JP2017166802A - 減圧乾燥方法および減圧乾燥装置 - Google Patents

減圧乾燥方法および減圧乾燥装置 Download PDF

Info

Publication number
JP2017166802A
JP2017166802A JP2016253194A JP2016253194A JP2017166802A JP 2017166802 A JP2017166802 A JP 2017166802A JP 2016253194 A JP2016253194 A JP 2016253194A JP 2016253194 A JP2016253194 A JP 2016253194A JP 2017166802 A JP2017166802 A JP 2017166802A
Authority
JP
Japan
Prior art keywords
temperature
vacuum drying
drying
unit
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016253194A
Other languages
English (en)
Other versions
JP6910798B2 (ja
Inventor
典生 芳川
Norio Yoshikawa
典生 芳川
大佐 時枝
Daisuke Tokieda
大佐 時枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to CN201710148962.5A priority Critical patent/CN107185783A/zh
Priority to TW106108335A priority patent/TWI623717B/zh
Publication of JP2017166802A publication Critical patent/JP2017166802A/ja
Application granted granted Critical
Publication of JP6910798B2 publication Critical patent/JP6910798B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

【課題】基板上に塗布されたポリイミド前駆体および溶媒を含む塗布液の塗布膜を減圧乾燥するのに要する時間を短縮する。【解決手段】基板上に塗布されたポリイミド前駆体および溶媒を含む塗布液の塗布膜を第1の温度で減圧乾燥する工程と、前記工程を受けた前記基板上の前記塗布膜を前記第1の温度よりも高い第2の温度で減圧乾燥する工程と、を備えている。【選択図】図3

Description

この発明は、基板上に塗布されたポリイミド前駆体および溶媒を含む塗布液の塗布膜を減圧乾燥する減圧乾燥方法および減圧乾燥装置に関するものである。
従来からポリイミドはその耐熱性、耐薬品性、電気的、機械的特性等から種々の技術分野で多用されている。例えばフレキシブル基板の基材としてポリイミド膜が広く採用されている。このポリイミド膜は、例えば特許文献1に記載されているように、次の工程、つまり
工程1:支持体表面にポリイミド前駆体溶液を塗布してポリイミド前駆体溶液の塗布膜を形成する、
工程2:イミド化を行う前に上記塗布膜中の大多数の溶媒を除去して所望の膜厚のポリイミド前駆体塗膜を形成する、
工程3:溶媒が一部残留した状態のポリイミド前駆体塗膜に熱処理を施すことで残留した溶媒を完全に除去するとともにポリイミド前駆体をイミド化する、
を実行することで製造される。
特開2002−225052号公報
例えば膜厚10μmのポリイミド膜を製造する場合、工程1で膜厚100μmの塗布膜を形成し、工程2により膜厚が13〜15μm程度になるように大半の溶媒を除去した後で、工程3を行う。ここで、上記工程2を実行するために、ポリイミド前駆体溶液の塗布膜を形成した支持体を減圧乾燥炉内に配置して溶媒除去を行っているが、減圧乾燥時の温度を高めることで工程2に要する時間を短縮することができる。しかしながら、乾燥ムラや膜膨れ(脱泡)等が発生するのを防止するために、減圧乾燥炉内の温度を40〜80℃程度に設定する必要がある。その結果、工程2に要する時間を大幅に短縮することは難しく、効率的なプロセスを組むことが難しいという課題が残っている。
この発明は上記課題に鑑みなされたものであり、基板上に塗布されたポリイミド前駆体および溶媒を含む塗布液の塗布膜を減圧乾燥するのに要する時間を短縮することができる減圧乾燥技術を提供することを目的とする。
この発明の一態様は、減圧乾燥方法であって、(a)基板上に塗布されたポリイミド前駆体および溶媒を含む塗布液の塗布膜を第1の温度で減圧乾燥する工程と、(b)前記工程(a)を受けた基板上の塗布膜を第1の温度よりも高い第2の温度で減圧乾燥する工程と、を備えることを特徴としている。
また、この発明の他の態様は、基板上に塗布されたポリイミド前駆体および溶媒を含む塗布液の塗布膜を減圧乾燥する減圧乾燥装置であって、第1の温度で減圧乾燥する第1減圧乾燥ユニットと、第1の温度よりも高い第2の温度で減圧乾燥する第2減圧乾燥ユニットと、第1減圧乾燥ユニットにより塗布膜の減圧乾燥を受けた基板を第2減圧乾燥ユニットに搬送する搬送ユニットと、を備えることを特徴としている。
塗布膜中の溶媒を除去する際の乾燥ムラや膜膨れ(脱泡)は減圧乾燥の初期段階で発生し易く、それを過ぎると高い温度で減圧乾燥したとしても上記問題は発生しない。そこで、本発明では、減圧乾燥の初期段階で比較的低温(第1の温度)で行う低温減圧乾燥を行った後で、比較的高温(第2の温度)で行う高温減圧乾燥を行うことでトータルの乾燥時間が短縮される。
以上のように、本発明によれば、塗布膜を第1の温度で減圧乾燥するのに続いて、第1の温度よりも高い第2の温度で減圧乾燥しているため、基板上に塗布されたポリイミド前駆体および溶媒を含む塗布液の塗布膜の減圧乾燥の処理時間を大幅に短縮することができる。
本発明にかかる減圧乾燥装置の一実施形態を装備するポリイミド膜製造システムを模式的に示す図である。 減圧乾燥ユニットの構成を示す図である。 図1に示す減圧乾燥装置の動作を示すフローチャートである。 本発明にかかる減圧乾燥装置に装備可能な減圧乾燥ユニットの他の構成を示す図である。 減圧乾燥時の処理温度と、乾燥ムラとの関係を示す図である。 従来の減圧乾燥装置により減圧乾燥を行った時の減圧乾燥の進行状況を示すグラフである。 図1中の減圧乾燥装置により減圧乾燥を行った時の減圧乾燥の進行状況を示すグラフである。
図1は本発明にかかる減圧乾燥装置の一実施形態を装備するポリイミド膜製造システムを模式的に示す図である。このポリイミド膜製造システム1は、塗布装置2、減圧乾燥装置3、熱処理装置4および2台の搬送ロボット5、6を備えている。ポリイミド膜製造システム1では、塗布装置2がキャリアーガラス板G(図2参照)の上面G1(図2参照)にポリイミド前駆体および溶媒を含む塗布液を塗布して塗布膜F(図2参照)を形成する。塗布装置2としては、例えば塗布液を吐出口から吐出するスリットノズルをキャリアーガラス板Gに対して相対移動させて塗布膜Fを形成する、いわゆるスリットコーターを用いることができる。もちろん、その他の塗布方式の塗布装置を用いてもよい。また、本実施形態では、ポリアミド酸(ポリアミック酸)およびNMP(N−メチル−2−ピロリドン:N-Methyl-2-Pyrrolidone)をそれぞれ本発明の「ポリイミド前駆体」および「溶媒」として用いて所望厚みの10倍程度(例えば5〜10[μm]程度のポリイミド膜を形成する場合には、50〜100[μm]程度)の比較的厚い塗布膜Fを形成する。
そして、塗布膜Fが形成されたキャリアーガラス板Gは搬送ロボット5によって塗布装置2から減圧乾燥装置3に搬送される。この減圧乾燥装置3は塗布膜Fに対する減圧乾燥処理を2段階で行う装置であり、塗布膜F中の溶媒を除去して所望の膜厚のポリイミド前駆体塗膜を形成する。なお、減圧乾燥装置3の構成および動作については、ポリイミド膜製造システム1の全体説明に続いて詳述する。
ポリイミド前駆体塗膜が形成されたキャリアーガラス板Gは搬送ロボット6により減圧乾燥装置3から熱処理装置4に搬送される。この熱処理装置4はポリイミド前駆体塗膜に熱処理を施してポリイミド前駆体をイミド化してポリイミド膜を形成する。熱処理装置4は単一のキャリアーガラス板Gを加熱する枚葉方式の加熱部で構成してもよいし、複数のキャリアーガラス板Gを一括して加熱するバッチ方式の加熱部で構成してもよい。なお、本実施形態では、次に説明するように本発明にかかる減圧乾燥装置3を採用することで塗布膜の減圧乾燥の処理時間を大幅に短縮することができる一方、イミド化には依然として数時間の加熱処理が必要であり、減圧乾燥処理のタクトタイムと、イミド化のための熱処理のタクトタイムとは大きく相違している。そのため、枚葉方式の加熱部で熱処理装置4を構成する場合には、当該加熱部を複数台積層配置して並列処理するのが望ましい。
次に、減圧乾燥装置3の構成および動作について説明する。減圧乾燥装置3は、2台の減圧乾燥ユニット3A、3Bと、減圧乾燥ユニット3Aで減圧乾燥処理されたキャリアーガラス板Gを減圧乾燥ユニット3Bに搬送する搬送ロボット3Cと、装置各部を制御する制御ユニット3Dとを備えている。本実施形態では、減圧乾燥ユニット3A、3Bは同一構成を有している。そこで、本明細書では、両減圧乾燥ユニット3A、3Bを区別するために、適宜それぞれ「第1減圧乾燥ユニット3A」および「第2減圧乾燥ユニット3B」と称する。また、減圧乾燥ユニット3Aの構成を図2を参照しつつ説明し、減圧乾燥ユニット3Bについては説明を省略する。
図2は減圧乾燥ユニットの構成を示す図である。減圧乾燥ユニット3Aは、キャリアーガラス板Gの上面G1に塗布液を塗布してなる塗布膜Fに含まれる溶媒成分を気化させて塗布膜Fを乾燥させる装置である。減圧乾燥ユニット3Aは、図2に示すように、チャンバー310と、保持部320と、加熱部330と、排気部340とを備えている。
チャンバー310は、キャリアーガラス板Gに対して減圧乾燥処理(=減圧処理+加熱処理)を行うための内部空間311を有する耐圧容器である。チャンバー310は、互いに分離可能なベース部312と蓋部313とを有している。ベース部312は、装置フレーム(図示省略)上に固定設置されている。また、蓋部313には、図2において概念的に示したチャンバー昇降機構350が接続されている。このため、制御ユニット3Dからの昇降指令に応じてチャンバー昇降機構350が動作することで、ベース部312に対して蓋部313が上下に昇降移動する。蓋部313を下降させたときには、ベース部312と蓋部313とが当接して一体となり、その内部に内部空間311(キャリアーガラス板Gの処理空間)が形成される。本実施形態では、ベース部312の上面の周縁部には、シリコンゴムなどで構成されたOリング314が設けられている。このため、蓋部313の下降時には、ベース部312の上面と蓋部313の下面との間にOリング314が介在し、チャンバー310内部空間311は気密状態となる。一方、蓋部313を上昇させたときにはチャンバー310が開放され、チャンバー310へのキャリアーガラス板Gの搬入およびチャンバー310からのキャリアーガラス板Gの搬出が可能となる。
保持部320は、チャンバー310の内部空間311においてキャリアーガラス板Gを保持するための機構である。保持部320は、複数の保持ピン321を有しており、各保持ピン321の頭部をキャリアーガラス板Gの下面に当接させることにより、キャリアーガラス板Gを水平姿勢に支持する。複数の保持ピン321は、チャンバー310の外部に配置された1つの支持部材322上に立設されており、それぞれベース部312および加熱部330を貫通してチャンバー310の内部空間311に突設されている。
この支持部材322には、図2に示すように、ピン昇降機構351が接続されている。このため、制御ユニット3Dからの昇降指令に応じてピン昇降機構351が動作することで、支持部材322および複数の保持ピン321が一体として上下に昇降移動する、所謂、複数のリフトピンである。減圧乾燥ユニット3Aでは、複数の保持ピン321上にキャリアーガラス板Gを保持しつつピン昇降機構351を動作させることにより、加熱部330に対するキャリアーガラス板Gの高さ位置を調整することが可能となっている。例えば、図2に示すように、各保持ピン321の上端が加熱部330の上面から微少量だけ突出するようにピン昇降機構351が制御されると、配設される。このため、複数個の保持ピン321によってキャリアーガラス板Gを下方から支持したときには、キャリアーガラス板Gの下面と加熱部330の上面との間にいわゆるプロキシミティギャップと称される微小間隔、例えば10mmから100mm程度の間隔が形成される。そして、プロキシミティギャップを維持したまま加熱部330による加熱処理が実行される。なお、このように複数の保持ピン321で支持しながら減圧乾燥処理を実行する場合には、保持ピン321が接触している部分とそれ以外で乾燥度合いが異なることがある。このことに起因して後述する乾燥ムラが特に問題となることがある。そこで、本実施形態では、これに対応するために、減圧乾燥ユニット3A、3Bでの処理温度に特段の考慮がなされている。この点については後で詳述する。
加熱部330はベース部312の上面中央部に配置されている。この加熱部330では、加熱源となる線状のヒータが面内にわたって蛇行するように埋設されている。そして、複数の保持ピン321にキャリアーガラス板Gが搬入される前に制御ユニット3Dからの加熱指令に応じてヒータを動作させておくと、キャリアーガラス板Gが搬入される前に内部空間311が加熱されるとともに、搬入されたキャリアーガラス板Gがその下面側から加熱される。このように、雰囲気温度が上昇した内部空間311内でキャリアーガラス板Gを加熱して塗布膜Fから溶媒成分を気化させる。
また、本実施形態では、加熱処理と並行して減圧処理を施すために、排気部340が設けられている。この排気部340は、チャンバー310の内部空間311から溶媒成分を含むガス(以下「排気ガス」という)を吸引排気するための排気配管341と、排気配管341を介してチャンバー310から排出される排気ガスの排気量を制御するためのバタフライバルブ342、343と、開閉弁344と、排気ポンプ345とを有している。本実施形態では、ベース部312の周縁部に2つの排気口315、316が設けられている。また、このように排気口を2つ設けたことに対応し、排気配管341の一方端部は2つに分岐し、分岐端部346、347がそれぞれ排気口315、316に接続されている。さらに、排気口315、316の近傍位置でバタフライバルブ342、343がそれぞれ分岐端部346、347に介挿されている。一方、排気配管341の他方端部は開閉弁344および排気ポンプ345を介して図示を省略する排気ラインと接続されている。このため、制御ユニット3Dからの開閉指令に応じて開閉弁344が開くとともに制御ユニット3Dからの動作指令に応じて排気ポンプ345が動作すると、バタフライバルブ342、343の開度に応じた排気量で排気ガスが排気配管341を介して排気ラインへ排気される。
上記したように構成された減圧乾燥ユニット3Aでは制御ユニット3Dにより加熱温度が制御される。また、減圧乾燥ユニット3Bについても、制御ユニット3Dにより加熱温度が制御される。この制御ユニット3Dは、CPU(Central Processing Unit)や記憶部等を有するコンピュータで構成されており、所定のプログラムに従って減圧乾燥ユニット3Aで減圧乾燥処理時の温度(以下「第1の温度」という)および減圧乾燥ユニット3Bで減圧乾燥処理時の温度(以下「第2の温度」という)などを制御する。より詳しくは図3に示す一連の処理(ステップS1〜S5)が実行される。
図3は図1に示す減圧乾燥装置の動作を示すフローチャートである。減圧乾燥装置3によりキャリアーガラス板Gを処理するときには、予め、減圧乾燥ユニット3A、3Bでは、加熱部330は制御ユニット3Dからの加熱指令を受けてヒータを作動させて内部空間311内の雰囲気温度(減圧乾燥処理を行う際の温度)を上昇させておく(ステップS1)。ここで、減圧乾燥により塗布膜F中の溶媒を除去する際の温度が高くなるにしたがって乾燥ムラや膜膨れ(脱泡)が発生し易くなるが、乾燥ムラなどの減圧乾燥時の問題は主として減圧乾燥の初期段階で発生し、それを過ぎると高い温度で減圧乾燥したとしても上記問題は発生しない。そこで、ステップS1では、減圧乾燥ユニット3Aでの雰囲気温度である「第1の温度」を上記問題が発生しない温度、例えば40℃に調整する一方、減圧乾燥ユニット3Bでの雰囲気温度である「第2の温度」を「第1の温度」よりも高く、減圧乾燥を促進する温度、例えば100℃に昇温する。なお、「第1の温度」および「第2の温度」については、後で実施例を例示しながら詳述する。
上述のようにステップS1が実行された後、上面G1に塗布膜Fが塗布されたキャリアーガラス板Gがチャンバー310内に搬入され、内部空間311に収納される(ステップS2:搬入工程)。具体的には、チャンバー昇降機構350によりチャンバー310の蓋部313が上昇する。そして、搬送ロボット5(図1)によりキャリアーガラス板Gがチャンバー310の内部に搬入され、複数の保持ピン321上に載置される。キャリアーガラス板Gの搬入が完了すると、搬送ロボット5はチャンバー310の外部へ退避し、チャンバー昇降機構350によりチャンバー310の蓋部313が下降する。これによって内部空間311が密閉空間となる。
次のステップS3では、開閉弁344が開くとともにバタフライバルブ342、343が所定の開度まで開く。また、排気ポンプ45が動作して、チャンバー310の内部のガスが排気口315、316を介して強制排気される。これにより、内部空間311内の雰囲気が排気口315、316、バタフライバルブ342、343、排気配管341および開閉弁344を介して排気ラインに排出され、チャンバー310の内部空間311を減圧する。この内部空間311の減圧に応じてキャリアーガラス板Gの表面に塗布された塗布膜Fに含まれる溶媒成分が気化する。これにより、キャリアーガラス板G上の塗布膜Fに対する第1段目の減圧乾燥処理が開始される。
この減圧処理の際には、ステップS1により既にヒータは作動しているので、キャリアーガラス板Gに対する加熱処理も開始されることとなる。すなわち、雰囲気温度が「第1の温度」に上昇した内部空間311内でヒータによりキャリアーガラス板Gがその下面側から加熱される。この加熱処理によって、キャリアーガラス板G上の塗布膜Fに含まれる溶媒を昇温させ、溶媒の気化を更に促進させる。このように、減圧乾燥装置3は、内部空間311の減圧および加熱を併用した減圧乾燥処理を実行することで、塗布膜Fの乾燥効率を向上させる。
そして、塗布膜Fの乾燥が完了していないものの、乾燥ムラなどの問題が発生しない程度まで減圧乾燥が進行すると、制御ユニット3Dからの搬送指令に応じて搬送ロボット3Cがキャリアーガラス板Gを減圧乾燥ユニット3Aから搬出して第1段目の減圧乾燥処理を終了するとともに、当該キャリアーガラス板Gを減圧乾燥ユニット3Bに搬入する(ステップS4)。この減圧乾燥ユニット3Bでは、雰囲気温度が「第1の温度」よりも高温の「第2の温度」となっている点を除き、第1段目減圧乾燥処理と同様にして第2段目の第1段目減圧乾燥処理と同様に実行する(ステップS5)。なお、第1段目の減圧乾燥処理の終了タイミングについては、塗布膜Fの周辺の圧力、つまり減圧乾燥ユニット3Aの減圧雰囲気の圧力をモニターすることで適正に決定することができる。また、第2段目の減圧乾燥処理の終了タイミングについても、塗布膜Fの周辺の圧力、つまり減圧乾燥ユニット3Bの減圧雰囲気の圧力をモニターすることで適正に決定することができる。これらの点については後で実施例を例示しながら詳述する。
以上のように、減圧乾燥装置3による減圧乾燥処理のうち初期段階、つまり第1減圧乾燥ユニット3Aで比較的低温(第1の温度)で減圧乾燥を行った後で、この減圧乾燥処理を受けたキャリアーガラス板Gを第2減圧乾燥ユニット3Bに移し、第2減圧乾燥ユニット3Bで比較的高温(第2の温度)で減圧乾燥を行っている。このため、乾燥ムラなどの問題を発生させることなく、塗布膜Fの減圧乾燥に要するトータルの処理時間を短縮することができる。
減圧乾燥装置3に適用可能な減圧乾燥ユニット3A、3Bの構成は図2に示すものに限定されるものではなく、例えば図4に示す減圧乾燥ユニットを用いてもよい。以下、図4を参照しつつ減圧乾燥ユニットの他の構成について説明する。
図4は本発明にかかる減圧乾燥装置に装備可能な減圧乾燥ユニットの他の構成を示す図である。この減圧乾燥ユニット3Aは、図2に示すように、チャンバー310、加熱部50および支持部90を備える。そして、減圧乾燥ユニット3Aでは、制御ユニット3D(図1)からの指令に応じて装置各部が動作することでキャリアーガラス板Gの上面G1に塗布液を塗布してなる塗布膜Fに含まれる溶媒成分を気化させて塗布膜Fを乾燥させる。なお、減圧乾燥ユニット3Bの構成も基本的に減圧乾燥ユニット3Aと同一である。
チャンバー310は、キャリアーガラス板Gに対して減圧乾燥処理(=減圧処理+加熱処理)を行うための内部空間311を有する耐圧容器である。チャンバー310は、互いに接離可能なベース部36と蓋部37とを有する。ベース部36は、装置フレーム(図示省略)上に固定設置されている。ベース部36は、水平に配置された矩形状の底板部361と、底板部361の各辺に沿って延設された壁部362とを有する。壁部362は底板部361の各辺、すなわち周縁部から上方へ垂直に設けられており、底板部361の上面と壁部362の内面とは滑らかな曲面で接続されている。このようにベース部36は、平面視において矩形状の外形を有し、上方へ開口した箱型に形成されている。
一方、蓋部37は、水平に配置された矩形状の頂板部371と、頂板部371の各辺に沿って延設された壁部372とを有する。壁部372は頂板部371の各辺、すなわち周縁部から下方へ垂直に設けられており、頂板部371の下面と壁部372の内面とは滑らかな曲面で接続されている。このように蓋部37は、平面視において矩形状の外形を有し、下方へ開口した箱型に形成されている。この蓋部37は、ベース部36の上方に配置され、蓋部37の壁部372はベース部36の壁部362にZ方向から対向する。こうして、Z方向に互いに対向する蓋部37とベース部36との間に内部空間311が形成される。また、チャンバー310は、壁部372の上面に配置されたゴム製のOリング38を有する。そのため、蓋部37の壁部372とベース部36の壁部362とは、Oリング38を介して互いに接触する。
また、減圧乾燥ユニット3Aはチャンバー310を開閉するために、図2で概念的に示した開閉駆動部34を備える。この開閉駆動部34は蓋部37をベース部36に対してZ方向に駆動するアクチュエーターであり、制御ユニット3Dからの昇降指令に応じて開閉駆動部34が動作することで、ベース部36に対して蓋部37がZ方向に昇降する。つまり、制御ユニット3Dが開閉駆動部34に下降指令を出力すると、開閉駆動部34が蓋部37を下降させる。これによって、蓋部37がOリング38を介してベース部36に押圧され、内部空間311が密閉される。一方、制御ユニット3Dが開閉駆動部34に上昇指令を出力すると、開閉駆動部34が蓋部37を上昇させる。これによって、蓋部37がベース部36およびOリング38から離間して、内部空間311が開放され、内部空間311に対してキャリアーガラス板Gを搬入あるいは搬出することが可能となる。
支持部90は、チャンバー310の内部空間311内にキャリアーガラス板Gを支持するための機構である。支持部90は、複数の支持ピン91と、支持ピン91を支持する支持部材92とを有する。支持部材92はチャンバー310の外側下方に配置され、複数の支持ピン91が支持部材92に立設されている。各支持ピン91は、ベース部36およびホットプレート51を貫通してベース部36の内部空間311に突設されており、各支持ピン91の頭部がキャリアーガラス板Gの下面に当接することで、キャリアーガラス板Gが水平に支持される。なお、支持部90に支持されたキャリアーガラス板G(の塗布膜F)には、蓋部37の頂板部371の下面に形成された平滑な水平面321aが上方から対向する。
また、減圧乾燥ユニット3Aは支持部90を昇降するために、図4で概念的に示した昇降駆動部93を備える。この昇降駆動部93は支持部90をZ方向に駆動するアクチュエーターであり、制御ユニット3D(図1)からの昇降指令に応じて昇降駆動部93が動作することで、支持部90がZ方向に昇降する。つまり、制御ユニット3Dは、昇降駆動部93を制御することで、支持部90に支持されるキャリアーガラス板Gの高さを調整することができる。具体的には、内部空間311に対するキャリアーガラス板Gの搬入あるいは搬出が実行される際には、制御ユニット3Dは昇降駆動部93に上昇指令を出力し、支持部90によるキャリアーガラス板Gの支持位置を所定の上昇位置まで上昇させる。一方、内部空間311内に搬入されたキャリアーガラス板Gの塗布膜Fに減圧乾燥処理が実行される際には、制御ユニット3Dは昇降駆動部93に下降指令を出力し、支持部90に支持されるキャリアーガラス板Gを、上昇位置より低い所定の下降位置まで下降させる。
加熱部50は、ベース部36に取り付けられたホットプレート51と、蓋部37に取り付けられたラバーヒーター52とを有する。ホットプレート51は、ベース部36の底板部361の上面に、底板部361との間に隙間Dを空けて水平に取り付けられている。また、ラバーヒーター52は、蓋部37の上面を覆うように配置されている。そして、制御ユニット3Dは加熱部50に加熱指令を出力することで、ホットプレート51およびラバーヒーター52の発熱によって内部空間311を加熱する。この内部空間311の加熱は、内部空間311へのキャリアーガラス板Gの搬入前から予め継続的に実行されており、内部空間311内に搬入されたキャリアーガラス板Gは、内部空間311内の雰囲気温度により加熱される。これによって、塗布膜Fから溶媒成分が気化する。
減圧乾燥ユニット3Aは、加熱部50による加熱処理と並行して減圧処理を実行するために、減圧ユニット60を備える。この減圧ユニット60は、排気配管61(減圧機構)と、排気配管61に接続された減圧バルブ62とを有する。排気配管61は、チャンバー310のベース部36の中央に取り付けられて、ベース部36の底板部361から下方に突出する。排気配管61の一端611は底板部361の上面に開口しており、排気配管61はチャンバー310内の内部空間311に連通する。そして、排気配管61の他端612が減圧バルブ62を介して減圧ポンプPに接続されている。減圧ポンプPはさらに排気用力Ue、すなわち減圧乾燥装置が設置された施設に備えられた排気用の用力設備に接続されている。この減圧ポンプPは基本的に常時稼動しており、制御ユニット3Dは減圧バルブ62を開閉することで、内部空間311の減圧を実行・停止する。つまり、チャンバー310により内部空間311が密閉された状態で、制御ユニット3Dが減圧バルブ62に開指令を出力すると、減圧バルブ62が開いて、減圧ポンプPの排気により内部空間311が減圧される。一方、制御ユニット3Dが減圧バルブ62に閉指令を出力すると、減圧バルブ62が閉じて、内部空間311の減圧が停止される。
また、減圧乾燥ユニット3Aは、減圧が停止された後の内部空間311の気圧を大気圧に戻すために、給気ユニット70を備える。この給気ユニット70は、複数の給気配管71(給気機構)と、各給気配管71に接続された給気バルブ72とを有する。各給気配管71は、ベース部36の底板部361から下方に突出する。各給気配管71の一端711は、ホットプレート51の下面に対向しつつ底板部361の上面に開口しており、各給気配管71はチャンバー310内の内部空間311に連通する。そして、各給気配管71の他端712が給気バルブ72を介して給気用力Us、すなわち減圧乾燥ユニット3Aが設置された施設に備えられた給気用の用力設備に接続されている。ここの例では、給気用力Usは窒素ガスを供給する。そして、制御ユニット3Dは給気バルブ72を開閉することで、内部空間311への給気を実行・停止する。つまり、制御ユニット3Dが給気バルブ72に開指令を出力すると、給気バルブ72が開いて、内部空間311に窒素ガスが供給される(ガスパージ)。一方、制御ユニット3Dが給気バルブ72に閉指令を出力すると、給気バルブ72が閉じて、内部空間311への窒素ガスの供給が停止される。
さらに、減圧乾燥ユニット3Aは、上述の減圧ユニット60とは別に内部空間311内の気化成分を排気する排気ユニット8を備える。この排気ユニット8は、乾燥処理後の内部空間311内に残存する気化した溶媒成分(気化成分)を内部空間311から排気するために設けられる。この排気ユニット8は、チャンバー310の外側に取り付けられた排気機構80と、排気機構80に接続された流量調整バルブ85とを有する。この排気機構80は、4個の排気ダクト81と各排気ダクト81に設けられた排気配管82とを有する。
排気機構80が有する4個の排気ダクト81はベース部36の4辺に一対一で対応して設けられ、各排気ダクト81は対応するベース部36の辺に沿って水平方向に延設されている。排気ダクト81の上面は、外側(チャンバー310の逆側)へ向かうに連れて下る傾斜面であり、排気ダクト81の外側の側面はZ方向に平行な垂直面である。排気ダクト81の上部は、ベース部36の壁部362より上方に突出し、ベース部36の下部は、壁部362の外側の側面に取り付けられている。排気ダクト81の上部には、内側(チャンバー310側)を向いて開口813が設けられ、開口813は、排気ダクト81内にZ方向に設けられた中空部に連通する。排気ダクト81の開口813の位置は、下降位置に位置するキャリアーガラス板Gに対して所定の位置関係を有する。つまり、開口813は下降位置のキャリアーガラス板Gに水平方向から対向しており、換言すれば、キャリアーガラス板Gは、開口813が対向する範囲R、すなわちZ方向における開口813の上端と下端との間の範囲に位置する。
また、排気機構80は、排気ダクト81の底部から下方に突出する排気配管82を有する。この排気配管82は、各開口813の下方において水平方向に複数並んで設けられている。排気配管82の一端821は、排気ダクト81の中空部に対して開口しており、排気配管82は排気ダクト81の中空部に連通する。そして、排気配管82の他端が流量調整バルブ85を介して排気用力Ueに接続されている。なお、制御ユニット3Dは、流量調整バルブ85を基本的には常時開いている。そのため、排気用力Ueによる排気に伴って、排気ダクト81は開口813から外気を常時吸引する。
このように、排気機構80の排気ダクト81は、ベース部36の壁部362から上方へ突出した位置に開口813を有し、開口813から外気を常時吸引する。したがって、チャンバー310が閉じた状態では、開口813はチャンバー310の蓋部37に対向する一方、チャンバー310が開いた状態では、開口813はベース部36と蓋部37との間から開放された内部空間311内の溶媒成分を排気することができる。
このように構成された第1減圧乾燥ユニット3Aおよび第2減圧乾燥ユニット3Bを装備した減圧乾燥装置3においても、上記実施形態と同様の減圧乾燥処理を行う。つまり、第1減圧乾燥ユニット3Aで比較的低温(第1の温度)で減圧乾燥を行った後で、この減圧乾燥処理を受けたキャリアーガラス板Gを第2減圧乾燥ユニット3Bに移し、第2減圧乾燥ユニット3Bで比較的高温(第2の温度)で減圧乾燥を行う。これによって、乾燥ムラなどの問題を発生させることなく、塗布膜Fの減圧乾燥に要するトータルの処理時間を短縮することができる。
上記実施形態では、キャリアーガラス板Gが本発明の「基板」の一例に相当している。また、搬送ロボット3Cが本発明の「搬送ユニット」の一例に相当している。また、溶剤としてNMPを用いているが、特許文献1に記載されているように、種々の溶剤を用いてもよい。
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば第1減圧乾燥ユニット3Aから第2減圧乾燥ユニット3Bにキャリアーガラス板Gを搬送する搬送ユニットとして搬送ロボット3Cを用いているが、これに限定されるものではなく、その他の搬送方式、例えばコンベア方式の搬送ユニットを用いてもよい。
また、上記実施形態では、「第1の温度」および「第2の温度」をそれぞれ「40℃」および「100℃」に設定しているが、「第2の温度」が「第1の温度」よりも高温であるという条件を満足させつつ溶媒の種類や塗布膜Fの厚みなどに応じて適宜変更してもよい。
また、上記実施形態では、キャリアーガラス板Gを本発明の「基板」として用いているが、これ以外の平板状部材を「基板」として用いてもよい。
次に本発明の実施例を示すが、本発明はもとより下記実施例によって制限を受けるものではなく、前後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に含まれる。
減圧乾燥処理は、上記したように減圧雰囲気でキャリアーガラス板Gに塗布された塗布膜Fを加熱して乾燥させるものである。例えば、図4に示す構成する減圧乾燥ユニット3A(3B)において、減圧乾燥処理時の温度、つまり処理温度を多段階に変更するとともに、各処理温度で減圧乾燥処理を行った後でキャリアーガラス板G上の塗布膜Fの表面状態を観察すると、図5に示す結果が得られた。同図中の「乾燥ムラ」の欄に付される記号「◎」、「○」、「△」、「×」、「×××」は、それぞれ塗布膜Fの乾燥状態を示しており、同図から明らかなように、減圧乾燥処理を適切に行うためには処理温度を30〜70℃に設定するのが望ましい。この温度範囲が本発明の「適正温度範囲」の一例に相当している。例えば処理温度を30℃よりも低く設定すると、塗布膜Fに含まれる溶媒成分の気化が進まない。一方、処理温度を70℃よりも高く設定する、例えば適正温度範囲の最高値である「70℃」に近い80℃に設定すると、塗布膜Fの一部に乾燥ムラが生じてしまう。この主たる理由は以下の通りである。
第一段階目の減圧乾燥処理のプロセス温度を80℃に設定したとき、支持ピン(リフトピン)91の温度も80℃くらいになっている。このため、支持ピン91上に常温のキャリアーガラス板Gを載置すると、キャリアーガラス板Gのうち支持ピン91と接触している箇所(以下「接触箇所」という)は、支持ピン91からの熱の影響を受けて局部的に加熱される。一方、支持ピン91と接触していない箇所(以下「非接触箇所」という)については、上記熱影響を受けず、主としてチャンバー310内の輻射熱のみで加熱される。このため、接触箇所での加熱の立ち上がりが非接触箇所のそれよりも早く、接触箇所での加熱曲線と非接触箇所での加熱曲線とが相互に異なってしまう。その結果、乾燥ムラは発生してしまう。
また、ポリイミド膜を製造するために、上記したように塗布膜Fの厚みは比較的厚く(例えば10〜20[μm]程度のポリイミド膜を形成する場合には、100〜200[μm]程度)、フォトレジスト膜を製造する場合に比べ、処理時間は長くなる。したがって、ポリイミド膜の製造現場では、乾燥時間の長時間化に伴って乾燥ムラが生じ易いという技術背景が存在している。しかも、フォトレジスト膜の製造は常温処理で行われるために特に問題とならなかったが、ポリイミド膜の製造においては上記したように乾燥速度の改善のために処理温度を80℃以上に設定すると、乾燥ムラの問題はより深刻なものとなる。ここで、処理温度を80℃に設定する代わりに、図6Aに示すように減圧速度を抑えることで乾燥ムラの発生を抑制することは可能であるが、減圧速度の抑制によって減圧乾燥処理に要する時間(=T12−T11)が長くなってしまう。
図6Aは従来の減圧乾燥装置により減圧乾燥を行った時の減圧乾燥の進行状況を示すグラフである。ここで、従来の減圧乾燥装置とは、1つの減圧乾燥ユニットにより塗布膜Fの減圧乾燥を行う装置を意味している。この減圧乾燥装置では、同図に示すように、大気圧状態(P0=0.1013MPa)を有する減圧乾燥ユニットのチャンバー(温度80℃)を閉じた後のタイミングT11で減圧を開始する。そして、処理温度が適正温度範囲の最高値を超えて設定されているため、比較的緩やかな減圧速度(同図中のグラフの傾き)で減圧乾燥を実行する。というのも、減圧速度を高く設定すると、塗布膜Fの表面が先に乾燥して塗布膜Fの内部が未乾燥状態となり、膜膨れ(脱泡)の発生要因のひとつとなってしまうからである。そこで、減圧速度を遅く設定することで、チャンバー内の圧力低下とともに溶媒成分の気化を徐々に進行させる必要がある。そして、目標量の溶媒成分を気化させて塗布膜Fの周辺の圧力が目標値P2に到達すると、減圧を中止し、減圧乾燥ユニットのチャンバー内を大気開放する(タイミングT12)。したがって、従来の減圧乾燥装置を用いて塗布膜Fを良好に減圧乾燥させるためには、比較的長い時間(=T12−T11)を要していた。また、さらに高い処理温度、例えば100℃では、減圧速度をさらに減速したとしても、酷い乾燥ムラが発生しまう。
これに対し、例えば図6Bに示す実施例では、第1減圧乾燥ユニット3Aによる減圧乾燥処理(第1段目の減圧乾燥処理)を適正温度範囲内の処理温度(第1の温度=40℃)で行っており、乾燥ムラを発生させることなく、塗布膜Fの表面部分に存在している溶媒成分を短時間(=T22−T21)で気化させることができる。なお、符号「T21」、「T22」(および後で説明する符号「T23」、「T24」)はそれぞれ上記タイミングT11、T21で実行される動作を行うタイミングを意味している。
そして、第1段目の減圧乾燥処理により、塗布膜Fの周辺の圧力は大気圧P0よりも低く、目標値P2よりも高い中間値P1となる。この中間値P1となっている状況では、塗布膜Fの乾燥が完了していないものの、第2減圧乾燥ユニット3Bによる減圧乾燥処理で乾燥ムラなどの問題が発生しない程度まで減圧乾燥が進行している。ここで、中間値P1および目標値P2は、それぞれ本発明の「第1の圧力」および「第2の圧力」の一例に相当するものであり、
中間値P1>目標値P2
の関係を有している。
第1段目の減圧乾燥処理が終了すると、搬送ロボット3Cが第1段目の減圧乾燥処理を受けたキャリアーガラス板Gを第2減圧乾燥ユニット3Bに搬送する。ここでは、第2減圧乾燥ユニット3Bの処理温度(第2の温度)は100℃に設定されているが、すでに第1段目の減圧乾燥処理により減圧乾燥が既に進行しているため、減圧速度を高く設定したとしても、乾燥ムラを発生させることなく、塗布膜Fに残存している溶媒成分を短時間(=T24−T23)で気化させることができる。
このように本実施例では、第1減圧乾燥ユニット3Aによる減圧乾燥処理時の処理温度(本発明の「第1の温度」に相当)を40℃とし、第2減圧乾燥ユニット3Bによる減圧乾燥処理時の処理温度(本発明の「第2の温度」に相当)を100℃とすることで減圧乾燥に要する時間を大幅に短縮することができる。また、2段階で減圧乾燥処理を行っているため、第1の温度および第2の温度を適宜組み合わせることで減圧乾燥処理に要する時間を調整することができる。
なお、第2の温度については、第1の温度よりも高いことが望ましく、80℃以上に設定するのが望ましい。その一方で、第2の温度を過剰に高く設定すると、乾燥ムラが発生することがあるため、乾燥ムラの発生を防止する観点から150℃以下に設定するのが望ましい。また、中間値(第1の圧力)P1については、適正温度範囲が30℃以上70℃以下であることを考慮すると、100Pa以上1000Pa以下に設定するのが望ましい。一方、目標値(第2の圧力)P2については、第2減圧乾燥ユニット3Bによる減圧乾燥処理時の処理温度の好適な範囲が80℃以上150℃以下であることを考慮すると、上記関係(中間値P1>目標値P2)を満足させながら5Pa以上200Pa以下に設定するのが望ましい。
この発明は、基板上に塗布されたポリイミド前駆体および溶媒を含む塗布液の塗布膜を減圧乾燥する減圧乾燥技術全般に適用することができる。
3…減圧乾燥装置
3A…第1減圧乾燥ユニット
3B…第2減圧乾燥ユニット
3C…搬送ロボット(搬送ユニット)
F…塗布膜
G…キャリアーガラス板(基板)

Claims (9)

  1. (a)基板上に塗布されたポリイミド前駆体および溶媒を含む塗布液の塗布膜を第1の温度で減圧乾燥する工程と、
    (b)前記工程(a)を受けた前記基板上の前記塗布膜を前記第1の温度よりも高い第2の温度で減圧乾燥する工程と、
    を備えることを特徴とする減圧乾燥方法。
  2. 請求項1に記載の減圧乾燥方法であって、
    前記工程(a)の減圧雰囲気において乾燥ムラを発生させることなく前記塗布膜を乾燥させることができる温度範囲を適正温度範囲としたとき、
    前記第1の温度は前記適正温度範囲内で設定される減圧乾燥方法。
  3. 請求項2に記載の減圧乾燥方法であって、
    前記第2の温度は前記適正温度範囲の最高値を超えて設定される減圧乾燥方法。
  4. 請求項2または3に記載の減圧乾燥方法であって、
    前記適正温度範囲は30℃以上70℃以下の範囲である減圧乾燥方法。
  5. 請求項2ないし4のいずれか一項に記載の減圧乾燥方法であって、
    前記第2の温度は80℃以上150℃以下の範囲内で設定される減圧乾燥方法。
  6. 請求項1ないし5のいずれか一項に記載される減圧乾燥方法であって、
    前記第2の温度は前記塗布膜の膜厚に応じて設定される減圧乾燥方法。
  7. 請求項1ないし6のいずれか一項に記載される減圧乾燥方法であって、
    前記工程(a)は、前記塗布膜の周辺の圧力が第1の圧力に到達すると減圧乾燥を停止する工程を含み、
    前記工程(b)は、前記塗布膜の周辺の圧力が前記第1の圧力よりも低い第2の圧力に到達すると減圧乾燥を停止する工程を含む減圧乾燥方法。
  8. 請求項7に記載される減圧乾燥方法であって、
    前記第1の圧力は100Pa以上1000Pa以下の範囲内で設定され、
    前記第2の圧力は5Pa以上200Pa以下の範囲内で設定される減圧乾燥方法。
  9. 基板上に塗布されたポリイミド前駆体および溶媒を含む塗布液の塗布膜を減圧乾燥する減圧乾燥装置であって、
    第1の温度で減圧乾燥する第1減圧乾燥ユニットと、
    前記第1の温度よりも高い第2の温度で減圧乾燥する第2減圧乾燥ユニットと、
    前記第1減圧乾燥ユニットにより前記塗布膜の減圧乾燥を受けた前記基板を前記第2減圧乾燥ユニットに搬送する搬送ユニットと、
    を備えることを特徴とする減圧乾燥装置。
JP2016253194A 2016-03-15 2016-12-27 減圧乾燥方法および減圧乾燥装置 Active JP6910798B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710148962.5A CN107185783A (zh) 2016-03-15 2017-03-13 减压干燥方法及减压干燥装置
TW106108335A TWI623717B (zh) 2016-03-15 2017-03-14 Vacuum drying method and vacuum drying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016051044 2016-03-15
JP2016051044 2016-03-15

Publications (2)

Publication Number Publication Date
JP2017166802A true JP2017166802A (ja) 2017-09-21
JP6910798B2 JP6910798B2 (ja) 2021-07-28

Family

ID=59913174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016253194A Active JP6910798B2 (ja) 2016-03-15 2016-12-27 減圧乾燥方法および減圧乾燥装置

Country Status (2)

Country Link
JP (1) JP6910798B2 (ja)
TW (1) TWI623717B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019117250A1 (ja) * 2017-12-15 2020-12-24 芝浦メカトロニクス株式会社 有機膜形成装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6554516B2 (ja) * 2017-08-31 2019-07-31 東京応化工業株式会社 基板加熱装置、基板処理システム及び基板加熱方法
JP7055173B2 (ja) * 2019-08-06 2022-04-15 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及び基板処理プログラム

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381923A (ja) * 1986-09-26 1988-04-12 Hitachi Ltd 感光性ポリイミド樹脂処理方法および装置
JP2001319852A (ja) * 2000-05-09 2001-11-16 Tokyo Electron Ltd 乾燥方法及び乾燥装置
JP2002225052A (ja) * 2001-02-01 2002-08-14 Hitachi Chem Co Ltd 光部品用ポリイミド系樹脂膜の製造方法
JP2003100608A (ja) * 2001-09-26 2003-04-04 Dainippon Screen Mfg Co Ltd 成膜液乾燥装置及び成膜液乾燥方法
JP2006261379A (ja) * 2005-03-17 2006-09-28 Dainippon Screen Mfg Co Ltd 減圧乾燥装置、排気装置および減圧乾燥方法
JP2007069098A (ja) * 2005-09-06 2007-03-22 Toray Ind Inc 塗膜の減圧乾燥方法
JP2007101024A (ja) * 2005-10-03 2007-04-19 Seiko Epson Corp 被乾燥体の乾燥方法、乾燥機、及びデバイスの製造方法
US20070224351A1 (en) * 2006-03-22 2007-09-27 Kabushiki Kaisha Toshiba Droplet jetting applicator and method for manufacturing coated body
WO2010089936A1 (ja) * 2009-02-04 2010-08-12 シャープ株式会社 インク乾燥装置
JP2013040689A (ja) * 2009-12-02 2013-02-28 Sharp Corp インク乾燥装置
WO2014203794A1 (ja) * 2013-06-17 2014-12-24 東レ株式会社 積層樹脂ブラックマトリクス基板の製造方法
JP2015183985A (ja) * 2014-03-26 2015-10-22 株式会社Screenホールディングス 基板処理装置および基板処理方法
JP2017083140A (ja) * 2015-10-30 2017-05-18 東京応化工業株式会社 基板加熱装置及び基板加熱方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068512A1 (fr) * 2001-02-27 2002-09-06 Kaneka Corporation Film de polyimide et son procede de production
JP3997487B2 (ja) * 2001-05-30 2007-10-24 株式会社カネカ 感光性樹脂組成物及びそれを用いた感光性ドライフィルムレジスト、感光性カバーレイフィルム

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381923A (ja) * 1986-09-26 1988-04-12 Hitachi Ltd 感光性ポリイミド樹脂処理方法および装置
JP2001319852A (ja) * 2000-05-09 2001-11-16 Tokyo Electron Ltd 乾燥方法及び乾燥装置
JP2002225052A (ja) * 2001-02-01 2002-08-14 Hitachi Chem Co Ltd 光部品用ポリイミド系樹脂膜の製造方法
JP2003100608A (ja) * 2001-09-26 2003-04-04 Dainippon Screen Mfg Co Ltd 成膜液乾燥装置及び成膜液乾燥方法
JP2006261379A (ja) * 2005-03-17 2006-09-28 Dainippon Screen Mfg Co Ltd 減圧乾燥装置、排気装置および減圧乾燥方法
JP2007069098A (ja) * 2005-09-06 2007-03-22 Toray Ind Inc 塗膜の減圧乾燥方法
JP2007101024A (ja) * 2005-10-03 2007-04-19 Seiko Epson Corp 被乾燥体の乾燥方法、乾燥機、及びデバイスの製造方法
US20070224351A1 (en) * 2006-03-22 2007-09-27 Kabushiki Kaisha Toshiba Droplet jetting applicator and method for manufacturing coated body
JP2007253043A (ja) * 2006-03-22 2007-10-04 Toshiba Corp 液滴噴射装置及び塗布体の製造方法
WO2010089936A1 (ja) * 2009-02-04 2010-08-12 シャープ株式会社 インク乾燥装置
JP2013040689A (ja) * 2009-12-02 2013-02-28 Sharp Corp インク乾燥装置
WO2014203794A1 (ja) * 2013-06-17 2014-12-24 東レ株式会社 積層樹脂ブラックマトリクス基板の製造方法
JP2015183985A (ja) * 2014-03-26 2015-10-22 株式会社Screenホールディングス 基板処理装置および基板処理方法
JP2017083140A (ja) * 2015-10-30 2017-05-18 東京応化工業株式会社 基板加熱装置及び基板加熱方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019117250A1 (ja) * 2017-12-15 2020-12-24 芝浦メカトロニクス株式会社 有機膜形成装置
JP7008727B2 (ja) 2017-12-15 2022-01-25 芝浦メカトロニクス株式会社 有機膜形成装置
JP2022069440A (ja) * 2017-12-15 2022-05-11 芝浦メカトロニクス株式会社 有機膜形成装置
JP7260681B2 (ja) 2017-12-15 2023-04-18 芝浦メカトロニクス株式会社 有機膜形成装置
US11906246B2 (en) 2017-12-15 2024-02-20 Shibaura Mechatronics Corporation Organic film forming apparatus
JP7473700B2 (ja) 2017-12-15 2024-04-23 芝浦メカトロニクス株式会社 有機膜形成装置

Also Published As

Publication number Publication date
TWI623717B (zh) 2018-05-11
TW201734394A (zh) 2017-10-01
JP6910798B2 (ja) 2021-07-28

Similar Documents

Publication Publication Date Title
JP5089288B2 (ja) 減圧乾燥装置
JP5478280B2 (ja) 基板加熱装置および基板加熱方法、ならびに基板処理システム
TWI642888B (zh) Vacuum drying device, vacuum drying system, and vacuum drying method
KR100848767B1 (ko) 기판의 열처리 방법 및 기판의 열처리 장치
TWI686244B (zh) 基板處理裝置
JP6910798B2 (ja) 減圧乾燥方法および減圧乾燥装置
JP2011056335A (ja) 予備乾燥装置及び予備乾燥方法
JP3598462B2 (ja) 乾燥方法及び乾燥装置
KR20140034318A (ko) 피처리체의 냉각 방법, 냉각 장치 및 컴퓨터 판독 가능한 기억 매체
CN106513273B (zh) 减压干燥装置及减压干燥方法
JP6560704B2 (ja) 半導体装置の製造方法および基板処理装置
JP3766336B2 (ja) 減圧乾燥装置及び減圧乾燥方法
KR20210050614A (ko) 기판처리장치
JP2007073827A (ja) 減圧乾燥装置
WO2013035599A1 (ja) 接合方法、コンピュータ記憶媒体及び接合システム
TW201631285A (zh) 減壓乾燥裝置及基板處理系統
JP2018129337A (ja) 基板処理装置および基板処理方法
JP3806660B2 (ja) 減圧乾燥装置及び減圧乾燥方法
JP2008153369A (ja) レジスト液塗布処理装置
WO2003092068A1 (fr) Procede et mecanisme de convoyage de substrat
KR102322825B1 (ko) 기판 처리 장치 및 기판 처리 방법
JP7381526B2 (ja) 減圧乾燥装置、減圧乾燥方法およびプログラム
JP7244411B2 (ja) 基板処理装置および基板処理方法
KR20190055448A (ko) 기판 처리 장치
TWI737353B (zh) 減壓乾燥裝置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210707

R150 Certificate of patent or registration of utility model

Ref document number: 6910798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250