JP2017172082A - Manufacturing method of acrylic precursor fiber bundle and manufacturing method of carbon fiber - Google Patents

Manufacturing method of acrylic precursor fiber bundle and manufacturing method of carbon fiber Download PDF

Info

Publication number
JP2017172082A
JP2017172082A JP2016061337A JP2016061337A JP2017172082A JP 2017172082 A JP2017172082 A JP 2017172082A JP 2016061337 A JP2016061337 A JP 2016061337A JP 2016061337 A JP2016061337 A JP 2016061337A JP 2017172082 A JP2017172082 A JP 2017172082A
Authority
JP
Japan
Prior art keywords
fiber bundle
precursor fiber
acrylic precursor
winding device
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016061337A
Other languages
Japanese (ja)
Other versions
JP6520787B2 (en
Inventor
郁人 大島
Ikuto Oshima
郁人 大島
宏一 合津
Koichi Aitsu
宏一 合津
安則 中田
Yasunori Nakada
安則 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2016061337A priority Critical patent/JP6520787B2/en
Publication of JP2017172082A publication Critical patent/JP2017172082A/en
Application granted granted Critical
Publication of JP6520787B2 publication Critical patent/JP6520787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an acrylic precursor fiber bundle and a manufacturing method of a carbon fiber capable of preventing reduction of convergence property or generation of fuzz with maintaining high operability and suppressing quality defects of a package after winding such as slack or fuzz in an area after a dry process easily occurring reduction of convergence property or generation of fuzz during manufacturing the acrylic precursor fiber bundle at high speed.SOLUTION: There is provided a manufacturing method of an acrylic precursor fiber bundle including modifying humidity of an area where the acrylic precursor fiber bundle runs from a roller arranged just after a dry process to a winding device at absolute humidity of 12 g/mor more when the acrylic precursor fiber bundle is would by the winding device through a water cleaning process and the dry process after spinning by a wet spinning method or a dry and wet spinning method.SELECTED DRAWING: Figure 1

Description

本発明は、アクリル系前駆体繊維束の製造方法、及び炭素繊維の製造方法に関するものであり、主としてアクリル系前駆体繊維束の製造方法に関するものである。さらに詳しくは、製造工程内でアクリル系前駆体繊維束が走行している雰囲気中の絶対湿度を制御することで、高い操業性を保ちつつ収束性の低下や毛羽の発生を防止し、糸弛みや毛羽といった巻取り後パッケージの品位不良を抑制できるアクリル系前駆体繊維束の製造方法に関するものである。   The present invention relates to a method for producing an acrylic precursor fiber bundle and a method for producing a carbon fiber, and mainly relates to a method for producing an acrylic precursor fiber bundle. More specifically, by controlling the absolute humidity in the atmosphere in which the acrylic precursor fiber bundles are running in the manufacturing process, it is possible to prevent a decrease in convergence and the occurrence of fluff while maintaining high operability. The present invention relates to a method for producing an acrylic precursor fiber bundle that can suppress poor quality of a package after winding, such as knitting and fluff.

炭素繊維用前駆体繊維束に用いられるアクリル繊維束は、アクリロニトリル系重合体を有機または無機溶媒に溶解させた紡糸原液を、湿式紡糸または乾湿式紡糸により凝固浴中で紡糸させることで製造される。紡糸した繊維束は、一般に、溶媒を除去するための水洗工程、配向を促進させるための延伸工程、工程通過性向上や物性向上を目的に油剤を付与する油剤付与工程、糸条中の水分を乾燥し、緻密化させる乾燥工程などに通される。乾燥工程を出た繊維束は、最終的な炭素繊維の品質の合わせ込みのため、後延伸や熱セットなどの処理を経たのち、パッケージされ、焼成工程へと送られる。焼成工程では、パッケージから解舒されたアクリル系前駆体繊維束を酸化制雰囲気中で加熱して酸化繊維に転換する耐炎化工程、酸化繊維を窒素・アルゴン・ヘリウム等の不活性雰囲気中でさらに加熱する炭化工程を経ることで最終的な炭素繊維が得られる。   Acrylic fiber bundles used for carbon fiber precursor fiber bundles are produced by spinning a spinning stock solution in which an acrylonitrile-based polymer is dissolved in an organic or inorganic solvent in a coagulation bath by wet spinning or dry-wet spinning. . The spun fiber bundle generally has a water washing step for removing the solvent, a stretching step for promoting orientation, an oil agent applying step for applying an oil agent for the purpose of improving process passability and physical properties, and moisture in the yarn. It is passed through a drying process for drying and densification. The fiber bundle that has gone through the drying process is subjected to post-stretching, heat setting, and the like in order to match the final carbon fiber quality, and then packaged and sent to the firing process. In the firing process, the acrylic precursor fiber bundle unwound from the package is heated in an oxidizing atmosphere to convert it into oxidized fibers, and the oxidized fibers are further subjected to an inert atmosphere such as nitrogen, argon, helium, etc. The final carbon fiber is obtained through a heating carbonization step.

近年、炭素繊維は複合材料の強化繊維としてスポーツ用途や一般産業用途、航空宇宙用途での需要が拡大している。これに伴い、炭素繊維の生産量増加やコストダウンが求められており、設備あたりの生産性を向上させる目的でアクリル繊維束の生産速度の増加が取り組まれている。しかしながら、生産速度を大きくしていくと、乾燥工程以降で、繊維束の走行する幅が広がったり、繊維束の一部がさばけて走行したりというような収束性の低下が起こりやすくなる。また、ローラーと糸条の摩擦による毛羽の発生が顕著となる。これらのトラブルが起こると、巻取装置で巻取った際に糸弛みや毛羽といった繊維束の品位不良の原因となる。さらに、これらの不良部分の量が甚だしい場合は、ローラーやガイドに巻付いて工程トラブルの原因になるほか、繊維束を焼成して得られる炭素繊維の強度低下を引き起こす原因となっている。   In recent years, the demand for carbon fiber as a reinforcing fiber for composite materials has been increasing in sports applications, general industrial applications, and aerospace applications. Along with this, there is a demand for an increase in carbon fiber production and cost reduction, and an increase in the production rate of acrylic fiber bundles has been addressed for the purpose of improving the productivity per facility. However, when the production speed is increased, the convergence of the fiber bundle is likely to decrease after the drying process, such as the width of the fiber bundle traveling or the portion of the fiber bundle being scattered. In addition, the occurrence of fluff due to friction between the roller and the yarn becomes remarkable. When these troubles occur, it becomes a cause of poor quality of the fiber bundle such as loose yarn and fluff when wound by the winding device. Furthermore, when the amount of these defective portions is excessive, they can be wound around rollers or guides to cause a process trouble, and also cause a decrease in strength of carbon fibers obtained by firing the fiber bundle.

収束性を付与する技術として、工程中に除電装置を設置し糸条の帯電圧を一定以下にする方法が開示されている(特許文献1)。除電装置により、設置位置付近での帯電量を一時的に減衰し糸さばけを防止することができるが、摩擦による毛羽発生についての記載はない。また、生産性を向上させ繊維束が帯電しやすくなるにつれ、帯電圧を低く抑えるために狭い間隔で除電装置を設置しなければならず、設備コストがかかる。また、一般的に除電装置は空気中のほこりを吸い寄せやすく、ほこりの付着により除電能力が徐々に低下していくため、長期間安定して除電能力を維持することが難しい。   As a technique for imparting convergence, a method is disclosed in which a static eliminator is installed in the process to make the charged voltage of the yarn below a certain level (Patent Document 1). Although the charge removal near the installation position can be temporarily attenuated by the static eliminator to prevent yarn breakage, there is no description of fluff generation due to friction. In addition, as productivity increases and the fiber bundle becomes more easily charged, static eliminators must be installed at narrow intervals in order to keep the charged voltage low, and equipment costs increase. In general, the static eliminator easily sucks dust in the air, and the static elimination capability gradually decreases due to the adhesion of the dust. Therefore, it is difficult to stably maintain the static elimination capability for a long period of time.

一方、巻取装置付近の雰囲気領域の絶対湿度を制御する方法が開示されている(特許文献2)。これにより、巻取装置付近での収束性の向上や毛羽の発生防止は可能となるが、生産速度を上げていった場合、その効果は十分なレベルではなかった。   On the other hand, a method for controlling the absolute humidity in the atmosphere region near the winding device is disclosed (Patent Document 2). This makes it possible to improve the convergence in the vicinity of the winding device and to prevent the occurrence of fluff, but when the production speed is increased, the effect is not at a sufficient level.

特開2010−13777号公報JP 2010-13777 A 特開2011−208314号公報JP 2011-208314 A

本発明はこのような従来技術の問題点を解決するものであり、アクリル系前駆体繊維束を高速で製造するにあたり、収束性の低下や毛羽の発生が起こりやすい乾燥工程以降のエリアにおいて、高い操業性を保ちつつ収束性の低下や毛羽の発生を防止し、糸弛みや毛羽といった巻取り後パッケージの品位不良を抑制できるアクリル系前駆体繊維束の製造方法および炭素繊維の製造方法を提供することを課題とする。   The present invention solves such problems of the prior art, and in producing an acrylic precursor fiber bundle at a high speed, it is high in areas after the drying process in which a decrease in convergence and fluff are likely to occur. Provided are a method for producing an acrylic precursor fiber bundle and a method for producing carbon fiber, which can prevent deterioration of convergence and generation of fluff while maintaining operability, and can suppress poor quality of a package after winding such as yarn loosening and fluff. This is the issue.

上記の課題を解決するための本発明のアクリル系前駆体繊維束の製造方法は、湿式紡糸法または乾湿式紡糸法により紡糸後、水洗工程、乾燥工程を経て、巻取装置でアクリル系前駆体繊維束を巻き取るに際し、乾燥工程直後に設置されたローラーから巻取装置までのアクリル系前駆体繊維束が走行するエリアを、絶対湿度12g/m以上に調湿することを特徴とする。 The method for producing an acrylic precursor fiber bundle according to the present invention for solving the above-described problems is obtained by spinning with a wet spinning method or a dry wet spinning method, followed by a water washing step and a drying step, and an acrylic precursor with a winding device. When winding the fiber bundle, the area where the acrylic precursor fiber bundle running from the roller installed immediately after the drying step to the winding device travels is adjusted to an absolute humidity of 12 g / m 3 or more.

また、本発明の炭素繊維の製造方法は、前記アクリル系前駆体繊維束の製造方法でアクリル系前駆体繊維束を製造した後、酸化性雰囲気中200〜300℃で耐炎化し、その後不活性雰囲気中1000℃以上で炭化する、炭素繊維の製造方法である。   Further, the carbon fiber production method of the present invention comprises producing an acrylic precursor fiber bundle by the method for producing an acrylic precursor fiber bundle, and then flameproofing at 200 to 300 ° C. in an oxidizing atmosphere, and then an inert atmosphere. It is the manufacturing method of carbon fiber which carbonizes in 1000 degreeC or more inside.

本発明では、アクリル系前駆体繊維束を高速で製造するにあたり、収束性の低下や毛羽の発生が起こりやすい乾燥工程以降について、繊維束の走行エリアで空気中の水分量を一定範囲に維持する絶対湿度の管理を行うことで、収束性の低下や毛羽の発生を一貫して防止し、高い操業性を保ちつつ糸弛みや毛羽の少ない良好なアクリル系前駆体繊維束パッケージを得ることができるアクリル系前駆体繊維束の製造方法および炭素繊維の製造方法を提供できる。   In the present invention, when the acrylic precursor fiber bundle is produced at high speed, the moisture content in the air is maintained in a certain range in the traveling area of the fiber bundle after the drying process in which the convergence is lowered and the occurrence of fluff is likely to occur. By controlling the absolute humidity, it is possible to consistently prevent the decrease in convergence and the occurrence of fluff, and to obtain a good acrylic precursor fiber bundle package with less yarn slack and fluff while maintaining high operability. A method for producing an acrylic precursor fiber bundle and a method for producing carbon fiber can be provided.

本発明に係るアクリル系前駆体繊維束の製造方法の一例を示した概略図である。It is the schematic which showed an example of the manufacturing method of the acrylic type precursor fiber bundle which concerns on this invention.

本発明者らは、湿式紡糸法または乾湿式紡糸法により紡糸するアクリル系前駆体繊維束の製造方法において、巻取りパッケージ中の糸弛みや毛羽といった品位不良が乾燥工程以降での収束性の低下や毛羽の発生によるものであり、その頻度が乾燥工程直後に設置したローラーから巻取装置までに繊維束が走行するエリアの絶対湿度と相関があることを突き止めた。一度収束性が低下すると、以降の工程で収束性を付与させても単糸のさばけが完全には解消されず、さばけた単糸がたるんだ状態でパッケージとして巻取られてしまう。また、アクリル系前駆体繊維束の単糸が切れて毛羽となってしまうと元には戻らない。そのため、乾燥工程以降でアクリル系前駆体繊維束が走行する全てのエリアの絶対湿度を調整することが有効である。   In the production method of an acrylic precursor fiber bundle that is spun by a wet spinning method or a dry wet spinning method, the present inventors have found that poor quality such as yarn looseness and fluff in a winding package reduces the convergence after the drying step. It has been found that the frequency is correlated with the absolute humidity of the area where the fiber bundle travels from the roller installed immediately after the drying process to the winding device. Once the convergence is reduced, even if the convergence is imparted in the subsequent steps, the single yarn is not completely resolved, and the separated single yarn is wound as a package in a slack state. Moreover, when the single yarn of the acrylic precursor fiber bundle is cut and becomes fluff, it cannot be restored. Therefore, it is effective to adjust the absolute humidity of all areas where the acrylic precursor fiber bundle travels after the drying step.

本発明のアクリル系前駆体繊維束の製造方法では、湿式紡糸または乾湿式紡糸により紡糸後、水洗工程、乾燥工程を経て、巻取装置でアクリル系前駆体繊維束を巻き取るに際し、乾燥工程直後に設置されたローラーから巻取装置までのアクリル系前駆体繊維束が走行するエリアの工程雰囲気を一定以上の絶対湿度に保つことにより、アクリル系前駆体繊維束が乾燥してから巻き取られるまで、一貫してアクリル系前駆体繊維束の収束性の担保や毛羽の抑制が可能となり、工程トラブルを防止し良好なパッケージを得ることが可能となる。   In the method for producing an acrylic precursor fiber bundle according to the present invention, after spinning by wet spinning or dry wet spinning, a water washing process and a drying process are performed, and when the acrylic precursor fiber bundle is wound by a winding device, immediately after the drying process. By keeping the process atmosphere in the area where the acrylic precursor fiber bundle running from the roller installed in the roller travels at a certain absolute humidity, until the acrylic precursor fiber bundle is dried and wound up Thus, it is possible to consistently ensure the convergence of the acrylic precursor fiber bundle and to suppress the fluff, thereby preventing a process trouble and obtaining a good package.

以下、本発明のアクリル系前駆体繊維束の製造方法の好適な実施の形態について具体的に説明する。   Hereinafter, a preferred embodiment of the method for producing an acrylic precursor fiber bundle of the present invention will be specifically described.

本発明におけるアクリル系前駆体繊維束を構成する重合体の種類は特に限定されないが、アクリロニトリル90質量%以上とアクリロニトリルと共重合可能なモノマー10質量%以下からなる共重合体であることが好ましい。共重合可能なモノマーとしてはアクリル酸、メタアクリル酸、イタコン酸又はこれらのメチルエステル、プロピルエステル、ブチルエステル、アンモニウム塩、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、及びこれらのアルカリ金属塩からなる群から選ばれる少なくとも1種を用いることができる。   The type of the polymer constituting the acrylic precursor fiber bundle in the present invention is not particularly limited, but is preferably a copolymer composed of 90% by mass or more of acrylonitrile and 10% by mass or less of a monomer copolymerizable with acrylonitrile. Examples of copolymerizable monomers include acrylic acid, methacrylic acid, itaconic acid or their methyl ester, propyl ester, butyl ester, ammonium salt, allyl sulfonic acid, methallyl sulfonic acid, styrene sulfonic acid, and alkali metal salts thereof. At least one selected from the group consisting of can be used.

これらのポリマーからアクリル系前駆体繊維束を製造するため、ポリマーを有機または無機溶媒に溶解させた紡糸原液を、湿式または乾湿式紡糸により凝固浴中で紡糸する。紡出糸は、溶媒を除去する水洗工程、水分を蒸発させる乾燥工程を経て巻き取られる。通常、水洗工程の前後どちらかで、浴中延伸して繊維の配向度を高める処理を行う。浴中延伸は50〜98℃の熱水中で1.2〜6.0倍に延伸されることが望ましい。   In order to produce an acrylic precursor fiber bundle from these polymers, a spinning solution in which the polymer is dissolved in an organic or inorganic solvent is spun in a coagulation bath by wet or dry wet spinning. The spun yarn is wound through a washing step for removing the solvent and a drying step for evaporating water. Usually, either before or after the washing step, a treatment for stretching in a bath and increasing the degree of orientation of fibers is performed. The stretching in the bath is desirably stretched 1.2 to 6.0 times in hot water at 50 to 98 ° C.

また、乾燥工程の手前で、以降の工程での通過性向上や最終製品である炭素繊維の物性向上のため、油剤を付与することが望ましい。付与する油剤としては、炭素繊維の高強度化の観点からシリコーン系油剤やその混合物が好適に使用される。   Further, before the drying step, it is desirable to apply an oil agent in order to improve the passability in the subsequent steps and improve the physical properties of the carbon fiber which is the final product. As the oil agent to be applied, a silicone oil agent or a mixture thereof is preferably used from the viewpoint of increasing the strength of the carbon fiber.

乾燥工程は、直前に油剤を付与した繊維束を加熱することによって行われる。乾燥方式としては、加熱ローラーとの接触によって行われるのが一般的であるが、サクションドラム方式として効率を高めても良い。また、乾燥温度、乾燥時間等は適宜選択することができる。   A drying process is performed by heating the fiber bundle which provided the oil agent immediately before. The drying method is generally performed by contact with a heating roller, but the efficiency may be increased as a suction drum method. Moreover, drying temperature, drying time, etc. can be selected suitably.

乾燥工程の後には、繊維束を再度2.0〜9.0倍に延伸する後延伸工程を設置することが望ましい。後延伸は高温ローラーを用いた乾熱延伸や加圧蒸気を用いたスチーム延伸などの方式があり、その方式は特に限定されないが、繊維束の可塑性を高め延伸倍率を高く設定できる点からスチーム延伸が好ましい。   After the drying step, it is desirable to install a post-stretching step for stretching the fiber bundle again by 2.0 to 9.0 times. Post-stretching includes methods such as dry heat stretching using a high-temperature roller and steam stretching using pressurized steam, and the method is not particularly limited, but steam stretching is possible because the fiber bundle plasticity can be increased and the stretching ratio can be set high. Is preferred.

後延伸工程以外にも、乾燥工程から巻取装置までの間に、最終的な炭素繊維の品質の合わせ込みのため、交絡、熱セット、合糸といった処理を実施することがあるが、その方式や条件については特に限定されない。   In addition to the post-drawing process, processes such as entanglement, heat setting, and yarn joining may be performed from the drying process to the winding device to match the final carbon fiber quality. The conditions are not particularly limited.

本発明では、乾燥工程以降で繊維束の走行するエリアの絶対湿度を制御する。   In the present invention, the absolute humidity of the area where the fiber bundle travels after the drying step is controlled.

図1は、本発明に係るアクリル系前駆体繊維束の製造方法の一例を示した模式図である。   FIG. 1 is a schematic view showing an example of a method for producing an acrylic precursor fiber bundle according to the present invention.

図1において、紡糸、水洗、浴中延伸、油剤付与工程を経たアクリル系前駆体繊維束1は、乾燥処理装置2、後延伸処理装置4、熱セット処理装置5を通過した後、複数設置された速度制御駆動ローラー6からなるドライブステーションから巻取装置入りローラー7を介して巻取装置8にて巻取られる。本発明は、乾燥工程以降の繊維束の通過するエリアを、乾燥工程直後に設置されたローラー3aから巻取装置直前に設置された駆動ローラー6aに入るまでに繊維束が走行するエリア9aと、巻取装置直前に設置された駆動ローラー6aから巻取装置8までに繊維束が走行するエリア9bに分類し、両方のエリアの絶対湿度を12g/m以上に調湿するものである。 In FIG. 1, a plurality of acrylic precursor fiber bundles 1 that have undergone spinning, washing, stretching in a bath, and applying an oil agent pass through a drying treatment device 2, a post-stretching treatment device 4, and a heat setting treatment device 5, and then a plurality of acrylic precursor fiber bundles 1 are installed. Winding is performed by a winding device 8 from a drive station including the speed control driving roller 6 via a roller 7 with a winding device. In the present invention, the area through which the fiber bundle travels from the roller 3a installed immediately after the drying process to the driving roller 6a installed immediately before the winding device passes through the area through which the fiber bundle passes after the drying process, This is classified into the area 9b where the fiber bundle travels from the driving roller 6a installed immediately before the winding device to the winding device 8, and the absolute humidity in both areas is adjusted to 12 g / m 3 or more.

本発明では、乾燥工程直後に設置されたローラーから巻取装置までのアクリル系前駆体繊維束が走行するエリアを、絶対湿度12g/m以上に調湿するために、繊維束のごく近傍の領域の雰囲気を、乾燥工程以降に繊維束の走行する経路全体にわたって調湿することが必要になる。この繊維束の走行する経路全体の絶対湿度を全て測定し制御することは難しいが、エリア9aについては、乾燥処理装置直後の駆動ローラー3aから巻取装置直前の駆動ローラー6aに入るまで、繊維束の進行方向に2mおきに、繊維束よりその走行方向に垂直に10cm離れた点を測定し、その最低値が12g/m以上となるよう調湿されていれば十分である。また、エリア9bについては、巻取装置直前の駆動ローラー6aから巻取装置8まで、繊維束の進行方向に均等に3点、繊維束よりその走行方向に垂直に10cm離れた点を測定し、その最低値が12g/m以上、好ましくは12〜25g/mとなるよう調湿されていれば十分である。絶対湿度を12g/m以上とするために、繊維束の製造装置が設置されたエリア全体を他の空間から隔離して均一に調湿しても良いし、エリア9aとエリア9bの間に仕切を設けて分割し、それぞれを調湿しても良い。また、繊維束の走行経路付近に調湿機構を設けたり、絶対湿度の低い地点にのみ調湿機構を設けたりして効率的に調湿を行っても良い。 In the present invention, in order to condition the area where the acrylic precursor fiber bundle from the roller installed immediately after the drying process to the winding device travels to an absolute humidity of 12 g / m 3 or more, in the vicinity of the fiber bundle. It is necessary to adjust the atmosphere of the region over the entire path along which the fiber bundle travels after the drying step. Although it is difficult to measure and control all the absolute humidity of the entire path along which the fiber bundle travels, for the area 9a, the fiber bundle extends from the drive roller 3a immediately after the drying apparatus to the drive roller 6a immediately before the winding apparatus. It is sufficient if the humidity is adjusted so that the minimum value is 12 g / m 3 or more at a point 10 cm away from the fiber bundle perpendicular to the traveling direction every 2 m in the traveling direction. In addition, for the area 9b, from the driving roller 6a immediately before the winding device to the winding device 8, three points are equally distributed in the traveling direction of the fiber bundle, and 10 cm perpendicular to the traveling direction from the fiber bundle is measured, its minimum value is 12 g / m 3 or more, preferably sufficient if wetted so adjusted to be between 12 and 25 g / m 3. In order to set the absolute humidity to 12 g / m 3 or more, the entire area where the fiber bundle manufacturing apparatus is installed may be isolated from other spaces to be uniformly conditioned, or between the areas 9a and 9b. A partition may be provided and divided, and each may be conditioned. Moreover, humidity control may be performed efficiently by providing a humidity control mechanism near the travel path of the fiber bundle, or by providing a humidity control mechanism only at a point where the absolute humidity is low.

エリア9aおよびエリア9b、すなわち乾燥工程直後に設置されたローラー3aから巻取装置8までに繊維束が走行するエリアの絶対湿度が12g/m未満であれば、繊維束の走行中に収束性の低下や毛羽の発生が起こりやすくなる。絶対湿度の低下によりこれらの頻度が増加するメカニズムは明確ではないが、乾燥工程以降においては、繊維束表面に吸着する水分量とその付近の雰囲気の絶対湿度に正の相関があると考えられることから、繊維束表面の吸着水分量が低下した場合、ローラーやガイドとの接触・剥離や単糸同士の擦れによる帯電が促進されることや、雰囲気中の水分が少ないため電荷が雰囲気中に排出されず繊維束に残ることが原因であると考えられる。また、単糸切れが発生しやすくなるのは、絶対湿度の低く繊維束表面の吸着水分量が少ない状態では、ローラーやガイドとの擦れによって繊維束が痛みやすいためと考えられる。 If the absolute humidity of the area 9a and the area 9b, that is, the area where the fiber bundle travels from the roller 3a installed immediately after the drying step to the winding device 8 is less than 12 g / m 3 , the convergence property during travel of the fiber bundle Decrease and fluffing are likely to occur. The mechanism by which these frequencies increase due to a decrease in absolute humidity is not clear, but it is thought that there is a positive correlation between the amount of moisture adsorbed on the fiber bundle surface and the absolute humidity of the surrounding atmosphere after the drying process. Therefore, when the amount of moisture adsorbed on the surface of the fiber bundle decreases, charging is promoted by contact / peeling with rollers and guides and rubbing between single yarns, and the amount of moisture in the atmosphere is low, so charges are discharged into the atmosphere. It is thought that this is caused by the fact that it is not left in the fiber bundle. Moreover, it is considered that the single yarn breakage is likely to occur because the fiber bundle is easily damaged by rubbing with a roller or a guide in a state where the absolute humidity is low and the amount of moisture adsorbed on the surface of the fiber bundle is small.

絶対湿度を上げるためには、蒸気やミスト状の水粒子を導入する方法や、加湿空気を導入する方法がある。   In order to increase the absolute humidity, there are a method of introducing steam and mist-like water particles and a method of introducing humidified air.

エリア9a、すなわち乾燥工程直後に設置されたローラー3aから巻取装置直前に設置された駆動ローラー6aに入るまでに繊維束が走行するエリアについては、一般的に並行する多数の繊維束が平面状に走行していることから、繊維束の走行経路付近の領域全体の絶対湿度を一定以上に上げるには、水平方向に均一な加湿を行う必要があり、ノズル方向の調整により水平方向への拡散性を大きくできることからミスト状の水粒子導入する方法が好ましい。また、加湿をした際に設備表面への結露が発生した場合、結露が繊維束に落下付着すると繊維束の内部まで水が染みこみ後延伸や交絡などの処理を行う際に糸切れの原因となってしまう点から、粒子径の小さいミストであることが好ましい。具体的には、ミストの噴出地点から15cm離れた点にレーザー光を照射してドップラー法により各水ミスト粒子の径を測定した際の最大粒子径が100μm以下であることが好ましく、50μm以下であることがより好ましい。蒸気を導入する方法や加湿空気を導入する方法は、水平方向の均一加湿性が低い。さらに、蒸気を導入する方法については、加湿能力を確保するために蒸気導入量を上げた場合、蒸気が近傍の装置や設備表面に付着して結露が発生しやすい。エリア9b、すなわち巻取装置直前に設置された駆動ローラー6aから巻取装置8までに繊維束が走行するエリアに関しては、絶対湿度を上げる方法は特に限定されない。   In the area 9a, that is, the area where the fiber bundle travels from the roller 3a installed immediately after the drying process to the drive roller 6a installed immediately before the winding device, a large number of parallel fiber bundles are generally planar. Therefore, in order to raise the absolute humidity of the entire area near the fiber bundle travel path to a certain level or higher, it is necessary to perform uniform humidification in the horizontal direction. Since the property can be increased, a method of introducing mist-like water particles is preferable. In addition, when condensation occurs on the surface of the equipment when humidifying, if the condensation drops and adheres to the fiber bundle, water will soak into the fiber bundle and cause thread breakage when performing processing such as stretching or entanglement. From the point of becoming, it is preferable that it is a mist with a small particle diameter. Specifically, the maximum particle diameter when the diameter of each water mist particle is measured by the Doppler method by irradiating a laser beam to a point 15 cm away from the mist ejection point is preferably 100 μm or less, and 50 μm or less. More preferably. The method of introducing steam or the method of introducing humidified air has low uniform humidification in the horizontal direction. Furthermore, with regard to the method of introducing steam, when the amount of steam introduced is increased in order to ensure the humidifying ability, the steam is likely to adhere to the nearby apparatus or equipment surface and cause condensation. Regarding the area 9b, that is, the area where the fiber bundle travels from the drive roller 6a installed immediately before the winding device to the winding device 8, the method for increasing the absolute humidity is not particularly limited.

尚、本発明のアクリル系前駆体繊維束の製造方法は、図1に示した装置には限定されない。乾燥工程以降で、後延伸処理や熱セット処理を実施しなくても良いし、開繊処理や合糸処理などの処理を行っても良い。また、収束性を更に高めるために、除電装置を乾燥工程以降に設置して繊維束の帯電圧を下げても良い。   In addition, the manufacturing method of the acrylic precursor fiber bundle of this invention is not limited to the apparatus shown in FIG. After the drying step, the post-stretching process and the heat setting process may not be performed, or a process such as a fiber-spreading process or a combined yarn process may be performed. In order to further improve the convergence, a static eliminator may be installed after the drying process to lower the charged voltage of the fiber bundle.

前述の処理がなされた後、繊維束は巻取装置によりボビンに巻き取られる。巻取速度は、単位時間あたりの生産量を高めるために高速であることが望ましいが、巻取速度が150m/分以上である場合、収束性の低下や毛羽の発生が顕著になることから、本発明のアクリル系前駆体繊維束の製造方法は特に有効である。   After the above-described processing is performed, the fiber bundle is wound around the bobbin by a winding device. The winding speed is preferably high in order to increase the production amount per unit time. However, when the winding speed is 150 m / min or more, the decrease in convergence and the occurrence of fluff become significant. The method for producing an acrylic precursor fiber bundle of the present invention is particularly effective.

巻取装置を有せず、缶に振込んで収納する場合もあるが、この場合は振込みのための糸送り装置を巻取装置と読み替えて本発明を実施することができる。   There is a case where the take-up device is not provided, and the can is transferred and stored in the can. In this case, the yarn feeding device for transfer can be read as the take-up device, and the present invention can be carried out.

次に、本発明の炭素繊維の製造方法について説明する。   Next, the manufacturing method of the carbon fiber of this invention is demonstrated.

前記したアクリル系前駆体繊維束の製造方法によりアクリル系前駆体繊維束を製造した後、200〜300℃の空気などの酸化性雰囲気中において耐炎化処理する。処理温度は低温から高温に向けて複数段階に昇温するのが耐炎化繊維束を得る上で好ましく、さらに毛羽の発生を伴わない範囲で高い延伸比で繊維束を延伸するのが炭素繊維の性能を十分に発現させる上で好ましい。次いで得られた耐炎化繊維束を窒素などの不活性雰囲気中で1000℃以上で炭化処理することにより、炭素繊維を製造する。その後、電解質水溶液中で陽極酸化をおこなうことにより、炭素繊維表面に官能基を付与し樹脂との接着性を高めることが可能となる。また、エポキシ樹脂等のサイジング剤を付与し、耐擦過性に優れた炭素繊維を得ることが好ましい。   After producing an acrylic precursor fiber bundle by the above-described method for producing an acrylic precursor fiber bundle, flameproofing treatment is performed in an oxidizing atmosphere such as air at 200 to 300 ° C. It is preferable to increase the treatment temperature in a plurality of stages from low temperature to high temperature in order to obtain a flame-resistant fiber bundle, and it is more suitable for carbon fiber to stretch the fiber bundle at a high stretch ratio without causing fluff generation. It is preferable for sufficiently expressing the performance. Next, carbon fiber is manufactured by carbonizing the obtained flame-resistant fiber bundle at 1000 ° C. or higher in an inert atmosphere such as nitrogen. Thereafter, by performing anodization in an aqueous electrolyte solution, it is possible to impart a functional group to the surface of the carbon fiber and enhance the adhesion to the resin. Moreover, it is preferable to provide a sizing agent such as an epoxy resin to obtain carbon fibers having excellent scratch resistance.

以下、実施例及び比較例を示して本発明を詳細に説明する。実施例及び比較例で用いた測定方法を次に説明する。   Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. The measurement methods used in the examples and comparative examples will be described next.

<温度、相対湿度、絶対湿度>
温度および相対湿度を神栄テクノロジー株式会社製 ハンディ温湿度計HP−21により測定した。その温度での飽和水蒸気圧をTetensの式により求め、理想気体の状態方程式により飽和水蒸気量に換算した。飽和水蒸気量に相対湿度を乗じて絶対湿度を導出した。
<Temperature, relative humidity, absolute humidity>
The temperature and relative humidity were measured with a handy thermohygrometer HP-21 manufactured by Shinei Technology Co., Ltd. The saturated water vapor pressure at that temperature was determined by the Tetens equation and converted to a saturated water vapor amount by the equation of state of the ideal gas. The absolute humidity was derived by multiplying the saturated water vapor amount by the relative humidity.

Tetensの式:
E=6.11×10^(7.5t/237.3+t)
ここで、E:飽和水蒸気圧(hPa)、 t:温度(℃)
理想気体の状態方程式による飽和水蒸気圧の換算式:
a=(217×E)/(t+273.15)
ここで、a:飽和水蒸気量(g/m)。
Tetens formula:
E = 6.11 × 10 ^ (7.5t / 237.3 + t)
Where E: saturated water vapor pressure (hPa), t: temperature (° C.)
Saturation water vapor pressure conversion equation based on the ideal gas equation of state:
a = (217 × E) / (t + 273.15)
Here, a: amount of saturated water vapor (g / m 3 ).

エリア9aの絶対湿度は、乾燥処理装置直後のローラーから巻取装置直前の駆動ローラーに入るまで、繊維束の進行方向に2mおきに、繊維束よりその走行方向に垂直に10cm離れた点を測定し、その最低値とした。なお、スチーム延伸工程で繊維束が半径10cm以下のチューブ中を走行している場合は、チューブ内の圧力条件での飽和水蒸気量を求め絶対湿度とした。   The absolute humidity in the area 9a is measured every 2 m in the traveling direction of the fiber bundle and 10 cm away from the fiber bundle perpendicular to the traveling direction from the roller immediately after the drying processing device to the driving roller immediately before the winding device. The minimum value was used. In addition, when the fiber bundle was running in a tube having a radius of 10 cm or less in the steam drawing process, the saturated water vapor amount under the pressure condition in the tube was obtained and used as the absolute humidity.

また、エリア9bの絶対湿度は、巻取装置直前の駆動ローラーから巻取装置まで、繊維束の進行方向に均等に3点、繊維束よりその走行方向に垂直に10cm離れた点を測定し、その最低値とした。   Further, the absolute humidity of the area 9b is measured from the driving roller immediately before the winding device to the winding device at three points equally in the traveling direction of the fiber bundle, and at a point 10 cm away from the fiber bundle perpendicular to the traveling direction, The minimum value was used.

<水ミスト粒子の最大粒子径>
ミスト噴出ノズルから15cm離れた点にレーザー光を照射してドップラー法により各粒子の径を測定し、そのうちの最大のものを水ミスト粒子の最大粒子径とした。
<Maximum particle size of water mist particles>
A point 15 cm away from the mist ejection nozzle was irradiated with laser light, and the diameter of each particle was measured by the Doppler method. The largest of these was taken as the maximum particle diameter of the water mist particle.

<帯電圧>
帯電圧は、紡糸工程の最終ロール、すなわち繊維束をボビンに巻き取る直前のロールにさしかかる空走中の繊維束に対して測定した。測定には静電気測定機(シシド静電気(株)製、STATIRON−M)を用いた。
<Battery voltage>
The charged voltage was measured with respect to the unrolled fiber bundle reaching the final roll of the spinning process, that is, the roll immediately before winding the fiber bundle on the bobbin. For the measurement, a static electricity measuring device (STAIRON-M, manufactured by Sicid Static Co., Ltd.) was used.

<弛み個数>
ボビンにアクリル系前駆体繊維束をボビン外層部からパッケージ外層部までの巻高さ10cmになるまで巻取る。その後、パッケージの両端面の単糸浮遊の本数を目視により測定し、10ボビンあたりの平均値を算出した。
<Number of slack>
The acrylic precursor fiber bundle is wound on the bobbin until the winding height from the bobbin outer layer part to the package outer layer part becomes 10 cm. Thereafter, the number of single yarn floats on both end faces of the package was measured by visual observation, and an average value per 10 bobbins was calculated.

<走行毛羽個数>
巻取装置に入る直前を走行している糸条を肉眼で10分間観察し、毛羽の個数をカウントした。5糸条に対して測定を行い、1糸条、100m当たりの個数に換算した。
<Number of running fuzz>
The yarn running immediately before entering the winding device was observed with the naked eye for 10 minutes, and the number of fluff was counted. Measurement was performed on five yarns, and each yarn was converted into the number per 100 m.

<糸切れ回数>
乾燥工程以降での糸切れ回数を正味の原糸生産量あたりで求めた。
<Number of thread breaks>
The number of yarn breaks after the drying step was determined per net raw yarn production.

(実施例1)
アクリロニトリル99.5モル%、イタコン酸0.5モル%からなる固有粘度[η]が1.80のアクリル系重合体の22質量%含むジメチルスルホキシド溶液を紡糸原液として、孔径が0.07mmφの6000ホールの口金を用いて60℃に温調されたジメチルスルホキシド55%、水45%からなる凝固浴中に吐出し凝固糸を得た。該凝固糸を65℃で水洗後90℃の熱水中で5倍に延伸しアミノ変性シリコーンを付与した後、150℃の加熱ローラーで乾燥緻密化を行ってアクリル系前駆体繊維束を得た。得られたアクリル系前駆体繊維束を、スチーム延伸装置を用いて、スチーム延伸機内のスチーム圧力を3.0kg/cmの加圧スチームとして、3倍に延伸を行った。その後熱セットし、巻取装置にて150m/分の速度でボビンに巻取ることで、単繊維繊度が0.8dtexで、総繊度が4800dtexのアクリル系前駆体繊維束を得た。
Example 1
A dimethyl sulfoxide solution containing 9% by mole of acrylonitrile and 0.5% by mole of itaconic acid and containing 22% by weight of an acrylic polymer having an intrinsic viscosity [η] of 1.80 is 6000 having a pore size of 0.07 mmφ. A coagulated yarn was obtained by discharging into a coagulation bath composed of 55% dimethyl sulfoxide and 45% water adjusted to 60 ° C. using a hole cap. The coagulated yarn was washed with water at 65 ° C., stretched 5 times in hot water at 90 ° C. to give amino-modified silicone, and then dried and densified with a heating roller at 150 ° C. to obtain an acrylic precursor fiber bundle. . The obtained acrylic precursor fiber bundle was stretched 3 times by using a steam stretching apparatus, with the steam pressure in the steam stretching machine being 3.0 kg / cm 2 of pressurized steam. Thereafter, heat setting was performed, and winding on a bobbin at a speed of 150 m / min with a winding device, an acrylic precursor fiber bundle having a single fiber fineness of 0.8 dtex and a total fineness of 4800 dtex was obtained.

このとき、乾燥工程直後に設置されたローラーから巻取装置までに繊維束が走行するエリアに最大粒子径100μm以下の水ミスト粒子を導入してエリア内の絶対湿度を変化させた。   At this time, water mist particles having a maximum particle diameter of 100 μm or less were introduced into the area where the fiber bundle traveled from the roller installed immediately after the drying step to the winding device to change the absolute humidity in the area.

(実施例2)
乾燥工程直後に設置されたローラーから巻取装置までに繊維束が走行するエリアのうち、巻取装置直前に設置された駆動ローラーから巻取装置までに繊維束が走行するエリアにおいて、水ミスト粒子を導入せず、蒸気を導入してエリア内の絶対湿度を変化させたこと以外は、実施例1と同様にしてアクリル系前駆体繊維束を得た。
(Example 2)
Among the areas where the fiber bundle travels from the roller installed immediately after the drying process to the winding device, the water mist particles in the area where the fiber bundle travels from the drive roller installed just before the winding device to the winding device An acrylic precursor fiber bundle was obtained in the same manner as in Example 1 except that steam was introduced and the absolute humidity in the area was changed without introducing.

(実施例3)
乾燥工程直後に設置されたローラーから巻取装置までに繊維束が走行するエリアのうち、乾燥工程直後に設置されたローラーから巻取装置直前に設置された駆動ローラーに入るまでに繊維束が走行するエリアにおいて、最大粒子径200μm以下の水ミスト粒子を導入してエリア内の絶対湿度を変化させたこと以外は、実施例1と同様にしてアクリル系前駆体繊維束を得た。
(Example 3)
Of the area where the fiber bundle travels from the roller installed immediately after the drying process to the winding device, the fiber bundle travels from the roller installed immediately after the drying process to the drive roller installed just before the winding device. In this area, an acrylic precursor fiber bundle was obtained in the same manner as in Example 1 except that water mist particles having a maximum particle diameter of 200 μm or less were introduced to change the absolute humidity in the area.

(実施例4)
乾燥工程直後に設置されたローラーから巻取装置までに繊維束が走行するエリアのうち、乾燥工程直後に設置されたローラーから巻取装置直前に設置された駆動ローラーに入るまでに繊維束が走行するエリアにおいて、水ミスト粒子を導入せず、蒸気を導入してエリア内の絶対湿度を変化させたこと以外は、実施例1と同様にしてアクリル系前駆体繊維束を得た。
Example 4
Of the area where the fiber bundle travels from the roller installed immediately after the drying process to the winding device, the fiber bundle travels from the roller installed immediately after the drying process to the drive roller installed just before the winding device. In this area, an acrylic precursor fiber bundle was obtained in the same manner as in Example 1 except that the water mist particles were not introduced, but steam was introduced to change the absolute humidity in the area.

(比較例1)
乾燥工程直後に設置されたローラーから巻取装置までに繊維束が走行するエリアのうち、乾燥工程直後に設置されたローラーから巻取装置直前に設置された駆動ローラーに入るまでに繊維束が走行するエリアにおいて、最大粒子径100μm以下の水ミスト粒子を導入しなかったこと以外は、実施例1と同様にしてアクリル系前駆体繊維束を得た。
(Comparative Example 1)
Of the area where the fiber bundle travels from the roller installed immediately after the drying process to the winding device, the fiber bundle travels from the roller installed immediately after the drying process to the drive roller installed just before the winding device. The acrylic precursor fiber bundle was obtained in the same manner as in Example 1 except that water mist particles having a maximum particle size of 100 μm or less were not introduced in the area to be treated.

(比較例2)
乾燥工程直後に設置されたローラーから巻取装置までに繊維束が走行するエリアのうち、乾燥工程直後に設置されたローラーから巻取装置直前に設置された駆動ローラーに入るまでに繊維束が走行するエリアにおいて、最大粒子径100μm以下の水ミスト粒子を導入しなかったこと以外は、実施例2と同様にしてアクリル系前駆体繊維束を得た。
(Comparative Example 2)
Of the area where the fiber bundle travels from the roller installed immediately after the drying process to the winding device, the fiber bundle travels from the roller installed immediately after the drying process to the drive roller installed just before the winding device. The acrylic precursor fiber bundle was obtained in the same manner as in Example 2 except that water mist particles having a maximum particle diameter of 100 μm or less were not introduced in the area to be treated.

(比較例3)
乾燥工程直後に設置されたローラーから巻取装置までに繊維束が走行するエリアのうち、巻取装置直前に設置された駆動ローラーから巻取装置までに繊維束が走行するエリアにおいて、最大粒子径100μm以下の水ミスト粒子を導入しなかったこと以外は、実施例1と同様にしてアクリル系前駆体繊維束を得た。
(Comparative Example 3)
Among the areas where the fiber bundle travels from the roller installed immediately after the drying process to the winding device, the maximum particle diameter in the area where the fiber bundle travels from the drive roller installed just before the winding device to the winding device An acrylic precursor fiber bundle was obtained in the same manner as in Example 1 except that water mist particles of 100 μm or less were not introduced.

(比較例4)
乾燥工程直後に設置されたローラーから巻取装置までに繊維束が走行するエリアにおいて冷風を導入して温度を下げたこと以外は、実施例1と同様にしてアクリル系前駆体繊維束を得た。
(Comparative Example 4)
An acrylic precursor fiber bundle was obtained in the same manner as in Example 1 except that cold air was introduced and the temperature was lowered in the area where the fiber bundle traveled from the roller installed immediately after the drying process to the winding device. .

(比較例5)
乾燥工程直後に設置されたローラーから巻取装置までに繊維束が走行するエリアにおいて最大粒子径100μm以下の水ミスト粒子を導入しなかったことに加え、乾燥処理装置を出た後、後延伸処理装置を出た場所、巻取装置に入る前にコロナ放電式除電装置を追加したこと以外は、実施例1と同様にしてアクリル系前駆体繊維束を得た。
(Comparative Example 5)
In addition to not introducing water mist particles with a maximum particle size of 100 μm or less in the area where the fiber bundle travels from the roller installed immediately after the drying process to the winding device, after leaving the drying processing device, post-stretching processing An acrylic precursor fiber bundle was obtained in the same manner as in Example 1 except that a corona discharge type static eliminator was added before leaving the device and before entering the winding device.

(比較例6)
乾燥工程直後に設置されたローラーから巻取装置までに繊維束が走行するエリアにおいて最大粒子径100μm以下の水ミスト粒子を導入しなかったこと以外は、実施例1と同様にしてアクリル系前駆体繊維束を得た。
(Comparative Example 6)
Acrylic precursor in the same manner as in Example 1 except that water mist particles having a maximum particle size of 100 μm or less were not introduced in the area where the fiber bundle travels from the roller installed immediately after the drying step to the winding device. A fiber bundle was obtained.

実施例および比較例における各測定結果を表1に示す。   Table 1 shows the measurement results in Examples and Comparative Examples.

Figure 2017172082
Figure 2017172082

表1に示すように、エリア9aおよびエリア9bの絶対湿度を12g/m以上に調整したとき、エリア9aおよびエリア9bの絶対湿度が12g/m未満である場合、あるいは、どちらかのエリアのみの絶対湿度を12g/m以上に調整した場合と比較し、巻取ったパッケージの弛みや、パッケージに入る毛羽を少なくすることができた。また、除電装置の設置により収束性を付与した場合と比較し、パッケージに入る毛羽を少なくすることができた。 As shown in Table 1, when the absolute humidity of the area 9a and the area 9b is adjusted to 12 g / m 3 or more, the absolute humidity of the area 9a and the area 9b is less than 12 g / m 3 , or either area Compared with the case where the absolute humidity of only No. 1 was adjusted to 12 g / m 3 or more, loosening of the wound package and fluff entering the package could be reduced. Moreover, compared with the case where convergence was given by installation of a static elimination apparatus, the fluff which enters a package was able to be decreased.

1:アクリル系前駆体繊維束
2:乾燥処理装置
3:乾燥処理装置後の駆動ローラー
3a:乾燥処理装置直後の駆動ローラー
4:後延伸処理装置
5:熱セット処理装置
6:巻取装置前の駆動ローラー
6a:巻取装置直前の駆動ローラー
7:巻取装置入りローラー
8:巻取装置
9a:乾燥工程直後に設置されたローラーから巻取装置直前に設置された駆動ローラーに入るまでに繊維束が走行するエリア
9b:巻取装置直前に設置された駆動ローラーから巻取装置までに繊維束が走行するエリア
1: acrylic precursor fiber bundle 2: drying processing device 3: driving roller 3a after drying processing device: driving roller immediately after drying processing device 4: post-stretching processing device 5: heat setting processing device 6: before winding device Driving roller 6a: Driving roller immediately before the winding device 7: Roller with winding device 8: Winding device 9a: Fiber bundle from the roller installed immediately after the drying process until entering the driving roller installed immediately before the winding device Area 9b where the fiber travels: Area where the fiber bundle travels from the drive roller installed immediately before the winding device to the winding device

Claims (4)

湿式紡糸法または乾湿式紡糸法により紡糸後、水洗工程、乾燥工程を経て、巻取装置でアクリル系前駆体繊維束を巻き取るに際し、乾燥工程直後に設置されたローラーから巻取装置までのアクリル系前駆体繊維束が走行するエリアを、絶対湿度12g/m以上に調湿することを特徴とするアクリル系前駆体繊維束の製造方法。 After spinning by the wet spinning method or the dry and wet spinning method, after passing through the water washing step and the drying step, when winding the acrylic precursor fiber bundle with the winding device, the acrylic from the roller installed immediately after the drying step to the winding device A method for producing an acrylic precursor fiber bundle, characterized in that an area where the system precursor fiber bundle travels is adjusted to an absolute humidity of 12 g / m 3 or more. 乾燥工程直後に設置されたローラーから巻取装置までにアクリル系前駆体繊維束が走行するエリアのうち、乾燥工程直後に設置されたローラーから巻取り装置直前に設置された駆動ローラーに入るまでにアクリル系前駆体繊維束が走行するエリアを、最大粒子径100μm以下の水ミスト粒子の導入により絶対湿度12g/m以上に調湿する請求項1に記載のアクリル系前駆体繊維束の製造方法。 Out of the area where the acrylic precursor fiber bundle travels from the roller installed immediately after the drying process to the winding device, before entering the drive roller installed immediately before the winding device from the roller installed immediately after the drying process The method for producing an acrylic precursor fiber bundle according to claim 1, wherein an area where the acrylic precursor fiber bundle travels is adjusted to an absolute humidity of 12 g / m 3 or more by introducing water mist particles having a maximum particle diameter of 100 µm or less. . 巻取り速度を150m/分以上とする請求項1または2に記載のアクリル系前駆体繊維束の製造方法。   The method for producing an acrylic precursor fiber bundle according to claim 1 or 2, wherein the winding speed is 150 m / min or more. 請求項1〜3のいずれかに記載のアクリル系前駆体繊維束の製造方法でアクリル系前駆体繊維束を製造した後、酸化性雰囲気中200〜300℃で耐炎化し、その後不活性雰囲気中1000℃以上で炭化する、炭素繊維の製造方法。
After producing an acrylic precursor fiber bundle by the method for producing an acrylic precursor fiber bundle according to any one of claims 1 to 3, it is flame-resistant at 200 to 300 ° C in an oxidizing atmosphere, and then 1000 in an inert atmosphere. A method for producing carbon fiber, which is carbonized at a temperature of at least ° C.
JP2016061337A 2016-03-25 2016-03-25 Method for producing acrylic precursor fiber bundle and method for producing carbon fiber Active JP6520787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016061337A JP6520787B2 (en) 2016-03-25 2016-03-25 Method for producing acrylic precursor fiber bundle and method for producing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016061337A JP6520787B2 (en) 2016-03-25 2016-03-25 Method for producing acrylic precursor fiber bundle and method for producing carbon fiber

Publications (2)

Publication Number Publication Date
JP2017172082A true JP2017172082A (en) 2017-09-28
JP6520787B2 JP6520787B2 (en) 2019-05-29

Family

ID=59971777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016061337A Active JP6520787B2 (en) 2016-03-25 2016-03-25 Method for producing acrylic precursor fiber bundle and method for producing carbon fiber

Country Status (1)

Country Link
JP (1) JP6520787B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220075929A (en) * 2020-11-30 2022-06-08 한국생산기술연구원 Polyacrylonitrile-based precursor fiber and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4094670B2 (en) * 1996-05-24 2008-06-04 東レ株式会社 “Carbon fibers, acrylic fibers, and methods for producing them”
JP2008163537A (en) * 2006-12-04 2008-07-17 Toho Tenax Co Ltd Method for producing carbon fiber
JP2011208314A (en) * 2010-03-30 2011-10-20 Toray Ind Inc Method for producing acrylic precursor fiber bundle for carbon fiber
JP2015030923A (en) * 2013-08-01 2015-02-16 三菱レイヨン株式会社 Method for drawing carbon fiber precursor acrylic fiber bundle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4094670B2 (en) * 1996-05-24 2008-06-04 東レ株式会社 “Carbon fibers, acrylic fibers, and methods for producing them”
JP2008163537A (en) * 2006-12-04 2008-07-17 Toho Tenax Co Ltd Method for producing carbon fiber
JP2011208314A (en) * 2010-03-30 2011-10-20 Toray Ind Inc Method for producing acrylic precursor fiber bundle for carbon fiber
JP2015030923A (en) * 2013-08-01 2015-02-16 三菱レイヨン株式会社 Method for drawing carbon fiber precursor acrylic fiber bundle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220075929A (en) * 2020-11-30 2022-06-08 한국생산기술연구원 Polyacrylonitrile-based precursor fiber and its manufacturing method
KR102426346B1 (en) 2020-11-30 2022-07-29 한국생산기술연구원 Polyacrylonitrile-based precursor fiber and its manufacturing method

Also Published As

Publication number Publication date
JP6520787B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP5251490B2 (en) Polyphenylene sulfide fiber and method for producing the same
US20210025082A1 (en) Method of manufacturing acrylonitrile fiber bundle and method of manufacturing carbon fiber bundle
JP2010222731A (en) Apparatus for cleaning coagulated yarn of polyacrylonitrile polymer and method for producing polyacrylonitrile-based fiber
JP2007162144A (en) Method for producing carbon fiber bundle
JP5297644B2 (en) Carbon fiber bundle and method for producing the same
JP5741815B2 (en) Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle
TWI769513B (en) Carbon fiber manufacturing method and carbon fiber using the same
JP6520787B2 (en) Method for producing acrylic precursor fiber bundle and method for producing carbon fiber
JP5873358B2 (en) Flame-resistant fiber strand, method for producing the same, and method for producing carbon fiber strand
KR101401148B1 (en) Apparatus for coagulating doped solution of polyacrylonitrile precursor for a carbon fiber
WO2018180188A1 (en) Fiber production method and carbon fiber production method
JP2017066540A (en) Production method of carbon fiber and carbon fiber sheet
JP4624571B2 (en) Method for producing carbon fiber precursor yarn
JP2009001917A (en) Method for producing lyotropic liquid crystal polymer multifilament
JP2005113296A (en) Carbon yarn, acrylonitrile-based precursor yarn and method for producing the same
JP2014001467A (en) Method for producing flame retardant polyester fiber
JP2017137602A (en) Manufacturing method of polyacrylonitrile fiber bundle
JP2016037689A (en) Method for producing carbon fiber
JP4446817B2 (en) Method for producing acrylic carbon fiber precursor fiber bundle
JP5621295B2 (en) Method for producing acrylic precursor fiber bundle for carbon fiber
JP2002309438A (en) Method for producing acrylic fiber
JP2012188768A (en) Method for manufacturing carbon fiber precursor fiber bundle, and carbon fiber precursor fiber bundle obtained by the same
US11598029B2 (en) Method for manufacturing oxidized fiber bundle, method for manufacturing carbon fiber bundle, and joining apparatus
JP2010013777A (en) Method for producing carbon fiber precursor acrylic fiber bundle, and apparatus for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R151 Written notification of patent or utility model registration

Ref document number: 6520787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151