JP2017173257A - Antenna pattern measurement device and antenna rotation mechanism - Google Patents

Antenna pattern measurement device and antenna rotation mechanism Download PDF

Info

Publication number
JP2017173257A
JP2017173257A JP2016062410A JP2016062410A JP2017173257A JP 2017173257 A JP2017173257 A JP 2017173257A JP 2016062410 A JP2016062410 A JP 2016062410A JP 2016062410 A JP2016062410 A JP 2016062410A JP 2017173257 A JP2017173257 A JP 2017173257A
Authority
JP
Japan
Prior art keywords
antenna
placement
angle
power supply
fitting jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016062410A
Other languages
Japanese (ja)
Inventor
雅信 廣瀬
Masanobu Hirose
雅信 廣瀬
悟 黒川
Satoru Kurokawa
悟 黒川
中野 雅之
Masayuki Nakano
雅之 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
KDDI Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, KDDI Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2016062410A priority Critical patent/JP2017173257A/en
Publication of JP2017173257A publication Critical patent/JP2017173257A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique that measures the three-dimensional gain pattern of an antenna by a simple configuration.SOLUTION: The present invention comprises: an external fitting jig externally fitted around the long axis of an antenna; a placement unit on which the external fitting jig can be placed in a state of being turned to a prescribed angle around the long axis; a turn table for turning the placement unit around a direction orthogonal to the long axis as the axis of rotation; a probe for detecting the electric field intensity of the antenna; a conversion unit which, with the angle at which the antenna is placed on the placement unit being a placement angle, causes the placement angle to be changed and the electric field intensity when the turn table is turned to be acquired by the probe, converts the measures value of this electric field intensity to a far field gain, and finds a plurality of far field gain patterns per placement angle; and an interpolation unit for interpolating each far field gain pattern when the plurality of far field gain patterns are combined centering on each antenna position, and finding a three-dimensional gain pattern.SELECTED DRAWING: Figure 1

Description

本発明は、アンテナの利得パターンを測定する技術に関する。   The present invention relates to a technique for measuring a gain pattern of an antenna.

携帯電話やスマートフォンの普及に伴って、無線通信回線のトラヒックが急速に増加し、また、高い無線品質が求められるようになってきている。このトラヒックの増加及び品質要求に応じて、通信エリアを適切に構築するためには、基地局アンテナの三次元利得パターンを正確に測定し、通信エリアの構築に生かせるようにすることが重要である。   With the spread of mobile phones and smartphones, traffic on wireless communication lines has increased rapidly, and high wireless quality has been demanded. It is important to accurately measure the three-dimensional gain pattern of the base station antenna so that it can be used for the construction of the communication area in order to construct the communication area appropriately in response to this increase in traffic and quality requirements. .

J.H.Kim and H.K.Choi,""Antenna radiation pattern measurement at a reduced distance,"" IEEE Transaction on Instrumentation and Measurements, vol. 54, no. 2, pp.673-675, April 2005.J.H.Kim and H.K.Choi, "" Antenna radiation pattern measurement at a reduced distance, "" IEEE Transaction on Instrumentation and Measurements, vol. 54, no. 2, pp.673-675, April 2005. 廣瀬雅信、中野雅之、飴谷充隆、黒川悟、""円周上近傍界測定による基地局アンテナパターン測定(1)-Kim法、近傍界測定法、遠方界測定法との比較-"", 一般社団法人 電子情報通信学会 AMT研究会技術資料、AMT2014-10, 2014年6月。Masanobu Hirose, Masayuki Nakano, Mitsutaka Sugaya, Satoru Kurokawa, "" Measurement of base station antenna pattern by near-field measurement on circumference (1) -Comparison with Kim method, near-field measurement method, and far-field measurement method- "", The Institute of Electronics, Information and Communication Engineers AMT Study Group Technical Data, AMT2014-10, June 2014. Y. Alvarez, F. Las-Heras, and M. R. Pino, ""Reconstruction of Equivalent Currents Distribution Over Arbitrary Three-Dimensional Surfaces Based on Integral Equation Algorithms,"" IEEE Tranactions on Antennas and Propagation, Vol. 55, no. 12, Dec., 2007.Y. Alvarez, F. Las-Heras, and MR Pino, "" Reconstruction of Equivalent Currents Distribution Over Arbitrary Three-Dimensional Surfaces Based on Integral Equation Algorithms, "" IEEE Tranactions on Antennas and Propagation, Vol. 55, no. 12, Dec., 2007. M. Hirose, M. Nakano, and S. Kurokawa,"3-D Absolute Gain Pattern Measured by 1-D Circular Near-Field to Far-Field Transformation Applied to Elongated Antennas as Base-Station Antennas," Proceedings of IEEE CAMA 2015, Paper1076, Nov., 2015.M. Hirose, M. Nakano, and S. Kurokawa, "3-D Absolute Gain Pattern Measured by 1-D Circular Near-Field to Far-Field Transformation Applied to Elongated Antennas as Base-Station Antennas," Proceedings of IEEE CAMA 2015 , Paper1076, Nov., 2015.

従来の被測定アンテナの絶対利得や3Dパターン測定で一般的に使用される方法として三種類の測定法がある。   There are three types of measurement methods that are generally used for measuring the absolute gain and 3D pattern of a conventional antenna under measurement.

一つは、遠方界測定法と呼ばれる方法で、遠方界条件を満たすアンテナ間を離した状態にして、被測定アンテナと特性が既知のアンテナを対向させてアンテナ間伝送量を測定することにより絶対利得やパターンを求める方法である。この測定は直接的な測定法であり、数学的に複雑な処理を行う必要はない。   The first is called a far-field measurement method, where the antennas that satisfy the far-field condition are separated from each other and the measured antenna-to-antenna transmission amount is measured by placing the antenna under measurement facing an antenna with a known characteristic. This is a method for obtaining a gain and a pattern. This measurement is a direct measurement method and does not require mathematically complicated processing.

二つ目は、近傍界測定法と呼ばれる方法で、被測定アンテナと特性が既知のプローブと呼ばれるアンテナを、被測定アンテナ前方の平面上又は特定の局面上で走査しながら、被測定アンテナとプローブ間の伝送量を測定することにより、求めた近傍界測定値から近傍界・遠方界変換により絶対利得やパターンを求める方法である。   The second method is called a near-field measurement method. The antenna under measurement and the probe are scanned while scanning the antenna under measurement and the antenna with a known characteristic on a plane in front of the antenna under measurement or on a specific aspect. In this method, the absolute gain and the pattern are obtained from near field / far field conversion from the obtained near field measurement value by measuring the transmission amount between them.

三つ目はコンパクトレンジ法と呼ばれるもので、特性が既知のアンテナと大型の反射板で平面波を合成して、被測定アンテナに照射することにより絶対利得やパターンを求める方法である。   The third method is called a compact range method, in which a plane wave is synthesized by an antenna having a known characteristic and a large reflector, and an absolute gain and a pattern are obtained by irradiating the antenna to be measured.

遠方界測定法ではアンテナ間距離が数十メートル以上必要になることが多く、また、近傍界測定法やコンパクトレンジ法では装置が大がかりになる、という問題がある。   The far-field measurement method often requires a distance of several tens of meters or more, and the near-field measurement method and the compact range method have a problem that the apparatus becomes large.

また、近年提案されているsource reconstrucnion法による近傍界測定法はアンテナ上
の電流を近傍界の測定値から推定する方法であるが計算が複雑で膨大な計算量が必要であるという問題がある。
Also, the recently proposed near-field measurement method based on the source reconstrucnion method is a method for estimating the current on the antenna from the measured value of the near-field, but there is a problem that the calculation is complicated and a huge amount of calculation is required.

本発明は、簡易な構成でアンテナの三次元利得パターンを測定する技術を提供することを目的とする。   An object of the present invention is to provide a technique for measuring a three-dimensional gain pattern of an antenna with a simple configuration.

上記課題を解決するために本発明のアンテナの回転機構では、アンテナの長軸周りに外嵌され、前記アンテナの長軸方向における所定位置に固定される外嵌治具と、前記アンテナに外嵌した外嵌治具を前記アンテナの長軸周りに所定の角度へ回転させた状態で載置可能な載置部と、前記アンテナの長軸と直交する方向を回転軸として前記載置部を回転させる回転台とを備えた。   In order to solve the above problems, in the antenna rotation mechanism of the present invention, an outer fitting jig that is fitted around the major axis of the antenna and fixed at a predetermined position in the major axis direction of the antenna, and an outer fitting to the antenna. The mounting portion that can be mounted in a state where the outer fitting jig is rotated around the major axis of the antenna to a predetermined angle, and the mounting portion is rotated with the direction orthogonal to the major axis of the antenna as a rotation axis And a turntable.

前記アンテナの回転機構は、前記外嵌治具が、外周面の複数の位置に前記載置部と嵌合する嵌合部を備え、前記外嵌治具の嵌合部が前記載置部と嵌合することで、前記アンテナが所定の載置角度で載置されても良い。   The rotation mechanism of the antenna includes a fitting portion in which the outer fitting jig is fitted to the placement portion at a plurality of positions on an outer peripheral surface, and the fitting portion of the outer fitting jig is the placement portion. By fitting, the antenna may be mounted at a predetermined mounting angle.

前記アンテナの回転機構は、前記アンテナの長軸と直交する面における前記外嵌治具の外形が多角形であり、前記載置部に載置された際、前記多角形の辺を成す外周面の少なくとも一つが前記載置部の下り斜面に当接し、前記アンテナの重さにより前記下り斜面に沿って下方へ案内され、前記多角形の他の面が前記下り斜面以外の面に突き当たって位置決めされても良い。   The rotating mechanism of the antenna has a polygonal outer shape on the surface orthogonal to the long axis of the antenna, and an outer peripheral surface that forms a side of the polygon when placed on the mounting portion. At least one of the above abuts the down slope of the mounting portion, is guided downward along the down slope by the weight of the antenna, and the other surface of the polygon abuts against a surface other than the down slope and is positioned May be.

前記アンテナの回転機構は、前記載置部が、前記外嵌治具と嵌合して前記アンテナの長軸方向における位置決めを行っても良い。   In the rotation mechanism of the antenna, the mounting portion may be fitted with the external fitting jig to position the antenna in the long axis direction.

前記アンテナの回転機構は、前記アンテナの端部に設けられた給電コネクタと接続する給電ケーブルを備え、前記給電ケーブルの長軸周りに回転可能なロータリージョイントを当該給電ケーブルの一部に設けても良い。   The rotation mechanism of the antenna includes a power supply cable connected to a power supply connector provided at an end of the antenna, and a rotary joint that can rotate around a long axis of the power supply cable may be provided in a part of the power supply cable. good.

前記アンテナの回転機構は、前記アンテナの端部に設けられた給電コネクタと接続する給電ケーブルと、光信号を伝達する光ケーブルと、前記給電ケーブル及び前記光ケーブルと接続し、当該光ケーブルを介して受信した光信号を電気信号へ変換し、前記給電ケーブル及び前記給電コネクタを介して前記アンテナへ前記電気信号を供給する光電変換器とを備えても良い。   The rotation mechanism of the antenna is connected to a power supply cable provided at an end of the antenna, an optical cable for transmitting an optical signal, the power supply cable and the optical cable, and received via the optical cable. You may provide the photoelectric converter which converts an optical signal into an electric signal and supplies the said electric signal to the said antenna via the said electric power feeding cable and the said electric power feeding connector.

また、上記課題を解決するために本発明のアンテナパターン測定装置では、前記回転機構と、前記回転台によって回転される前記アンテナの回転面内の所定箇所に固設され、前記アンテナの電界強度を検出するプローブと、前記アンテナを前記載置部に載置する際の前記角度を載置角度とし、当該載置角度を異ならせて前記回転台を回転させた際の電界強度を前記プローブで取得し、この電界強度の測定値を遠方界利得に変換し、前記載置角度毎の遠方界利得パターンを複数求める変換部と、前記複数の遠方界利得パターンを夫々のアンテナの位置を中心に組み合わせた場合の各遠方界利得パターンの間を内挿して、三次元利得パターンを求める内挿部とを備えた。   In order to solve the above-mentioned problem, in the antenna pattern measuring apparatus of the present invention, the antenna is fixed at a predetermined position in the rotation plane of the antenna rotated by the rotating mechanism and the rotating table, and the electric field strength of the antenna is increased. The probe angle to be detected and the angle at which the antenna is placed on the placement portion described above as a placement angle, and the electric field strength when the turntable is rotated by varying the placement angle is acquired by the probe. Then, the measured value of the electric field strength is converted into a far field gain, and the conversion unit for obtaining a plurality of far field gain patterns for each set angle is combined with the plurality of far field gain patterns around the positions of the respective antennas. And an interpolating unit for obtaining a three-dimensional gain pattern by interpolating between the far-field gain patterns.

本発明の簡易な構成でアンテナの三次元利得パターンを測定する技術を提供できる。   A technique for measuring the three-dimensional gain pattern of an antenna can be provided with the simple configuration of the present invention.

第一実施形態に係るアンテナパターン測定装置を示す図である。It is a figure which shows the antenna pattern measuring apparatus which concerns on 1st embodiment. 被測定アンテナを載置した状態の回転機構上部を示す斜視図である。It is a perspective view which shows the rotation mechanism upper part of the state which mounted the to-be-measured antenna. 載置部に外嵌治具を載置した状態を示す正面図である。It is a front view which shows the state which mounted the external fitting jig | tool in the mounting part. 載置部に外嵌治具を載置した状態を示す上面図である。It is a top view which shows the state which mounted the external fitting jig | tool in the mounting part. 載置部の斜視図である。It is a perspective view of a mounting part. 複数の遠方界利得パターンの間を内挿する処理を説明する図である。It is a figure explaining the process which interpolates between several far-field gain patterns. 第二実施形態の外嵌治具を示す正面図である。It is a front view which shows the external fitting jig | tool of 2nd embodiment. 外嵌治具を載置部に載置した状態を示す図である。It is a figure which shows the state which mounted the external fitting jig | tool in the mounting part. 外嵌治具における嵌合部の例を示す図である。It is a figure which shows the example of the fitting part in an external fitting jig | tool. 第三実施形態のアンテナパターン測定装置の構成を示す図である。It is a figure which shows the structure of the antenna pattern measuring apparatus of 3rd embodiment. 第四実施形態のアンテナパターン測定装置の構成を示す図である。It is a figure which shows the structure of the antenna pattern measuring apparatus of 4th embodiment.

〈第一実施形態〉
《全体構成》
以下、本発明の第一実施形態に係るアンテナパターン測定装置について、図面に基づいて説明する。図1は、本実施形態に係るアンテナパターン測定装置10を示す図である。
<First embodiment>
"overall structure"
Hereinafter, an antenna pattern measurement device according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an antenna pattern measuring apparatus 10 according to the present embodiment.

第一実施形態のアンテナパターン測定装置10は、例えば回転機構2や、プローブ3、VNA(ベクトル・ネットワーク・アナライザ)4、情報処理装置5、載置角検出部6を含む。   The antenna pattern measurement device 10 of the first embodiment includes, for example, a rotation mechanism 2, a probe 3, a VNA (vector network analyzer) 4, an information processing device 5, and a placement angle detection unit 6.

測定の対象となる被測定アンテナ1は、一次元的に大きな開口長を有するいわゆる長尺アンテナである。被測定アンテナ1は、例えば、長軸方向を波長以上、3波長以上、又は5波長以上の長さとし、長軸方向と直交する方向(短軸方向)を波長程度以下、長軸方向の1/3以下、又は1/5以下の長さとする。   The antenna to be measured 1 to be measured is a so-called long antenna having a one-dimensionally large aperture length. The antenna 1 to be measured has, for example, a major axis direction having a wavelength of not less than a wavelength, not less than three wavelengths, or not less than five wavelengths, a direction perpendicular to the major axis direction (minor axis direction) being less than about the wavelength, The length is 3 or less, or 1/5 or less.

回転機構2は、被測定アンテナ1を長軸周りに所定の角度へ回転させた状態で載置可能な載置部を備え、この被測定アンテナ1の長軸と直交する方向(鉛直方向)を回転軸として載置部を回転させる。即ち、回転機構2は、載置部に載置した被測定アンテナ1を回転させる。   The rotating mechanism 2 includes a mounting portion that can be mounted in a state where the antenna 1 to be measured is rotated around a major axis by a predetermined angle, and a direction (vertical direction) orthogonal to the major axis of the antenna 1 to be measured is provided. The placement unit is rotated as a rotation axis. That is, the rotation mechanism 2 rotates the antenna 1 to be measured placed on the placement unit.

プローブ3は、被測定アンテナ1から射出された電波を受信して被測定アンテナ1の電波強度を測定する。   The probe 3 receives the radio wave emitted from the antenna 1 to be measured and measures the radio field intensity of the antenna 1 to be measured.

VNA4は、被測定アンテナ1へ電気信号を供給し、電波として送信させると共に、被測定アンテナ1から射出された電波をプローブ3で受信し、被測定アンテナ1の電界強度を測定する。   The VNA 4 supplies an electric signal to the antenna 1 to be measured, transmits it as a radio wave, receives the radio wave emitted from the antenna 1 to be measured by the probe 3, and measures the electric field strength of the antenna 1 to be measured.

載置角検出部6は、アンテナを載置部に載置する際の長軸周りの角度を検出し、情報処理装置5へ入力する。このアンテナを載置する際の長軸周りの角度を以下、載置角度とも称す。なお、載置角検出部6は、必須の構成ではなく、測定者が載置角を計る等して認識し、情報処理装置5へ入力することとして、載置角検出部6を省略しても良い。   The placement angle detection unit 6 detects an angle around the major axis when the antenna is placed on the placement unit, and inputs the detected angle to the information processing device 5. Hereinafter, the angle around the major axis when the antenna is placed is also referred to as a placement angle. In addition, the mounting angle detection unit 6 is not an essential configuration, and the mounting angle detection unit 6 is omitted as a measurement person recognizes it by measuring the mounting angle and inputs it to the information processing apparatus 5. Also good.

情報処理装置5は、CPU(Central Processing Unit)やメモリ等からなるコンピュ
ータであり、回転制御部51、VNA制御部52、変換部53、内挿部54を備える。情報処理装置5は、このメモリに実行可能に展開されたコンピュータプログラムにしたがって、上記情報処理装置5の、回転制御部51、VNA制御部52、変換部53、内挿部54等の各部としての処理を実行する。CPUは、MPU(Micro Processor Unit)、マイ
クロプロセッサ、プロセッサとも呼ばれる。CPUは、単一のプロセッサに限定される訳ではなく、マルチプロセッサ構成であってもよい。また、単一のソケットで接続される単一のCPUがマルチコア構成を有していても良い。上記各部の少なくとも一部の処理は、CPU以外のプロセッサ、例えば、Digital Signal Processor(DSP)、Graphics Processing Unit(GPU)、数値演算プロセッサ、ベクトルプロセッサ、画像処理プロセッサ等の専用プロセッサで行われても良い。また、上記各部の少なくとも一部の処理は、集積回路(IC)、その他のデジタル回路であっても良い。また、上記各部の少なくとも一部にアナログ回路が含まれても良い。集積回路は、LSI,Application Specific Integrated Circuit(ASIC),プログラマブルロジックデバイス(PLD)を含む。PLDは、例えば
、Field-Programmable Gate Array(FPGA)を含む。上記各部は、プロセッサと集積回路と
の組み合わせであっても良い。組み合わせは、例えば、MCU(Micro Controller Unit
),SoC(System-on-a-chip),システムLSI,チップセットなどと呼ばれる。
The information processing apparatus 5 is a computer including a CPU (Central Processing Unit), a memory, and the like, and includes a rotation control unit 51, a VNA control unit 52, a conversion unit 53, and an interpolation unit 54. The information processing device 5 operates as each part of the information processing device 5 such as the rotation control unit 51, the VNA control unit 52, the conversion unit 53, and the interpolation unit 54 in accordance with the computer program that is executed in the memory. Execute the process. The CPU is also called an MPU (Micro Processor Unit), a microprocessor, or a processor. The CPU is not limited to a single processor, and may have a multiprocessor configuration. A single CPU connected by a single socket may have a multi-core configuration. At least a part of the processing of each unit may be performed by a processor other than the CPU, for example, a dedicated processor such as a digital signal processor (DSP), a graphics processing unit (GPU), a numerical operation processor, a vector processor, or an image processing processor. good. Further, at least a part of the processing of each unit may be an integrated circuit (IC) or other digital circuit. In addition, an analog circuit may be included in at least a part of each of the above parts. The integrated circuit includes an LSI, an application specific integrated circuit (ASIC), and a programmable logic device (PLD). The PLD includes, for example, a field-programmable gate array (FPGA). Each of the above units may be a combination of a processor and an integrated circuit. The combination is, for example, MCU (Micro Controller Unit)
), SoC (System-on-a-chip), system LSI, and chipset.

回転制御部51は、回転機構2を回転させ、また、回転した位置、即ち被測定アンテナの向きを検出する。   The rotation control unit 51 rotates the rotation mechanism 2 and detects the rotated position, that is, the direction of the antenna to be measured.

VNA制御部52は、VNA4に対し、被測定アンテナから射出させる電波の周波数や強度等の測定条件を設定すると共に、測定の開始や終了を指示する。   The VNA control unit 52 sets the measurement conditions such as the frequency and intensity of the radio wave emitted from the antenna under measurement, and instructs the VNA 4 to start and end the measurement.

変換部53は、載置角度を異ならせて前記回転台を回転させた際の電界強度を前記プローブ3で取得し、この電界強度の測定値を遠方界利得に変換し、前記載置角度毎の遠方界利得パターンを複数求める。   The conversion unit 53 acquires the electric field strength when the turntable is rotated at different mounting angles with the probe 3 and converts the measured value of the electric field strength into a far field gain. Obtain a plurality of far-field gain patterns.

内挿部54は、複数の遠方界利得パターンを夫々のアンテナの位置を中心に組み合わせた場合の各遠方界利得パターンの間を内挿して、三次元利得パターンを求める。   The interpolating unit 54 interpolates between the far field gain patterns when a plurality of far field gain patterns are combined around the positions of the respective antennas to obtain a three-dimensional gain pattern.

《回転機構の詳細》
回転機構2は、図1に示すように外嵌治具28や、載置部29、回転台20を含む。また、回転台20は、天板21、駆動部22、脚部23を有している。図2は、被測定アンテナ1を載置した状態の回転機構上部を示す斜視図、図3は載置部29に外嵌治具28を載置した状態を示す正面図、図4は、載置部29に外嵌治具28を載置した状態を示す上面図、図5は、載置部29の斜視図である。
<Details of rotating mechanism>
As shown in FIG. 1, the rotation mechanism 2 includes an external fitting jig 28, a placement unit 29, and a turntable 20. The turntable 20 includes a top plate 21, a drive unit 22, and a leg portion 23. 2 is a perspective view showing the upper part of the rotating mechanism in a state where the antenna 1 to be measured is placed, FIG. 3 is a front view showing a state in which the outer fitting jig 28 is placed on the placing portion 29, and FIG. FIG. 5 is a perspective view of the placement portion 29. FIG. 5 is a top view showing a state where the external fitting jig 28 is placed on the placement portion 29. FIG.

外嵌治具28は、被測定アンテナ1の長軸周りに外嵌し、被測定アンテナ1の長軸と直交する断面における外形が円形となっており、この断面における外形の中心が被測定アンテナ1の中心11(図3)と一致するように形成されている。外嵌治具28は、被測定アンテナ1の長軸方向に沿って所定長さの腕部281が設けられ、その腕部281の自由端に、被測定アンテナ1の長軸と直交する断面において中心11側へ向けて突出した突き当て部282を有している。外嵌治具28を被測定アンテナ1の一端部から外嵌する際、突き当て部282が被測定アンテナ1の端面に突き当たるまで他端部側へ外嵌治具28を移動させることで、外嵌治具28が被測定アンテナ1における長軸方向の所定位置へ容易に取り付けることができる。なお、この形状に限らず、突き当て部282が被測定アンテナ1の端面に突き当たることで外嵌治具28の長軸方向の位置を決めることができれば、例えばキャップ状として被測定アンテナ1の端部に被せる形状であっても良い。また、他の手法によって外嵌治具28を被測定アンテナ1の所定位置に取り付けることができれば、腕部281は省略しても良い。   The external fitting jig 28 is fitted around the major axis of the antenna 1 to be measured, and the outer shape in a cross section orthogonal to the long axis of the antenna 1 to be measured has a circular shape, and the center of the outer shape in this cross section is the antenna to be measured. 1 is formed so as to coincide with the center 11 (FIG. 3). The external fitting jig 28 is provided with an arm portion 281 having a predetermined length along the long axis direction of the antenna 1 to be measured, and a free end of the arm portion 281 has a cross section orthogonal to the long axis of the antenna 1 to be measured. There is an abutting portion 282 protruding toward the center 11 side. When the external fitting jig 28 is externally fitted from one end of the antenna 1 to be measured, the external fitting jig 28 is moved to the other end side until the abutting portion 282 hits the end surface of the antenna 1 to be measured. The fitting jig 28 can be easily attached to a predetermined position in the major axis direction of the antenna 1 to be measured. Note that the shape of the end of the antenna 1 to be measured is not limited to this shape as long as the position of the outer fitting jig 28 in the long axis direction can be determined by the abutting portion 282 coming into contact with the end surface of the antenna 1 to be measured. It may be a shape that covers the part. Further, the arm portion 281 may be omitted as long as the external fitting jig 28 can be attached to a predetermined position of the antenna 1 to be measured by another method.

載置部29は、図3に示す正面視において、Y字状に形成されており、外嵌治具28が載置される載置面291がV字状に窪んだ形状、換言すると載置面291が中央に向けて下がる斜面を向かい合わせた形状に形成されている。このため、載置面291に載置され
た外嵌治具281は、このV字状の窪みに落とし込まれ、略2点で支持されることで、ガタつくことなく、位置決めされる。また、載置部291は、図4に示す上面視においても、V字状の溝として形成されており、V字状の溝に嵌ることで外嵌治具28は、被測定アンテナ1における長軸方向の位置が決められる。
The mounting portion 29 is formed in a Y shape in the front view shown in FIG. 3, and the mounting surface 291 on which the outer fitting jig 28 is mounted is recessed in a V shape, in other words, the mounting portion 29. The surface 291 is formed in a shape in which slopes that descend toward the center face each other. For this reason, the external fitting jig 281 placed on the placing surface 291 is dropped into the V-shaped depression and supported at approximately two points, so that it is positioned without rattling. Further, the mounting portion 291 is also formed as a V-shaped groove in the top view shown in FIG. 4, and the outer fitting jig 28 is inserted into the V-shaped groove so that the outer fitting jig 28 is long in the antenna 1 to be measured. An axial position is determined.

外嵌治具28及び載置部29の材質は、非金属が望ましく、例えば、ガラスエポキシ樹脂や、発泡スチロールや発泡ウレタン等の発泡材である。   The material of the external fitting jig 28 and the mounting portion 29 is preferably a non-metal, for example, a glass epoxy resin, a foamed material such as foamed polystyrene or foamed urethane.

回転台20は、脚部23の上部に駆動部22が設けられ、駆動部22の上部にベアリング等の摺動部(不図示)を介して天板21が設けられている。また、駆動部22は、モータ等の駆動源(不図示)を有し、回転制御部51からの制御信号に基づいて天板21を回転させる。天板21の上面には載置部29が設けられており、天板21の回転により、載置部29及び載置部29に載置された被測定アンテナ1を回転させる。このとき、回転軸212を被測定アンテナ1の長軸と直交する方向とし、特に本実施形態では、垂直方向としている。また、本実施形態では、載置部29が天板21上の二か所に設けられ、被測定アンテナ1に外嵌された外嵌治具28が載置部29に載置されることで、被測定アンテナ1の中心12が回転軸212と一致するように位置決めされる。なお、載置部29は、被測定アンテナ1を二か所で支えるのが望ましが、二か所に限らず、三か所以上で支える構成としても良いし、被測定アンテナ1の中央部付近の一か所で支えるように構成しても良い。   The turntable 20 is provided with a drive unit 22 at the upper part of the leg part 23, and a top plate 21 is provided at the upper part of the drive part 22 via a sliding part (not shown) such as a bearing. The drive unit 22 has a drive source (not shown) such as a motor, and rotates the top plate 21 based on a control signal from the rotation control unit 51. A placement unit 29 is provided on the top surface of the top plate 21, and the measurement unit 1 placed on the placement unit 29 and the placement unit 29 is rotated by the rotation of the top plate 21. At this time, the rotation axis 212 is set to a direction orthogonal to the major axis of the antenna 1 to be measured, and in particular, in this embodiment, the rotation axis 212 is set to the vertical direction. Further, in the present embodiment, the placement portions 29 are provided at two places on the top plate 21, and the external fitting jig 28 that is externally fitted to the antenna 1 to be measured is placed on the placement portion 29. The center 12 of the antenna 1 to be measured is positioned so as to coincide with the rotation axis 212. The mounting portion 29 preferably supports the antenna 1 to be measured at two locations, but is not limited to two locations, and may be configured to support at three or more locations. You may comprise so that it may support in one place of neighborhood.

また、駆動部22は、ロータリーエンコーダ(不図示)を備え、天板21の回転位置、即ち被測定アンテナ1の回転位置を情報処理装置5へ入力しても良い。   Further, the drive unit 22 may include a rotary encoder (not shown), and input the rotational position of the top plate 21, that is, the rotational position of the antenna 1 to be measured, to the information processing apparatus 5.

《測定方法》
測定に際し、被測定アンテナ1の給電コネクタ13に給電ケーブル(同軸ケーブル)14を接続し、天板21の中央に設けた穴211を介して給電ケーブル14を回転機構2の下部へ通し、VNA4と接続する。また、VNA4は、同軸ケーブル32を介してプローブ3と接続している。なお、プローブ3は、プローブ支柱31に取り付けられ、被測定アンテナ1と同じ高さで、被測定アンテナ1から所定の距離(図1の例では、回転中心12からの距離R)に設置されている。換言すると、回転台20によって回転される被測定アンテナ1の回転面内の所定箇所における被測定アンテナ1の長軸方向であって、当該アンテナ1から所定距離Rに固設されている。
"Measuring method"
In measurement, a power feeding cable (coaxial cable) 14 is connected to the power feeding connector 13 of the antenna 1 to be measured, and the power feeding cable 14 is passed through the lower portion of the rotating mechanism 2 through the hole 211 provided in the center of the top plate 21. Connecting. Further, the VNA 4 is connected to the probe 3 via the coaxial cable 32. The probe 3 is attached to the probe support 31 and is installed at the same height as the antenna 1 to be measured and a predetermined distance from the antenna 1 to be measured (distance R from the rotation center 12 in the example of FIG. 1). Yes. In other words, the antenna to be measured 1 is fixed at a predetermined distance R in the major axis direction of the antenna 1 to be measured at a predetermined location in the rotation plane of the antenna 1 to be measured rotated by the turntable 20.

また、情報処理装置5は、回転制御のための制御信号の送信及び回転位置の取得のため、駆動部22と信号線58で電気的に接続している。更に、情報処理装置5は、測定制御のための制御信号の送信及び測定結果の取得のため、VNA4と信号線59で電気的に接続している。   Further, the information processing apparatus 5 is electrically connected to the drive unit 22 via a signal line 58 in order to transmit a control signal for rotation control and acquire a rotation position. Further, the information processing apparatus 5 is electrically connected to the VNA 4 through a signal line 59 for transmitting a control signal for measurement control and acquiring a measurement result.

そして、情報処理装置5が、測定開始を指示すると、VNA4が測定用の電気信号を被測定アンテナ1へ供給し、被測定アンテナ1から電波として射出させ、プローブ3で、このときの電界強度を測定しながら、駆動部22が被測定アンテナ1を回転させ、一回転分の測定を行い、変換部53が、当該回転面における遠方界利得パターンを求める。   When the information processing device 5 instructs the start of measurement, the VNA 4 supplies an electric signal for measurement to the antenna 1 to be measured and emits it as a radio wave from the antenna 1 to be measured. While measuring, the drive unit 22 rotates the antenna 1 to be measured, performs measurement for one rotation, and the conversion unit 53 obtains a far-field gain pattern on the rotation surface.

そして、測定者が被測定アンテナ1を長軸周りに回転させ、載置角を変えて前記測定を繰り返し、異なる載置角の遠方利得パターンを求める。例えば、最初の載置角を0度とし、45度、90度、135度の4つの面の遠方利得パターンを求める。この載置角は、測定者が情報処理装置5へ入力しても良いし、載置角検出部(例えば、カメラ)6が、外嵌治具28に設けた目盛やバーコード等の角度の指標283(図4)を検出して情報処理装置5へ入力してもよい。   Then, the measurer rotates the antenna 1 to be measured around the major axis, changes the mounting angle, repeats the measurement, and obtains a far gain pattern with a different mounting angle. For example, assuming that the initial mounting angle is 0 degree, the distance gain patterns of four surfaces of 45 degrees, 90 degrees, and 135 degrees are obtained. The mounting angle may be input by the measurer to the information processing apparatus 5, or the mounting angle detection unit (for example, the camera) 6 may have an angle such as a scale or a barcode provided on the external fitting jig 28. The index 283 (FIG. 4) may be detected and input to the information processing device 5.

次に、内挿部54は、各遠方界利得パターンについて、図6のようにアンテナの位置を中心に組み合わせた場合の各遠方界利得パターンの間を内挿して、三次元利得パターンを求める。なお、内挿手法としては、公知の技術を用いることができるので、詳細な説明は省略する。例えば、O.M. Bucci, C. Gennarelli, and C. Savarese, “Optimal interpolation of radiated field over a sphere,” IEEE Trans. Ant. and Propagat., vol. 39, no. 11, pp.1633-1643, November 1991の内挿手法を用いても良い。なお、本実施形態
では、図1に示すように、被測定アンテナ1の長軸を水平方向として測定するが、この被測定アンテナ1は、運用時に長軸を鉛直方向として設置されるため、各遠方界利得パターンを組み合わせる際、測定時のx軸がz軸となるように座標系を変換する。
Next, the interpolating unit 54 interpolates between the far field gain patterns when the far field gain patterns are combined around the antenna position as shown in FIG. 6 to obtain a three-dimensional gain pattern. In addition, since a well-known technique can be used as an interpolation method, detailed description is abbreviate | omitted. For example, OM Bucci, C. Gennarelli, and C. Savarese, “Optimal interpolation of radiated field over a sphere,” IEEE Trans. Ant. And Propagat., Vol. 39, no. 11, pp.1633-1643, November 1991 The interpolation method may be used. In the present embodiment, as shown in FIG. 1, the long axis of the antenna 1 to be measured is measured in the horizontal direction, but the antenna 1 to be measured is installed with the long axis in the vertical direction during operation. When combining the far-field gain patterns, the coordinate system is converted so that the x-axis at the time of measurement becomes the z-axis.

《実施形態の効果》
このように本実施形態では、被測定アンテナ1を長軸周りに回転させ、この載置角を異ならせた状態で回転台20を回転させて測定を行うので、プローブを固定したまま各載置角の遠方界利得パターンを取得することができ、簡易な構成で三次元利得パターンを求めることができる。
<< Effects of the Embodiment >>
As described above, in this embodiment, the antenna 1 to be measured is rotated around the major axis, and measurement is performed by rotating the turntable 20 in a state where the mounting angles are different. Therefore, each mounting is performed with the probe fixed. A far-field gain pattern of corners can be acquired, and a three-dimensional gain pattern can be obtained with a simple configuration.

また、被測定アンテナ1に外嵌した外嵌治具28を載置部29に載置するだけで、測定に必要な位置決めが行われるので、容易に精度よく測定を行うことができる。   Further, since the positioning necessary for the measurement is performed simply by placing the external fitting jig 28 externally fitted to the antenna 1 to be measured on the placement portion 29, the measurement can be easily performed with high accuracy.

〈第二実施形態〉
前述の第一実施形態では、外嵌治具28の外形を円形としたが、本実施形態では、外嵌治具280が所定の載置角で載置部29と嵌合する構成が第一実施形態と異なっている。なお、第一実施形態と同一の要素は、同符号を付す等して再度の説明を省略している。
<Second embodiment>
In the first embodiment described above, the outer shape of the outer fitting jig 28 is circular. However, in this embodiment, the configuration in which the outer fitting jig 280 is fitted to the mounting portion 29 at a predetermined mounting angle is the first. It is different from the embodiment. Note that the same elements as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.

図7は、第二実施形態の外嵌治具280を示す正面図、図8は外嵌治具280を載置部29に載置した状態を示す図である。   FIG. 7 is a front view showing the outer fitting jig 280 of the second embodiment, and FIG. 8 is a view showing a state in which the outer fitting jig 280 is placed on the placement portion 29.

外嵌治具280は、被測定アンテナ1の長軸周りに外嵌し、被測定アンテナ1の長軸と直交する断面における外形が正八角形となっており、八つの辺81〜88で構成されている。また、外嵌治具280は、この正八角形の中心が被測定アンテナ1の中心11と一致するように形成されている。本実施形態において、この八角形の外形が嵌合部の一形態である。   The external fitting jig 280 is externally fitted around the major axis of the antenna 1 to be measured, has an outer shape in a cross section orthogonal to the major axis of the antenna 1 to be measured, and is composed of eight sides 81 to 88. ing. The external fitting jig 280 is formed such that the center of the regular octagon coincides with the center 11 of the antenna 1 to be measured. In the present embodiment, the octagonal outer shape is one form of the fitting portion.

載置部29は、図8に示す正面視において、Y字状に形成されており、外嵌治具28が載置される載置面291がV字状に窪んだ形状、換言すると載置面291が中央に向けて下がる斜面を向かい合わせた形状に形成され、V字の載置面291の角度が45度となっている。このため、載置面291に載置された外嵌治具281は、このV字状の窪みに嵌合し、八角形の辺を成す外周面の少なくとも一つ、本例では辺83,85が下り斜面である載置面291に当接し、前記アンテナの重さにより載置面291に沿って下方へ案内され、互いに他の辺が突き当たることで、位置決めされる。即ち、辺83が載置面291に沿って下方に案内されている場合に、他の辺85が辺85側の載置面291と当接することで位置決めされる。この場合、辺85が載置面291に沿って下方に案内され、他の辺83が辺83側の載置面291と当接することで位置決めされるとも言える。そして、図8の状態から辺84,86が載置面291に支持される状態に回転させることで載置角を45度変えることができ、辺85,87が載置面291に支持される状態に回転させることで載置角を90度変えることができる。このように本実施形態では、正八角形の辺を成す外嵌治具280の外周面が嵌合部となっている。また、前述の実施形態1と同様に、載置面291のV溝が外嵌治具280と嵌合し、被測定アンテナ1の長軸方向における外嵌治具280の位置決めを行っており、この載置部29のV溝が第二嵌合部となっている。   The mounting portion 29 is formed in a Y shape in the front view shown in FIG. 8, and the mounting surface 291 on which the outer fitting jig 28 is mounted is recessed in a V shape, in other words, the mounting portion 29. The surface 291 is formed in a shape in which the slopes that descend toward the center face each other, and the angle of the V-shaped placement surface 291 is 45 degrees. For this reason, the external fitting jig 281 placed on the placement surface 291 is fitted into the V-shaped depression and is at least one of the outer peripheral surfaces forming the octagonal sides, in this example, the sides 83 and 85. Is in contact with the mounting surface 291 which is a downward slope, guided downward along the mounting surface 291 by the weight of the antenna, and positioned by the other sides abutting against each other. That is, when the side 83 is guided downward along the placement surface 291, the other side 85 is positioned by contacting the placement surface 291 on the side 85 side. In this case, it can be said that the side 85 is guided downward along the placement surface 291, and the other side 83 is positioned by contacting the placement surface 291 on the side 83 side. Then, the mounting angle can be changed by 45 degrees by rotating the sides 84 and 86 from the state shown in FIG. 8 to the state where they are supported by the mounting surface 291, and the sides 85 and 87 are supported by the mounting surface 291. The mounting angle can be changed by 90 degrees by rotating to the state. Thus, in this embodiment, the outer peripheral surface of the external fitting jig 280 that forms a regular octagonal side is the fitting portion. Similarly to the first embodiment, the V-groove of the mounting surface 291 is fitted with the outer fitting jig 280 to position the outer fitting jig 280 in the long axis direction of the antenna 1 to be measured. The V-groove of the placement portion 29 is a second fitting portion.

また、外嵌治具280の外形は、正八角形に限らず、他の多角形など、所定の載置角で嵌合する形状であれば良い。例えば図9(A)に示すように、外嵌治具28Aの外形を正十角形としても良い。このように外嵌治具28Aの外形を正十角形とすることで、載置角を36度ずつ異ならせて載置することができる。   Further, the outer shape of the external fitting jig 280 is not limited to a regular octagon, but may be any shape such as other polygons that can be fitted at a predetermined mounting angle. For example, as shown in FIG. 9A, the outer shape of the external fitting jig 28A may be a regular decagon. Thus, by setting the outer shape of the external fitting jig 28A to be a regular decagon, the mounting angles can be set differently by 36 degrees.

図9(B)の外嵌治具28Bでは、外周面に嵌合凸部89を45度間隔で8つ設けている。この外嵌治具28Bの嵌合凸部89が、載置部29Bの嵌合凹部292と嵌合すると共に載置面291に支持されることで、載置角が定められる。   In the outer fitting jig 28B shown in FIG. 9B, eight fitting projections 89 are provided on the outer peripheral surface at intervals of 45 degrees. The fitting convex portion 89 of the external fitting jig 28B is fitted to the fitting concave portion 292 of the placement portion 29B and supported by the placement surface 291 so that the placement angle is determined.

図9(C)に示すように、外嵌治具28Cの嵌合部91を凹部としても良い。この外嵌治具28Cの嵌合部91が、載置部29Bの嵌合突部293と嵌合すると共に載置面291に支持されることで、載置角が定められる。   As shown in FIG. 9C, the fitting portion 91 of the outer fitting jig 28C may be a recess. The fitting angle 91 is determined by fitting the fitting portion 91 of the external fitting jig 28 </ b> C with the fitting protrusion 293 of the placement portion 29 </ b> B and being supported by the placement surface 291.

このように、本実施形態によれば、嵌合部81〜88,89,91が載置部29,29A〜29Cと嵌合することで所定の載置角に定まるので、利得パターンの測定を容易にできる。   As described above, according to the present embodiment, the fitting portions 81 to 88, 89, and 91 are fitted to the placement portions 29 and 29A to 29C, so that the predetermined placement angle is determined. Easy to do.

〈第三実施形態〉
前述の第一実施形態と比べて、本実施形態では、被測定アンテナ1の給電コネクタ13とVNA4とを接続する同軸ケーブルの一部に、ロータリージョイントを備えたことが異なっている。なお、第一実施形態と同一の要素は、同符号を付す等して再度の説明を省略している。
<Third embodiment>
Compared with the first embodiment described above, this embodiment is different in that a rotary joint is provided in a part of the coaxial cable that connects the power supply connector 13 of the antenna under measurement 1 and the VNA 4. Note that the same elements as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.

図10は、第三実施形態のアンテナパターン測定装置10Aの構成を示す図である。図10のアンテナパターン測定装置10Aでは、被測定アンテナ1の給電コネクタ13と同軸ケーブル14との間にロータリージョイント71を設け、同軸ケーブル14が天板21の上面から穴211を介して下側へ向かう箇所である穴211の周縁にロータリージョイント72を設けている。   FIG. 10 is a diagram illustrating a configuration of an antenna pattern measurement apparatus 10A according to the third embodiment. In the antenna pattern measuring apparatus 10A of FIG. 10, a rotary joint 71 is provided between the power supply connector 13 of the antenna 1 to be measured 1 and the coaxial cable 14 so that the coaxial cable 14 extends downward from the top surface of the top plate 21 through the hole 211. A rotary joint 72 is provided at the peripheral edge of the hole 211 that is directed to.

このように被測定アンテナ1の端部にロータリージョイント71を設けたことにより、被測定アンテナ1を長軸周りに回転させた場合でも同軸ケーブル14が捻じれることが抑えられる。   Thus, by providing the rotary joint 71 at the end of the antenna 1 to be measured, the coaxial cable 14 can be prevented from being twisted even when the antenna 1 to be measured is rotated around the long axis.

また、穴211の周縁にロータリージョイント72を設けたことにより、回転台20を回転させた場合でも同軸ケーブル14が捻じれることが抑えられる。なお、図10では、穴211の周縁にロータリージョイント72を設けた例を示したが、穴211の中心でロータリージョイント72を支持するように支持部材(不図示)を設け、ロータリージョイント72から下へ向かう同軸ケーブル14を回転軸212と一致させても良い。ロータリージョイント71,72は、市販のものを利用できるため、詳細な説明は省略する。例えば、SPINNER社製、BN835045を用いても良い。また、複数の同軸ケーブル14を接続する
場合、複数チャネルのロータリージョイントを用いるのが望ましい。例えば、SPINNER社
製、BN153164を用いても良い。
Further, by providing the rotary joint 72 at the periphery of the hole 211, the coaxial cable 14 can be prevented from being twisted even when the turntable 20 is rotated. 10 shows an example in which the rotary joint 72 is provided at the periphery of the hole 211, a support member (not shown) is provided so as to support the rotary joint 72 at the center of the hole 211, and the rotary joint 72 is provided below the rotary joint 72. The coaxial cable 14 heading toward the rotary shaft 212 may be made to coincide. Since the rotary joints 71 and 72 can use a commercially available thing, detailed description is abbreviate | omitted. For example, BN835045 manufactured by SPINNER may be used. When connecting a plurality of coaxial cables 14, it is desirable to use a multi-channel rotary joint. For example, BN153164 manufactured by SPINNER may be used.

ロータリージョイント71,72を用いずに同軸ケーブル14を接続し、被測定アンテナ1を長軸周りに回転させた場合や、回転台20を回転させた場合に同軸ケーブル14が過度に捻じれると、高周波特性が悪化し、測定結果に影響を与える可能性がある。これに対し、本実施形態によれば、同軸ケーブル14にロータリージョイント71,72を介在させ、回転自在としたため、被測定アンテナ1を長軸周りに回転させた場合や、回転台20を回転させた場合でも同軸ケーブル14が捻じれることなく、測定への影響を抑えるこ
とができる。
If the coaxial cable 14 is connected without using the rotary joints 71 and 72 and the antenna 1 to be measured is rotated around the major axis, or if the rotary table 20 is rotated, the coaxial cable 14 is excessively twisted. High-frequency characteristics may deteriorate and measurement results may be affected. On the other hand, according to the present embodiment, the rotary joints 71 and 72 are interposed in the coaxial cable 14 so as to be rotatable. Therefore, when the antenna 1 to be measured is rotated around the major axis, In this case, the influence on the measurement can be suppressed without twisting the coaxial cable 14.

なお、本実施形態では、ロータリージョイントを備えた以外の構成を第一実施形態と同じとしたが、これに限らず第二実施形態と同じにしても良い。   In addition, in this embodiment, although the structure except having provided the rotary joint was made the same as 1st embodiment, you may make it not only this but the same as 2nd embodiment.

〈第四実施形態〉
前述の第一実施形態と比べて、本実施形態では、被測定アンテナ1の給電コネクタ13とVNA4とを接続する同軸ケーブルの一部を光ケーブルで置き換えた構成が異なっている。なお、第一実施形態と同一の要素は、同符号を付す等して再度の説明を省略している。
<Fourth embodiment>
Compared with the first embodiment described above, the present embodiment is different in the configuration in which a part of the coaxial cable connecting the power supply connector 13 of the antenna under measurement 1 and the VNA 4 is replaced with an optical cable. Note that the same elements as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.

図11は、第四実施形態のアンテナパターン測定装置10Bの構成を示す図である。図11のアンテナパターン測定装置10Bでは、被測定アンテナ1の給電コネクタ13と光電変換器75を同軸ケーブル14で接続し、VNA4と光電変換器76を同軸ケーブル14で接続し、光電変換器75と光電変換器76とを光ケーブル15で接続した。光電変換器75は、載置部29に設けた支持部495上に載置されている。また、光電変換器75は、被測定アンテナ1の給電コネクタ13に直接取り付けられ、給電コネクタ13に支持されても良い。   FIG. 11 is a diagram illustrating a configuration of an antenna pattern measurement apparatus 10B according to the fourth embodiment. In the antenna pattern measuring apparatus 10B of FIG. 11, the power supply connector 13 of the antenna 1 to be measured 1 and the photoelectric converter 75 are connected by the coaxial cable 14, and the VNA 4 and the photoelectric converter 76 are connected by the coaxial cable 14, and the photoelectric converter 75 The photoelectric converter 76 was connected with the optical cable 15. The photoelectric converter 75 is placed on a support portion 495 provided in the placement portion 29. The photoelectric converter 75 may be directly attached to the power supply connector 13 of the antenna 1 to be measured and supported by the power supply connector 13.

測定の際、VNA4から出力された電気信号は、光電変換器76で光信号に変換され、光ケーブル15を介して光電変換器75へ入力される。光電変換器75に入力された光信号は、光電変換器75で電気信号に変換され、同軸ケーブル14を介して被測定アンテナ1へ入力される。なお、光ケーブル15は、被測定アンテナ1を長軸周りに回転させた場合や、回転台20を回転させた場合でも、捻じれによって高周波特性が悪化することがない。このため、本実施形態では、被測定アンテナ1を長軸周りに回転させた場合や、回転台20を回転させた場合の測定への影響を防止できる。   At the time of measurement, the electrical signal output from the VNA 4 is converted into an optical signal by the photoelectric converter 76 and input to the photoelectric converter 75 via the optical cable 15. The optical signal input to the photoelectric converter 75 is converted into an electric signal by the photoelectric converter 75 and input to the antenna 1 to be measured via the coaxial cable 14. Note that the optical cable 15 does not deteriorate the high frequency characteristics due to twisting even when the antenna 1 to be measured is rotated around the major axis or the rotating table 20 is rotated. For this reason, in this embodiment, it is possible to prevent the measurement antenna 1 from being affected when the antenna 1 to be measured is rotated around the major axis or when the turntable 20 is rotated.

なお、本実施形態では、光ケーブルで接続した以外の構成を第一実施形態と同じとしたが、これに限らず第二実施形態と同じにしても良い。   In addition, in this embodiment, although the structure except having connected with the optical cable was made the same as 1st embodiment, you may make it not only this but the same as 2nd embodiment.

〈その他〉
本発明は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
<Others>
The present invention is not limited to the illustrated examples described above, and various modifications can be made without departing from the scope of the present invention.

基地局アンテナや各種レーダアンテナの長さ方向が波長に比べて長く、長軸と直交する方向の長さが波長程度に短いアンテナに適用できる。また回転半径よりも十分に小さなアンテナに対しても適用できる。   The present invention can be applied to an antenna in which the length direction of the base station antenna and various radar antennas is longer than the wavelength and the length in the direction orthogonal to the major axis is as short as the wavelength. It can also be applied to an antenna that is sufficiently smaller than the turning radius.

1 被測定アンテナ
2 回転機構
3 プローブ
5 情報処理装置
6 載置角検出部
10,10A,10B アンテナパターン測定装置
13 給電コネクタ
14 給電ケーブル(同軸ケーブル)
15 光ケーブル
20 回転台
21 天板
22 駆動部
23 脚部
28,28A−28C 外嵌治具
29,29A−29C 載置部
32 同軸ケーブル
51 回転制御部
52 VNA制御部
53 変換部
54 内挿部
71,72 ロータリージョイント
75,76 光電変換器
DESCRIPTION OF SYMBOLS 1 Antenna to be measured 2 Rotating mechanism 3 Probe 5 Information processing device 6 Mounting angle detectors 10, 10A, 10B Antenna pattern measuring device 13 Feed connector 14 Feed cable (coaxial cable)
DESCRIPTION OF SYMBOLS 15 Optical cable 20 Turntable 21 Top plate 22 Drive part 23 Leg part 28, 28A-28C Outer fitting jig | tool 29, 29A-29C Mounting part 32 Coaxial cable 51 Rotation control part 52 VNA control part 53 Conversion part 54 Interpolation part 71 , 72 Rotary joint 75,76 Photoelectric converter

Claims (7)

アンテナの長軸周りに外嵌され、前記アンテナの長軸方向における所定位置に固定される外嵌治具と、
前記アンテナに外嵌した外嵌治具を前記アンテナの長軸周りに所定の角度へ回転させた状態で載置可能な載置部と、
前記アンテナの長軸と直交する方向を回転軸として前記載置部を回転させる回転台と、を備えたアンテナの回転機構。
An outer fitting jig that is fitted around the major axis of the antenna and fixed at a predetermined position in the major axis direction of the antenna;
A mounting portion that can be mounted in a state in which an external fitting jig that is externally fitted to the antenna is rotated to a predetermined angle around the long axis of the antenna;
A rotating mechanism for an antenna, comprising: a turntable for rotating the mounting portion with a direction orthogonal to the major axis of the antenna as a rotation axis.
前記外嵌治具が、外周面の複数の位置に前記載置部と嵌合する嵌合部を備え、
前記外嵌治具の嵌合部が前記載置部と嵌合することで、前記アンテナが所定の載置角度で載置される請求項1に記載のアンテナの回転機構。
The outer fitting jig includes a fitting portion that fits with the placement portion at a plurality of positions on the outer peripheral surface,
The antenna rotation mechanism according to claim 1, wherein the antenna is placed at a predetermined placement angle by fitting the fitting portion of the external fitting jig with the placement portion.
前記アンテナの長軸と直交する面における前記外嵌治具の外形が多角形であり、前記載置部に載置された際、前記多角形の辺を成す外周面の少なくとも一つが前記載置部の下り斜面に当接し、前記アンテナの重さにより前記下り斜面に沿って下方へ案内され、前記多角形の他の面が前記下り斜面以外の面に突き当たって位置決めされる請求項2に記載のアンテナの回転機構。   The outer shape of the external fitting jig on the surface orthogonal to the long axis of the antenna is a polygon, and when placed on the mounting portion, at least one of the outer peripheral surfaces forming the sides of the polygon is the mounting surface. The abutment portion is in contact with a downward slope, guided downward along the downward slope by the weight of the antenna, and the other surface of the polygon abuts against a surface other than the downward slope and is positioned. Antenna rotation mechanism. 前記載置部が、前記外嵌治具と嵌合して前記アンテナの長軸方向における位置決めを行う第二嵌合を備えた請求項2又は3に記載のアンテナの回転機構。   The antenna rotation mechanism according to claim 2 or 3, wherein the mounting portion includes a second fitting that is fitted to the outer fitting jig and performs positioning in the long axis direction of the antenna. 前記アンテナの端部に設けられた給電コネクタと接続する給電ケーブルを備え、
前記給電ケーブルの長軸周りに回転可能なロータリージョイントを当該給電ケーブルの一部に設けた請求項1から4の何れか1項に記載のアンテナの回転機構。
A power supply cable connected to a power supply connector provided at an end of the antenna;
The antenna rotation mechanism according to any one of claims 1 to 4, wherein a rotary joint that is rotatable around a long axis of the power supply cable is provided in a part of the power supply cable.
前記アンテナの端部に設けられた給電コネクタと接続する給電ケーブルと、
光信号を伝達する光ケーブルと、
前記給電ケーブル及び前記光ケーブルと接続し、当該光ケーブルを介して受信した光信号を電気信号へ変換し、前記給電ケーブル及び前記給電コネクタを介して前記アンテナへ前記電気信号を供給する光電変換器とを備える請求項1から4の何れか1項に記載のアンテナの回転機構。
A power supply cable connected to a power supply connector provided at an end of the antenna;
An optical cable for transmitting optical signals;
A photoelectric converter connected to the power supply cable and the optical cable, converting an optical signal received via the optical cable into an electric signal, and supplying the electric signal to the antenna via the power supply cable and the power supply connector; The antenna rotation mechanism according to any one of claims 1 to 4, further comprising:
請求項1〜6の何れか一項に記載の回転機構と、
前記回転台によって回転される前記アンテナの回転面内の所定箇所に固設され、前記アンテナの電界強度を検出するプローブと、
前記アンテナを前記載置部に載置する際の前記角度を載置角度とし、当該載置角度を異ならせて前記回転台を回転させた際の電界強度を前記プローブで取得し、この電界強度の測定値を遠方界利得に変換し、前記載置角度毎の遠方界利得パターンを複数求める変換部と、
前記複数の遠方界利得パターンを夫々のアンテナの位置を中心に組み合わせた場合の各遠方界利得パターンの間を内挿して、三次元利得パターンを求める内挿部と、
を備えたアンテナパターン測定装置。
The rotation mechanism according to any one of claims 1 to 6,
A probe fixed to a predetermined position in a rotation surface of the antenna rotated by the turntable, and detecting a field intensity of the antenna;
The angle at which the antenna is placed on the placement portion is set as a placement angle, and the electric field strength when the turntable is rotated by changing the placement angle is obtained by the probe. Converting the measured value into a far-field gain, and obtaining a plurality of far-field gain patterns for each set angle,
An interpolation unit for obtaining a three-dimensional gain pattern by interpolating between the far field gain patterns when the plurality of far field gain patterns are combined around the position of each antenna,
An antenna pattern measuring device comprising:
JP2016062410A 2016-03-25 2016-03-25 Antenna pattern measurement device and antenna rotation mechanism Pending JP2017173257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016062410A JP2017173257A (en) 2016-03-25 2016-03-25 Antenna pattern measurement device and antenna rotation mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016062410A JP2017173257A (en) 2016-03-25 2016-03-25 Antenna pattern measurement device and antenna rotation mechanism

Publications (1)

Publication Number Publication Date
JP2017173257A true JP2017173257A (en) 2017-09-28

Family

ID=59970990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016062410A Pending JP2017173257A (en) 2016-03-25 2016-03-25 Antenna pattern measurement device and antenna rotation mechanism

Country Status (1)

Country Link
JP (1) JP2017173257A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112130007A (en) * 2020-09-25 2020-12-25 四川九洲电器集团有限责任公司 Antenna far field directional diagram test system and test method
CN113671271A (en) * 2021-07-23 2021-11-19 西安空间无线电技术研究所 Antenna test data acquisition method for three-dimensional space automatic trajectory control

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112130007A (en) * 2020-09-25 2020-12-25 四川九洲电器集团有限责任公司 Antenna far field directional diagram test system and test method
CN112130007B (en) * 2020-09-25 2021-08-17 四川九洲电器集团有限责任公司 Antenna far field directional diagram test method
CN113671271A (en) * 2021-07-23 2021-11-19 西安空间无线电技术研究所 Antenna test data acquisition method for three-dimensional space automatic trajectory control
CN113671271B (en) * 2021-07-23 2023-11-10 西安空间无线电技术研究所 Antenna test data acquisition method for three-dimensional space automatic track control

Similar Documents

Publication Publication Date Title
CN110542798B (en) Method and system for testing antenna arrays using mid-field antenna patterns
JP5669337B2 (en) System and method for measuring specific absorption rate
KR100926561B1 (en) Apparatus and method for measuring antenna radiation patterns
CN205880217U (en) Rotation type range radar
CN108594026B (en) Near-field test method for reconstructing far-field directional diagram of antenna array in radiation near-field region
KR102283698B1 (en) System and a method for determining a radiation pattern
KR102264965B1 (en) Scattering tomography method and scattering tomography device
CN109061323B (en) Near-field antenna measurement method adopting spherical amplitude scanning
CN109581078B (en) Directional diagram measuring system and method suitable for antenna in half-space environment
CN106872801B (en) Near field test system
JP6616810B2 (en) Radio terminal reception characteristic measuring system and measuring method
JP2007271317A (en) Emi measuring instrument, and emi measuring method
CN103718377A (en) Near-field millimeter wave imaging
JP6678554B2 (en) Antenna measuring device
JP2017173257A (en) Antenna pattern measurement device and antenna rotation mechanism
CN105527598B (en) A kind of field sensor calibration system and method
JPH1062467A (en) Unnecessary electromagnetic wave measuring system
JP5371233B2 (en) Radar cross section measuring method and radar cross section measuring apparatus
CN206876773U (en) A kind of near field test system
JP2009052990A (en) Apparatus, system and method for measuring electromagnetic field
CN107942145A (en) A kind of angle change sphere triple antenna radiated electromagnetic field measuring system and method
JP7183907B2 (en) Electromagnetic wave measurement point calculation program and radiated interference wave measurement device
CN109239682B (en) External calibration system and method for quantitative measurement radar system
JP3658226B2 (en) Radar cross section measuring method and radar cross section measuring apparatus
Ferrero et al. Spherical near-field probe fed antenna techniques for accurate millimeter wave measurements