanatory diagram of reaction during operation of solid oxide fuel cell セル間接続部材接合構造の断面図Cross-sectional view of inter-cell connecting member joint structure 通電試験治具の概略図Schematic diagram of current test jig 電気抵抗の経時変化を示すグラフGraph showing change in electrical resistance over time 固体酸化物形燃料電池用セルの断面のSEM画像およびEPMA図SEM image and EPMA diagram of cross section of cell for solid oxide fuel cell 固体酸化物形燃料電池用セルの断面のSEM画像およびEPMA図SEM image and EPMA diagram of cross section of cell for solid oxide fuel cell 電気抵抗の経時変化を示すグラフGraph showing change in electrical resistance over time 初期温度特性(電気抵抗)を示すグラフGraph showing initial temperature characteristics (electrical resistance)

以下、固体酸化物形燃料電池(SOFC)用セルを説明し、その製造方法および実験例を示す。なお以下に本発明の好適な実施例を記すが、これら実施例はそれぞれ本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。   Hereinafter, a solid oxide fuel cell (SOFC) cell will be described, and its manufacturing method and experimental examples will be shown. Preferred examples of the present invention will be described below, but these examples are described in order to more specifically illustrate the present invention, and various modifications can be made without departing from the spirit of the present invention. The present invention is not limited to the following description.

〔固体酸化物形燃料電池(SOFC)〕
図1および図2に示すSOFC用セルCは、酸素イオン伝導性の固体酸化物の緻密体からなる電解質膜30の一方面側に、酸素イオンおよび電子伝導性の多孔体からなる空気極31を接合するとともに、同電解質膜30の他方面側に電子伝導性の多孔体からなる燃料極32を接合してなる単セル3を備える。
さらに、SOFC用セルCは、この単セル3を、空気極31または燃料極32に対して電子の授受を行うとともに空気および水素を供給するための溝2が形成された一対の電子伝導性の合金または酸化物からなるセル間接続部材1により、適宜外周縁部においてガスシール体を挟持した状態で挟み込んだ構造を有する。空気極31とセル間接続部材1とが密着配置されることで、空気極31側の溝2が空気極31に空気を供給するための空気流路2aとして機能する。燃料極32とセル間接続部材1が密着配置されることで、燃料極32側の上記溝2が燃料極32に水素を供給するための燃料流路2bとして機能する。セル間接続部材1はインターコネクタとセルC間を電気的に接続する部材が接続された構成となることもある。
[Solid oxide fuel cell (SOFC)]
The SOFC cell C shown in FIG. 1 and FIG. 2 has an air electrode 31 made of oxygen ions and an electron conductive porous body on one surface side of an electrolyte membrane 30 made of a dense body of oxygen ion conductive solid oxide. A single cell 3 formed by bonding a fuel electrode 32 made of an electron conductive porous body to the other surface side of the electrolyte membrane 30 is provided.
Further, the SOFC cell C exchanges electrons with the single cell 3 with respect to the air electrode 31 or the fuel electrode 32, and at the same time, a pair of electron conductive materials having grooves 2 for supplying air and hydrogen. The inter-cell connecting member 1 made of an alloy or an oxide has a structure in which the gas seal body is sandwiched between the outer peripheral edges as appropriate. By closely arranging the air electrode 31 and the inter-cell connecting member 1, the groove 2 on the air electrode 31 side functions as an air flow path 2 a for supplying air to the air electrode 31. By arranging the fuel electrode 32 and the inter-cell connecting member 1 in close contact, the groove 2 on the fuel electrode 32 side functions as a fuel flow path 2 b for supplying hydrogen to the fuel electrode 32. The inter-cell connecting member 1 may have a configuration in which a member that electrically connects the interconnector and the cell C is connected.

なお、上記単セル3を構成する各要素で利用される一般的な材料について説明を加えると、例えば、上記空気極31の材料としては、LaMO3(例えばM=Mn,Fe,Co,Ni)中のLaの一部をアルカリ土類金属AE(AE=Sr,Ca)で置換した(La,AE)MO3のペロブスカイト型酸化物を利用することができる。上記燃料極32の材料としては、Niとイットリア安定化ジルコニア(YSZ)とのサーメットを利用することができ、さらに、電解質膜30の材料としては、イットリア安定化ジルコニア(YSZ)を利用することができる。 In addition, when a general material used in each element constituting the single cell 3 is described, for example, the material of the air electrode 31 may be LaMO 3 (for example, M = Mn, Fe, Co, Ni). A perovskite oxide of (La, AE) MO 3 in which a part of La is substituted with an alkaline earth metal AE (AE = Sr, Ca) can be used. As the material of the fuel electrode 32, cermet of Ni and yttria stabilized zirconia (YSZ) can be used. Furthermore, as the material of the electrolyte membrane 30, yttria stabilized zirconia (YSZ) can be used. it can.

そして、複数のSOFC用セルCが積層配置された状態で、複数のボルトおよびナットにより積層方向に押圧力を与えて挟持され、セルスタックとなる。
このセルスタックにおいて、積層方向の両端部に配置されたセル間接続部材1は、燃料流路2bまたは空気流路2aの一方のみが形成されるものであればよく、その他の中間に配置されたセル間接続部材1は、一方の面に燃料流路2bが形成され他方の面に空気流路2aが形成されるものを利用することができる。なお、このような積層構造のセルスタックでは、上記セル間接続部材1をセパレータと呼ぶ場合がある。
セルスタックは、燃料ガス(水素)を供給するマニホールドに、ガラスシール材等の接着材により取り付けられる。ガラスシール材としては、例えば結晶化ガラスが用いられる。ガラスシール材は、マニホールドの接着の他、単セル3とセル間接続部材1の間など、封止(シール)が必要な箇所に用いられる。
このようなセルスタックの構造を有するSOFCを一般的に平板型SOFCと呼ぶ。本実施形態では、一例として平板型SOFCについて説明するが、本発明はその他の構造のSOFCについても適用可能である。
In a state where a plurality of SOFC cells C are arranged in a stacked manner, a pressing force is applied in the stacking direction by a plurality of bolts and nuts to form a cell stack.
In this cell stack, the inter-cell connecting members 1 disposed at both ends in the stacking direction may be any one in which only one of the fuel flow path 2b or the air flow path 2a is formed, and is disposed in the other middle. As the inter-cell connecting member 1, a member in which the fuel channel 2b is formed on one surface and the air channel 2a is formed on the other surface can be used. In the cell stack having such a laminated structure, the inter-cell connecting member 1 may be called a separator.
The cell stack is attached to a manifold for supplying fuel gas (hydrogen) with an adhesive such as a glass seal material. As the glass sealing material, for example, crystallized glass is used. The glass seal material is used in places where sealing (sealing) is required, such as between the single cell 3 and the inter-cell connecting member 1 in addition to adhesion of the manifold.
An SOFC having such a cell stack structure is generally called a flat-plate SOFC. In the present embodiment, a flat-plate SOFC is described as an example, but the present invention can also be applied to SOFCs having other structures.

そして、このようなSOFC用セルCを備えたSOFCの作動時には、図2に示すように、空気極31に対して隣接するセル間接続部材1に形成された空気流路2aを介して空気を供給するとともに、燃料極32に対して隣接するセル間接続部材1に形成された燃料流路2bを介して水素を供給し、例えば800℃程度の作動温度で作動する。すると、空気極31において酸素分子O2が電子e-と反応して酸素イオンO2-が生成され、そのO2-が電解質膜30を通って燃料極32に移動し、燃料極32において供給されたH2がそのO2-と反応してH2Oとe-とが生成されることで、一対のセル間接続部材1の間に起電力Eが発生し、その起電力Eを外部に取り出し利用することができる。 When the SOFC having such a SOFC cell C is operated, air is passed through the air flow path 2a formed in the inter-cell connecting member 1 adjacent to the air electrode 31, as shown in FIG. While supplying, hydrogen is supplied through the fuel flow path 2b formed in the inter-cell connecting member 1 adjacent to the fuel electrode 32, and operates at an operating temperature of about 800 ° C., for example. Then, oxygen molecules O 2 react with electrons e in the air electrode 31 to generate oxygen ions O 2− , and the O 2− moves to the fuel electrode 32 through the electrolyte membrane 30 and is supplied in the fuel electrode 32. been H 2 reacts with the O 2-H 2 O and e - and that is generated, the electromotive force E is generated between the pair of cell connecting member 1, outside the electromotive force E Can be taken out and used.

〔セル間接続部材〕
セル間接続部材1は、図1および図3に示すように、単セル3との間で空気流路2a、燃料流路2bを形成しつつ接続可能にする溝板状に形成されている。基材11の表面に、後に述べる保護膜12を設けることでCr被毒を抑制することができ、固体酸化物形燃料電池用セルとして好適である。
[Connection material between cells]
As shown in FIGS. 1 and 3, the inter-cell connection member 1 is formed in a groove plate shape that can be connected to the single cell 3 while forming an air flow path 2 a and a fuel flow path 2 b. By providing a protective film 12 to be described later on the surface of the substrate 11, Cr poisoning can be suppressed, which is suitable as a solid oxide fuel cell.

セル間接続部材1の材料としては、電子伝導性および耐熱性の優れた材料であって、フェライト系ステンレス鋼であるFe−Cr合金、オーステナイト系ステンレス鋼であるFe−Cr−Ni合金など、Crを含有する合金が用いられる。本実施形態では特に、セル間接続部材1の基材11の主材料は、Mnを含有するステンレス合金であって、フェライト系であると好適であり、Siを含有すると好適であり、またTiを含有すると好適である。   As the material of the inter-cell connection member 1, a material excellent in electron conductivity and heat resistance, such as Fe-Cr alloy which is ferritic stainless steel, Fe-Cr-Ni alloy which is austenitic stainless steel, Cr, etc. An alloy containing is used. Particularly in the present embodiment, the main material of the base material 11 of the inter-cell connection member 1 is a stainless alloy containing Mn, preferably a ferrite-based material, preferably containing Si, and Ti. When it contains, it is suitable.

〔酸化被膜〕
基材11の表面には、酸化被膜13が形成される。酸化被膜13は、周囲雰囲気中の酸素によって基板11の合金の表面が酸化されて生じる。本実施形態のようにCrを含有するステンレス合金の場合は、酸化被膜13は主にクロミア(Cr23)であり、緻密な被膜として形成される。酸化被膜13は、保護膜12の焼結や、接合層の焼き付け等、SOFC用セルの製造工程における熱処理にて形成される。
[Oxide coating]
An oxide film 13 is formed on the surface of the substrate 11. The oxide film 13 is produced by oxidizing the surface of the alloy of the substrate 11 with oxygen in the ambient atmosphere. In the case of a stainless alloy containing Cr as in this embodiment, the oxide film 13 is mainly chromia (Cr 2 O 3 ), and is formed as a dense film. The oxide film 13 is formed by heat treatment in the manufacturing process of the SOFC cell, such as sintering of the protective film 12 or baking of the bonding layer.

〔保護膜〕
基材11の表面には、Cr被毒を抑制するため、保護膜12が形成されている。保護膜12は、MnとCoとを含有するスピネル型金属酸化物を主材料とする。保護膜12の主材料は、コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)または、亜鉛コバルトマンガン系酸化物ZnzCoxMny4(0<x、y、z<3、x+y+z=3)であってもよい。Co1.5Mn1.54またはCo2MnO4であってもよい。なお「主材料」とは主たる材料であることを意味し、複数の種類の金属酸化物を混合して用いたり、他の成分を混合して用いることも可能である。
〔Protective film〕
A protective film 12 is formed on the surface of the substrate 11 in order to suppress Cr poisoning. The protective film 12 is mainly made of a spinel metal oxide containing Mn and Co. The main material of the protective film 12, cobalt-manganese-based oxide Co x Mn y O 4 (0 <x, y <3, x + y = 3) or zinc-cobalt-manganese-based oxide Zn z Co x Mn y O 4 (0 <X, y, z <3, x + y + z = 3). Co 1.5 Mn 1.5 O 4 or Co 2 MnO 4 may be used. The “main material” means a main material, and a plurality of kinds of metal oxides can be mixed and other components can be mixed and used.

基材11への保護膜12の形成は、たとえば、ウエットコーティング法あるいは、ドライコーティング法によって形成することができる。ウエットコーティング法としては、スクリーン印刷法、ドクターブレード法、スプレーコート法、インクジェット法、スピンコート法、ディップコート、電気めっき法、無電解めっき法、電着塗装法等が例示できる。
また、ドライコーティング法としては、たとえば蒸着法、スパッタリング法、イオンプレーティング法、化学気相成長(CVD)法、電気化学気相成長(EVD)法、イオンビーム法、レーザーアブレーション法、大気圧プラズマ成膜法、減圧プラズマ成膜法、溶射法等が例示できる。
The protective film 12 can be formed on the substrate 11 by, for example, a wet coating method or a dry coating method. Examples of the wet coating method include a screen printing method, a doctor blade method, a spray coating method, an ink jet method, a spin coating method, a dip coating, an electroplating method, an electroless plating method, and an electrodeposition coating method.
Examples of dry coating methods include vapor deposition, sputtering, ion plating, chemical vapor deposition (CVD), electrochemical vapor deposition (EVD), ion beam, laser ablation, and atmospheric pressure plasma. Examples thereof include a film forming method, a low pressure plasma film forming method, and a thermal spraying method.

例えば、電着塗装法を適用すれば、下記のような手法で保護膜を形成することができる。
金属酸化物微粒子を電着液1リットル当り100gになるように分散し、ポリアクリル酸等のアニオン型樹脂とを含有している混合液を用いて電着塗装を行う。ここでは、(金属酸化物微粒子:アニオン型樹脂)=(1:1)(質量比)とした。
前記混合液を用い、基材11をプラス、対極としてSUS304の極板にマイナスの極性として通電を行うことによって、基材11表面に未硬化の電着塗膜が形成される。
電着塗装は、たとえば、前記混合液を満たした通電槽中に基材11を完全にまたは部分的に浸漬して陽極とし、通電することにより実施される。
電着塗装条件も特に制限されず、基材11である金属の種類、前記混合液の種類、通電槽の大きさおよび形状、得られるセル間接続部材1の用途などの各種条件に応じて広い範囲から適宜選択できるが、通常は、浴温度(前記混合液温度)10〜40℃程度、印加電圧10〜450V程度、電圧印加時間1〜10分程度、前記混合液の液温10〜40℃とすればよい。
なお、電着電圧、電着時間を変更することにより電着塗膜の膜厚をコントロールできる。また、基材に対して、種々前処理を行うこともできる。
この未硬化の電着塗膜が形成された基材11に加熱処理することによって、基材11表面に硬化した電着塗膜が形成される。
加熱処理は、電着塗膜を乾燥させる予備乾燥と、電着塗膜を硬化させる硬化加熱とを含み、予備乾燥後に硬化加熱が行われる。その後、電気炉を使用して例えば1000℃で2時間焼成し、その後徐冷する。
For example, if an electrodeposition coating method is applied, a protective film can be formed by the following method.
Metal oxide fine particles are dispersed at 100 g per liter of electrodeposition solution, and electrodeposition coating is performed using a mixed solution containing an anionic resin such as polyacrylic acid. Here, (metal oxide fine particles: anionic resin) = (1: 1) (mass ratio).
An uncured electrodeposition coating film is formed on the surface of the base material 11 by energizing the electrode plate of the SUS304 with a negative polarity using the mixed solution as a positive electrode and the base material 11 as a counter electrode.
The electrodeposition coating is performed, for example, by immersing the base material 11 completely or partially in an energizing tank filled with the mixed solution to form an anode and energizing.
The electrodeposition coating conditions are not particularly limited, and may vary depending on various conditions such as the type of metal that is the base material 11, the type of the mixed liquid, the size and shape of the current-carrying tank, and the use of the inter-cell connecting member 1 to be obtained. Although it can be suitably selected from the range, normally, the bath temperature (the temperature of the mixed solution) is about 10 to 40 ° C., the applied voltage is about 10 to 450 V, the voltage application time is about 1 to 10 minutes, and the liquid temperature of the mixed solution is 10 to 40 ° C. And it is sufficient.
In addition, the film thickness of the electrodeposition coating film can be controlled by changing the electrodeposition voltage and the electrodeposition time. Various pretreatments can also be performed on the substrate.
By heating the substrate 11 on which the uncured electrodeposition coating film is formed, a cured electrodeposition coating film is formed on the surface of the substrate 11.
The heat treatment includes preliminary drying for drying the electrodeposition coating film and curing heating for curing the electrodeposition coating film, and curing heating is performed after the preliminary drying. Thereafter, using an electric furnace, for example, firing at 1000 ° C. for 2 hours, and then gradually cooling.

〔接合層〕
接合層により、セル間接続部材1と単セル3の空気極31とが接合される。詳しくは、セル間接続部材1の基材11の表面に形成された保護膜11と、単セル3の空気極31とが、接合層により接着・接合されている。接合層の主材料としては、空気極31と類似のペロブスカイト型酸化物や、スピネル型酸化物が用いられる。たとえばLSCF6428(La0.6Sr0.4Co0.2Fe0.83-δ)が用いられる。
(Junction layer)
The inter-cell connecting member 1 and the air electrode 31 of the single cell 3 are joined by the joining layer. Specifically, the protective film 11 formed on the surface of the base material 11 of the inter-cell connection member 1 and the air electrode 31 of the single cell 3 are bonded and bonded by a bonding layer. As the main material of the bonding layer, a perovskite oxide similar to the air electrode 31 or a spinel oxide is used. For example LSCF6428 (La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ) is used.

〔固体酸化物形燃料電池用セルの製造方法〕
次に固体酸化物形燃料電池用セルの製造方法について説明する。固体酸化物形燃料電池用セルの製造方法は、保護膜形成ステップと、接合ステップとを有する。
[Method for producing cell for solid oxide fuel cell]
Next, a method for producing a solid oxide fuel cell will be described. The manufacturing method of the cell for solid oxide fuel cells has a protective film formation step and a joining step.

〔保護膜形成ステップ〕
保護膜形成ステップでは、セル間接続部材1の基材11の表面に保護膜12を形成する。保護膜12の形成は、例示した各種の方法により行われる。例えばウエットコーティング法によれば、成膜ステップと焼結ステップとにより行われる。
[Protective film formation step]
In the protective film forming step, the protective film 12 is formed on the surface of the base material 11 of the inter-cell connecting member 1. The protective film 12 is formed by various exemplified methods. For example, according to the wet coating method, the film forming step and the sintering step are performed.

成膜ステップでは、金属酸化物の微粉末を含有するスラリーを用いてセル間接続部材1の基材11に塗膜を湿式成膜する。湿式成膜は、スラリーに基材11を浸けて(ディップ)引き上げることで行ってもよいし、電着塗装法により行ってもよいし、先に例示した方法のいずれかを用いてもよい。湿式成膜は、基材11の全体に対して行ってもよいし、平板状の基材11の一方の面のみに行ってもよい。なお後者の場合、湿式成膜が行われ保護膜12が形成された面が、単セル3の空気極31に接合されることになる。湿式成膜が行われず基材11の素材が露出している面が、単セル3の燃料極32に接合されることになる。   In the film forming step, a coating film is wet-formed on the base material 11 of the inter-cell connecting member 1 using a slurry containing a metal oxide fine powder. The wet film formation may be performed by dipping the base material 11 in the slurry (dip), or may be performed by an electrodeposition coating method, or any of the methods exemplified above may be used. The wet film formation may be performed on the entire substrate 11 or only on one surface of the flat substrate 11. In the latter case, the surface on which the wet film is formed and the protective film 12 is formed is bonded to the air electrode 31 of the single cell 3. The surface on which the material of the base material 11 is exposed without wet film formation is bonded to the fuel electrode 32 of the single cell 3.

焼結ステップでは、塗膜を湿式成膜した基材11に熱処理を施し、金属酸化物の微粉末を焼結させて基材11の表面に保護膜12を形成する。熱処理は、例えば1000℃で2時間行われる。熱処理の際の雰囲気としては、種々選択が可能である。微粉末を含有するスラリーの塗布が基材11の一方の面に対して行われ、他方の面では基材11の素材が露出している場合には、熱処理を不活性ガスや還元ガスの雰囲気下で行うと、基材11の素材が露出した面の酸化を抑制することができ好適である。   In the sintering step, the base material 11 on which the coating film has been wet-formed is subjected to heat treatment, and the metal oxide fine powder is sintered to form the protective film 12 on the surface of the base material 11. The heat treatment is performed at 1000 ° C. for 2 hours, for example. Various atmospheres can be selected as the atmosphere during the heat treatment. When the application of the slurry containing fine powder is performed on one surface of the substrate 11 and the material of the substrate 11 is exposed on the other surface, the heat treatment is performed in an atmosphere of an inert gas or a reducing gas. If performed below, oxidation of the surface of the substrate 11 where the material is exposed can be suppressed, which is preferable.

〔接合ステップ〕
接合ステップでは、セル間接続部材1と空気極31とを接合層を介して接合する。詳しくは、上述の接合層の材料を含有するペーストをセル間接続部材1に塗布して単セル3と接合し、熱処理を施して焼き付けにより接合層を形成する。熱処理は通常であれば、燃料電池の作動温度〜950℃の低温で行うが、本実施形態では1050℃以上の高温で行う。1075℃以下の温度で行うと更に好適であり、1075℃未満の温度で行うとより好適であり、1050℃で行うと尚好適である。
(Joining step)
In the joining step, the inter-cell connecting member 1 and the air electrode 31 are joined via a joining layer. Specifically, a paste containing the above-mentioned bonding layer material is applied to the inter-cell connection member 1 and bonded to the single cell 3, subjected to heat treatment, and baked to form the bonding layer. Usually, the heat treatment is performed at a low temperature of 950 ° C. to 950 ° C., but in this embodiment, it is performed at a high temperature of 1050 ° C. or higher. More preferably, it is carried out at a temperature of 1075 ° C. or lower, more preferably it is carried out at a temperature lower than 1075 ° C., and even more preferably it is carried out at 1050 ° C.

〔接合層の焼き付けの温度によるセル間接続部材の電気抵抗・元素分布の変化〕
以上述べたSOFC用セルの製造方法に沿って実験サンプルを作成し、電気抵抗の経時変化、断面のSEM観察およびEPMA元素分析を行った。
[Changes in electrical resistance and element distribution of inter-cell connecting members due to bonding layer baking temperature]
Experimental samples were prepared in accordance with the SOFC cell manufacturing method described above, and the electrical resistance with time, SEM observation of the cross section, and EPMA elemental analysis were performed.

〔実験サンプルの作成〕
〔実験例1(1000℃):比較例〕
1mm厚の22wt%Crの高純度フェライト系ステンレス鋼の板の表面に、Co2MnO4の微粉末を含有するスラリーを用いてアニオン電着塗装法にて塗膜を成膜した。その板を1000℃の大気雰囲気下にて2時間加熱し、Co2MnO4を主材料とする保護膜を形成した。板の両面にLSCF6428を塗布し、乾燥させ、1000℃で2時間焼き付けを行い、接合層(を模擬した層)を形成した。以上の様にして、固体酸化物形燃料電池用セルのセル間接続部材1を模した実験例1のサンプルを作成した。
[Create experimental sample]
[Experimental Example 1 (1000 ° C.): Comparative Example]
A coating film was formed on the surface of a 1 mm-thick 22 wt% Cr high purity ferritic stainless steel plate by anion electrodeposition using a slurry containing fine powder of Co 2 MnO 4 . The plate was heated at 1000 ° C. in an air atmosphere for 2 hours to form a protective film containing Co 2 MnO 4 as a main material. LSCF6428 was applied to both sides of the plate, dried, and baked at 1000 ° C. for 2 hours to form a bonding layer (a layer simulating it). As described above, a sample of Experimental Example 1 that imitated the inter-cell connection member 1 of the solid oxide fuel cell was prepared.

〔実験例2(1025℃):比較例〕
接合層の焼き付け温度を1025℃に変更し、その他の条件は実験例1と同様にして、実験例2のサンプルを作成した。
[Experimental Example 2 (1025 ° C.): Comparative Example]
The baking temperature of the bonding layer was changed to 1025 ° C., and the other conditions were the same as in Experimental Example 1, and a sample of Experimental Example 2 was prepared.

〔実験例3(1050℃):実施例〕
接合層の焼き付け温度を1050℃に変更し、その他の条件は実験例1と同様にして、実験例3のサンプルを作成した。
[Experimental Example 3 (1050 ° C.): Example]
The baking temperature of the bonding layer was changed to 1050 ° C., and the other conditions were the same as in Experimental Example 1, and a sample of Experimental Example 3 was prepared.

〔実験例4(1075℃):実施例〕
接合層の焼き付け温度を1075℃に変更し、その他の条件は実験例1と同様にして、実験例4のサンプルを作成した。
[Experimental Example 4 (1075 ° C.): Example]
The baking temperature of the bonding layer was changed to 1075 ° C., and the other conditions were the same as in Experimental Example 1, and a sample of Experimental Example 4 was prepared.

〔電気抵抗の経時変化〕
実験例1〜4のサンプルについて、電気抵抗の経時変化を測定した。800時間までの結果を図5のグラフに示す。測定は、図4に示す通電試験治具5に各サンプルをセットし、900℃の環境下、定電流状態にて経時的に電気抵抗を測定して行った。通電試験治具5は、一対の金属板51の間にサンプルを挟んで、ネジ52で固定した構造である。接合層にPtメッシュ53が接した状態とされ、この一対のPtメッシュ53の間の抵抗値を測定することで、サンプルの抵抗値を測定した。
[Change in electrical resistance over time]
About the sample of Experimental Examples 1-4, the time-dependent change of electrical resistance was measured. The results up to 800 hours are shown in the graph of FIG. The measurement was performed by setting each sample on the current-carrying test jig 5 shown in FIG. 4 and measuring the electrical resistance over time in a constant current state at 900 ° C. The energization test jig 5 has a structure in which a sample is sandwiched between a pair of metal plates 51 and fixed with screws 52. The Pt mesh 53 was in contact with the bonding layer, and the resistance value of the sample was measured by measuring the resistance value between the pair of Pt meshes 53.

図5に示される結果から、実験例3(1050℃)のサンプルが最も電気抵抗が小さく、次いで実験例4(1075℃)が電気抵抗が小さく、実験例1(1000℃)および実験例2(1025℃)は電気抵抗が比較的大きいと認められる。   From the results shown in FIG. 5, the sample of Experimental Example 3 (1050 ° C.) has the lowest electrical resistance, then Experimental Example 4 (1075 ° C.) has the lowest electrical resistance, and Experimental Example 1 (1000 ° C.) and Experimental Example 2 ( 1025 ° C.) is recognized to have a relatively large electrical resistance.

実験例3(1050℃)は、実験開始時の初期抵抗も最も小さく、その後300時間付近まで徐々に抵抗値が低下した。300時間以降は若干増加傾向であるが、800時間経過後であっても、実験サンプルの中で電気抵抗が最も小さい。   In Experimental Example 3 (1050 ° C.), the initial resistance at the start of the experiment was the smallest, and the resistance value gradually decreased until around 300 hours thereafter. Although it tends to increase slightly after 300 hours, the electric resistance is the smallest among the experimental samples even after 800 hours.

実験例4(1075℃)は、実験開始時の初期抵抗は、実験例1(1000℃)、実験例2(1025℃)と同程度であったが、その後500時間付近まで徐々に抵抗値が低下した。その後は若干増加傾向であるが、増加率は小さく、800時間でも実験例3(1050℃)に次いで電気抵抗が小さい。   In Experimental Example 4 (1075 ° C.), the initial resistance at the start of the experiment was about the same as Experimental Example 1 (1000 ° C.) and Experimental Example 2 (1025 ° C.), but thereafter the resistance value gradually increased to around 500 hours. Declined. Thereafter, there is a slight increase trend, but the increase rate is small, and even after 800 hours, the electrical resistance is the second lowest after Experimental Example 3 (1050 ° C.).

実験例1(1000℃)は、実験開始時の初期抵抗が最も大きく、急激な増加・緩やかな減少・緩やかな増加を経る間、一貫して実験例3(1050℃)および実験例4(1075℃)よりも電気抵抗が大きい。   Experimental Example 1 (1000 ° C.) has the largest initial resistance at the start of the experiment, and consistently undergoes Experimental Example 3 (1050 ° C.) and Experimental Example 4 (1075) while undergoing a rapid increase, a gradual decrease, and a gradual increase. Electrical resistance is greater than

実験例2(1025℃)は、実験開始時の初期抵抗は実験例3(1050℃)と同程度であったが、その後急激な増加・緩やかな増加を続け、200時間以降は電気抵抗が最も大きい。   In Experimental Example 2 (1025 ° C.), the initial resistance at the start of the experiment was about the same as that in Experimental Example 3 (1050 ° C.), but then continued to increase rapidly and increase gradually. large.

電気抵抗の経時変化について、4500時間までの結果を図8のグラフに示す。図8に示される結果から、実験例3(1050℃)の実験サンプルが、長期的な電気抵抗の増加が最も小さく、最も耐久性が高いことが分かった。   The graph of FIG. 8 shows the results of changes in electrical resistance over time up to 4500 hours. From the results shown in FIG. 8, it was found that the experimental sample of Experimental Example 3 (1050 ° C.) had the smallest long-term increase in electrical resistance and the highest durability.

実験例1(1000℃)および実験例2(1025℃)では、3000時間以降で電気抵抗が増加する挙動を示した。この抵抗増加は、金属/酸化被膜界面に生成するTiO2、SiO2の層(後述)が実験例3(1050℃)および実験例4(1075℃)に比べて薄いことに起因する、高温環境下(900℃)でのCr23被膜の厚み増大、もしくはステンレス鋼の基材の異常酸化(Fe23の形成、金属の高温腐食)によるものと考えられる。 Experimental Example 1 (1000 ° C.) and Experimental Example 2 (1025 ° C.) showed a behavior in which the electrical resistance increased after 3000 hours. This increase in resistance is caused by the fact that the layer of TiO 2 and SiO 2 (described later) formed at the metal / oxide film interface is thinner than Experimental Example 3 (1050 ° C.) and Experimental Example 4 (1075 ° C.). This is considered to be due to an increase in the thickness of the Cr 2 O 3 film at the bottom (900 ° C.) or abnormal oxidation of the stainless steel substrate (formation of Fe 2 O 3 , high-temperature corrosion of the metal).

〔初期温度特性(電気抵抗)〕
実験例1〜4のサンプルについて、上述した電気抵抗の経時変化を測定する前に、電気抵抗の初期温度特性を測定した。結果を図9のグラフに示す。測定は、上述の経時変化測定と同様の状態にサンプルをセットし、600℃から900℃まで50℃刻みの温度で電気抵抗を測定して行った。
[Initial temperature characteristics (electrical resistance)]
For the samples of Experimental Examples 1 to 4, the initial temperature characteristics of the electrical resistance were measured before the above-described change in electrical resistance with time was measured. The results are shown in the graph of FIG. The measurement was performed by setting the sample in the same state as the above-described change with time, and measuring the electrical resistance at a temperature of 50 ° C. from 600 ° C. to 900 ° C.

図5に示される結果から、固体酸化物形燃料電池の実際の作動環境である700℃〜800℃においては、実験例4(1075℃)が最も電気抵抗が大きいと認められる。これは、金属/酸化被膜界面に生成するTiO2、SiO2、Cr23の層(後述)が実験例の中で最も厚いためと考えられる。 From the results shown in FIG. 5, it is recognized that Experimental Example 4 (1075 ° C.) has the highest electric resistance in the actual operating environment of the solid oxide fuel cell, which is 700 ° C. to 800 ° C. This is probably because the TiO 2 , SiO 2 , and Cr 2 O 3 layers (described later) formed at the metal / oxide coating interface are the thickest in the experimental examples.

以上の初期温度特性および経時変化の測定結果から、実験例4(1075℃)は、900℃での経時変化では最も小さい電気抵抗を示したが、固体酸化物形燃料電池の実際の作動環境である700℃〜800℃においては電気抵抗が大きくなることが分かった。このため、接合ステップにおける前記接合層の焼き付けが1075℃未満の温度で行われると、固体酸化物形燃料電池の実際の作動環境である700℃〜800℃における抵抗値を低く抑えることができ好ましい。接合ステップにおける前記接合層の焼き付けが1050℃で行われると、更に好ましい。   From the measurement results of the initial temperature characteristics and the change over time, Experimental Example 4 (1075 ° C.) showed the smallest electrical resistance at the change over time at 900 ° C., but in the actual operating environment of the solid oxide fuel cell. It was found that the electrical resistance increases at a certain 700 ° C. to 800 ° C. For this reason, when the bonding layer is baked in the bonding step at a temperature lower than 1075 ° C., the resistance value at 700 ° C. to 800 ° C., which is the actual operating environment of the solid oxide fuel cell, can be kept low. . More preferably, the bonding layer is baked at 1050 ° C. in the bonding step.

〔元素分布の変化〕
作成した実験例1、3および4のサンプルについて、断面のSEM観察およびEPMA元素分析を行った。観察・分析は、サンプル作成後(接合層の焼き付け後)の状態(図6)と、900℃での400時間の熱処理を施した状態(図7)とで行った。観察・分析は、実験例1(1000℃、各図の上段)、実験例3(1050℃、各図の中段)および実験例4(1075℃、各図の下段)に対して行っている。
[Change in element distribution]
The prepared samples of Experimental Examples 1, 3, and 4 were subjected to SEM observation of the cross section and EPMA elemental analysis. Observation / analysis was performed in the state after sample preparation (after baking of the bonding layer) (FIG. 6) and in the state after heat treatment at 900 ° C. for 400 hours (FIG. 7). Observation / analysis is performed for Experimental Example 1 (1000 ° C., upper part of each figure), Experimental Example 3 (1050 ° C., middle part of each figure) and Experimental Example 4 (1075 ° C., lower part of each figure).

各図の左端の行がSEM観察の画像、他の4行がEPMA元素マッピング図(Cr,Mn,SiおよびTi)を示している。SEM画像には、画像の上側から基材11、酸化被膜13、保護膜12および接合層が表れている。EPMA元素マッピング図(以下「EPMA図」。)では、元素の濃度が高い位置が濃色で示されている。なお4種の元素の濃度スケールは異なっており、異なる元素間で同じ濃さの色が表れていても、同じ濃度であることを意味しない。   The leftmost row of each figure shows an image of SEM observation, and the other four rows show EPMA element mapping diagrams (Cr, Mn, Si, and Ti). In the SEM image, the base material 11, the oxide film 13, the protective film 12, and the bonding layer appear from the upper side of the image. In the EPMA element mapping diagram (hereinafter referred to as “EPMA diagram”), the position where the concentration of the element is high is shown in dark color. It should be noted that the concentration scales of the four elements are different, and even if colors having the same density appear between different elements, it does not mean that the concentrations are the same.

SEM画像の視野と、EPMA図の視野とは一致している。例えば、図6の1000℃サンプル(実験例1)のCrのEPMA図には、濃色のCr分布領域が図の下方に存在するが、この領域はSEM画像の酸化被膜13の領域と一致している。これは、酸化被膜13の主成分のクロミア(Cr23)に含有されるCrが、EPMA図に表れているからである。なおCrは、基材11の領域に淡く分布し、保護膜12および接合層の領域には存在しないと認められる。これは基材11、保護膜12および接合層の組成と一致している。 The field of view of the SEM image coincides with the field of view of the EPMA diagram. For example, in the Cr EPMA diagram of the 1000 ° C. sample of FIG. 6 (Experimental Example 1), a dark-colored Cr distribution region exists at the bottom of the diagram, and this region coincides with the region of the oxide film 13 in the SEM image. ing. This is because Cr contained in chromia (Cr 2 O 3 ) as the main component of the oxide film 13 appears in the EPMA diagram. It is recognized that Cr is lightly distributed in the region of the base material 11 and is not present in the region of the protective film 12 and the bonding layer. This is consistent with the composition of the substrate 11, the protective film 12, and the bonding layer.

まずCrの分布に着目すると、図6に示されるサンプル作成後の状態では、実験例1、3および4のいずれも、Cr分布領域6は酸化被膜13の領域に形成されている。そしてその状態は、図7に示される900℃での400時間の熱処理を施した状態でも維持され、大きな変化は認められない。すなわち900℃での400時間の熱処理により、Crの分布状態は大きくは変化していないと考えられる。   First, focusing on the Cr distribution, the Cr distribution region 6 is formed in the region of the oxide film 13 in each of Experimental Examples 1, 3, and 4 in the state after the sample preparation shown in FIG. The state is maintained even after the heat treatment at 900 ° C. for 400 hours shown in FIG. 7, and no significant change is observed. That is, it is considered that the Cr distribution state is not significantly changed by the heat treatment at 900 ° C. for 400 hours.

〔Mnの分布〕
次にMnの分布に着目すると、図6に示されるサンプル作成後の状態では、実験例1、3および4のいずれも、Mn分布領域7は保護膜12の領域に形成されている。基材11の領域にはMn分布領域7は存在しない。これを図7に示される900℃での400時間の熱処理を施した状態と比較すると、実験例1(1000℃)では、Mn分布領域7に加え、その上側に島状の領域7aが形成されていると認められる。この島状のMn分布領域7aの位置は、CrのEPMA図およびSEM画像との比較から、基材11の内部であると認められる。つまり実験例1(1000℃)では、900℃での400時間の熱処理により、保護膜12からMnが移動して、基材11の内部にMn分布領域7aが形成されたと認められる。
[Mn distribution]
Next, focusing on the distribution of Mn, in the state after the preparation of the sample shown in FIG. 6, the Mn distribution region 7 is formed in the region of the protective film 12 in each of Experimental Examples 1, 3, and 4. There is no Mn distribution region 7 in the region of the substrate 11. When this is compared with the state where the heat treatment is performed at 900 ° C. for 400 hours shown in FIG. 7, in Example 1 (1000 ° C.), in addition to the Mn distribution region 7, an island-like region 7a is formed on the upper side. It is recognized that The position of the island-shaped Mn distribution region 7a is recognized to be inside the base material 11 by comparison with the EPMA diagram of Cr and the SEM image. That is, in Experimental Example 1 (1000 ° C.), it is recognized that Mn moved from the protective film 12 by heat treatment at 900 ° C. for 400 hours, and the Mn distribution region 7 a was formed inside the base material 11.

この島状のMn分布領域7aのMnは、熱力学的な考察から、金属/保護膜界面の近傍の酸素ポテンシャルによって、基材11に含有されるCrと結合し、MnCr24として存在していると考えられる。MnCr24は、SOFCの作動環境下の温度域では、クロミア(Cr23)と比べて非常に大きい電気抵抗を有するから、このMn分布領域7aのMnCr24により、実験例1のサンプルの電気抵抗が大きくなったと考えられる。 From the thermodynamic consideration, Mn in the island-like Mn distribution region 7a is bonded to Cr contained in the substrate 11 by the oxygen potential in the vicinity of the metal / protective film interface and exists as MnCr 2 O 4. It is thought that. MnCr 2 O 4, in the temperature range of operation environment of SOFC, since having a very large electrical resistance in comparison with the chromia (Cr 2 O 3), the MnCr 2 O 4 of the Mn distribution region 7a, Experimental Example 1 It is thought that the electrical resistance of this sample increased.

そして実験例3(1050℃)では、図7に示される900℃での400時間の熱処理を施した状態であっても、保護膜12の領域に形成された帯状のMn分布領域7のみ存在し、基材11の内部に実験例1のような島状の領域は存在していないと認められる。従って実験例3(1050℃)では、実験例1のような高抵抗のMnCr24は発生せず、それ故に電気抵抗が小さくなったと考えられる。 In Experimental Example 3 (1050 ° C.), only the band-like Mn distribution region 7 formed in the region of the protective film 12 exists even when the heat treatment is performed at 900 ° C. for 400 hours shown in FIG. It is recognized that no island-like region as in Experimental Example 1 exists inside the base material 11. Therefore, in Experimental Example 3 (1050 ° C.), the high resistance MnCr 2 O 4 as in Experimental Example 1 was not generated, and hence the electrical resistance is considered to be small.

実験例4(1075℃)では、帯状のMn分布領域7の上側に、小さな島状のMn分布領域7bが形成されていると認められる。これら島状の領域は、SEM図およびCrのEPMA図との比較から、酸化被膜13の内部に存在していると認められる。実験例1では、島状のMn分布領域7aは基板11の内部に位置していた。すなわち実験例4の島状のMn分布領域7bの存在位置は、実験例1とは異なっている。   In Experimental Example 4 (1075 ° C.), it is recognized that a small island-like Mn distribution region 7 b is formed above the band-like Mn distribution region 7. These island-shaped regions are recognized to exist inside the oxide film 13 from comparison between the SEM diagram and the EPMA diagram of Cr. In Experimental Example 1, the island-shaped Mn distribution region 7 a was located inside the substrate 11. That is, the location of the island-shaped Mn distribution region 7b in Experimental Example 4 is different from that in Experimental Example 1.

実験例4の、酸化被膜13の内部(すなわちクロミア(Cr23)の内部)に位置するMn分布領域7bは、熱力学的な考察から、実験例1のMnCr24ではなく、より電気抵抗の小さいMn2CrO4として存在していると考えられる。これにより、実験例4の電気抵抗は実験例1よりも大幅に小さくなったと考えられる。 The Mn distribution region 7b located inside the oxide film 13 (that is, the inside of chromia (Cr 2 O 3 )) in Experimental Example 4 is not MnCr 2 O 4 in Experimental Example 1 but more from the thermodynamic consideration. It is considered that it exists as Mn 2 CrO 4 having a small electric resistance. Thereby, it is considered that the electrical resistance of Experimental Example 4 is significantly smaller than that of Experimental Example 1.

〔Siの分布〕
次にSiの分布に着目すると、図6に示されるサンプル作成後の状態では、実験例1、3および4のいずれも、Si分布領域8は基材11の内部に、基材11と酸化被膜13との界面に沿って帯状に形成されている。すなわち、基材11のステンレス合金の含有するSiが、基材11の表面近傍にSiO2の層を形成していると考えられる。実験例1、3および4を比較すると、実験例1のSi分布領域8の厚さに比べ、実験例3および4のSi分布領域8の厚さは大きいと認められる。従って、接合層の焼き付け温度が高いほど、Si分布領域8の厚さ、すなわちSiO2層の厚さが大きくなると認められる。このSiO2層は、保護膜12から基材11内部へのMnの拡散を阻害して、実験例1のような基材11の内部でのMnCr24の生成を抑制する効果があると考えられる。なお図6と図7との比較から、900℃での400時間の熱処理によっても、SiO2層の厚さは大きくなると認められる。
[Si distribution]
Next, paying attention to the Si distribution, in the state after the preparation of the sample shown in FIG. 6, in each of Experimental Examples 1, 3 and 4, the Si distribution region 8 is located inside the base material 11 and the base material 11 and the oxide film. 13 is formed in a strip shape along the interface with the base plate 13. That is, it is considered that Si contained in the stainless steel alloy of the base material 11 forms a SiO 2 layer in the vicinity of the surface of the base material 11. Comparing Experimental Examples 1, 3, and 4, it is recognized that the thickness of the Si distribution region 8 in Experimental Examples 3 and 4 is larger than the thickness of the Si distribution region 8 in Experimental Example 1. Accordingly, it is recognized that the higher the baking temperature of the bonding layer, the larger the thickness of the Si distribution region 8, that is, the thickness of the SiO 2 layer. This SiO 2 layer has an effect of inhibiting the diffusion of Mn from the protective film 12 to the inside of the base material 11 and suppressing the generation of MnCr 2 O 4 inside the base material 11 as in Experimental Example 1. Conceivable. From the comparison between FIG. 6 and FIG. 7, it is recognized that the thickness of the SiO 2 layer is increased even by the heat treatment at 900 ° C. for 400 hours.

〔Tiの分布〕
最後にTiの分布に着目すると、図6に示されるサンプル作成後の状態では、実験例1、3および4のいずれも、Ti分布領域9は基材11の内部に、基材11と酸化被膜13との界面に沿って帯状に形成されている。すなわち、基材11のステンレス合金の含有するTiが、基材11の表面近傍にTiO2の層を形成していると考えられる。実験例1、3および4を比較すると、実験例1のTi分布領域9の厚さに比べ、実験例3および4のTi分布領域9の厚さは大きいと認められる。従って、接合層の焼き付け温度が高いほど、Ti分布領域9の厚さ、すなわちTiO2層の厚さが大きくなると認められる。このTiO2層は、保護膜12から基材11内部へのMnの拡散を阻害して、実験例1のような基材11の内部でのMnCr24の生成を抑制する効果があると考えられる。なお図6と図7との比較から、900℃での400時間の熱処理によっても、TiO2層の厚さは大きくなると認められる。
[Ti distribution]
Finally, paying attention to the Ti distribution, in the state after the preparation of the sample shown in FIG. 6, in each of Experimental Examples 1, 3, and 4, the Ti distribution region 9 is located inside the base material 11, and the base material 11 and the oxide film. 13 is formed in a strip shape along the interface with the base plate 13. That is, it is considered that Ti contained in the stainless steel alloy of the base material 11 forms a TiO 2 layer in the vicinity of the surface of the base material 11. When comparing Experimental Examples 1, 3 and 4, it is recognized that the thickness of Ti distribution region 9 in Experimental Examples 3 and 4 is larger than the thickness of Ti distribution region 9 in Experimental Example 1. Therefore, it is recognized that the thickness of the Ti distribution region 9, that is, the thickness of the TiO 2 layer increases as the bonding layer baking temperature increases. The TiO 2 layer has an effect of inhibiting the diffusion of Mn from the protective film 12 into the base material 11 and suppressing the generation of MnCr 2 O 4 inside the base material 11 as in Experimental Example 1. Conceivable. From the comparison between FIG. 6 and FIG. 7, it is recognized that the thickness of the TiO 2 layer is increased even by the heat treatment at 900 ° C. for 400 hours.

1 :セル間接続部材
11 :基材
12 :保護膜
13 :酸化被膜
2 :溝
2a :空気流路
2b :燃料流路
3 :単セル
30 :電解質膜
31 :空気極
32 :燃料極
4 :接合材
C :固体酸化物形燃料電池用セル
1: Inter-cell connection member 11: Base material 12: Protective film 13: Oxide film 2: Groove 2a: Air flow path 2b: Fuel flow path 3: Single cell 30: Electrolyte film 31: Air electrode 32: Fuel electrode 4: Joining Material C: Cell for solid oxide fuel cell

Claims (8)

セル間接続部材と空気極とを接合してなる固体酸化物形燃料電池用セルの製造方法であって、
前記セル間接続部材の基材の表面に保護膜を形成する保護膜形成ステップと、
前記セル間接続部材と空気極とを接合層を介して接合する接合ステップとを有し、
前記基材は、Mnを含有するステンレス合金を主材料とし、
前記保護膜は、MnとCoとを含有するスピネル型金属酸化物を主材料とし、
前記接合ステップにおける前記接合層の焼き付けが1050℃以上の温度で行われる、固体酸化物形燃料電池用セルの製造方法。
A method for producing a cell for a solid oxide fuel cell formed by joining an inter-cell connecting member and an air electrode,
A protective film forming step of forming a protective film on the surface of the base material of the inter-cell connecting member;
A bonding step of bonding the inter-cell connecting member and the air electrode via a bonding layer;
The base material is mainly a stainless alloy containing Mn,
The protective film is mainly composed of a spinel metal oxide containing Mn and Co,
The method for producing a solid oxide fuel cell, wherein the bonding layer is baked at a temperature of 1050 ° C. or higher in the bonding step.
前記接合ステップにおける前記接合層の焼き付けが1075℃以下の温度で行われる、請求項1に記載の固体酸化物形燃料電池用セルの製造方法。   The method for producing a solid oxide fuel cell according to claim 1, wherein the bonding layer is baked in the bonding step at a temperature of 1075 ° C. or lower. 前記接合ステップにおける前記接合層の焼き付けが1075℃未満の温度で行われる、請求項1に記載の固体酸化物形燃料電池用セルの製造方法。   The method for producing a solid oxide fuel cell according to claim 1, wherein the bonding layer is baked in the bonding step at a temperature lower than 1075 ° C. 前記基材の主材料のステンレス合金がSiを含有する請求項1から3のいずれか1項に記載の固体酸化物形燃料電池用セルの製造方法。   The manufacturing method of the cell for solid oxide fuel cells of any one of Claim 1 to 3 in which the stainless steel alloy of the main material of the said base material contains Si. 前記基材の主材料のステンレス合金がTiを含有する請求項1〜4のいずれか1項に記載の固体酸化物形燃料電池用セルの製造方法。   The manufacturing method of the cell for solid oxide fuel cells of any one of Claims 1-4 in which the stainless steel alloy of the main material of the said base material contains Ti. 前記保護膜の主材料が、コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)または、亜鉛コバルトマンガン系酸化物ZnzCoxMny4(0<x、y、z<3、x+y+z=3)である請求項1〜5のいずれか1項に記載の固体酸化物形燃料電池用セルの製造方法。 The main material of the protective layer is comprised of cobalt manganese oxide Co x Mn y O 4 (0 <x, y <3, x + y = 3) or zinc-cobalt-manganese-based oxide Zn z Co x Mn y O 4 (0 <X, y, z <3, x + y + z = 3) The method for producing a cell for a solid oxide fuel cell according to any one of claims 1 to 5. 前記保護膜の主材料が、Co1.5Mn1.54またはCo2MnO4である請求項1〜6のいずれか1項に記載の固体酸化物形燃料電池用セルの製造方法。 The method for producing a solid oxide fuel cell according to claim 1, wherein a main material of the protective film is Co 1.5 Mn 1.5 O 4 or Co 2 MnO 4 . 前記保護膜形成ステップにおいて、前記保護膜が電着塗装により形成される請求項1〜7のいずれか1項に記載の固体酸化物形燃料電池用セルの製造方法。   The method for producing a solid oxide fuel cell according to any one of claims 1 to 7, wherein in the protective film forming step, the protective film is formed by electrodeposition coating.
JP2017000744A 2016-03-31 2017-01-05 Manufacturing method of solid oxide fuel cell Active JP6906310B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016071195 2016-03-31
JP2016071195 2016-03-31

Publications (2)

Publication Number Publication Date
JP2017188426A true JP2017188426A (en) 2017-10-12
JP6906310B2 JP6906310B2 (en) 2021-07-21

Family

ID=60044195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017000744A Active JP6906310B2 (en) 2016-03-31 2017-01-05 Manufacturing method of solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP6906310B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021150093A (en) * 2020-03-18 2021-09-27 東芝エネルギーシステムズ株式会社 Metal member and manufacturing method of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194025A (en) * 2006-01-18 2007-08-02 Kyocera Corp Heat resistant conductive member, alloy member for fuel cell, current collecting member for fuel cell, cell stack and fuel cell
JP2007317610A (en) * 2006-05-29 2007-12-06 Kyocera Corp Cell stack and fuel battery
US20090162729A1 (en) * 2007-12-14 2009-06-25 Elringklinger Ag Bipolar plate and method for manufacturing a protective layer on a bipolar plate
KR20120074563A (en) * 2010-12-28 2012-07-06 주식회사 포스코 Solid oxide fuel cell interconnect and coating method thereof
JP2013118178A (en) * 2011-10-31 2013-06-13 Osaka Gas Co Ltd Solid oxide fuel cell
JP2014191928A (en) * 2013-03-26 2014-10-06 Osaka Gas Co Ltd Manufacturing method of inter-cell connection member, inter-cell connection member, and cell for solid oxide type fuel battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194025A (en) * 2006-01-18 2007-08-02 Kyocera Corp Heat resistant conductive member, alloy member for fuel cell, current collecting member for fuel cell, cell stack and fuel cell
JP2007317610A (en) * 2006-05-29 2007-12-06 Kyocera Corp Cell stack and fuel battery
US20090162729A1 (en) * 2007-12-14 2009-06-25 Elringklinger Ag Bipolar plate and method for manufacturing a protective layer on a bipolar plate
KR20120074563A (en) * 2010-12-28 2012-07-06 주식회사 포스코 Solid oxide fuel cell interconnect and coating method thereof
JP2013118178A (en) * 2011-10-31 2013-06-13 Osaka Gas Co Ltd Solid oxide fuel cell
JP2014191928A (en) * 2013-03-26 2014-10-06 Osaka Gas Co Ltd Manufacturing method of inter-cell connection member, inter-cell connection member, and cell for solid oxide type fuel battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021150093A (en) * 2020-03-18 2021-09-27 東芝エネルギーシステムズ株式会社 Metal member and manufacturing method of the same
US11575136B2 (en) 2020-03-18 2023-02-07 Toshiba Energy Systems & Solutions Corporation Metal member and manufacturing method thereof
JP7263283B2 (en) 2020-03-18 2023-04-24 東芝エネルギーシステムズ株式会社 METAL MEMBER AND MANUFACTURING METHOD THEREOF
US11855307B2 (en) 2020-03-18 2023-12-26 Toshiba Energy Systems & Solutions Corporation Metal member and manufacturing method thereof

Also Published As

Publication number Publication date
JP6906310B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
JP5607903B2 (en) Barrier coating for interconnect, related apparatus and forming method
US8349395B2 (en) Electrically conductive steel-ceramic composite and process to manufacture it
JP2019220492A (en) Electrochemical element, solid oxide fuel cell, and method for manufacturing these
WO2009131180A1 (en) Cell for solid oxide fuel battery
JP6289170B2 (en) Inter-cell connecting member joining structure and inter-cell connecting member joining method
JP7080060B2 (en) Cell-to-cell connection member, solid oxide fuel cell cell, solid oxide fuel cell, SOFC monogeneration system, and SOFC cogeneration system
JP6584097B2 (en) Inter-cell connecting member joining method and method for producing solid oxide fuel cell
JP6735568B2 (en) Cell stack manufacturing method
JP5785135B2 (en) Method for producing current collecting member for solid oxide fuel cell and current collecting member for solid oxide fuel cell
JP6906310B2 (en) Manufacturing method of solid oxide fuel cell
JP2013118177A (en) Solid oxide fuel cell
JP6967894B2 (en) Manufacturing method of cell-to-cell connection member
JP5778711B2 (en) Method for manufacturing inter-cell connecting member, inter-cell connecting member, and solid oxide fuel cell
JP6917182B2 (en) Conductive members, electrochemical reaction units, and electrochemical reaction cell stacks
JP6358921B2 (en) Method for producing solid oxide fuel cell and method for joining cells
JP7357577B2 (en) Inter-cell connection member, solid oxide fuel cell, SOFC monogeneration system, SOFC cogeneration system, and method for manufacturing inter-cell connection member
JP6910172B2 (en) Manufacturing method of cell-to-cell connection member
JP2009266582A (en) Unit cell for solid oxide fuel cell
JP6742104B2 (en) Method for producing inter-cell connecting member, and method for producing solid oxide fuel cell cell
JP6821613B2 (en) Conductive members, electrochemical reaction units and electrochemical reaction cell stack
JP6948791B2 (en) Manufacturing method of cell-to-cell connection member and manufacturing method of cell for solid oxide fuel cell
JP7390648B2 (en) Interconnector member and method for manufacturing interconnector member
JP7324983B2 (en) INTERCONNECTOR MEMBER AND METHOD FOR MANUFACTURING INTERCONNECTOR MEMBER
JP2020161478A (en) Manufacturing method of solid oxide fuel cell and solid oxide fuel cell
JPH07201340A (en) Solid electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210629

R150 Certificate of patent or registration of utility model

Ref document number: 6906310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150