JP2013095928A - High tensile strength steel sheet excellent in toughness and manufacturing method thereof - Google Patents

High tensile strength steel sheet excellent in toughness and manufacturing method thereof Download PDF

Info

Publication number
JP2013095928A
JP2013095928A JP2011236816A JP2011236816A JP2013095928A JP 2013095928 A JP2013095928 A JP 2013095928A JP 2011236816 A JP2011236816 A JP 2011236816A JP 2011236816 A JP2011236816 A JP 2011236816A JP 2013095928 A JP2013095928 A JP 2013095928A
Authority
JP
Japan
Prior art keywords
less
plate thickness
steel
center
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011236816A
Other languages
Japanese (ja)
Other versions
JP5741379B2 (en
Inventor
Takahiro Kamo
孝浩 加茂
Shuichi Suzuki
秀一 鈴木
Yoshiaki Shintaku
祥晃 新宅
Genki Inokari
玄樹 猪狩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011236816A priority Critical patent/JP5741379B2/en
Publication of JP2013095928A publication Critical patent/JP2013095928A/en
Application granted granted Critical
Publication of JP5741379B2 publication Critical patent/JP5741379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high tensile strength steel sheet excellent in toughness in which yield strength is 400 MPa or more, CTOD value is 0.3 mm or more, and sheet thickness is 40 mm or more, and a manufacturing method thereof.SOLUTION: The high tensile strength steel sheet excellent in toughness has a chemical composition containing, by mass%, 0.01-0.08% of C, 0.01-0.3% of Si, 1.0-2.0% of Mn, 0.012% or less of P, 0.005% or less of S, 0.8-2.0% of Cu, 0.1-2.5% of Ni, 0.01-0.5% of Cr, 0.005-0.03% of Ti, 0.001-0.050% of Al, 0.001-0.01% of N, and the balance being Fe and impurities including 0.001% or less of Nb, 0.0003% or less of B, and 0.003% or less of O, wherein the ferrite fraction with a grain size of 20 μm or less in the sheet thickness center is 60% or more, the area ratio of an island-like martensite structure in the sheet thickness center is 4.0% or less, the amount of inclusion in the sheet thickness center is 0.020% or less by JIS G 0555 point counting method, the C content in the sheet thickness center is 0.12% or less, and yield strength in the sheet thickness center is 400 MPa or more.

Description

本発明は、靭性に優れた高張力鋼板とその製造方法に関する。より詳しくは、高度の安全性が要求される海洋構造物や低温ガス貯蔵タンクなど大形鉄鋼構造物用途に好適な、降伏強度400MPa以上、板厚40mm以上の高張力鋼板及びその製造方法に関する。   The present invention relates to a high-tensile steel plate having excellent toughness and a method for producing the same. More specifically, the present invention relates to a high-tensile steel plate having a yield strength of 400 MPa or more and a plate thickness of 40 mm or more, and a method for producing the same, suitable for large steel structures such as offshore structures and low-temperature gas storage tanks that require a high degree of safety.

近年エネルギー需要が益々増加の傾向にあり、海底石油資源の探索が活発化している。これらに使用される構造物は例えば、プラットフォーム、ジャッキアップリグのように大型化しており、これに伴い使用鋼材が厚肉化し、より安全性の確保が重要な課題である。   In recent years, energy demand has been increasing, and search for offshore oil resources has become active. The structures used for these are, for example, larger in size such as platforms and jack-up rigs, and as a result, the steel materials used become thicker, and ensuring safety is an important issue.

前記のような大型構造物では降伏強度400MPa以上の高強度の鋼材が用いられ、その板厚も100mmを超える極厚高張力鋼が用いられることがある。   In such a large structure, a high-strength steel material having a yield strength of 400 MPa or more is used, and an ultra-thick high-tensile steel having a plate thickness exceeding 100 mm may be used.

また、海底石油資源の探索地域が近年寒冷地や大水深域へと移っており、それらの海域で稼動する海洋構造物は極めて厳しい気象・海洋条件に晒される。このため、これらの鋼材には、例えば−40℃以下という非常に厳しい低温域での靭性が要求されると共に、溶接性も当然要求される。   In addition, search areas for submarine oil resources have recently moved to cold regions and deep waters, and offshore structures operating in those regions are exposed to extremely severe weather and ocean conditions. For this reason, these steel materials are required to have toughness in a very severe low temperature range of, for example, −40 ° C. or lower, and of course weldability.

さらに、安全性の面からもユーザーの検査基準は厳しく、母材、溶接部ともに従来のシャルピー衝撃値の規定に加え、最低使用温度におけるCTOD(Crack tip Opening displacement:き裂先端開口変位)値も規定されるようになってきている。すなわち、10mm各に切断採取する微小評価試験であるシャルピー試験で安定した特性を得た場合であっても、全厚のCTOD試験では特性を満足できない場合が多く発生している。   In addition, the inspection standards for users are strict from the viewpoint of safety. In addition to the conventional Charpy impact values for both the base metal and welded parts, the CTOD (Crack tip Opening displacement) value at the minimum operating temperature is also included. It is becoming regulated. That is, even when stable characteristics are obtained by the Charpy test, which is a micro evaluation test cut and sampled at 10 mm intervals, there are many cases where the characteristics cannot be satisfied by the full thickness CTOD test.

例えば、特許文献1には、低温での溶接部靱性に優れた高張力鋼に係る発明が開示されている。特許文献1に記載の発明は、300kJ/cm以上の大入熱溶接が可能な、溶接性に優れた降伏応力420N/mm以上の高張力鋼に主眼を置いており、N/Al比をコントロールすると共にある程度粗大化させたCu粒子を均一に分散させることを特徴とする。しかしながら、全厚のCTOD特性は特性を満足できない場合がある。 For example, Patent Document 1 discloses an invention related to high-tensile steel excellent in weld zone toughness at low temperatures. The invention described in Patent Document 1 focuses on high-tensile steel with yield stress of 420 N / mm 2 or more, which is capable of high heat input welding of 300 kJ / cm or more and has excellent weldability, and has an N / Al ratio of It is characterized by uniformly dispersing Cu particles which are controlled and coarsened to some extent. However, the full thickness CTOD characteristic may not satisfy the characteristic.

国際公開WO2005/052205号明細書International Publication WO2005 / 052205 Specification

本発明は、上記現状に鑑みてなされたもので、その目的は、高度の安全性が要求される海洋構造物などの大形鉄鋼構造物用途に好適な、降伏強度400MPa以上、CTOD値0.3mm以上、板厚40mm以上の靭性に優れた高張力鋼板およびその製造方法を提供することである。   The present invention has been made in view of the above-mentioned present situation, and its object is to provide a yield strength of 400 MPa or more, a CTOD value of 0. 0, which is suitable for use in large steel structures such as offshore structures that require high safety. It is to provide a high-tensile steel plate excellent in toughness of 3 mm or more and a plate thickness of 40 mm or more and a method for producing the same.

本発明者らは、海洋構造物に適した溶接性と靱性に優れた厚肉高強度鋼板を開発することを目的に、鋼成分およびその製造方法について種々の実験を行なった結果、以下の(a)〜(c)に示す知見を得た。   The present inventors conducted various experiments on steel components and production methods for the purpose of developing a thick high-strength steel plate excellent in weldability and toughness suitable for offshore structures. The findings shown in a) to (c) were obtained.

(a) 化学成分の調整
全厚のCTOD特性を安定化させるには、添加合金成分の調整が重要である。特に、海洋構造物用鋼材においては、極小入熱時のHAZ硬化が課題となる。これを解消するため、C、Mn、Cr、Mo、Cu、Ni等の添加量調整により焼入性を最適化することが重要であるが、特に、Nb、Bの低減が重要であることを明らかにした。Nbは制御圧延時の細粒化に有効な元素であり、Bは大入熱溶接時の溶接熱影響部靭性の特性安定化に有効であるが、極小入熱時の特性安定化のためには、積極添加を避けるのみならず、それぞれを不純物としても極力低減することが重要である。
(a) Adjustment of chemical composition In order to stabilize the CTOD characteristics of the full thickness, it is important to adjust the additive alloy composition. In particular, in steel materials for offshore structures, HAZ hardening at the minimum heat input becomes a problem. In order to eliminate this, it is important to optimize the hardenability by adjusting the amount of addition of C, Mn, Cr, Mo, Cu, Ni, etc. In particular, it is important to reduce Nb and B. Revealed. Nb is an element effective for fine graining during controlled rolling, and B is effective for stabilizing the properties of weld heat affected zone toughness during high heat input welding, but for stabilizing properties during minimal heat input. It is important not only to avoid positive addition, but also to reduce each of them as impurities as much as possible.

(b) 板厚中心部の組織、偏析、非金属在物の制御
全厚のCTOD特性を安定化させるには、添加合金成分の調整のみでは不十分であり、板厚中心部における偏析、介在物の制御が不可欠である。これは、構造用鋼に一般的に適用される連続鋳造においては最終凝固部である板厚中心部に偏析および非金属介在物が形成され、これが破壊の起点になる多めに全厚のCTOD特性が不安定となるためである。このため、鋼材の添加化学成分の調整に加え、板厚中心部における組織、C偏析、M−A量、非金属在物の制御の制御が必要である。
(b) Control of the structure, segregation, and non-metallic inclusions in the center of the plate thickness In order to stabilize the CTOD characteristics of the total thickness, it is not sufficient to adjust the additive alloy components alone. Control of things is essential. This is because, in continuous casting generally applied to structural steel, segregation and non-metallic inclusions are formed at the center of the plate thickness, which is the final solidified part, and this is the starting point of fracture, so the CTOD characteristics of the full thickness This is because becomes unstable. For this reason, in addition to the adjustment of the chemical component added to the steel material, it is necessary to control the control of the structure, C segregation, MA amount, and non-metallic presence in the center of the plate thickness.

(c) 上記(a)および(b)を満たす鋼材において、40mm以上の厚肉材で板厚中心部まで降伏強度が400MPa以上の高強度と全厚のCTOD特性を満足するには、鋼材の製造方法も重要となる。Nb、Bを含有しない成分系での高強度-高靭性確保には厳格な制御圧延が必要となる。すなわち、板厚中心部までできるだけ多くの微細フェライトを分散させた上で、強度確保のためにε−Cu粒子を時効析出させることで高強度化を図る手段が有効である。このために加熱圧延条件および水冷条件を厳格に制御する必要がある。   (c) In the steel material satisfying the above (a) and (b), in order to satisfy the CTOD characteristics of the steel plate satisfying the high strength with a yield strength of 400 MPa or more and the total thickness up to the center of the plate thickness with a thick material of 40 mm or more, The manufacturing method is also important. Strict controlled rolling is required to ensure high strength and high toughness in a component system that does not contain Nb and B. That is, it is effective to increase the strength by dispersing as much fine ferrite as possible to the center of the plate thickness and then age-depositing ε-Cu particles to ensure the strength. For this reason, it is necessary to strictly control the heating and rolling conditions and the water cooling conditions.

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記(1)〜(5)に示す高張力鋼板及び(6)に示す高張力鋼板の製造方法にある。   The present invention has been completed based on the above findings, and the gist thereof resides in the high-tensile steel plate shown in the following (1) to (5) and the method for producing the high-tensile steel plate shown in (6).

(1) 質量%で、C:0.01〜0.08%、Si:0.01〜0.3%、Mn:1.0〜2.0%、P:0.012%以下、S:0.005%以下、Cu:0.8〜2.0%、Ni:0.1〜2.5%、Cr:0.01〜0.5%、Ti:0.005〜0.03%、Al:0.001〜0.050%及びN:0.001〜0.01%を含有し、残部はFe及び不純物からなり、不純物中のNb:0.001%以下、B:0.0003%以下、O:0.003%以下である化学組成を有し、板厚中心部における結晶粒径20μm以下のフェライト分率が60%以上、板厚中心部における島状マルテンサイト組織の面積率が4.0%以下、板厚中心部における介在物量が、JIS G 0555における点算法にて0.020%以下、板厚中心部におけるC含有量が0.12%以下であることを特徴とする、板厚中心部の降伏強度が400MPa以上の靭性に優れた高張力鋼板。   (1) By mass%, C: 0.01 to 0.08%, Si: 0.01 to 0.3%, Mn: 1.0 to 2.0%, P: 0.012% or less, S: 0.005% or less, Cu: 0.8-2.0%, Ni: 0.1-2.5%, Cr: 0.01-0.5%, Ti: 0.005-0.03%, Al: 0.001 to 0.050% and N: 0.001 to 0.01%, with the balance being Fe and impurities, Nb in impurities: 0.001% or less, B: 0.0003% Hereinafter, O: having a chemical composition of 0.003% or less, a ferrite fraction having a crystal grain size of 20 μm or less in the center portion of the plate thickness is 60% or more, and an area ratio of the island martensite structure in the center portion of the plate thickness is 4.0% or less, the amount of inclusions at the center of the plate thickness is 0.020% or less according to the point method in JIS G 0555, and at the center of the plate thickness. High-tensile steel sheet that C content is equal to or less than 0.12%, the yield strength of the center of plate thickness and excellent more toughness 400 MPa.

(2) Feの一部に代えて、質量%で、Mo:0.5%以下、V:0.05%以下から選択される1種以上を含有することを特徴とする上記(1)の高張力鋼板。   (2) Instead of a part of Fe, by mass%, it contains at least one selected from Mo: 0.5% or less, V: 0.05% or less. High tensile steel plate.

(3) Feの一部に代えて、質量%で、Sn:0.50%以下を含有することを特徴とする上記(1)または(2)の高張力鋼板。   (3) The high-tensile steel sheet according to (1) or (2) above, which contains Sn: 0.50% or less in mass% instead of part of Fe.

(4) Feの一部に代えて、質量%で、Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下から選択される1種以上を含有することを特徴とする上記(1)〜(3)のいずれかの高張力鋼板。   (4) Instead of a part of Fe, by mass%, it contains at least one selected from Ca: 0.005% or less, Mg: 0.005% or less, REM: 0.005% or less. The high-tensile steel plate according to any one of (1) to (3) above.

(5) 上記(1)〜(4)のいずれかの化学組成を有するスラブを、900〜1180℃の温度域に加熱し、700〜800℃の温度域で累積圧下率50%以上の熱間圧延を施し、700℃以上の温度で圧延を終了し、650℃以上の温度域から水冷を開始し、500℃以下になるまで、板厚の1/4の位置における平均冷却速度5℃/sec以上で水冷し、その後、550〜670℃の温度域に再加熱することを特徴とする、板厚中心部の降伏強度が400MPa以上の靱性に優れた高張力鋼板の製造方法。   (5) A slab having the chemical composition of any one of the above (1) to (4) is heated to a temperature range of 900 to 1180 ° C., and a hot reduction of 50% or more in the temperature range of 700 to 800 ° C. Rolling is completed, rolling is finished at a temperature of 700 ° C. or higher, water cooling is started from a temperature range of 650 ° C. or higher, and an average cooling rate at a position of 1/4 of the sheet thickness is 5 ° C./sec until the temperature becomes 500 ° C. or lower. A method for producing a high-tensile steel sheet excellent in toughness with a yield strength of 400 MPa or more, characterized in that it is cooled with water and then reheated to a temperature range of 550 to 670 ° C.

本発明によれば、降伏強度400MPa以上、CTOD値0.3mm以上、板厚40mm以上の靭性に優れた高張力鋼板およびその製造方法を提供することができる。   According to the present invention, it is possible to provide a high-tensile steel plate excellent in toughness having a yield strength of 400 MPa or more, a CTOD value of 0.3 mm or more, and a plate thickness of 40 mm or more, and a method for producing the same.

以下、本発明について詳細に説明する。まず、本発明を上記のような鋼成分に限定した理由を述べる。   Hereinafter, the present invention will be described in detail. First, the reason why the present invention is limited to the steel components as described above will be described.

(A)鋼板の化学組成
C:0.01〜0.08%
Cは、鋼材の強度確保に有効な元素である一方、多すぎると島状マルテンサイトを生成して母材および溶接熱影響部の靭性を劣化させる。このため添加量を0.01〜0.08%とした。C含有量の好ましい下限は0.02%であり、C含有量の好ましい上限は0.05%である。
(A) Chemical composition of steel plate C: 0.01 to 0.08%
C is an element effective for ensuring the strength of the steel material. On the other hand, if it is too large, island-shaped martensite is generated and the toughness of the base material and the weld heat affected zone is deteriorated. For this reason, the addition amount was set to 0.01 to 0.08%. A preferable lower limit of the C content is 0.02%, and a preferable upper limit of the C content is 0.05%.

Si:0.01〜0.3%
Siは溶鋼の予備脱酸に有効な元素であるが、セメンタイト中に固溶しないため、多量に添加されると未変態オーステナイト粒がフェライト粒とセメンタイトに分解するのを阻害し、島状マルテンサイトの生成を助長する。これらの理由から、Siの添加量は、0.01〜0.3%とする。Si含有量の好ましい下限は0.05%であり、Si含有量の好ましい上限は0.2%である。
Si: 0.01 to 0.3%
Si is an effective element for preliminary deoxidation of molten steel, but since it does not dissolve in cementite, when added in a large amount, it inhibits the decomposition of untransformed austenite grains into ferrite grains and cementite, resulting in island martensite. Contributes to the generation of For these reasons, the addition amount of Si is set to 0.01 to 0.3%. A preferable lower limit of the Si content is 0.05%, and a preferable upper limit of the Si content is 0.2%.

Mn:1.0〜2.0%
Mnは強度確保に必要な元素であるとともに、脱酸剤としても有効な元素である。しかし、Mnの過剰な添加は、焼入れ性を過剰に増加させ溶接性およびHAZ靱性を劣化させる。さらに、Mnは中心偏析を助長する元素としてしられているので、中心偏析抑制の観点からはその含有量を抑制する必要がある。したがってMnの含有量は1.0〜2.0%とする。Mn含有量の好ましい下限は1.3%であり、Mn含有量の好ましい上限は1.8%である。
Mn: 1.0-2.0%
Mn is an element necessary for ensuring strength and is also an effective element as a deoxidizer. However, excessive addition of Mn excessively increases hardenability and degrades weldability and HAZ toughness. Furthermore, since Mn is an element that promotes center segregation, it is necessary to suppress its content from the viewpoint of suppressing center segregation. Therefore, the Mn content is set to 1.0 to 2.0%. The minimum with preferable Mn content is 1.3%, and the preferable upper limit of Mn content is 1.8%.

P:0.012%以下
Pは鋼に不可避的に含有される不純物元素であり、粒界偏析元素であるためにHAZにおける粒界割れの原因となる。さらに母材靱性、溶接金属部とHAZの靱性を向上させ、スラブ中心偏析も低減させるためには、その含有量は0.012%以下とする。好ましくは0.010%以下である。
P: 0.012% or less P is an impurity element inevitably contained in steel, and because it is a grain boundary segregation element, it causes grain boundary cracking in HAZ. Furthermore, in order to improve the toughness of the base metal, the weld metal part and the HAZ, and to reduce the slab center segregation, the content is made 0.012% or less. Preferably it is 0.010% or less.

S:0.005%以下
Sは多量に存在する場合、溶接割れ起点となるMnS単体の析出物を生成し、特に最終凝固部である板厚中心部の清浄度を劣化させる。このため含有量を0.005%以下とする。好ましくは0.002%以下である。
S: 0.005% or less When S is present in a large amount, a precipitate of MnS as a starting point for weld cracking is generated, and in particular, the cleanliness of the central portion of the plate thickness, which is the final solidified portion, is deteriorated. For this reason, content is made into 0.005% or less. Preferably it is 0.002% or less.

Cu:0.8〜2.0%
Cuは鋼材の強度および靱性を高める効果があるが、HAZ靱性に対する悪影響も少ない。特に、時効処理時のε−Cu析出による強度上昇効果を期待する上で0.8%以上必要である。しかし、Cu含有量が高くなると溶接高温割れ感受性が高くなり、予熱などの溶接施工が複雑になるため、その含有量は2.0%以下とする。Cu含有量の好ましい下限は0.9%であり、Cu含有量の好ましい上限は1.2%である。
Cu: 0.8 to 2.0%
Cu has an effect of increasing the strength and toughness of the steel material, but has little adverse effect on the HAZ toughness. In particular, 0.8% or more is necessary in order to expect the effect of increasing the strength due to ε-Cu precipitation during the aging treatment. However, if the Cu content is increased, the sensitivity to hot cracking of the weld is increased, and welding work such as preheating is complicated. Therefore, the content is set to 2.0% or less. A preferable lower limit of the Cu content is 0.9%, and a preferable upper limit of the Cu content is 1.2%.

Ni:0.1〜2.5%
NiはCuと同様に鋼材の強度および靱性を高め、さらにHAZ靱性を高めるための有効な元素であるが、過剰に添加してもコストアップに見合うだけの効果を得ることができないため、Niの含有量を 0.1〜2.5%とした。Ni含有量の好ましい下限は0.2%であり、Ni含有量の好ましい上限は1.5%である。
Ni: 0.1 to 2.5%
Ni is an effective element for increasing the strength and toughness of the steel material as well as Cu, and further increasing the HAZ toughness. The content was set to 0.1 to 2.5%. The preferable lower limit of the Ni content is 0.2%, and the preferable upper limit of the Ni content is 1.5%.

Cr:0.01〜0.5%
Crは、鋼材の強度を高める効果があるが、過剰に添加すると母材靱性や溶接性の劣化を招く。したがって、含有量を0.01〜0.5%とした。Cr含有量の好ましい下限は0.1%であり、Cr含有量の好ましい上限は0.3%である。
Cr: 0.01 to 0.5%
Cr has an effect of increasing the strength of the steel material, but if added excessively, the base material toughness and weldability are deteriorated. Therefore, the content is set to 0.01 to 0.5%. A preferable lower limit of the Cr content is 0.1%, and a preferable upper limit of the Cr content is 0.3%.

Ti:0.005〜0.03%
Tiは、オーステナイト粒の微細化のために不可欠な元素である。また、連続鋳造鋳片の横ひび割れを防止する上でもその添加が不可欠である。しかし、過剰に添加すると母材靱性やHAZの靱性が著しく損なわれる。したがって、Tiの含有量を0.005〜0.03%とした。Ti含有量の好ましい下限は0.01%であり、Ti含有量の好ましい上限は0.015%である。
Ti: 0.005 to 0.03%
Ti is an essential element for refining austenite grains. Moreover, the addition is indispensable also in preventing the lateral crack of a continuous cast slab. However, if added excessively, the toughness of the base metal and the toughness of HAZ are significantly impaired. Therefore, the content of Ti is set to 0.005 to 0.03%. A preferable lower limit of the Ti content is 0.01%, and a preferable upper limit of the Ti content is 0.015%.

Al:0.001〜0.050%
Alは溶鋼の予備脱酸に有効な元素であるが、過剰に添加すると島状マルテンサイトの生成を助長するため母材および溶接熱影響部の靭性が低下する。このため添加量を0.001〜0.05%とする。Al含有量の好ましい下限は0.01%であり、Al含有量の好ましい上限は0.03%である。
Al: 0.001 to 0.050%
Al is an element effective for preliminary deoxidation of molten steel, but if added excessively, the formation of island martensite is promoted, so the toughness of the base metal and the weld heat affected zone is lowered. For this reason, the addition amount is set to 0.001 to 0.05%. The preferable lower limit of the Al content is 0.01%, and the preferable upper limit of the Al content is 0.03%.

N:0.001〜0.010%
Nは、窒化物を形成することで組織の細粒化に寄与するが、過剰に添加した場合には窒化物の凝集を通じて靭性を劣化させる。従って含有量を0.001〜0.010%とする。N含有量の好ましい下限は0.003%であり、N含有量の好ましい上限は0.008%である。
N: 0.001 to 0.010%
N contributes to the refinement of the structure by forming nitrides, but when added excessively, N deteriorates toughness through aggregation of nitrides. Therefore, the content is made 0.001 to 0.010%. A preferable lower limit of the N content is 0.003%, and a preferable upper limit of the N content is 0.008%.

本発明に係る鋼板は、上記の成分を含有し、残部がFeおよび不純物からなる。ここで、不純物とは、鋼材を工業的に製造する際に鉱石やスクラップ等のような原料をはじめとして製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味するものであるが、本発明においては、特に、不純物中のNb、B及びO(酸素)について、次のとおりに規定する。   The steel sheet according to the present invention contains the above components, with the balance being Fe and impurities. Here, the impurities are components that are mixed due to various factors of the manufacturing process including raw materials such as ore and scrap when industrially manufacturing steel materials, and in a range that does not adversely affect the present invention. In the present invention, Nb, B, and O (oxygen) in the impurities are defined as follows.

Nb:0.001%以下
Nbは、オーステナイトの低温域で微細なNb炭窒化物を形成することによりオーステナイト粒を微細化する作用を有する。更に、析出したNb炭窒化物は圧延などによる加工を受けた未再結晶オーステナイト粒の回復、再結晶を抑制する効果を有しており、母材靱性の確保に有効である。しかしながら、極小入熱溶接におけるCTOD特性を劣化させることから、本発明においては可能な限り含有量を低減させる。このため、Nb含有量を0.001%以下とした。
Nb: 0.001% or less Nb has the effect of refining austenite grains by forming fine Nb carbonitrides in the low temperature range of austenite. Further, the precipitated Nb carbonitride has an effect of suppressing the recovery and recrystallization of unrecrystallized austenite grains that have been processed by rolling or the like, and is effective in securing the base material toughness. However, since the CTOD characteristic in the minimum heat input welding is deteriorated, the content is reduced as much as possible in the present invention. For this reason, Nb content was made into 0.001% or less.

B:0.0003%以下
Bは、極微量で鋼材の強度を上昇させる元素であるが、極小入熱溶接におけるCTOD特性を劣化させることから、本発明においては可能な限り含有量を低減させる。このため、B含有量を0.0003%以下とした。
B: 0.0003% or less B is an element that increases the strength of the steel material in a very small amount, but degrades the CTOD characteristics in the minimum heat input welding, and therefore the content is reduced as much as possible in the present invention. For this reason, B content was made into 0.0003% or less.

O:0.003%以下
O(酸素)は多量に存在すると清浄度の劣化が著しくなるため、母材、溶接金属部およびHAZともに実用的な靱性確保が困難となる。そこで、0.003%以下とする。好ましくは0.002%以下である。
O: 0.003% or less When a large amount of O (oxygen) is present, the cleanliness deteriorates remarkably, making it difficult to ensure practical toughness for the base metal, the weld metal part, and the HAZ. Therefore, the content is made 0.003% or less. Preferably it is 0.002% or less.

本発明に係る鋼板には、必要に応じて、次の第1群から第3群までの少なくとも1群から選んだ成分の1種以上を含有させることができる。以下、これらの群に属する成分について述べる。   The steel plate according to the present invention may contain one or more components selected from at least one group from the following first group to third group, if necessary. Hereinafter, components belonging to these groups will be described.

第1群:Mo、V
Mo:0.5%以下
Moは、必要に応じて含有させることができる。Moを含有させると、鋼材の焼入れ性を増し、強度を向上させることができる。しかしながら、その含有量が0.5%を超えると、溶接金属部およびHAZを硬化させ溶接低温割れ感受性を増大させるので、その含有量の上限は0.5%とする。好ましい上限は0.3%である。なお、Moによる強度向上効果を得たい場合には、Moを0.03%以上含有させるのが望ましい。
First group: Mo, V
Mo: 0.5% or less Mo can be contained as necessary. When Mo is contained, the hardenability of the steel material can be increased and the strength can be improved. However, if the content exceeds 0.5%, the weld metal part and the HAZ are hardened and the weld cold cracking sensitivity is increased, so the upper limit of the content is 0.5%. A preferable upper limit is 0.3%. In addition, when obtaining the strength improvement effect by Mo, it is desirable to contain Mo 0.03% or more.

V:0.05%以下
Vは、必要に応じて含有させることができる。Vを含有させると、Moと同様に、鋼材の焼入れ性を増し、強度を向上させることができる。しかしながら、その含有量が0.05%を超えると、溶接金属部およびHAZを硬化させ溶接低温割れ感受性を増大させるので、その含有量の上限は0.05%とする。好ましい上限は0.04%である。なお、Vによる強度向上効果を得たい場合には、Vを0.01%以上含有させるのが望ましい。
V: 0.05% or less V can be contained as necessary. When V is contained, the hardenability of the steel material can be increased and the strength can be improved, similarly to Mo. However, if its content exceeds 0.05%, the weld metal part and HAZ are hardened and the weld cold cracking susceptibility is increased, so the upper limit of its content is 0.05%. A preferable upper limit is 0.04%. In addition, when obtaining the strength improvement effect by V, it is desirable to contain V 0.01% or more.

第2群:Sn
Sn:0.50%以下
Snは、必要に応じて含有させることができる。Snを含有させると、Sn3+となって溶解し、酸性塩化物溶液中でのインヒビター作用により腐食を抑制することができる。。また、Fe3+を速やかに還元させ、酸化剤としてのFe3+濃度を低減することにより、Fe3+の腐食促進作用を抑制するので、飛来塩分量が多い環境下での耐候性を向上させることができる。さらに、Snには鋼のアノード溶解反応を抑制するので、耐食性を向上させることもできる。しかし、その含有量が0.50%を超えると脆化を起こす原因となるので、Snの含有量は0.50%以下とする。好ましくは0.20%以下である。なお、Snによるこれらの効果を得たい場合には、Snの含有量は0.03%以上とするのが望ましい。
Second group: Sn
Sn: 0.50% or less Sn can be contained as necessary. When Sn is contained, it becomes Sn 3+ and dissolves, and corrosion can be suppressed by an inhibitor action in an acidic chloride solution. . In addition, by reducing Fe 3+ quickly and reducing the concentration of Fe 3+ as an oxidant, the corrosion promoting action of Fe 3+ is suppressed, so that the weather resistance in an environment with a large amount of incoming salt can be improved. it can. Furthermore, since Sn suppresses the anodic dissolution reaction of steel, the corrosion resistance can also be improved. However, if its content exceeds 0.50%, it causes embrittlement, so the Sn content is 0.50% or less. Preferably it is 0.20% or less. In addition, when obtaining these effects by Sn, it is desirable that the Sn content be 0.03% or more.

第3群:Ca、Mg、REM
Ca:0.005%以下
Caは、必要に応じて含有させることができる。Caを含有させると、粒内フェライトの析出核となる酸化物、硫化物を生成して、また、硫化物の形態を制御して、低温靱性を向上させることができる。しかし、Ca含有量が0.005%を超えると大型介在物やクラスターを生成して鋼の清浄度を劣化させるので、Caの含有量は0.005%以下とする。好ましくは0.0035%以下である。なお、Caによるこの効果を得たい場合には、Caの含有量は0.001%以上とするのが望ましい。
Third group: Ca, Mg, REM
Ca: 0.005% or less Ca can be contained as necessary. When Ca is contained, oxides and sulfides that become precipitation nuclei of intragranular ferrite can be generated, and the form of sulfides can be controlled to improve low-temperature toughness. However, if the Ca content exceeds 0.005%, large inclusions and clusters are generated and the cleanliness of the steel is deteriorated, so the Ca content is set to 0.005% or less. Preferably it is 0.0035% or less. In addition, when acquiring this effect by Ca, it is desirable to make content of Ca 0.001% or more.

Mg:0.005%以下
Mgは、必要に応じて含有させることができる。Mgを含有させると、粒内フェライトの析出核となる酸化物、硫化物を生成して、また、硫化物の形態を制御して、低温靱性を向上させることができる。しかし、Mg含有量が0.005%を超えると大型介在物やクラスターを生成して鋼の清浄度を劣化させるので、Mgの含有量は0.005%以下とする。好ましくは0.0035%以下である。なお、Mgによるこの効果を得たい場合には、Mgの含有量は0.001%以上とするのが望ましい。
Mg: 0.005% or less Mg can be contained as necessary. When Mg is contained, oxides and sulfides that serve as precipitation nuclei for intragranular ferrite can be generated, and the form of the sulfides can be controlled to improve low-temperature toughness. However, if the Mg content exceeds 0.005%, large inclusions and clusters are generated and the cleanliness of the steel is deteriorated, so the Mg content is set to 0.005% or less. Preferably it is 0.0035% or less. In addition, when obtaining this effect by Mg, it is desirable that the content of Mg is 0.001% or more.

REM:0.005%以下
REMは、必要に応じて含有させることができる。REMを含有させると、粒内フェライトの析出核となる酸化物、硫化物を生成して、また、硫化物の形態を制御して、低温靱性を向上させることができる。しかし、REM含有量が0.005%を超えると大型介在物やクラスターを生成して鋼の清浄度を劣化させるので、REMの含有量は0.005%以下とする。好ましくは0.0035%以下である。なお、REMによるこの効果を得たい場合には、REMの含有量は0.001%以上とするのが望ましい。
REM: 0.005% or less REM can be contained as necessary. When REM is contained, oxides and sulfides that become precipitation nuclei of intragranular ferrite can be generated, and the form of sulfides can be controlled to improve low-temperature toughness. However, if the REM content exceeds 0.005%, large inclusions and clusters are generated to deteriorate the cleanliness of the steel, so the REM content is set to 0.005% or less. Preferably it is 0.0035% or less. In order to obtain this effect by REM, the content of REM is preferably 0.001% or more.

ここで、REMとは、ランタノイドの15元素にYおよびScを合わせた17元素の総称であり、これらの元素のうちの1種または2種以上を含有させることができる。なお、REMの含有量はこれらの元素の合計含有量を意味する。   Here, REM is a general term for 17 elements in which Y and Sc are combined with 15 elements of lanthanoid, and one or more of these elements can be contained. Note that the content of REM means the total content of these elements.

(B)鋼板の組織
(B−1)板厚中心部における結晶粒径20μm以下のフェライト分率が60%以上
上記成分系にて、板厚中心部まで充分な強度と全厚CTOD特性を両立するには、板厚中心部まで均一な微細フェライトを一定量以上分散させた上で、ε−Cu粒子を時効析出させる必要がある。結晶粒径20μm以下の微細フェライトを体積%で60%以上分散させることを実現すれば、板厚中心部にて降伏強度400MPa以上と板厚40mm以上の極厚材の全厚CTOD特性を両立させることが可能となる。
(B) Steel plate structure (B-1) Ferrite fraction with a crystal grain size of 20 μm or less at the center of the plate thickness is 60% or more In the above component system, both sufficient strength up to the center of the plate thickness and full thickness CTOD characteristics are achieved. In order to achieve this, it is necessary to disperse a certain amount of uniform fine ferrite up to the center of the plate thickness and then age precipitate the ε-Cu particles. If it is possible to disperse fine ferrite having a crystal grain size of 20 μm or less in volume% of 60% or more, the yield strength of 400 MPa or more and the total thickness CTOD characteristic of an extremely thick material having a plate thickness of 40 mm or more can be achieved at the center of the plate thickness It becomes possible.

板厚中心部における旧オーステナイト粒を規定する理由は、板厚の1/2の位置にある板厚中心部は板厚表裏面および板厚の1/4の位置に比べ特性の確保が困難なためであり、かつ全厚の特性が板厚の1/2の位置の特性に律速されるためである。   The reason for prescribing the prior austenite grains in the center of the plate thickness is that it is difficult to ensure the characteristics in the center of the plate thickness at the position of 1/2 of the plate thickness compared to the position of the plate thickness front and back and 1/4 of the plate thickness. This is because the characteristic of the total thickness is rate-limited to the characteristic at the position of ½ of the plate thickness.

(B−2)板厚中心部におけるM−A組織が4.0%以下
本発明でいう「M−A組織」は、いわゆる島状マルテンサイトであり、ベイナイトのラス状組織の間又は旧オーステナイト粒界に存在するマルテンサイトを指す。M−A組織は脆性破壊の原因となるため、板厚中心部におけるM−A組織を面積%で4.0%以下とする。このM−A組織は少ないことが好ましい。
(B-2) The MA structure in the center portion of the plate thickness is 4.0% or less The “MA structure” referred to in the present invention is a so-called island martensite, which is between bainite lath structures or old austenite. This refers to martensite existing at grain boundaries. Since the MA structure causes brittle fracture, the MA structure in the center portion of the plate thickness is set to 4.0% or less in area%. It is preferable that this MA structure is small.

ここで、板厚中心部におけるM−A組織を規定する理由は、中心偏析の影響により、特に板厚中心部でM−Aが生成しやすく、かつ全厚のCTOD特性は最脆化部の特性に支配されるためである。   Here, the reason for defining the MA structure in the center portion of the plate thickness is that, due to the influence of center segregation, MA tends to be generated particularly in the center portion of the plate thickness, and the CTOD characteristic of the full thickness is that of the most brittle portion. This is because it is dominated by the characteristics.

優れたCTOD特性を得るには、このM−A組織を4.0%以下に抑制する必要がある。このM−A組織は少ない方が好ましい。ただし、本発明方法で製造した場合には、少なくとも0.5%のM−A組織が形成されてしまう。   In order to obtain excellent CTOD characteristics, it is necessary to suppress this MA structure to 4.0% or less. It is preferable that this MA structure is small. However, when produced by the method of the present invention, at least 0.5% of the MA structure is formed.

なお、M−A組織の割合は、透過型電子顕微鏡の倍率を10000倍として合計10視野観察し、各視野において求めた島状マルテンサイトが占める割合を算術平均して求めればよい。   Note that the ratio of the MA structure may be obtained by observing a total of 10 visual fields with a transmission electron microscope magnification of 10,000, and arithmetically averaging the proportions of island martensite obtained in each visual field.

(B−3)板厚中心部における介在物量がJIS G 0555における点算法にて0.020%以下
厚肉材の低温CTOD特性をさらに安定化するには、板厚中心部の介在物を低減することが有効である。特に、MnSを代表とするA系介在物を低減できれば、低温CTOD特性はさらに安定化する。具体的には、JIS G 0555で規定された点算法で測定したときの非金属介在物量がd60×400(測定視野数が60、倍率が400倍)で0.020%以下とする。
(B-3) The amount of inclusions at the center of the plate thickness is 0.020% or less by the point calculation method in JIS G 0555. To further stabilize the low temperature CTOD characteristics of the thick material, the inclusions at the center of the plate thickness are reduced. It is effective to do. In particular, if the A-based inclusion represented by MnS can be reduced, the low-temperature CTOD characteristics are further stabilized. Specifically, the amount of non-metallic inclusions when measured by the point method defined in JIS G 0555 is d60 × 400 (the number of fields of view is 60, the magnification is 400 times) and is 0.020% or less.

(B−4)板厚中心部におけるCが0.12%以下
連続鋳造により製造した厚鋼板においては、板厚中心部での中心偏析による成分濃化部が生じやすく、これが硬化組織を形成すると破壊の起点になり、全厚CTOD特性が不安定となる。これを抑制するには、特に島状マルテンサイト生成に支配的なC量の偏析度規定が有効である。
(B-4) C in the thickness center portion is 0.12% or less In a thick steel plate manufactured by continuous casting, a component-enriched portion is likely to occur due to center segregation in the thickness center portion, which forms a hardened structure. It becomes the starting point of destruction, and the total thickness CTOD characteristic becomes unstable. In order to suppress this, the regulation of the segregation degree of the C amount that is dominant for the formation of island martensite is particularly effective.

板厚中心部のC量を測定するためには、レーザICP分析法を用いることができる。レーザICP分析法にて、板厚中心部を挟んだ8mm以上の範囲を分析し、次の式に基づいて、板厚中心部のC含有量を算出することができる。
板厚中心部のC量=(製品分析値のC量)×(レーザICP分析C量の平均値/レーザICP分析C量の最大値)。
Laser ICP analysis can be used to measure the amount of C at the center of the plate thickness. A laser ICP analysis method analyzes a range of 8 mm or more with the plate thickness center portion interposed therebetween, and the C content in the plate thickness center portion can be calculated based on the following formula.
C amount at center of plate thickness = (C amount of product analysis value) × (average value of laser ICP analysis C amount / maximum value of laser ICP analysis C amount).

優れたCTOD特性を得るには、この板厚中心部のC量を質量%で0.12%以下とする必要がある。望ましくは0.10%以下に抑制するとよい。   In order to obtain excellent CTOD characteristics, it is necessary that the C content at the central portion of the plate thickness is 0.12% or less by mass. Desirably, it may be suppressed to 0.10% or less.

以上、本発明の組織について示したが、本発明の鋼板のミクロ組織は主としてフェライトとベイナイトの混合組織でる。上記の(B)項で示すような組織を有する鋼板とするには、前記の(A)項に記載の化学組成を有するスラブを用いて、たとえば、次の(C)項で述べる条件で鋼板を製造することができる。   Although the structure of the present invention has been described above, the microstructure of the steel sheet of the present invention is mainly a mixed structure of ferrite and bainite. In order to obtain a steel sheet having a structure as shown in the above section (B), a slab having the chemical composition described in the above section (A) is used, for example, under the conditions described in the following section (C). Can be manufactured.

(C)鋼板の製造条件
ここでは、加熱温度は炉内雰囲気温度、圧延終了温度は表層温度、水冷停止温度は板厚中心部の計算値とし、圧延、再加熱時の加熱、冷却速度についてはすべて板厚中心部の値とする。
(C) Steel plate production conditions Here, the heating temperature is the furnace atmosphere temperature, the rolling end temperature is the surface layer temperature, the water cooling stop temperature is the calculated value at the center of the plate thickness, and the heating and cooling rates during rolling and reheating are as follows. All values are at the center of the plate thickness.

(C−1)スラブの加熱温度
スラブの加熱温度は900〜1180℃とするのがよい。スラブの加熱温度が900℃未満では加熱時に均一なオーステナイト粒が得られない場合がある。一方、1180℃を超えて加熱するとオーステナイト粒が著しく大きくなって母材靱性が劣化する場合がある。したがって、鋼の加熱温度は900〜1180℃とする。好ましい加熱温度下限は950℃であり、上限は1050℃である。
(C-1) Slab heating temperature The slab heating temperature is preferably 900 to 1180 ° C. If the heating temperature of the slab is less than 900 ° C., uniform austenite grains may not be obtained during heating. On the other hand, when heated above 1180 ° C., the austenite grains are remarkably enlarged and the base metal toughness may deteriorate. Therefore, the heating temperature of steel shall be 900-1180 degreeC. A preferable lower limit of the heating temperature is 950 ° C., and an upper limit is 1050 ° C.

なお、スラブの作製方法は問わないが、連続鋳造法により、溶鋼の温度を(凝固温度+50)℃以内に管理して作製することが好ましい。こうすることで、スラブ中の介在物や組成の中央偏析を小さくすることができる。   In addition, although the production method of a slab is not ask | required, it is preferable to manage and produce the temperature of molten steel within (solidification temperature +50) degreeC by a continuous casting method. By carrying out like this, the center segregation of the inclusion and composition in a slab can be made small.

(C−2)熱間圧延
鋼板の組織を適正化するために、未再結晶温度域で適正量の圧下(加工)を加えるのがよい。オーステナイトの再結晶温度域での圧下ではオーステナイト粒内に格子欠陥が蓄積され難く、圧延後に急冷しても組織の微細化が生じ難い。また、未再結晶温度域で圧下してもその累積圧下量が少ないと、オーステナイト粒内に蓄積される格子欠陥が少なくなって、圧延後に急冷しても組織の微細化が生じ難い。このため、700〜800℃の温度域で累積圧下率50%以上の熱間圧延を行う。このとき、圧延は700℃以上で終了させる。700℃未満で圧下するとスラブ温度低下にともなうスラブ硬化により十分な圧下ができないだけでなく、圧延機に負荷がかかるため好ましくない。
(C-2) Hot rolling In order to optimize the structure of the steel sheet, an appropriate amount of reduction (processing) should be applied in the non-recrystallization temperature range. When the austenite is reduced in the recrystallization temperature range, lattice defects are unlikely to accumulate in the austenite grains, and even if it is rapidly cooled after rolling, it is difficult to make the structure finer. Further, if the cumulative reduction amount is small even if the reduction is performed in the non-recrystallization temperature range, the number of lattice defects accumulated in the austenite grains is small, and the structure is not easily refined even when rapidly cooled after rolling. For this reason, hot rolling with a cumulative reduction of 50% or more is performed in a temperature range of 700 to 800 ° C. At this time, the rolling is finished at 700 ° C. or higher. If the temperature is reduced below 700 ° C., not only is sufficient reduction not possible due to slab hardening accompanying a decrease in the slab temperature, but a load is applied to the rolling mill, such being undesirable.

(C−3)冷却工程
熱間圧延後は650℃以上の温度域から500℃以下まで水冷を実施する。このとき、所望の組織を得るためには、板厚の1/4の位置において5℃/sec以上の平均冷却速度で鋼板を水冷する。冷却速度の上限は特に規定しないが、設備的に得られる上限値であってもよい。
(C-3) Cooling step After hot rolling, water cooling is performed from a temperature range of 650 ° C or higher to 500 ° C or lower. At this time, in order to obtain a desired structure, the steel sheet is water-cooled at an average cooling rate of 5 ° C./sec or more at a position of 1/4 of the sheet thickness. The upper limit of the cooling rate is not particularly defined, but may be an upper limit value obtained in terms of equipment.

熱間圧延後水冷された鋼は、その後再加熱し、550〜670℃の温度で時効処理を行う。時効処理によりCuを析出させ、鋼板を析出硬化させることができる。   The steel that has been water-cooled after hot rolling is then reheated and subjected to an aging treatment at a temperature of 550 to 670 ° C. Cu can be precipitated by aging treatment to precipitate and harden the steel sheet.

この際、時効処理の目的温度−100℃までの昇温速度、および500℃までの冷却速度については制御を行うことが望ましい。昇温/冷却速度の制御を行えば、Cu粒子の分散を均一化させることができる。十分なCu粒子の分散均一化を図るためには、具体的には、再加熱の際の目標温度−100℃までの平均昇温速度を1〜50℃/分、目標温度での保持時間を1時間以上、冷却の際の500℃までの平均冷却速度を1℃/分以上とするのが好ましい。   At this time, it is desirable to control the temperature increase rate up to the target temperature of aging treatment—100 ° C. and the cooling rate up to 500 ° C. If the temperature raising / cooling rate is controlled, the dispersion of Cu particles can be made uniform. In order to achieve sufficient dispersion and uniformity of Cu particles, specifically, the average temperature increase rate up to the target temperature of −100 ° C. during reheating is 1 to 50 ° C./min, and the holding time at the target temperature is The average cooling rate up to 500 ° C. during cooling for 1 hour or more is preferably 1 ° C./min or more.

表1に示す化学組成を有する鋼No.1〜44及び鋼No.X1〜X10の供試鋼から連続鋳造法にてスラブを作製した。表1における鋼No.1〜44は化学組成が本発明で規定する範囲内にある例であり、そして、鋼No.X1〜X10の供試鋼はいずれかの成分が本発明で規定する範囲から外れた例である。   Slabs were produced by continuous casting from steel Nos. 1 to 44 and steel Nos. X1 to X10 having chemical compositions shown in Table 1. Steel Nos. 1 to 44 in Table 1 are examples in which the chemical composition is within the range specified by the present invention, and the test steels of Steel Nos. X1 to X10 are ranges in which any component is specified by the present invention. This is an example that deviates from the above.

スラブは溶鋼の温度を過度に高くせず、溶鋼組成から決まる凝固温度に対し、その差が50℃以内になるように管理をしながら、凝固直前の電磁攪拌および凝固時の圧下を行った。ただし、鋼No.35および36はこの管理を行わずに製造した。   The slab did not raise the temperature of the molten steel excessively, and the electromagnetic stirring just before the solidification and the reduction during the solidification were performed while controlling the difference between the solidification temperature determined from the molten steel composition to be within 50 ° C. However, steel Nos. 35 and 36 were produced without this management.

Figure 2013095928
Figure 2013095928

次いで、これらの鋼を通常の方法で厚さ160mmの鋼片とした後、表2に記載の各種条件で熱間圧延、冷却して鋼板とした。なお、表2には記載していないが、すべての鋼について、再加熱の際に、再加熱温度−100℃までの平均昇温速度を5℃/分、再加熱温度での保持時間を2時間、冷却の際の500℃までの平均冷却速度を5℃/分として制御した。また、このとき、板厚は、海洋構造物用途を意識して、80mm以上とした。   Subsequently, these steels were made into steel pieces having a thickness of 160 mm by a normal method, and then hot-rolled and cooled under various conditions shown in Table 2 to obtain steel plates. Although not shown in Table 2, for all the steels, the average heating rate up to the reheating temperature of −100 ° C. was 5 ° C./min and the holding time at the reheating temperature was 2 at the time of reheating. The average cooling rate to 500 ° C. during the time and cooling was controlled as 5 ° C./min. At this time, the plate thickness was set to 80 mm or more in consideration of the use of the marine structure.

Figure 2013095928
Figure 2013095928

このようにして得た各鋼板の板厚中心部から、JIS4号引張試験片を圧延方向と平行な方向に採取し、母材の機械的性質(引張特性)を調査した。   JIS No. 4 tensile test specimens were collected in the direction parallel to the rolling direction from the center of the thickness of each steel plate thus obtained, and the mechanical properties (tensile properties) of the base material were investigated.

次に、BS7448規格に準拠し、全厚の3点曲げ試験片を圧延方向に直角の方向から試験片を採取して、CTOD試験を−40℃で行った。   Next, in accordance with the BS 7448 standard, a three-point bending test piece of full thickness was taken from a direction perpendicular to the rolling direction, and a CTOD test was performed at -40 ° C.

また、溶接継ぎ手部は、BS7448に準拠し、K開先加工した鋼板突き合わせ部に1.0kJ/mmのFCAW溶接を実施し、CTOD試験片の疲労ノッチがレ開先のストレート部側の溶接線となるよう加工し、CTOD試験を-40℃にて実施した。   In addition, the weld joint is in accordance with BS7448, and 1.0 kJ / mm FCAW welding is performed on the K-grooved steel plate butt, and the fatigue notch of the CTOD test piece is the weld line on the straight part side of the groove The CTOD test was performed at -40 ° C.

さらに、各鋼板のうち一部の鋼板(試験番号No.8、16、X3)については、得られた試験片をSAE(Society of Automotive Engineers)J2334試験により耐食性を評価した。SAEJ2334試験は、湿潤(50℃、100%RH、6時間、塩分付着:0.5%NaCl、0.1%CaCl、0.075%NaHCO水溶液浸漬、0.25時間)および乾燥(60℃、50%RH、17.75時間)を1サイクル(合計24時間)とした加速試験であり、腐食形態が大気暴露試験に類似しているとされている(長野博夫、山下正人、内田仁著:環境材料学、共立出版(2004)、p.74)。本試験は、飛来塩分量が1mddを超えるような厳しい腐食環境を模擬する試験である。SAEJ2334試験120サイクル終了後、各試験片の表面のさび層を除去し、板厚減少量を測定した。なお、「腐食減量」は、試験片の平均の板厚減少量であり、試験前後の重量減少と試験片の表面積を用いて算出したものである。 Further, for some of the steel plates (test numbers No. 8, 16, X3), the corrosion resistance of the obtained test pieces was evaluated by SAE (Society of Automotive Engineers) J2334 test. The SAEJ2334 test was wet (50 ° C., 100% RH, 6 hours, salt deposition: 0.5% NaCl, 0.1% CaCl 2 , 0.075% NaHCO 3 aqueous solution soaked, 0.25 hours) and dried (60 Accelerated test with 1 cycle (24 hours in total) at 50 ° C, 50% RH, said to be similar to atmospheric exposure test (Hiroo Nagano, Masato Yamashita, Hitoshi Uchida) Author: Environmental Materials Science, Kyoritsu Shuppan (2004), p.74). This test simulates a severe corrosive environment in which the amount of incoming salt exceeds 1 mdd. After 120 cycles of the SAEJ2334 test, the rust layer on the surface of each test piece was removed, and the thickness reduction amount was measured. The “corrosion loss” is an average reduction in the thickness of the test piece, and is calculated using the weight reduction before and after the test and the surface area of the test piece.

一方、各鋼板の組織は以下のように測定を行った。   On the other hand, the structure of each steel plate was measured as follows.

フェライトについては、光学顕微鏡を用いて観察によって得られた像を画像解析した。粒径を算出する場合には、短径と長径を測定し、その和の1/2から粒径を求めた。このようにして100視野観察して求めた個々の粒子の粒径について、算術平均したものを「平均粒径」と規定した。また、フェライト分率は、100視野観察分の面積に対するフェライトの面積割合を算出することによって求めた。また、島状マルテンサイト(M−A)分率についても同様である。   As for ferrite, an image obtained by observation using an optical microscope was subjected to image analysis. When calculating the particle diameter, the short diameter and the long diameter were measured, and the particle diameter was determined from 1/2 of the sum. The arithmetic average of the particle diameters of the individual particles obtained by observing 100 visual fields in this manner was defined as “average particle diameter”. Moreover, the ferrite fraction was calculated | required by calculating the area ratio of the ferrite with respect to the area for 100 visual field observation. The same applies to the island martensite (MA) fraction.

板厚中心部におけるCはレーザICP分析にて、板厚中心部を挟んだ8mm以上の範囲を分析し、板厚中心部のC量=(製品分析値のC量)×(レーザICP分析C量の平均値/レーザICP分析C量の最大値)として算出した。   C in the central part of the plate thickness is analyzed by laser ICP analysis over a range of 8 mm or more with the central part of the plate thickness interposed therebetween. C amount in the central portion of the plate thickness = (C amount of product analysis value) × (Laser ICP analysis C (Average value of amount / maximum value of laser ICP analysis C amount).

板厚中心部における介在物はJIS G 0555に準拠し、点算法による顕微鏡試験方法によって測定した。すなわち、試験片を圧延方向又は鍛錬方向に平行に、その中心線を通って切断採取し、その面を検鏡面とし、琢磨仕上げによって鏡面とした後、縦横20本の格子線が入った接眼レンズを用い、ノーエッチングの状態で400倍で、60視野をランダムに観察し、介在物によって占めた格子点中心の数nを数える。そして、下記の式によって算出される清浄度d(%)が非金属介在物の量である。
d={(n/(p×f)}×100
ここで、d:清浄度、p:視野内の総格子点数、f:視野数、n:f個の視野における介在物によって占められる格子点中心の数を表す。
Inclusions at the center of the plate thickness were measured by a microscopic test method using a point arithmetic method in accordance with JIS G 0555. That is, the specimen is cut and sampled through the center line parallel to the rolling direction or the forging direction, and the surface is made into a specular surface, and is made into a mirror surface by polishing, and then an ocular lens containing 20 vertical and horizontal grid lines , And 60 times are randomly observed at 400 times in a no-etching state, and the number n of lattice point centers occupied by inclusions is counted. The cleanliness d (%) calculated by the following formula is the amount of non-metallic inclusions.
d = {(n / (p × f)} × 100
Here, d: cleanliness, p: total number of lattice points in the visual field, f: number of visual fields, and n: the number of lattice point centers occupied by inclusions in the f visual fields.

表3に鋼板組織の観察結果を示す。   Table 3 shows the observation results of the steel sheet structure.

Figure 2013095928
Figure 2013095928

表4に機械的特性の試験結果を示す。ここで、鋼材の母材強度の目標はYSで400MPa以上であり、母材および溶接部のCTOD値の目標はいずれも0.3mm以上である。   Table 4 shows the test results of the mechanical characteristics. Here, the target of the base material strength of the steel material is 400 MPa or more in YS, and the target of the CTOD value of the base material and the welded part is 0.3 mm or more.

Figure 2013095928
Figure 2013095928

表4において、鋼の化学組成および組織等の要件が本発明で規定する範囲内にある試験No.1〜34(本発明鋼)は、いずれも母材の強度とCTOD値の目標をそれぞれ満足する。   In Table 4, Test Nos. 1 to 34 (steel of the present invention) in which the chemical composition and structure of the steel are within the range specified by the present invention all satisfy the targets of the strength of the base metal and the CTOD value. To do.

これに対して、試験No.35は、鋼の化学組成は本発明で規定する範囲内にあるが、板厚中心部における介在物量が本発明鋼の規定より外れるため、母材のCTOD値は目標に達していない。
試験No.36は、鋼の化学組成は本発明で規定する範囲内にあるが、板厚中心部におけるC含有量が本発明鋼の規定より外れるため、母材のCTOD値は目標に達していない。
On the other hand, in test No. 35, the chemical composition of the steel is within the range specified in the present invention, but the amount of inclusions at the center of the plate thickness deviates from the specification of the steel of the present invention, so the CTOD value of the base material is The goal has not been reached.
In test No. 36, the chemical composition of the steel is within the range specified by the present invention, but the C content at the center of the plate thickness is outside the specification of the steel of the present invention, so the CTOD value of the base material has reached the target. Absent.

試験No.37〜44は、鋼の化学組成は本発明で規定する範囲内にあるが、板厚中心部における結晶粒径20μm以下のフェライト分率および島状マルテンサイト組織の面積率が本発明鋼の規定より外れるため、母材のCTOD値は目標に達していない。さらに、試験No.37および38については、いずれもYSが目標に達していない。   Test Nos. 37 to 44 show that the chemical composition of steel is within the range specified in the present invention, but the ferrite fraction having a crystal grain size of 20 μm or less and the area ratio of the island martensite structure in the central part of the plate thickness are the present invention. The CTOD value of the base material has not reached the target because it deviates from the steel specification. Furthermore, YS does not reach the target for Test Nos. 37 and 38.

そして、試験No.X1〜X10は、鋼の化学組成が本発明鋼の規定より外れるため、母材および溶接部のCTOD値はいずれかまたは両方が目標に達していない。   In Test Nos. X1 to X10, the chemical composition of the steel deviates from that of the steel of the present invention. Therefore, either or both of the CTOD values of the base material and the welded portion do not reach the target.

なお、上述したとおり、一部の鋼板(鋼No.8、16、X3)に関しては、SAE(Society of Automotive Engineers)J2334試験により耐食性を評価した。その結果、試験No.8および16については、Snを含有しているため、板厚減少量はともに0.1mm以下であり、高い耐食性を示した。しかし、試験No.X3については、Snが含有していないため、板厚減少量は0.8mmとなり耐食性は低かった。   In addition, as above-mentioned, corrosion resistance was evaluated by SAE (Society of Automotive Engineers) J2334 test about some steel plates (steel No. 8, 16, X3). As a result, since test Nos. 8 and 16 contained Sn, the thickness reduction amount was 0.1 mm or less, indicating high corrosion resistance. However, for test No. X3, since Sn does not contain, the thickness reduction amount was 0.8 mm, and the corrosion resistance was low.

本発明の鋼板はYSが400MPa以上、CTOD値も0.3mm以上であることから、氷海域の海洋構造物など溶接鋼構造物の素材として好適である。また、製造の観点からも、本発明の鋼板はオートテンパーを利用し焼戻しなしに製造することができるので、比較的容易且つ廉価に高強度の鋼板を得ることができる。   Since the steel sheet of the present invention has a YS of 400 MPa or more and a CTOD value of 0.3 mm or more, it is suitable as a material for welded steel structures such as marine structures in ice sea areas. Also, from the viewpoint of production, the steel sheet of the present invention can be produced without tempering using an autotemper, so that a high-strength steel sheet can be obtained relatively easily and inexpensively.

Claims (5)

質量%で、C:0.01〜0.08%、Si:0.01〜0.3%、Mn:1.0〜2.0%、P:0.012%以下、S:0.005%以下、Cu:0.8〜2.0%、Ni:0.1〜2.5%、Cr:0.01〜0.5%、Ti:0.005〜0.03%、Al:0.001〜0.050%及びN:0.001〜0.01%を含有し、残部はFe及び不純物からなり、不純物中のNb:0.001%以下、B:0.0003%以下、O:0.003%以下である化学組成を有し、板厚中心部における結晶粒径20μm以下のフェライト分率が60%以上、板厚中心部における島状マルテンサイト組織の面積率が4.0%以下、板厚中心部における介在物量が、JIS G 0555における点算法にて0.020%以下、板厚中心部におけるC含有量が0.12%以下であることを特徴とする、板厚中心部の降伏強度が400MPa以上の靱性に優れた高張力鋼板。   In mass%, C: 0.01 to 0.08%, Si: 0.01 to 0.3%, Mn: 1.0 to 2.0%, P: 0.012% or less, S: 0.005 %: Cu: 0.8-2.0%, Ni: 0.1-2.5%, Cr: 0.01-0.5%, Ti: 0.005-0.03%, Al: 0 0.001 to 0.050% and N: 0.001 to 0.01%, with the balance being Fe and impurities, Nb in impurities: 0.001% or less, B: 0.0003% or less, O : Having a chemical composition of 0.003% or less, the ferrite fraction having a crystal grain size of 20 μm or less at the center of the plate thickness is 60% or more, and the area ratio of the island martensite structure at the center of the plate thickness is 4.0. % Or less, the amount of inclusions in the center part of the plate thickness is 0.020% or less by point calculation in JIS G 0555, in the center part of the plate thickness A high-tensile steel sheet having excellent toughness with a yield strength of 400 MPa or more, characterized by a C content of 0.12% or less. Feの一部に代えて、質量%で、Mo:0.5%以下、V:0.05%以下から選択される1種以上を含有することを特徴とする請求項1に記載の高張力鋼板。   The high tension according to claim 1, characterized in that, instead of a part of Fe, at least 1 type selected from Mo: 0.5% or less and V: 0.05% or less is contained in mass%. steel sheet. Feの一部に代えて、質量%で、Sn:0.50%以下を含有することを特徴とする請求項1または2に記載の高張力鋼板。   The high-tensile steel sheet according to claim 1 or 2, wherein Sn: 0.50% or less is contained in mass% instead of a part of Fe. Feの一部に代えて、質量%で、Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下から選択される1種以上を含有することを特徴とする請求項1から3までのいずれかに記載の高張力鋼板。   Instead of a part of Fe, by mass%, it contains one or more selected from Ca: 0.005% or less, Mg: 0.005% or less, REM: 0.005% or less. The high-tensile steel plate according to any one of claims 1 to 3. 請求項1から4までのいずれかに記載の化学組成を有するスラブを、900〜1180℃の温度域に加熱し、700〜800℃の温度域で累積圧下率50%以上の熱間圧延をし、700℃以上の温度で圧延を終了し、650℃以上の温度域から水冷を開始し、500℃以下まで、板厚の1/4の位置での平均冷却速度5℃/sec以上で水冷し、その後、550〜670℃の温度域に再加熱することを特徴とする、板厚中心部の降伏強度が400MPa以上の靱性に優れた高張力鋼板の製造方法。   The slab having the chemical composition according to any one of claims 1 to 4 is heated to a temperature range of 900 to 1180 ° C, and hot rolled with a cumulative reduction ratio of 50% or more in a temperature range of 700 to 800 ° C. , Rolling is completed at a temperature of 700 ° C. or higher, water cooling is started from a temperature range of 650 ° C. or higher, and water cooling is performed at an average cooling rate of 5 ° C./sec or higher at a quarter of the plate thickness up to 500 ° C. or lower. Then, reheating to a temperature range of 550 to 670 ° C., a method for producing a high-strength steel sheet excellent in toughness with a yield strength of 400 MPa or more at the center of the plate thickness.
JP2011236816A 2011-10-28 2011-10-28 High tensile steel plate with excellent toughness and method for producing the same Active JP5741379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011236816A JP5741379B2 (en) 2011-10-28 2011-10-28 High tensile steel plate with excellent toughness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011236816A JP5741379B2 (en) 2011-10-28 2011-10-28 High tensile steel plate with excellent toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013095928A true JP2013095928A (en) 2013-05-20
JP5741379B2 JP5741379B2 (en) 2015-07-01

Family

ID=48618216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011236816A Active JP5741379B2 (en) 2011-10-28 2011-10-28 High tensile steel plate with excellent toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP5741379B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141633A1 (en) * 2013-03-12 2014-09-18 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
WO2014141632A1 (en) * 2013-03-12 2014-09-18 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
EP2860276A4 (en) * 2013-08-13 2015-12-30 Nippon Steel & Sumitomo Metal Corp Steel plate
EP2843073A4 (en) * 2013-06-13 2016-01-06 Nippon Steel & Sumitomo Metal Corp Ultrahigh-tensile-strength steel plate for welding
WO2016035110A1 (en) * 2014-09-05 2016-03-10 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multi-layer welded joints and method for producing same
WO2018117766A1 (en) * 2016-12-23 2018-06-28 주식회사 포스코 High-strength steel material having enhanced resistance to brittle crack propagation and break initiation at low temperature and method for manufacturing same
CN110114496A (en) * 2016-12-23 2019-08-09 株式会社Posco There is the brittle crack extension drag of enhancing and the high strength steel and its manufacturing method of fracture germinating drag at low temperature
WO2022054898A1 (en) * 2020-09-14 2022-03-17 Jfeスチール株式会社 Thick steel sheet and manufacturing method for same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002120052A (en) * 2000-10-18 2002-04-23 Nippon Steel Corp Device and method for controlling fluidity of molten steel in mold
JP2005054250A (en) * 2003-08-06 2005-03-03 Kobe Steel Ltd High tensile strength steel sheet having excellent base metal toughness and haz toughness
JP2010116610A (en) * 2008-11-13 2010-05-27 Kobe Steel Ltd Method for manufacturing low-sulfur thick steel plate excellent in haz toughness at the time of inputting large amount of heat
JP2011001625A (en) * 2009-06-22 2011-01-06 Sumitomo Metal Ind Ltd High tensile strength steel having excellent corrosion resistance and weld zone toughness, and marine structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002120052A (en) * 2000-10-18 2002-04-23 Nippon Steel Corp Device and method for controlling fluidity of molten steel in mold
JP2005054250A (en) * 2003-08-06 2005-03-03 Kobe Steel Ltd High tensile strength steel sheet having excellent base metal toughness and haz toughness
JP2010116610A (en) * 2008-11-13 2010-05-27 Kobe Steel Ltd Method for manufacturing low-sulfur thick steel plate excellent in haz toughness at the time of inputting large amount of heat
JP2011001625A (en) * 2009-06-22 2011-01-06 Sumitomo Metal Ind Ltd High tensile strength steel having excellent corrosion resistance and weld zone toughness, and marine structure

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10036079B2 (en) 2013-03-12 2018-07-31 Jfe Steel Corporation Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
WO2014141632A1 (en) * 2013-03-12 2014-09-18 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
WO2014141633A1 (en) * 2013-03-12 2014-09-18 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
US10023946B2 (en) 2013-03-12 2018-07-17 Jfe Steel Corporation Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
EP2843073A4 (en) * 2013-06-13 2016-01-06 Nippon Steel & Sumitomo Metal Corp Ultrahigh-tensile-strength steel plate for welding
EP2860276A4 (en) * 2013-08-13 2015-12-30 Nippon Steel & Sumitomo Metal Corp Steel plate
WO2016035110A1 (en) * 2014-09-05 2016-03-10 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multi-layer welded joints and method for producing same
CN105579602A (en) * 2014-09-05 2016-05-11 杰富意钢铁株式会社 Thick steel sheet having excellent CTOD properties in multi-layer welded joints and method for producing same
US10450627B2 (en) 2014-09-05 2019-10-22 Jfe Steel Corporation Thick steel plate having good multipass weld joint CTOD characteristics and method for manufacturing the same
KR101908818B1 (en) * 2016-12-23 2018-10-16 주식회사 포스코 High strength steel having excellent fracture initiation resistance and fracture arrestability in low temperature, and method for manufacturing the same
KR20180074228A (en) * 2016-12-23 2018-07-03 주식회사 포스코 High strength steel having excellent fracture initiation resistance and fracture arrestability in low temperature, and method for manufacturing the same
CN110114496A (en) * 2016-12-23 2019-08-09 株式会社Posco There is the brittle crack extension drag of enhancing and the high strength steel and its manufacturing method of fracture germinating drag at low temperature
CN110114494A (en) * 2016-12-23 2019-08-09 株式会社Posco There is the brittle crack extension drag of enhancing and the high strength steel and its manufacturing method of fracture germinating drag at low temperature
WO2018117766A1 (en) * 2016-12-23 2018-06-28 주식회사 포스코 High-strength steel material having enhanced resistance to brittle crack propagation and break initiation at low temperature and method for manufacturing same
EP3561123A4 (en) * 2016-12-23 2019-10-30 Posco High-strength steel material having enhanced resistance to brittle crack propagation and break initiation at low temperature and method for manufacturing same
JP2020504236A (en) * 2016-12-23 2020-02-06 ポスコPosco High-strength steel excellent in fracture initiation and propagation resistance at low temperature, and method for producing the same
US11268175B2 (en) 2016-12-23 2022-03-08 Posco High-strength steel having excellent fracture initiation resistance and fracture propagation arrestability at low temperature and method of manufacturing the same
CN110114494B (en) * 2016-12-23 2022-05-10 株式会社Posco High strength steel material with enhanced brittle crack propagation resistance and fracture initiation resistance at low temperature and method of making the same
US11453933B2 (en) 2016-12-23 2022-09-27 Posco High-strength steel material having enhanced resistance to crack initiation and propagation at low temperature and method for manufacturing the same
WO2022054898A1 (en) * 2020-09-14 2022-03-17 Jfeスチール株式会社 Thick steel sheet and manufacturing method for same
JP7070814B1 (en) * 2020-09-14 2022-05-18 Jfeスチール株式会社 Thick steel plate and its manufacturing method

Also Published As

Publication number Publication date
JP5741379B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
KR102002737B1 (en) Material for high strength steel sheets, hot rolled material for high strength steel sheets, hot-rolled and annealed material for high strength steel sheets, high strength steel sheet, high strength hot-dip-coated steel sheet, high strength electroplated steel sheet, and method of manufacturing same
US10358688B2 (en) Steel plate and method of producing same
KR101528084B1 (en) High strength hot rolled steel sheet having excellent blanking workability and method for manufacturing the same
JP5741379B2 (en) High tensile steel plate with excellent toughness and method for producing the same
JP5773098B1 (en) Ferritic-martensitic duplex stainless steel and method for producing the same
JP5574059B2 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
WO2018026014A1 (en) Steel sheet and plated steel sheet
JP5741378B2 (en) High tensile steel plate with excellent toughness and method for producing the same
JP6354268B2 (en) High-strength hot-rolled steel sheet having a maximum tensile strength of 980 MPa or more excellent in punching hole expandability and low-temperature toughness, and a method for producing the same
JP5804229B1 (en) Abrasion-resistant steel plate and method for producing the same
JP5672421B1 (en) High strength hot rolled steel sheet and method for producing the same
WO2014185405A1 (en) Hot-rolled steel sheet and production method therefor
JP2012062558A (en) High-strength hot-rolled steel sheet having excellent bending workability and method for producing the same
JP6183545B2 (en) H-section steel and its manufacturing method
JP6409598B2 (en) High-strength ultra-thick H-shaped steel with excellent toughness and method for producing the same
JP5907287B2 (en) Hot rolled steel sheet and manufacturing method thereof
JP6135697B2 (en) Abrasion-resistant steel sheet having excellent low-temperature toughness and low-temperature tempering embrittlement cracking properties and method for producing the same
JP2017160510A (en) Nickel steel sheet for low temperature and manufacturing method therefor
JP2021507989A (en) High-strength steel for polar environment with excellent fracture resistance at low temperature and its manufacturing method
WO2014175122A1 (en) H-shaped steel and method for producing same
JP2017218672A (en) High strength cold rolled steel sheet excellent in formability and production method thereof
JP6354274B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP6103160B1 (en) High strength thin steel sheet and method for producing the same
JP5692002B2 (en) High-tensile steel plate with excellent weldability and manufacturing method thereof
WO2017150665A1 (en) H-shaped steel for low temperatures and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R151 Written notification of patent or utility model registration

Ref document number: 5741379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350