JP2017160510A - Nickel steel sheet for low temperature and manufacturing method therefor - Google Patents

Nickel steel sheet for low temperature and manufacturing method therefor Download PDF

Info

Publication number
JP2017160510A
JP2017160510A JP2016048151A JP2016048151A JP2017160510A JP 2017160510 A JP2017160510 A JP 2017160510A JP 2016048151 A JP2016048151 A JP 2016048151A JP 2016048151 A JP2016048151 A JP 2016048151A JP 2017160510 A JP2017160510 A JP 2017160510A
Authority
JP
Japan
Prior art keywords
less
rolling
steel sheet
toughness
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016048151A
Other languages
Japanese (ja)
Other versions
JP6693185B2 (en
Inventor
仁志 古谷
Hitoshi Furuya
仁志 古谷
康哲 ▲高▼橋
康哲 ▲高▼橋
Yasutetsu Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016048151A priority Critical patent/JP6693185B2/en
Publication of JP2017160510A publication Critical patent/JP2017160510A/en
Application granted granted Critical
Publication of JP6693185B2 publication Critical patent/JP6693185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nickel steel for low temperature excellent in toughness and a manufacturing method therefor.SOLUTION: A steel contains, by mass%, C:0.03% to 0.10%, Si:0.02% to 0.40%, Mn:0.3% to 1.2%, Ni:5.0% or more and less than 8.0%, Cr:0.4% to 1.5%, Mo:0.02% to 0.4%, Al:0.010% to 0.080%, T-O:0.0001% to 0.0030%, P:0.0010% to 0.0100%, S:0.0001% to 0.0035%, N:0.0005% to 0.0070% as well as selected elements such as Cu, Nb, V, Ti, Ca, Mg, REM, Zr and B as needed and the balance Fe with inevitable impurities and has an alumina cluster index of 0.03 or less and an effective crystal grain size of 7.0 μm or less.SELECTED DRAWING: Figure 2

Description

本発明は、靭性に優れた低温用ニッケル鋼板およびその製法に関するものである。   The present invention relates to a nickel steel sheet for low temperature excellent in toughness and a method for producing the same.

この製法で製造した低温用ニッケル鋼板は、造船、橋梁、建築、海洋構造物、圧力容器、タンク、ラインパイプなどの溶接構造物一般に用いることができるが、特に−196℃から−160℃程度の低温での破壊靱性が要求される低温タンクでの使用において有効である。   The nickel steel sheet for low temperature produced by this production method can be used in general for welded structures such as shipbuilding, bridges, buildings, marine structures, pressure vessels, tanks, line pipes, etc., especially about -196 ° C to -160 ° C. It is effective in use in a low temperature tank that requires fracture toughness at low temperatures.

環境規制の強化に伴い、重油ではなくLNGによりエンジンを駆動して航行するLNG燃料船の開発が進められている。LNG燃料船に搭載されるLNGタンクの材料として、オーステナイト系ステンレス鋼のほかに、9%Ni鋼や6%Ni鋼などのフェライト系低温用鋼も使用可能と考えられる。   With the stricter environmental regulations, the development of LNG fueled ships that are driven by LNG instead of heavy oil is being promoted. In addition to austenitic stainless steel, ferritic low temperature steels such as 9% Ni steel and 6% Ni steel can be used as materials for LNG tanks mounted on LNG fuel ships.

しかしながら、フェライト系低温用ニッケル鋼は、歪時効による靭性低下がみられることから、この克服が実用化への鍵となる。歪時効後も優れた靭性を維持するためには、母材の時点で−196℃のシャルピー衝撃吸収エネルギーの最低値が150J程度であることが望ましい。現在の水準では、大半の鋼板でこれを達成しているものの、全ての鋼板で達成することは容易ではない。   However, in ferritic low-temperature nickel steel, the toughness is reduced due to strain aging, so overcoming this is the key to commercialization. In order to maintain excellent toughness even after strain aging, it is desirable that the minimum value of the Charpy impact absorption energy at −196 ° C. is about 150 J at the time of the base material. At the current level, this has been achieved with most steel sheets, but it is not easy to achieve with all steel sheets.

フェライト系低温用ニッケル鋼の−196℃でのシャルピー衝撃吸収エネルギーに、ごく低い確率で発生する低値には、介在物が関わっていることがある。連続鋳造で製造される鋼スラブには、数μmの介在物が浮上分離せずに残存しているが、通常の清浄度であれば、そのような独立した介在物が−196℃でのシャルピー衝撃吸収エネルギーに与える影響は軽微である。   Inclusions may be involved in the low value generated with very low probability in the Charpy impact absorption energy at −196 ° C. of ferritic low temperature nickel steel. In steel slabs manufactured by continuous casting, inclusions of several μm remain without floating and separating. However, if the cleanliness is normal, such independent inclusions form Charpy at −196 ° C. The impact on impact absorption energy is negligible.

しかしながら、数μmの介在物が凝集合体したクラスターを形成した場合、−196℃でのシャルピー衝撃吸収エネルギーが150J以下に低下することがある。介在物の主たるものは、アルミナ(Al)である。 However, when a cluster in which several μm inclusions aggregate and coalesce is formed, the Charpy impact absorption energy at −196 ° C. may decrease to 150 J or less. The main inclusion is alumina (Al 2 O 3 ).

介在物、たとえばMnSなどの伸長介在物による害悪を軽減する方法として、クロス圧延がある。クロス圧延とは、鋼板の形状を作りこむ熱間圧延において、普通は鋼板の長手方向にのみ実施する圧延のうち、一部の圧下を鋼板の幅方向に実施するものであり、介在物がMnSの場合は鋼板長手方向のMnSの伸長が抑制されることから、試験片の長手方向が圧延幅方向と平行になるような試験片を用いたシャルピー試験において、シャルピー衝撃吸収エネルギーが改善する。   Cross rolling is a method for reducing the harm caused by inclusions such as extension inclusions such as MnS. Cross rolling is a hot rolling that creates the shape of a steel sheet. Of the rolling that is usually performed only in the longitudinal direction of the steel sheet, a part of the rolling is performed in the width direction of the steel sheet, and the inclusions are MnS. In this case, since the elongation of MnS in the longitudinal direction of the steel sheet is suppressed, the Charpy impact absorption energy is improved in the Charpy test using a test piece in which the longitudinal direction of the test piece is parallel to the rolling width direction.

たとえば、特許文献1、特許文献2では、クロス圧延を実施する際の幅方向圧延を未再結晶温度域で行うことで、曲げ加工性や低温靭性を改善している。しかしながら、未再結晶温度域での幅方向圧延を行った場合、圧下前のオーステナイト粒径が大きいまま未再結晶域圧延を行うこととなり、却って靭性が低下することが多く、この方法では前記の目的を達成できない。   For example, in Patent Literature 1 and Patent Literature 2, bending workability and low-temperature toughness are improved by performing width direction rolling when performing cross rolling in a non-recrystallization temperature range. However, when the width direction rolling is performed in the non-recrystallization temperature region, the non-recrystallization region rolling is performed while the austenite grain size before the reduction is large, and on the contrary, the toughness often decreases. The goal cannot be achieved.

また、特許文献3には、クロス圧延を実施する際の幅方向圧延と長手方向圧延の圧下比率を規定することで等方性の高い鋼板としている。介在物の制御に関しては、この方法が有効であるものの、圧下比率の規定のみでは、シャルピー衝撃吸収エネルギーに最も影響する因子である有効結晶粒径を小さくできないため、この方法では前記の目的を達成できない。つまり、現在の技術では、靭性に優れた低温用ニッケル鋼を提供することはできない。   Moreover, in patent document 3, it is set as the steel plate with high isotropic by prescribing | regulating the reduction ratio of the width direction rolling at the time of implementing cross rolling, and a longitudinal direction rolling. Although this method is effective for the control of inclusions, this method achieves the above-mentioned purpose because the effective crystal grain size, which is the factor that most affects the Charpy impact absorption energy, cannot be reduced only by specifying the reduction ratio. Can not. In other words, the current technology cannot provide low-temperature nickel steel with excellent toughness.

特許第4897125号公報Japanese Patent No. 4897125 特開2005−226080号公報JP 2005-226080 A 特開2002−161341号公報JP 2002-161341 A

本発明が解決しようとする問題点は、靭性に優れた低温用ニッケル鋼板およびその製造方法を提供することである。   The problem to be solved by the present invention is to provide a low temperature nickel steel sheet excellent in toughness and a method for producing the same.

本発明は、靭性に優れた低温用ニッケル鋼板およびその製造方法を提供するものであり、その要旨とするところは以下の通りである。   The present invention provides a nickel steel sheet for low temperature excellent in toughness and a method for producing the same, and the gist thereof is as follows.

(1)鋼が、質量%で、C :0.03%以上かつ0.10%以下、Si:0.02%以上かつ0.40%以下、Mn:0.3%以上かつ1.2%以下、Ni:5.0%以上かつ8.0%未満、Cr:0.4%以上かつ1.5%以下、Mo:0.02%以上かつ0.40%以下、Al:0.010%以上かつ0.080%以下、T−O:0.0001%以上かつ0.0030%以下を含有し、P:0.0010%以上0.0100%以下、S:0.0001%以上0.0035%以下、N:0.0005%以上0.0070%以下を含有し、残部がFe及び不可避的不純物からなり、アルミナクラスター指数が0.030以下であり、有効結晶粒径が7.0μm以下であることを特徴とする低温用ニッケル鋼板。 (1) Steel is mass%, C: 0.03% or more and 0.10% or less, Si: 0.02% or more and 0.40% or less, Mn: 0.3% or more and 1.2% Ni: 5.0% or more and less than 8.0%, Cr: 0.4% or more and 1.5% or less, Mo: 0.02% or more and 0.40% or less, Al: 0.010% And 0.080% or less, TO: 0.0001% or more and 0.0030% or less, P: 0.0010% or more and 0.0100% or less, S: 0.0001% or more and 0.0035 % Or less, N: 0.0005% or more and 0.0070% or less, with the balance being Fe and inevitable impurities, the alumina cluster index is 0.030 or less, and the effective crystal grain size is 7.0 μm or less. A nickel steel sheet for low temperature characterized by being.

(2)さらに、Cu:0.1%以上かつ3.0%以下、Nb:0.005%以上0.100%以下、V:0.010%以上0.500%以下、Ti:0.005%以上0.500%以下、Ca:0.0001%以上0.0050%以下、Mg:0.0001%以上0.0050%以下、REM:0.0001%以上0.0100%以下、Zr:0.0001%以上0.0100%以下、B:0.0002%以上0.0030%以下の1種または2種以上を含有することを特徴とする前記(1)に記載の低温用ニッケル鋼鈑。 (2) Further, Cu: 0.1% to 3.0%, Nb: 0.005% to 0.100%, V: 0.010% to 0.500%, Ti: 0.005 % To 0.500%, Ca: 0.0001% to 0.0050%, Mg: 0.0001% to 0.0050%, REM: 0.0001% to 0.0100%, Zr: 0 The nickel steel sheet for low temperature according to (1) above, containing one or more of 0.0001% or more and 0.0100% or less and B: 0.0002% or more and 0.0030% or less.

(3)鋼が、質量%で、C :0.03%以上かつ0.10%以下、Si:0.02%以上かつ0.40%以下、Mn:0.3%以上かつ1.2%以下、Ni:5.0%以上かつ8.0%未満、Cr:0.4%以上かつ1.5%以下、Mo:0.02%以上かつ0.40%以下、Al:0.010%以上かつ0.080%以下、
T−O:0.0001%以上かつ0.0030%以下を含有し、P:0.0010%以上0.0100%以下、S:0.0001%以上0.0035%以下、N:0.0005%以上0.0070%以下を含有し、残部がFe及び不可避的不純物からなるスラブを900℃以上1270℃以下に加熱したのちに熱間圧延を行い、当該の熱間圧延の全圧下率を0.65以上、熱間圧延のうち圧延幅方向に行うクロス圧延の圧下率を0.1以上0.6以下、クロス圧延の温度範囲を800℃以上1000℃以下、仕上1パス前温度を600℃以上850℃以下として、圧延後すみやかに水冷を行い、鋼板を600℃以上かつ750℃以下に加熱した後冷却を行う中間熱処理を行い、さらに鋼板を500℃以上かつ650℃以下に加熱した後冷却する焼戻しを行うことを特徴とする低温用ニッケル鋼板の製造方法。
(3) Steel is mass%, C: 0.03% or more and 0.10% or less, Si: 0.02% or more and 0.40% or less, Mn: 0.3% or more and 1.2% Ni: 5.0% or more and less than 8.0%, Cr: 0.4% or more and 1.5% or less, Mo: 0.02% or more and 0.40% or less, Al: 0.010% More than 0.080%,
T-O: 0.0001% or more and 0.0030% or less, P: 0.0010% or more and 0.0100% or less, S: 0.0001% or more and 0.0035% or less, N: 0.0005 % To 0.0070% or less, and the remaining slab consisting of Fe and inevitable impurities is heated to 900 ° C. to 1270 ° C. and then hot rolled, and the total rolling reduction of the hot rolling is 0 .65 or more, the rolling reduction of the cross rolling performed in the rolling width direction in the hot rolling is 0.1 to 0.6, the temperature range of the cross rolling is 800 ° C. or more and 1000 ° C. or less, and the temperature before the first pass is 600 ° C. More than 850 ° C., water cooling is immediately performed after rolling, the steel sheet is heated to 600 ° C. or more and 750 ° C. or less, then an intermediate heat treatment is performed, and the steel plate is heated to 500 ° C. or more and 650 ° C. or less and then cooled. You Method for producing a low-temperature nickel steel which is characterized in that the tempering.

(4)さらに、Cu:0.1%以上かつ3.0%以下、Nb:0.005%以上0.100%以下、V:0.010%以上0.500%以下、Ti:0.005%以上0.500%以下、Ca:0.0001%以上0.0050%以下、Mg:0.0001%以上0.0050%以下、REM:0.0001%以上0.0100%以下、Zr:0.0001%以上0.0100%以下、B:0.0002%以上0.0030%以下の1種または2種以上を含有することを特徴とする前記(3)に記載の低温用ニッケル鋼板の製造方法。 (4) Further, Cu: 0.1% to 3.0%, Nb: 0.005% to 0.100%, V: 0.010% to 0.500%, Ti: 0.005 % To 0.500%, Ca: 0.0001% to 0.0050%, Mg: 0.0001% to 0.0050%, REM: 0.0001% to 0.0100%, Zr: 0 The production of a nickel steel sheet for low temperature as described in (3) above, containing one or more of 0.0001% or more and 0.0100% or less, B: 0.0002% or more and 0.0030% or less Method.

本発明によれば、靭性に優れた低温用ニッケル鋼板およびその製造方法を提供することが可能であり、産業上の価値の高い発明であるといえる。   According to the present invention, it is possible to provide a low-temperature nickel steel sheet having excellent toughness and a method for producing the same, and it can be said that the invention has high industrial value.

アルミナクラスター指数とクロス圧延圧下率との関係を示すグラフである。It is a graph which shows the relationship between an alumina cluster index and cross rolling reduction. シャルピー衝撃吸収エネルギーとアルミナクラスター指数との関係を示すグラフである。It is a graph which shows the relationship between Charpy impact absorption energy and an alumina cluster index. 有効結晶粒径とクロス圧延温度との関係を示すグラフである。It is a graph which shows the relationship between an effective crystal grain size and cross rolling temperature. 有効結晶粒径と全圧下率との関係を示すグラフである。It is a graph which shows the relationship between an effective crystal grain diameter and a total reduction. 靱性と有効結晶粒径との関係を示すグラフである。It is a graph which shows the relationship between toughness and an effective crystal grain size.

本発明を詳細に説明する。発明者らは、低温用ニッケル鋼板のうち、Ni含有量が5.0%以上8.0%未満の鋼板の靭性に及ぼす、アルミナクラスター、すなわち長径が数μmのアルミナが圧延方向に連続的に分布する集合体の影響を明らかにするため、シャルピー衝撃試験の試験片の破面調査を行った。   The present invention will be described in detail. The inventors of the present invention have disclosed that alumina clusters, that is, alumina having a major axis of several μm continuously in the rolling direction, affect the toughness of the steel sheet having a Ni content of 5.0% or more and less than 8.0% among the low-temperature nickel steel sheets. In order to clarify the influence of the distributed aggregate, the fracture surface of the Charpy impact test specimen was investigated.

その結果、シャルピー試験片の長手方向を鋼板の幅方向と平行にした場合には、アルミナクラスターの圧延方向の連続的な分布が、シャルピー試験片の破面となる面に平行となることから、セパレーション状の粗大なボイド合体型破面を形成して、延性き裂進展抵抗の低下や、延性き裂進展から脆性破壊への遷移を通じてシャルピー衝撃吸収エネルギー低下をもたらすことを新たに知見した。発明者らは、シャルピー試験片の破面に平行な面、すなわち鋼板の幅方向に垂直な面上のアルミナの個数を低減することが靭性改善に有効と着想して、その方法を種々検討した結果、鋼板の熱間圧延時、粗圧延の一部を鋼板幅方向への圧下とするクロス圧延を実施する際の種々の条件を厳格に規定することが必要であることを知見した。以下詳細に説明する。   As a result, when the longitudinal direction of the Charpy test piece is parallel to the width direction of the steel sheet, the continuous distribution in the rolling direction of the alumina cluster is parallel to the surface that becomes the fracture surface of the Charpy test piece. It has been newly found that the formation of a coarse void-like fracture surface in the form of a separation causes a decrease in ductile crack growth resistance and a decrease in Charpy impact absorption energy through the transition from ductile crack growth to brittle fracture. The inventors conceived that reducing the number of alumina on the surface parallel to the fracture surface of the Charpy test piece, that is, the surface perpendicular to the width direction of the steel sheet is effective in improving toughness, and studied various methods. As a result, it has been found that it is necessary to strictly define various conditions when carrying out cross rolling in which a part of rough rolling is reduced in the width direction of the steel sheet during hot rolling of the steel sheet. This will be described in detail below.

粗圧延の一部を鋼板幅方向への圧下とする、クロス圧延の効果を実験により確認した。ここで、クロス圧延とは、最終的な鋼板長手方向に対してほぼ垂直方向に実施する圧延を指し、粗圧延時に実施される。クロス圧延を行った後は、鋼板の長手方向の圧延を行うため、鋼片を90°程度回転させる。クロス圧延を行うことで、密集していたアルミナは鋼板の幅方向に広がりをもって分布するようになり、鋼板の幅方向に垂直な面、すなわちシャルピー試験片の破面に平行な面上のアルミナ個数は相対的に減少する。鋼板幅方向に垂直な面にほぼ平行なシャルピー試験片の破面上の情報からアルミナクラスターの分布を測定した。SEM(走査型電子顕微鏡)の二次電子線像、倍率10倍でシャルピー衝撃試験片の破面写真を撮影し、セパレーション状の縦割れ破面の総長さを(単位:mm)測定した。これを、破面面積(80mm)で除した値をアルミナクラスター指数と定義した。単位は1/mmである。アルミナクラスター指数とクロス圧延圧下率の関係を図1に示す。クロス圧延圧下率とは、クロス圧延での圧下量の合計を熱間圧延での全圧下量で除した値である。クロス圧延圧下率の増大とともに、アルミナクラスター指数が低下する傾向がみられる。 The effect of cross rolling, in which a part of the rough rolling was reduced in the width direction of the steel sheet, was confirmed by experiments. Here, cross rolling refers to rolling performed in a direction substantially perpendicular to the final longitudinal direction of the steel sheet, and is performed during rough rolling. After cross rolling, the steel slab is rotated about 90 ° in order to perform rolling in the longitudinal direction of the steel plate. By performing cross rolling, dense alumina is distributed in the width direction of the steel sheet, and the number of alumina on the plane perpendicular to the width direction of the steel sheet, that is, the plane parallel to the fracture surface of the Charpy specimen Decreases relatively. The distribution of alumina clusters was measured from information on the fracture surface of a Charpy specimen approximately parallel to the plane perpendicular to the width direction of the steel plate. A SEM (scanning electron microscope) secondary electron beam image, a fracture surface photograph of a Charpy impact test piece was taken at a magnification of 10 times, and the total length of separation-like vertical crack fracture surfaces (unit: mm) was measured. A value obtained by dividing this by the fracture surface area (80 mm 2 ) was defined as the alumina cluster index. The unit is 1 / mm. FIG. 1 shows the relationship between the alumina cluster index and the cross rolling reduction ratio. The cross rolling reduction ratio is a value obtained by dividing the total reduction amount in the cross rolling by the total reduction amount in the hot rolling. As the rolling reduction ratio increases, the alumina cluster index tends to decrease.

シャルピー衝撃吸収エネルギーとアルミナクラスター指数の関係を図2に示す。アルミナクラスター指数の低下とともに、シャルピー衝撃吸収エネルギーが増大する。靭性改善、すなわちvE−196を150Jとするためには、アルミナクラスター指数を0.030以下とする必要があり、これにはクロス圧延の圧下率を0.1以上とする必要がある。クロス圧延の圧下率が0.6超の場合、鋼板の幅が大きくなり以後の熱間圧延が困難になるという操業上の理由から、クロス圧延の圧下率の上限を0.6とする。   The relationship between the Charpy impact absorption energy and the alumina cluster index is shown in FIG. As the alumina cluster index decreases, Charpy impact absorption energy increases. In order to improve toughness, that is, to set vE-196 to 150 J, the alumina cluster index needs to be 0.030 or less, and for this, the rolling reduction of cross rolling needs to be 0.1 or more. When the rolling reduction ratio of the cross rolling exceeds 0.6, the upper limit of the rolling reduction ratio of the cross rolling is set to 0.6 for the operational reason that the width of the steel sheet becomes large and subsequent hot rolling becomes difficult.

靭性に優れた鋼板とするためには、クロス圧延圧下率を前記のように規定する圧下比を確保することに加え、有効結晶粒径を小さくする必要がある。このためには、クロス圧延を実施する温度を規定し、かつ熱間圧延の全圧下率を規定する必要がある。以下詳細に説明する。   In order to obtain a steel sheet with excellent toughness, it is necessary to reduce the effective crystal grain size in addition to ensuring the reduction ratio that defines the cross rolling reduction ratio as described above. For this purpose, it is necessary to define the temperature at which cross rolling is carried out and to define the total rolling reduction ratio of hot rolling. This will be described in detail below.

クロス圧延の温度範囲を規定することは、有効結晶粒径の微細化に重要である。クロス圧延温度を1000℃超とした場合、再結晶後の粒成長によりオーステナイトが粗大化して、変態後のマルテンサイトを主体とする組織の有効結晶粒径が粗大化する。逆に、クロス圧延温度が800℃未満の場合も、再結晶がほとんど生じない未再結晶温度域での圧延が主体となるため、有効結晶粒径が粗大化する。有効結晶粒径とクロス圧延温度の関係を図3に示す。ここで、有効結晶粒径とは、変態後の組織にEBSDを行い、方位差15°以上を粒界と定義して算出した平均の結晶粒径を指す。   Defining the temperature range of cross rolling is important for making the effective crystal grain size fine. When the cross rolling temperature is higher than 1000 ° C., austenite becomes coarse due to grain growth after recrystallization, and the effective crystal grain size of the structure mainly composed of martensite after transformation becomes coarse. On the contrary, even when the cross rolling temperature is less than 800 ° C., the effective crystal grain size becomes coarse because rolling mainly in the non-recrystallization temperature region where recrystallization hardly occurs. The relationship between the effective crystal grain size and the cross rolling temperature is shown in FIG. Here, the effective crystal grain size refers to an average crystal grain size calculated by performing EBSD on the transformed structure and defining an orientation difference of 15 ° or more as a grain boundary.

熱間圧延の全圧下率を規定することも、有効結晶粒径の微細化に重要である。熱間圧延の全圧下率を増大することで有効結晶粒径が小さくなる。これは、再結晶を通じたオーステナイトの微細化と、さらに未再結晶域での圧下を通じたオーステナイト中への転位導入によって、変態後のマルテンサイトを主体とする組織が微細化するためである。図4に、クロス圧延温度を800℃以上1000℃以下とした場合の、有効結晶粒径と全圧下率と靭性の関係を示す。全圧下率を0.65以上とすることで、有効結晶粒径を7.0μm以下と小さくすることができる。ここで、全圧下率とは、熱間圧延前の鋼片厚さから熱間圧延後の鋼板厚を引いた値を、熱間圧延前の鋼片厚さで除した値である。なお、本発明における熱間圧延は、その一部を、最終的な鋼板長手方向に対してほぼ垂直方向に行うクロス圧延で、残部を、最終的な鋼板長手方向に対してほぼ平行方向に行うストレート圧延で行うものであり、全圧下率は、クロス圧延とストレート圧延の合計の圧下量を熱間圧延前の鋼片厚さで除した値、クロス圧延圧下率は、クロス圧延の圧下量を熱間圧延前の鋼片厚さで除した値である。   Defining the total rolling reduction of hot rolling is also important for reducing the effective crystal grain size. Increasing the total rolling reduction in hot rolling reduces the effective crystal grain size. This is because the microstructure mainly composed of martensite after transformation is refined by the refinement of austenite through recrystallization and the introduction of dislocations into austenite through reduction in the non-recrystallized region. FIG. 4 shows the relationship between the effective crystal grain size, the total rolling reduction, and the toughness when the cross rolling temperature is 800 ° C. or higher and 1000 ° C. or lower. By setting the total rolling reduction to 0.65 or more, the effective crystal grain size can be reduced to 7.0 μm or less. Here, the total reduction ratio is a value obtained by dividing a value obtained by subtracting the steel plate thickness after hot rolling from the steel slab thickness before hot rolling by the steel slab thickness before hot rolling. Note that the hot rolling in the present invention is a cross rolling in which part of the hot rolling is performed in a direction substantially perpendicular to the final steel plate longitudinal direction, and the remaining part is performed in a direction substantially parallel to the final steel plate longitudinal direction. The total rolling reduction is the value obtained by dividing the total rolling reduction of cross rolling and straight rolling by the thickness of the steel slab before hot rolling, and the cross rolling rolling reduction is the rolling reduction of cross rolling. It is the value divided by the thickness of the steel piece before hot rolling.

クロス圧延の温度範囲や、熱間圧延の全圧下率を規定することで、有効結晶粒径を微細化した場合の、靭性と有効結晶粒径の関係を図5に示す。靭性確保、すなわちvE−196を150J以上とするためには、有効結晶粒径を7.0μm以下とする必要があり、このためには、クロス圧延温度を800℃以上1000℃以下、全圧下率を0.65以上とする必要がある。   FIG. 5 shows the relationship between toughness and effective crystal grain size when the effective crystal grain size is refined by defining the temperature range of cross rolling and the total rolling reduction of hot rolling. In order to ensure toughness, that is, to make vE-196 150J or more, the effective crystal grain size needs to be 7.0 μm or less. For this purpose, the cross rolling temperature is 800 ° C. or more and 1000 ° C. or less, and the total reduction ratio Needs to be 0.65 or more.

以下に鋼板の合金元素の範囲を規定する。
Cは、強度確保に必須の元素であるため、その添加量を0.03%以上とする。しかし、一方でC量の増大は靱性低下を招くため、その上限を0.10%とする。
The range of alloy elements of the steel sheet is specified below.
Since C is an element essential for ensuring the strength, its addition amount is set to 0.03% or more. However, on the other hand, an increase in the amount of C causes a decrease in toughness, so the upper limit is made 0.10%.

Siは、強度確保に必須の元素であるため、その添加量を0.02%以上とする。しかし、一方で0.40%超のSi添加は靭性や溶接性の低下を招くためその上限を0.40%とする。   Since Si is an element essential for ensuring strength, its addition amount is set to 0.02% or more. However, on the other hand, addition of Si exceeding 0.40% causes a decrease in toughness and weldability, so the upper limit is made 0.40%.

Mnは、強度増大に有効な元素であり、最低でも0.3%以上の添加が必要となるが、逆に1.2%を超えて添加すると焼戻し脆化感受性が高くなって靭性が低下する。よって、Mnの添加量を0.3%以上1.2%以下と規定する。   Mn is an element effective for increasing the strength, and it is necessary to add 0.3% or more at least, but conversely, if added over 1.2%, the temper embrittlement susceptibility increases and the toughness decreases. . Therefore, the amount of Mn added is defined as 0.3% or more and 1.2% or less.

Niは、下限については靭性確保のため、最低でも5.0%以上の添加が必要となるが、上限は特に規定はないものの、8.0%以上では製造コストが大幅に増大するため8.0%未満が好ましい。よって、Niの添加量を5.0%以上8.0%未満とする。   Ni must be added at a minimum of 5.0% or more in order to ensure toughness at the lower limit, but the upper limit is not particularly specified, but if it is 8.0% or more, the manufacturing cost will increase significantly. Less than 0% is preferable. Therefore, the addition amount of Ni is set to 5.0% or more and less than 8.0%.

Crは、焼入性の確保に有効な元素であり、最低でも0.4%以上の添加が必要となるが、逆に1.5%を超えて添加すると靭性と溶接性が低下する。よって、Crの添加量を0.4%以上1.5%以下と規定する。   Cr is an element effective for ensuring hardenability, and at least 0.4% of addition is necessary, but if added over 1.5%, toughness and weldability deteriorate. Therefore, the addition amount of Cr is defined as 0.4% or more and 1.5% or less.

Moは、焼戻し脆化の軽減に有効な元素であり、最低でも0.02%の添加が必要となるが、逆に0.40%を超えて添加すると靭性と溶接性が低下する。よって、Moの添加量を0.02%以上0.40%以下と規定する。   Mo is an element effective for reducing temper embrittlement, and at least 0.02% of addition is necessary. Conversely, if added over 0.40%, toughness and weldability are reduced. Therefore, the addition amount of Mo is defined as 0.02% or more and 0.40% or less.

Alは、脱酸に有効な元素であり、最低でも0.010%以上の添加が必要となるが、逆に0.080%を超えて添加すると溶鋼再酸化を通じたアルミナクラスター形成を通じて靭性が低下する。よって、Alの添加量を0.010%以上0.080%以下と規定する。   Al is an element effective for deoxidation, and addition of 0.010% or more is required at the minimum, but if added over 0.080%, the toughness is reduced through the formation of alumina clusters through molten steel reoxidation. To do. Therefore, the addition amount of Al is defined as 0.010% or more and 0.080% or less.

T−Oは、下限については特に規定はないものの、0.0001%未満では精錬負荷の増大によって生産性が低下するため0.0001%以上が好ましい。0.0030%を超えて添加するとアルミナクラスター形成を通じて靭性が低下するため上限は0.0030%とする。よって、T−Oの添加量を0.0001%以上0.0030%以下とする。   The lower limit of T-O is not particularly specified, but if it is less than 0.0001%, productivity decreases due to an increase in the refining load, so 0.0001% or more is preferable. If added over 0.0030%, the toughness decreases through alumina cluster formation, so the upper limit is made 0.0030%. Therefore, the addition amount of T-O is set to be 0.0001% to 0.0030%.

Pは、下限については特に規定はないものの、0.0010%未満とするには精錬負荷の増大により生産性が大幅に低下するため0.0010%以上が好ましい。また0.0100%を超えると焼戻し脆化により靭性が低下するため上限は0.0100%とする。よって、Pの添加量を0.0010%以上0.0100%以下とする。   Although there is no particular limitation on the lower limit of P, 0.0010% or more is preferable because the productivity is greatly reduced due to an increase in the refining load. If it exceeds 0.0100%, the toughness decreases due to temper embrittlement, so the upper limit is made 0.0100%. Therefore, the addition amount of P is set to 0.0010% or more and 0.0100% or less.

Sは、下限については特に規定はないものの、0.0001%未満では精錬負荷の増大により生産性が大幅に低下するため0.0001%以上が好ましい。また0.0035%を超えると靱性が低下するため上限は0.0035%とする。よって、Sの添加量を0.0001%以上0.0035%以下とする。   The lower limit of S is not particularly specified, but if it is less than 0.0001%, productivity is significantly reduced due to an increase in the refining load, so 0.0001% or more is preferable. On the other hand, if it exceeds 0.0035%, the toughness decreases, so the upper limit is made 0.0035%. Therefore, the addition amount of S is set to 0.0001% or more and 0.0035% or less.

Nは、下限については特に規定はないものの、0.0005%未満では精錬負荷の増大によって生産性が低下するため0.0005%以上が好ましい。また0.0070%を超える添加では靭性が低下するため上限は0.0070%とする。よって、Nの添加量を0.0005%以上0.0070%以下とする。   N is not particularly limited as to the lower limit, but if it is less than 0.0005%, the productivity is reduced by an increase in the refining load, so 0.0005% or more is preferable. Further, if the addition exceeds 0.0070%, the toughness decreases, so the upper limit is made 0.0070%. Therefore, the addition amount of N is set to 0.0005% or more and 0.0070% or less.

なお、本発明では、さらに以下の元素を添加することができる。
Cuは、強度確保のため、最低でも0.1%以上の添加が必要となるが、3.0%を超えると靭性が低下する。よって、Cuの添加量を0.1%以上3.0%以下と規定する。
In the present invention, the following elements can be further added.
In order to ensure strength, Cu needs to be added at least 0.1% or more, but if it exceeds 3.0%, the toughness decreases. Therefore, the addition amount of Cu is defined as 0.1% or more and 3.0% or less.

Nbは強度確保に有効な元素である。0.005%未満の添加では効果が小さく、0.100%超の添加では靱性の低下を招く。よって、Nbの添加量を0.005%以上0.100%以下と規定する。   Nb is an element effective for securing strength. If the addition is less than 0.005%, the effect is small, and if it exceeds 0.100%, the toughness is lowered. Therefore, the amount of Nb added is defined as 0.005% or more and 0.100% or less.

Vは、強度確保に有効な元素である。0.010%未満の添加では効果が小さく、0.500%超の添加では靱性の低下を招く。よって、Vの添加量を0.010%以上0.500%以下と規定する。   V is an element effective for ensuring the strength. If the addition is less than 0.010%, the effect is small, and if it exceeds 0.500%, the toughness is lowered. Therefore, the addition amount of V is defined as 0.010% or more and 0.500% or less.

Tiは、強度確保に有効な元素である。0.005%未満の添加では効果が小さく、0.500%超の添加では靭性の低下を招く。よって、Tiの添加量を0.005%以上0.500%以下と規定する。   Ti is an element effective for securing strength. If the addition is less than 0.005%, the effect is small, and if it exceeds 0.500%, the toughness is lowered. Therefore, the addition amount of Ti is defined as 0.005% or more and 0.500% or less.

Caは、ノズル閉塞防止に有効な元素である。0.0001%未満の添加ではその効果が小さく、0.0050%超の添加では靭性の低下を招く。よって、Caの添加量を0.0001%以上0.0050%以下と規定する。   Ca is an element effective for preventing nozzle clogging. If the addition is less than 0.0001%, the effect is small, and if the addition exceeds 0.0050%, the toughness is reduced. Therefore, the addition amount of Ca is defined as 0.0001% or more and 0.0050% or less.

Mgは、靱性向上に有効な元素である。0.0001%未満の添加ではその効果が小さく、0.0050%超の添加では靭性の低下を招く。よって、Mgの添加量を0.0001%以上0.0050%以下と規定する。   Mg is an element effective for improving toughness. If the addition is less than 0.0001%, the effect is small, and if the addition exceeds 0.0050%, the toughness is reduced. Therefore, the addition amount of Mg is defined as 0.0001% or more and 0.0050% or less.

REMは、靱性向上に有効な元素である。0.0001%未満の添加ではその効果が小さく、0.0100%超の添加では靭性の低下を招く。よって、REMの添加量を0.0001%以上0.0100%以下と規定する。   REM is an element effective for improving toughness. If the addition is less than 0.0001%, the effect is small, and if the addition exceeds 0.0100%, the toughness is reduced. Therefore, the amount of REM added is specified to be 0.0001% or more and 0.0100% or less.

Zrは、靱性向上に有効な元素である。0.0001%未満の添加ではその効果が小さく、0.0100%超の添加では靭性の低下を招く。よって、Zrの添加量を0.0001%以上0.0100%以下と規定する。   Zr is an element effective for improving toughness. If the addition is less than 0.0001%, the effect is small, and if the addition exceeds 0.0100%, the toughness is reduced. Therefore, the addition amount of Zr is defined as 0.0001% or more and 0.0100% or less.

Bは、焼入性の向上に有効な元素である。0.0002%未満ではその効果が小さく、0.0030%を超える添加では靭性が低下する。よって、Bの添加量を0.0002%以上0.0030%以下と規定する。   B is an element effective for improving hardenability. If it is less than 0.0002%, the effect is small, and if it exceeds 0.0030%, the toughness decreases. Therefore, the addition amount of B is defined as 0.0002% or more and 0.0030% or less.

なお、鋼板および溶接材料を製造する上で、添加合金を含めた使用原料または溶製中に炉材等から溶出する不可避的不純物として混入しうる、Zn、Sn、Sb等も0.002%未満の混入であれば何ら本発明の効果を損なうものではない。   In manufacturing steel sheets and welding materials, Zn, Sn, Sb, etc., which can be mixed as raw materials including additive alloys or unavoidable impurities eluted from furnace materials during melting, are less than 0.002%. If it is mixed, the effect of the present invention is not impaired.

次に本発明の鋼板の製造方法について記載する。鋼板は、連続鋳造で製造されたスラブを前記の方法で熱間圧延する方法で製造されるが、前記以外に、一般的にマルテンサイトを主体とする組織を微細化するために実施する下記の条件も必要になる。鋼片の加熱温度は、1270℃以上ではオーステナイトの粒成長により変態後のマルテンサイトを主体とする組織が粗大化すること、900℃未満では熱間圧延が困難になることから、900℃以上1270℃以下とする。クロス圧延の後に実施する圧延における仕上1パス前温度は、850℃超では未再結晶域圧下が少なくなり、変態後のマルテンサイトを主体とする組織が粗大化すること、600℃未満では熱間圧延が困難になることから、仕上1パス前温度を600℃以上850℃以下とする。   Next, the manufacturing method of the steel plate of this invention is described. The steel sheet is manufactured by the method of hot rolling a slab manufactured by continuous casting by the above method. In addition to the above, the following is generally performed to refine the structure mainly composed of martensite. Conditions are also required. When the heating temperature of the steel slab is 1270 ° C. or higher, the structure mainly composed of martensite after transformation is coarsened by austenite grain growth, and when it is lower than 900 ° C., hot rolling becomes difficult. It shall be below ℃. The temperature before the final pass in the rolling performed after the cross-rolling is over 850 ° C., the unrecrystallization zone pressure decreases, the structure mainly composed of martensite after transformation is coarsened, and the temperature before 600 ° C. is hot Since rolling becomes difficult, the temperature before the final pass is set to 600 ° C. or higher and 850 ° C. or lower.

圧延後はすみやかに水冷を行い、鋼板を600℃以上かつ750℃以下に加熱した後冷却を行う中間熱処理を行い、さらに鋼板を500℃以上かつ650℃以下に加熱した後冷却する焼戻しを行う。
前記熱処理により、最適温度に焼戻された焼戻しマルテンサイトを主体として、残部が安定なオーステナイトからなる組織とすることができ、靭性が向上する。
After rolling, water cooling is performed immediately, the steel sheet is heated to 600 ° C. or higher and 750 ° C. or lower and then subjected to intermediate heat treatment, and further, the steel sheet is heated to 500 ° C. or higher and 650 ° C. or lower and then tempered to cool.
By the heat treatment, a structure composed mainly of tempered martensite tempered to an optimum temperature and the balance of stable austenite can be obtained, and toughness is improved.

種々の化学成分、製造条件で製造した板厚15、50mmの鋼板について、引張試験およびシャルピー衝撃試験を実施した。鋼板の化学成分、アルミナクラスター指数、有効結晶粒径、板厚、熱間圧延条件、熱処理条件、機械的特性の評価結果を表1−1、表1−2(表1−1続き)に示す。引張試験はJIS Z 2241に記載の金属材料引張試験方法に基づいて行った。試験片は、板厚の1/4だけ鋼板表面から内部に入った部位において、試験片の長手方向が圧延方向と垂直になるように採取した。常温で2本の試験を行い、引張強さの平均値が690MPa以上830MPa以下を合格とした。シャルピー衝撃試験は、2mmVノッチ試験片のフルサイズ試験片を、板厚の1/4だけ鋼板表面から内部に入った部位において、試験片の長手方向が圧延方向と垂直になるように、またノッチの前縁を結ぶ線が板厚方向に平行になるように採取した。試験温度−196℃で3本の試験を行い、3本の平均値が150J以上を合格とした。実施例1〜30に示すように、本発明に規定した成分および製造方法で鋼板を製造することにより、優れた靭性の鋼板が得られた。   Tensile tests and Charpy impact tests were carried out on steel plates with thicknesses of 15 and 50 mm manufactured under various chemical components and manufacturing conditions. Table 1-1 and Table 1-2 (Table 1-1 continued) show the evaluation results of chemical composition, alumina cluster index, effective crystal grain size, plate thickness, hot rolling conditions, heat treatment conditions, and mechanical properties of the steel sheet. . The tensile test was performed based on the metal material tensile test method described in JIS Z 2241. The test piece was sampled so that the longitudinal direction of the test piece was perpendicular to the rolling direction at a site that entered the steel plate surface by ¼ of the plate thickness. Two tests were performed at room temperature, and an average tensile strength of 690 MPa or more and 830 MPa or less was determined to be acceptable. In the Charpy impact test, a full-size test piece of 2 mm V notch test piece was placed at a position where 1/4 of the plate thickness entered from the surface of the steel plate so that the longitudinal direction of the test piece was perpendicular to the rolling direction. The line connecting the leading edges of the samples was taken so as to be parallel to the thickness direction. Three tests were conducted at a test temperature of -196 ° C, and the average value of the three samples was determined to be 150 J or higher. As shown in Examples 1-30, the steel plate of the outstanding toughness was obtained by manufacturing a steel plate with the component and manufacturing method which were prescribed | regulated to this invention.

以上の実施例から、本発明により製造された鋼材である実施例1〜30の鋼板は、靭性に優れた鋼材であることは明白である。   From the above examples, it is clear that the steel plates of Examples 1 to 30 which are steel materials manufactured according to the present invention are steel materials having excellent toughness.

Claims (4)

鋼が、質量%で、
C :0.03%以上かつ0.10%以下、
Si:0.02%以上かつ0.40%以下、
Mn:0.3%以上かつ1.2%以下、
Ni:5.0%以上かつ8.0%未満、
Cr:0.4%以上かつ1.5%以下、
Mo:0.02%以上かつ0.40%以下、
Al:0.010%以上かつ0.080%以下、
T−O:0.0001%以上かつ0.0030%以下を含有し、
P:0.0010%以上0.0100%以下、
S:0.0001%以上0.0035%以下、
N:0.0005%以上0.0070%以下を含有し、残部がFe及び不可避的不純物からなり、アルミナクラスター指数が0.030以下であり、有効結晶粒径が7.0μm以下であることを特徴とする低温用ニッケル鋼板。
Steel is mass%
C: 0.03% or more and 0.10% or less,
Si: 0.02% or more and 0.40% or less,
Mn: 0.3% or more and 1.2% or less,
Ni: 5.0% or more and less than 8.0%,
Cr: 0.4% or more and 1.5% or less,
Mo: 0.02% or more and 0.40% or less,
Al: 0.010% or more and 0.080% or less,
T-O: 0.0001% or more and 0.0030% or less,
P: 0.0010% or more and 0.0100% or less,
S: 0.0001% to 0.0035%,
N: 0.0005% or more and 0.0070% or less, the balance being made of Fe and inevitable impurities, the alumina cluster index being 0.030 or less, and the effective crystal grain size being 7.0 μm or less Low temperature nickel steel sheet.
さらに、
Cu:0.1%以上かつ3%以下、
Nb:0.005%以上0.100%以下、
V:0.010%以上0.500%以下、
Ti:0.005%以上0.500%以下、
Ca:0.0001%以上0.0050%以下、
Mg:0.0001%以上0.0050%以下、
REM:0.0001%以上0.0100%以下、
Zr:0.0001%以上0.0100%以下、
B:0.0002%以上0.0030%以下の1種または2種以上を含有することを特徴とする請求項1に記載の低温用ニッケル鋼鈑。
further,
Cu: 0.1% or more and 3% or less,
Nb: 0.005% or more and 0.100% or less,
V: 0.010% to 0.500%,
Ti: 0.005% or more and 0.500% or less,
Ca: 0.0001% to 0.0050%,
Mg: 0.0001% or more and 0.0050% or less,
REM: 0.0001% or more and 0.0100% or less,
Zr: 0.0001% or more and 0.0100% or less,
B: The nickel steel plate for low temperature of Claim 1 containing 1 type (s) or 2 or more types of 0.0002% or more and 0.0030% or less.
鋼が、質量%で、
C :0.03%以上かつ0.10%以下、
Si:0.02%以上かつ0.40%以下、
Mn:0.3%以上かつ1.2%以下、
Ni:5.0%以上かつ8.0%未満、
Cr:0.4%以上かつ1.5%以下、
Mo:0.02%以上かつ0.40%以下、
Al:0.010%以上かつ0.080%以下、
T−O:0.0001%以上かつ0.0030%以下を含有し、
P:0.0010%以上0.0100%以下、
S:0.0001%以上0.0035%以下、
N:0.0005%以上0.0070%以下を含有し、残部がFe及び不可避的不純物からなるスラブを900℃以上1270℃以下に加熱したのちに熱間圧延を行い、当該の熱間圧延の全圧下率を0.65以上、熱間圧延のうち圧延幅方向に行うクロス圧延の圧下率を0.1以上0.6以下、クロス圧延の温度範囲を800℃以上1000℃以下、仕上1パス前温度を600℃以上850℃以下として、圧延後すみやかに水冷を行い、鋼板を600℃以上かつ750℃以下に加熱した後冷却を行う中間熱処理を行い、さらに鋼板を500℃以上かつ650℃以下に加熱した後冷却する焼戻しを行うことを特徴とする低温用ニッケル鋼板の製造方法。
Steel is mass%
C: 0.03% or more and 0.10% or less,
Si: 0.02% or more and 0.40% or less,
Mn: 0.3% or more and 1.2% or less,
Ni: 5.0% or more and less than 8.0%,
Cr: 0.4% or more and 1.5% or less,
Mo: 0.02% or more and 0.40% or less,
Al: 0.010% or more and 0.080% or less,
T-O: 0.0001% or more and 0.0030% or less,
P: 0.0010% or more and 0.0100% or less,
S: 0.0001% to 0.0035%,
N: 0.0005% or more and 0.0070% or less, and the remaining slab composed of Fe and inevitable impurities is heated to 900 ° C. or more and 1270 ° C. or less, and then hot-rolled. The total rolling reduction is 0.65 or more, the rolling reduction of the cross rolling performed in the rolling width direction in the hot rolling is 0.1 to 0.6, the temperature range of the cross rolling is 800 ° C. or more and 1000 ° C. or less, and the finish is 1 pass. The pre-temperature is set to 600 ° C. or higher and 850 ° C. or lower, and immediately after rolling, water cooling is performed, the steel sheet is heated to 600 ° C. or higher and 750 ° C. or lower, and then subjected to intermediate heat treatment. A method for producing a nickel steel sheet for low temperature, characterized by performing tempering after heating to cooling.
さらに、
Cu:0.1%以上かつ3%以下、
Nb:0.005%以上0.100%以下、
V:0.010%以上0.500%以下、
Ti:0.005%以上0.500%以下、
Ca:0.0001%以上0.0050%以下、
Mg:0.0001%以上0.0050%以下、
REM:0.0001%以上0.0100%以下、
Zr:0.0001%以上0.0100%以下、
B:0.0002%以上0.0030%以下の1種または2種以上を含有することを特徴とする請求項3に記載の低温用ニッケル鋼板の製造方法。
further,
Cu: 0.1% or more and 3% or less,
Nb: 0.005% or more and 0.100% or less,
V: 0.010% to 0.500%,
Ti: 0.005% or more and 0.500% or less,
Ca: 0.0001% to 0.0050%,
Mg: 0.0001% or more and 0.0050% or less,
REM: 0.0001% or more and 0.0100% or less,
Zr: 0.0001% or more and 0.0100% or less,
B: One or two or more types of 0.0002% or more and 0.0030% or less are contained, The manufacturing method of the low-temperature nickel steel plate of Claim 3 characterized by the above-mentioned.
JP2016048151A 2016-03-11 2016-03-11 Method for manufacturing low temperature nickel steel sheet Active JP6693185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016048151A JP6693185B2 (en) 2016-03-11 2016-03-11 Method for manufacturing low temperature nickel steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016048151A JP6693185B2 (en) 2016-03-11 2016-03-11 Method for manufacturing low temperature nickel steel sheet

Publications (2)

Publication Number Publication Date
JP2017160510A true JP2017160510A (en) 2017-09-14
JP6693185B2 JP6693185B2 (en) 2020-05-13

Family

ID=59857678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016048151A Active JP6693185B2 (en) 2016-03-11 2016-03-11 Method for manufacturing low temperature nickel steel sheet

Country Status (1)

Country Link
JP (1) JP6693185B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017160512A (en) * 2016-03-11 2017-09-14 新日鐵住金株式会社 Nickel-containing steel sheet for low temperature excellent in tensile strength and toughness and manufacturing method therefor
WO2019082326A1 (en) * 2017-10-26 2019-05-02 新日鐵住金株式会社 Nickel-containing steel for low-temperature use
WO2019082322A1 (en) * 2017-10-26 2019-05-02 新日鐵住金株式会社 Nickel-containing steel for low-temperature use
CN110129676A (en) * 2019-05-27 2019-08-16 南京钢铁股份有限公司 A kind of LNG storage tank 7Ni steel plate and production technology
CN110129685A (en) * 2019-05-22 2019-08-16 南京钢铁股份有限公司 A kind of manufacturing method of ultra-low temperature container 7Ni steel thick plate
WO2019239761A1 (en) * 2018-06-12 2019-12-19 Jfeスチール株式会社 Cryogenic high-tensile thick steel sheet and method for producing same
EP3699310A4 (en) * 2018-12-27 2021-03-31 Nippon Steel Corporation Nickel-containing steel sheet
US11371126B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
US11384416B2 (en) 2017-10-26 2022-07-12 Nippon Steel Corporation Nickel-containing steel for low temperature

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017160512A (en) * 2016-03-11 2017-09-14 新日鐵住金株式会社 Nickel-containing steel sheet for low temperature excellent in tensile strength and toughness and manufacturing method therefor
CN111247263A (en) * 2017-10-26 2020-06-05 日本制铁株式会社 Nickel-containing steel for low temperature use
WO2019082322A1 (en) * 2017-10-26 2019-05-02 新日鐵住金株式会社 Nickel-containing steel for low-temperature use
US11578394B2 (en) 2017-10-26 2023-02-14 Nippon Steel Corporation Nickel-containing steel for low temperature
US11578391B2 (en) 2017-10-26 2023-02-14 Nippon Steel Corporation Nickel-containing steel for low temperature
WO2019082326A1 (en) * 2017-10-26 2019-05-02 新日鐵住金株式会社 Nickel-containing steel for low-temperature use
CN111247263B (en) * 2017-10-26 2021-12-28 日本制铁株式会社 Nickel-containing steel for low temperature use
US11384416B2 (en) 2017-10-26 2022-07-12 Nippon Steel Corporation Nickel-containing steel for low temperature
JPWO2019082322A1 (en) * 2017-10-26 2020-11-05 日本製鉄株式会社 Nickel-containing steel for low temperature
JPWO2019082326A1 (en) * 2017-10-26 2020-11-05 日本製鉄株式会社 Nickel-containing steel for low temperature
US11371121B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
US11371127B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
US11371126B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
WO2019239761A1 (en) * 2018-06-12 2019-12-19 Jfeスチール株式会社 Cryogenic high-tensile thick steel sheet and method for producing same
CN112236539B (en) * 2018-06-12 2022-03-01 杰富意钢铁株式会社 High-tensile thick steel plate for extremely low temperature and method for producing same
CN112236539A (en) * 2018-06-12 2021-01-15 杰富意钢铁株式会社 High-tensile thick steel plate for extremely low temperature and method for producing same
JPWO2019239761A1 (en) * 2018-06-12 2020-06-25 Jfeスチール株式会社 High tensile strength steel plate for cryogenic temperature and method of manufacturing the same
EP3699310A4 (en) * 2018-12-27 2021-03-31 Nippon Steel Corporation Nickel-containing steel sheet
CN110129685B (en) * 2019-05-22 2020-11-20 南京钢铁股份有限公司 Manufacturing method of 7Ni steel thick plate for ultra-low temperature container
CN110129685A (en) * 2019-05-22 2019-08-16 南京钢铁股份有限公司 A kind of manufacturing method of ultra-low temperature container 7Ni steel thick plate
CN110129676A (en) * 2019-05-27 2019-08-16 南京钢铁股份有限公司 A kind of LNG storage tank 7Ni steel plate and production technology

Also Published As

Publication number Publication date
JP6693185B2 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
JP5522084B2 (en) Thick steel plate manufacturing method
JP6693185B2 (en) Method for manufacturing low temperature nickel steel sheet
JP6418358B1 (en) High Mn steel sheet and method for producing the same
JP5574059B2 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
US10358688B2 (en) Steel plate and method of producing same
JP5278188B2 (en) Thick steel plate with excellent resistance to hydrogen-induced cracking and brittle crack propagation
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
KR101828199B1 (en) Abrasion-resistant steel plate and method for manufacturing the same
JP5418251B2 (en) Manufacturing method of thick-walled high-tensile hot-rolled steel sheet with excellent HIC resistance
JP6763141B2 (en) Manufacturing method of steel plate for LPG tank
JP5499731B2 (en) Thick high-tensile hot-rolled steel sheet with excellent HIC resistance and method for producing the same
JP2008184638A (en) Thick high tensile strength steel plate, and method for producing the same
JP6492862B2 (en) Low temperature thick steel plate and method for producing the same
WO2014175122A1 (en) H-shaped steel and method for producing same
JP5082667B2 (en) High-strength thick steel plate with excellent arrest properties and method for producing the same
JP2013095928A (en) High tensile strength steel sheet excellent in toughness and manufacturing method thereof
JP2015190019A (en) High toughness high ductility high strength hot rolled steel sheet and production method therefor
JP2017150067A (en) Steel sheet excellent in brittleness crack propagation arrest property and manufacturing method therefor
JP6610352B2 (en) Low temperature nickel-containing steel sheet with excellent tensile strength and toughness and method for producing the same
JP2014177687A (en) High tensile steel plate excellent in drop-weight characteristic and its manufacturing method
WO2019180499A1 (en) A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof
CN111051555B (en) Steel sheet and method for producing same
JP6693186B2 (en) Method for producing low-temperature nickel-containing steel sheet excellent in tensile strength and toughness
JP7048378B2 (en) High strength and high ductility steel sheet
JP2019081929A (en) Nickel-containing steel plate and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R151 Written notification of patent or utility model registration

Ref document number: 6693185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151