JP2017155662A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2017155662A
JP2017155662A JP2016040208A JP2016040208A JP2017155662A JP 2017155662 A JP2017155662 A JP 2017155662A JP 2016040208 A JP2016040208 A JP 2016040208A JP 2016040208 A JP2016040208 A JP 2016040208A JP 2017155662 A JP2017155662 A JP 2017155662A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
hydrogen
air
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016040208A
Other languages
English (en)
Inventor
匡史 篠田
Tadashi Shinoda
匡史 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016040208A priority Critical patent/JP2017155662A/ja
Publication of JP2017155662A publication Critical patent/JP2017155662A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

【課題】本発明は、水素燃料噴射弁とガソリン噴射弁とを備えた内燃機関の制御装置において、燃費の悪化を抑制しつつ排気浄化触媒を昇温させることを目的とする。
【解決手段】本発明では、排気浄化触媒と水素噴射弁とガソリン噴射弁とを有する内燃機関の制御装置において、水素運転又はガソリン運転を選択的に実行する運転制御手段を備え、運転制御手段によって水素運転が実行される場合であり且つ触媒温度が活性化温度よりも低い場合において、内燃機関の機関始動時から現在までにガソリン運転が行われていない場合には、水素燃料と吸入空気との混合気の空燃比が理論空燃比より高い所定のリーン空燃比に制御される通常水素運転が行われる。
【選択図】図5

Description

本発明は、内燃機関の制御装置に関する。
一次燃料として水素、二次燃料としてガソリンを用いて、これら燃料を燃焼させるバイフューエル内燃機関が知られている。そして、特許文献1には、このようなバイフューエル内燃機関において、内燃機関の燃焼室で燃焼させる燃料を機関負荷に応じて変更する技術が開示されている。当該技術では、機関負荷が低負荷の場合に、水素と内燃機関の吸入空気との混合気の空燃比を理論空燃比より高いリーン空燃比にして、燃焼室において該混合気を燃焼させる。一方で、機関負荷が中負荷よりも高い場合に、燃焼室において水素とガソリンと内燃機関の吸入空気との混合気を燃焼させる。
また、特許文献2には、水素を燃料とした水素内燃機関において、該内燃機関の機関始動時に排気浄化触媒を昇温させる技術が開示されている。当該技術では、水素と内燃機関の吸入空気との混合気の空燃比を理論空燃比より低いリッチ空燃比にして、燃焼室で該混合気を燃焼させる。その結果、排気温度が上昇し、排気浄化触媒が昇温する。
特表2013−528260号公報 特開2007−056700号公報 特開2006−242076号公報
従来技術によれば、水素とガソリンとを燃料として用いる内燃機関において、機関負荷が低負荷の場合には、水素と内燃機関の吸入空気との混合気の空燃比を理論空燃比より高いリーン空燃比にして、燃焼室で該混合気を燃焼させ、該内燃機関から排出されるNOx量が略ゼロになるようにしている。そして、前記内燃機関において機関負荷が高負荷の場合には、燃焼室で水素とともにガソリンも燃焼させるが、このときにはガソリンの燃焼によって生成される燃焼生成物を排気浄化触媒で浄化する必要がある。また、内燃機関の機関始動時のエミッション低減のために、燃料と内燃機関の吸入空気との混合気の空燃比を理論空燃比より低いリッチ空燃比にして燃焼室で該混合気を燃焼させ、排気浄化触媒を昇温させることが行われているが、この場合には一般的に燃費が悪化してしまう。そして、水素とガソリンとを燃料として用いる内燃機関において、排気浄化触媒の昇温と燃費の悪化抑制とを制御する手法については、未だ改良の余地を残すものである。
本発明は、水素燃料噴射弁とガソリン噴射弁とを備えた内燃機関の制御装置において、燃費の悪化を抑制しつつ排気浄化触媒を昇温させることを目的とする。
上記課題を解決するために本発明に係る内燃機関の制御装置は、内燃機関の排気通路に設けられた排気浄化触媒と、水素燃料を噴射可能な第一噴射弁と、ガソリンを噴射可能な第二噴射弁と、を有する前記内燃機関の制御装置であって、前記内燃機関の運転状態に応じて、前記第一噴射弁によって噴射される前記水素燃料と前記内燃機関が吸入する吸入空気との混合気を燃焼させる第一運転、又は前記第二噴射弁によって噴射される前記ガソリンと前記内燃機関が吸入する吸入空気との混合気を燃焼させる第二運転を選択的に実行す
る運転制御手段と、前記第一運転において、前記水素燃料と前記吸入空気との混合気の空燃比が理論空燃比より高い所定のリーン空燃比に制御される通常水素運転を行う通常水素運転手段と、前記第一運転において、前記水素燃料と前記吸入空気との混合気の空燃比が前記所定のリーン空燃比よりもリッチ空燃比に制御される触媒昇温水素運転を行う触媒昇温水素運転手段と、を備え、前記運転制御手段によって前記第一運転が実行される場合であり、且つ前記排気浄化触媒の温度が該排気浄化触媒の活性化温度よりも低い場合において、前記内燃機関の機関始動時から現在までに前記運転制御手段によって前記第二運転が行われた場合には、前記触媒昇温水素運転手段によって前記触媒昇温水素運転が行われ、前記内燃機関の機関始動時から現在までに前記運転制御手段によって前記第二運転が行われていない場合には、前記通常水素運転手段によって前記通常水素運転が行われる。
本発明によれば、水素燃料噴射弁とガソリン噴射弁とを備えた内燃機関の制御装置において、燃費の悪化を抑制しつつ排気浄化触媒を昇温させることができる。
本発明の実施例に係る内燃機関とその吸排気系の概略構成を示す図である。 本発明の実施例に係る内燃機関の運転制御マップを示す図である。 本発明の実施例に係る水素運転における空気過剰率に対する排気温度、NOx排出量、および熱効率の相関を示す図である。 通常水素運転と触媒昇温水素運転との比較を説明するための、水素運転における空気過剰率に対する排気温度、NOx排出量、および熱効率の相関を示す図である。 本発明の実施例に係る触媒昇温制御フローを示すフローチャートである。
以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に記載がない限りは発明の技術的範囲をそれらのみに限定する趣旨のものではない。
(概略構成)
図1は、本実施例に係る内燃機関とその吸排気系の概略構成を示す図である。図1に示す内燃機関1は、4つの気筒2を有する火花点火式の内燃機関である。
内燃機関1は、各吸気ポートへ水素燃料を噴射する水素燃料噴射弁3を備えている。また、各気筒2には該気筒2内にガソリンを直接噴射するガソリン噴射弁4が設けられている。そして、各気筒2には、筒内の混合気に着火するための点火プラグ5が取り付けられている。なお、本実施例においては、水素燃料噴射弁3が本発明における第一噴射弁に相当し、ガソリン噴射弁4が本発明における第二噴射弁に相当する。
また、内燃機関1は吸気通路6と接続されている。吸気通路6にはターボチャージャ9のコンプレッサ9aが設置されている。また、内燃機関1は排気通路7と接続されている。排気通路7にはターボチャージャ9のタービン9bが設置されている。
吸気通路6におけるコンプレッサ9aよりも上流側にはエアフローメータ24が設けられている。エアフローメータ24は、吸気通路6内を流れる吸気(空気)の量(質量)に応じた電気信号を出力する。吸気通路6におけるコンプレッサ9aよりも下流側にはスロットル弁10が設けられている。スロットル弁10は、吸気通路6内の通路断面積を変更することで、内燃機関1の吸入空気量を調整する。また、タービン9bより下流側の排気通路7には、排気浄化触媒70が設けられている。排気通路7における排気浄化触媒70の下流側には温度センサ71が設けられている。
そして、内燃機関1には電子制御ユニット(ECU)20が併設されている。ECU20は、内燃機関1の運転状態等を制御するユニットである。ECU20には、上記のエアフローメータ24、クランクポジションセンサ21、アクセルポジションセンサ22、水温センサ23、および温度センサ71等の各種センサが電気的に接続されている。クランクポジションセンサ21は、内燃機関1の機関出力軸(クランクシャフト)の回転位置に相関する電気信号を出力するセンサである。アクセルポジションセンサ22は、図示しないアクセルペダルの操作量(アクセル開度)に相関した電気信号を出力するセンサである。水温センサ23は、内燃機関1を冷却する冷却水の温度(以下、単に「冷却水温」と称する場合もある。)に応じた電気信号を出力する。温度センサ71は排気の温度に応じた電気信号を出力する。そして、これらのセンサの出力信号がECU20に入力される。ECU20は、クランクポジションセンサ21の出力信号に基づいて内燃機関1の機関回転速度を導出する。また、ECU20は、アクセルポジションセンサ22の出力信号に基づいて内燃機関1の機関負荷を導出する。また、ECU20は、水温センサ23で冷却水温を検出し、温度センサ71の出力値に基づいて排気浄化触媒70の温度(以下、単に「触媒温度」と称する場合もある。)を推定する。
また、ECU20には、水素燃料噴射弁3、ガソリン噴射弁4、およびスロットル弁10等の各種装置が電気的に接続されている。そして、ECU20によって、これら各種装置が制御される。
上記の通り構成される内燃機関1は、水素燃料噴射弁3によって吸気ポートへ噴射される水素燃料と内燃機関1が吸入する吸入空気(以下、単に「吸入空気」と称する場合もある。)との混合気を、内燃機関1の燃焼室内で燃焼させる運転(以下、「水素運転」と称する場合もある。)を行う。なお、本実施例に係る水素運転では、後述するように内燃機関1から排出されるNOx量が略ゼロになるように、前記水素燃料と吸入空気との混合気の空燃比が制御される。なお、本実施例においては、水素運転が本発明における第一運転に相当する。
また、内燃機関1は、ガソリン噴射弁4によって気筒2内へ噴射されるガソリンと吸入空気との混合気を、内燃機関1の燃焼室内で燃焼させる運転(以下、「ガソリン運転」と称する場合もある。)を行うこともできる。なお、本実施例においては、ガソリン運転が本発明における第二運転に相当する。
(運転制御)
本実施例に係る内燃機関1の制御装置では、ECU20が、内燃機関1の運転状態に応じて、水素運転またはガソリン運転を選択的に実行する。より詳しくは、ECU20は、内燃機関1の機関回転速度および機関負荷に基づいて、水素運転を行うかガソリン運転を行うかを判別し、内燃機関1の運転を制御する。なお、本実施例においては、ECU20が、内燃機関1の運転を制御することで、本発明に係る運転制御手段として機能する。
本実施例における内燃機関1の運転制御マップを図2に示す。図2に示すように、内燃機関1では、その運転状態が低負荷領域に属する場合には、水素運転が行われる。そして、本実施例に係る内燃機関1の制御装置は、当該水素運転の一つである、後述する「通常水素運転」において、水素燃料噴射弁3によって吸気ポートへ噴射される水素燃料と吸入空気との混合気の空燃比を理論空燃比より高い所定のリーン空燃比に制御する。更に、制御装置は、当該水素運転の一つである、後述する「触媒昇温水素運転」において、前記空燃比を前記所定のリーン空燃比よりもリッチ空燃比に制御する。そして、「通常水素運転」および「触媒昇温水素運転」では、内燃機関1から排出されるNOx量が略ゼロになっている。すなわち、図2に示す水素運転が行われる運転領域は、内燃機関1から排出され
るNOx量が略ゼロになる領域として設定される。また、図2に示すように、内燃機関1の運転状態が高負荷領域に属する場合には、ガソリン運転が行われる。
ここで、内燃機関1が水素運転を行っているときの、空気過剰率に対する排気温度、NOx排出量、および熱効率の相関について図3に示す。図3に示すように、空気過剰率が大きくなるのに応じて排気温度が低くなる。また、空気過剰率が所定値よりも小さいときには空気過剰率が大きくなるのに応じてNOx排出量が少なくなり、空気過剰率が所定値以上のときにはNOx排出量は略ゼロになる。また、空気過剰率が大きくなるのに応じて熱効率が高くなり、空気過剰率の単位増加量当たりの熱効率の増加量を変化率としたとき、該変化率は空気過剰率が大きくなるのに応じて小さくなる。そして、内燃機関1が行う通常の水素運転(以下、単に「通常水素運転」と称する場合もある。)においては、図3に示すように、熱効率が可及的に高くなる空気過剰率で内燃機関1の運転が行われる。このときの空気過剰率に対応する空燃比が、通常水素運転における上記所定のリーン空燃比である。そして、このときのNOx排出量は略ゼロになっている。なお、本実施例においては、ECU20が、前記水素燃料と前記吸入空気との混合気の空燃比が上記所定のリーン空燃比に制御される通常水素運転を行うことで、本発明に係る通常水素運転手段として機能する。
(触媒昇温制御)
上述したように、本実施例に係る内燃機関1の制御装置では、ECU20が、内燃機関1の運転状態に応じて、水素運転またはガソリン運転を選択的に実行する。そして、内燃機関1が水素運転を行っているときは、内燃機関1から排出されるNOx量が略ゼロになっている。また、本実施例における水素運転では、HCやCOが内燃機関1から排出されることはない。したがって、水素運転時には、排気浄化触媒70によって排気を浄化する必要はない。一方、内燃機関1がガソリン運転を行っているときは、従来のガソリン機関と同様にHC、CO、およびNOxが内燃機関1から排出されるため、これらを排気浄化触媒70によって浄化する必要がある。そして、内燃機関1の機関始動時や通常水素運転時には、排気浄化触媒70の温度が該排気浄化触媒70の活性化温度よりも低くなっている場合がある。したがって、排気浄化触媒70の温度が該排気浄化触媒70の活性化温度よりも低い場合には、ガソリン運転によって排出されるHC、CO、およびNOxを浄化するために、排気浄化触媒70を昇温させる制御(以下、「触媒昇温制御」と称する場合もある。)を行う必要がある。
従来技術では、内燃機関の機関始動時のエミッション低減のために、燃料と内燃機関の吸入空気との混合気の空燃比を理論空燃比より低いリッチ空燃比にして燃焼室で該混合気を燃焼させ、排気浄化触媒を昇温させることが行われているが、この場合には一般的に燃費が悪化してしまう。
また、本実施例に係る通常水素運転では、上述したように排気温度が低くなる。そして、通常水素運転時のNOx排出量が略ゼロになることからもわかるように、通常水素運転時の排気温度はガソリン運転時の排気温度よりも低くなる。従って、本実施例に係る通常水素運転時には、排気浄化触媒70の温度が該排気浄化触媒70の活性化温度よりも低くなっている場合があり得る。
ここで、本実施例に係る内燃機関1においても、ガソリン運転によるHC、CO、およびNOxの排出に備えて、水素運転が行われているときに、例えば、水素燃料と吸入空気との混合気の空燃比を理論空燃比より低いリッチ空燃比にして燃焼室で該混合気を燃焼させることにより排気浄化触媒70を昇温させることは可能である。しかしながら、排気浄化触媒70によって排気を浄化する必要がない水素運転時において、ガソリン運転によるHC、CO、およびNOxの排出に備えて排気浄化触媒70を昇温させておくことは、内
燃機関1の燃費の悪化をもたらす。そこで、本発明の発明者は、内燃機関1の機関始動時から現在までの運転履歴に基づいて水素運転時の触媒昇温制御を行うことによって、触媒昇温制御に起因する内燃機関1の燃費の悪化を抑制できることを見出した。
本実施例に係る内燃機関1の制御装置では、内燃機関1の機関始動が水素運転によって行われる。そして、内燃機関1が水素運転を行っているときに、ECU20によって機関始動時から現在までにガソリン運転が行われているか否かが判別され、すでにガソリン運転が行われていると判別される場合には、現在から先の期間においても再びガソリン運転が行われるとみなして、排気浄化触媒70の温度が該排気浄化触媒70の活性化温度よりも低いときに、排気浄化触媒70を昇温させる。
詳しくは、内燃機関1の機関始動時から現在までにガソリン運転が行われていない場合には、水素運転時において、触媒温度にかかわらず排気浄化触媒70を昇温させない。一方で、内燃機関1の機関始動時から現在までにガソリン運転が行われている場合には、その後の水素運転時においては所定の条件(例えば、触媒温度が所定温度よりも低くなっている場合)に該当するときに、排気浄化触媒70を昇温させる。これは、内燃機関1の機関始動時から現在までにガソリン運転が行われている場合には、現在の内燃機関1の運転が水素運転であったとしても、現在から先の期間においては再びガソリン運転が行われるとみなして、水素運転時にガソリン運転によるHC、CO、およびNOxの排出に備えるものである。
なお、内燃機関1の機関始動時から現在までの運転履歴に基づいて排気浄化触媒70を昇温させない場合であっても、上述したように、水素運転時にはHC、CO、およびNOxが内燃機関1から排出されることはないため、排気浄化触媒70が活性化していなくても問題はない。
また、本実施例では、上述したように、内燃機関1の機関始動時から現在までにガソリン運転が行われている場合には、水素運転時に所定の条件に該当するときに、排気浄化触媒70を昇温させるための水素運転(以下、「触媒昇温水素運転」と称する場合もある。)が行われる。ここで、前記所定の条件とは、排気浄化触媒70の温度が該排気浄化触媒70の活性化温度よりも低くなっている場合である。排気浄化触媒70の温度が該排気浄化触媒70の活性化温度よりも低くなっているか否かは、温度センサ71の出力値に基づいて推定される上述の触媒温度が所定温度よりも低くなっているか否かによって判別することができる。または、内燃機関1を冷却する冷却水の温度(以下、単に「冷却水温」と称する場合もある。)が所定水温よりも低くなっているか否かによって判別することができる。すなわち、内燃機関1の機関始動時から現在までにガソリン運転が行われている場合であって、且つ排気浄化触媒70が所定の排気浄化能力を発揮できる程度に排気浄化触媒70が昇温されていないと推定される場合に、触媒昇温水素運転が行われる。なお、ECU20は、水温センサ23で冷却水温を検出する。
そして、触媒昇温水素運転では、水素燃料と吸入空気との混合気の空燃比を通常水素運転時の所定のリーン空燃比よりもリッチ空燃比にして該混合気を燃焼させる。さらに、触媒昇温水素運転では、点火時期の遅角化が行われる。その結果、排気温度が上昇し、排気浄化触媒70を昇温させることができる。なお、本実施例においては、ECU20が、前記混合気の空燃比が上記所定のリーン空燃比よりもリッチ空燃比に制御される触媒昇温水素運転を行うことで、本発明に係る触媒昇温水素運転手段として機能する。
ここで、通常水素運転と触媒昇温水素運転との比較を行う。図4は、通常水素運転と触媒昇温水素運転との比較を説明するための、空気過剰率に対する排気温度、NOx排出量、および熱効率の相関について示す図である。図4に示すように、触媒昇温水素運転時に
は、通常水素運転時よりも空気過剰率が小さくなっている。そして、触媒昇温水素運転時の排気温度は、通常水素運転時の排気温度よりも高くなる。これは、上述した空気過剰率の減少および点火時期の遅角化の影響によるものである。このことにより、排気浄化触媒70の昇温が可能となる。また、触媒昇温水素運転時の熱効率は、通常水素運転時の熱効率よりも低くなる。これは、触媒昇温水素運転によって燃費が悪化することを意味している。そして、触媒昇温水素運転時には、通常水素運転時と同様にNOx排出量が略ゼロになっている。このように、触媒昇温水素運転では、内燃機関1から排出されるNOx量が略ゼロになるとともに排気温度が可及的に高くなる空気過剰率で内燃機関1の運転が行われる。
以上に述べたように、本実施例に係る内燃機関1の制御装置では、内燃機関1の運転要求が水素運転領域にある場合に、内燃機関1の機関始動時から現在までにガソリン運転が行われていないと判別されるときには、通常水素運転時よりも熱効率が低下する触媒昇温水素運転が行われることはなく、触媒温度にかかわらず通常水素運転が行われる。そして、内燃機関1の機関始動時から現在までにガソリン運転が行われていると判別されるときには、現在から先の期間においては再びガソリン運転が行われるとみなして、所定の条件で触媒昇温水素運転が行われる。そして、このように触媒昇温制御が実行されることによって、燃費の悪化を抑制しつつ排気浄化触媒70を昇温させることができる。
(触媒昇温制御フロー)
本実施例に係る内燃機関1の制御装置における、触媒昇温制御フローについて図5に基づいて説明する。図5は、本実施例に係る内燃機関1の制御装置における、触媒昇温制御フローを示すフローチャートである。本実施例では、ECU20によって、本フローが内燃機関1の機関始動時から機関停止時までの期間に所定の演算周期で繰り返し実行される。なお、上述したように、内燃機関1の機関始動は水素運転によって行われる。また、内燃機関1の機関始動時において、後述する運転履歴判定フラグNflgmおよび触媒昇温水素運転判定フラグNflgmhが0に初期化される。
本フローでは、先ず、S101において、ECU20がアクセルポジションセンサ22の出力信号等に基づいて内燃機関1の運転要求を導出し、該運転要求が水素運転領域にあるか否かが判別される。ECU20のROMには、上述した図2に示すような運転制御マップが予め記憶されている。なお、上述したように、水素運転領域は、内燃機関1から排出されるNOx量が略ゼロになる領域として設定されている。S101では、このマップまたは該マップに基づく関数を用いて前記運転要求が水素運転領域にあるか否かが判別される。S101において肯定判定された場合、ECU20はS102の処理へ進み、S101において否定判定された場合、ECU20はS108の処理へ進む。
S101において肯定判定された場合、次に、S102において、触媒昇温水素運転判定フラグNflgmhが0であるか否かが判別される。触媒昇温水素運転判定フラグNflgmhは、後述するように運転履歴判定フラグNflgmが1であると判別されるときに1に設定される。本フローでは、水素運転が要求される場合であって、触媒昇温水素運転判定フラグNflgmhが1で且つ後述する所定の条件に該当する場合に、触媒昇温水素運転が実行される。S102において肯定判定された場合、ECU20はS103の処理へ進み、S102において否定判定された場合、ECU20はS105の処理へ進む。
S102において肯定判定された場合、次に、S103において、運転履歴判定フラグNflgmが1であるか否かが判別される。運転履歴判定フラグNflgmは、後述するように内燃機関1の運転要求がガソリン運転領域にあると判別されると1に設定される。ここで、運転履歴判定フラグNflgmが0である場合、すなわち、内燃機関1の機関始動時から現在までにガソリン運転が行われていないと判別される場合には、ECU20は
水素運転時に排気浄化触媒70を昇温させる制御を実行しない。S103において肯定判定された場合、ECU20はS104の処理へ進み、S103において否定判定された場合、ECU20はS107の処理へ進む。
S103において肯定判定された場合、次に、S104において、触媒昇温水素運転判定フラグNflgmhが1に設定される。ここで、S104の処理が行われる場合は、内燃機関1の機関始動後に行われた一回目のガソリン運転の後に水素運転が要求される場合であり、換言すれば、水素運転が要求されたときに、機関始動後に既にガソリン運転が行われた場合である。そして、S104において触媒昇温水素運転判定フラグNflgmhが1に設定されると、内燃機関1の機関停止まで該フラグの値が維持される。触媒昇温水素運転判定フラグNflgmhが一度1に設定されると、後述する所定の条件に該当する場合に、触媒昇温水素運転が実行される。
次に、S105において、触媒温度Tbが判定閾値Tbthよりも小さいか否かが判別される。この判定閾値Tbthは、排気浄化触媒70が所定の排気浄化能力を発揮できる触媒温度として、ECU20のROMに予め記憶されている。また、S105では、上述したように、冷却水温が所定水温よりも低くなっている否かを判別してもよい。S105において肯定判定された場合、ECU20はS106の処理へ進み、S105において否定判定された場合、ECU20はS107の処理へ進む。
S105において肯定判定された場合、次に、S106において、触媒昇温水素運転が実行される。一方、S105において否定判定された場合またはS103において否定判定された場合、次に、S107において、通常水素運転が実行される。S106では、ECU20が、水素燃料と吸入空気との混合気の空燃比を、上述した図4に示すような空気過剰率に対応する空燃比に制御する。すなわち、前記空燃比を、通常水素運転時の所定のリーン空燃比よりもリッチ空燃比であって内燃機関1から排出されるNOx量が略ゼロになるとともに排気温度が可及的に高くなる空燃比に制御する。そして、このときには、点火時期の遅角化が行われている。また、S107では、ECU20が、水素燃料と吸入空気との混合気の空燃比を、上述した図3に示すような空気過剰率に対応する空燃比に制御する。すなわち、前記空燃比を、前記所定のリーン空燃比であって内燃機関1から排出されるNOx量が略ゼロになるとともに熱効率が可及的に高くなる空燃比に制御する。そして、S106の処理の後、またはS107の処理の後、本フローの実行が終了される。
また、S101において否定判定された場合、すなわち、内燃機関1の運転要求がガソリン運転領域にあると判別される場合には、次に、S108において、運転履歴判定フラグNflgmが1に設定される。そして、S109において、触媒温度Tbが判定閾値Tbthよりも小さいか否かが判別される。このS109の処理は、上述したS105の処理と実質的に同一である。S109において肯定判定された場合、ECU20はS110の処理へ進み、S109において否定判定された場合、ECU20はS111の処理へ進む。
S109において肯定判定された場合、次に、S110において、触媒昇温ガソリン運転が実行される。ここで、触媒昇温ガソリン運転とは、排気浄化触媒70を昇温させるためのガソリン運転のことであり、通常のガソリン運転時よりも空燃比がリッチ側の空燃比に設定され、且つ点火時期の遅角化が行われる。一方、S109において否定判定された場合、次に、S111において、通常ガソリン運転が実行される。ここで、通常ガソリン運転とは、内燃機関1が行う通常のガソリン運転のことをいう。そして、S110の処理の後、またはS111の処理の後、本フローの実行が終了される。
本実施例によれば、触媒昇温制御が上述したフローに基づいて実行されることによって
、燃費の悪化を抑制しつつ排気浄化触媒70を昇温させることができる。
1・・・内燃機関
3・・・水素燃料噴射弁
4・・・ガソリン噴射弁
5・・・点火プラグ
6・・・吸気通路
7・・・排気通路
10・・スロットル弁
20・・ECU
23・・水温センサ
24・・エアフローメータ
70・・排気浄化触媒
71・・温度センサ

Claims (1)

  1. 内燃機関の排気通路に設けられた排気浄化触媒と、水素燃料を噴射可能な第一噴射弁と、ガソリンを噴射可能な第二噴射弁と、を有する前記内燃機関の制御装置であって、
    前記内燃機関の運転状態に応じて、前記第一噴射弁によって噴射される前記水素燃料と前記内燃機関が吸入する吸入空気との混合気を燃焼させる第一運転、又は前記第二噴射弁によって噴射される前記ガソリンと前記内燃機関が吸入する吸入空気との混合気を燃焼させる第二運転を選択的に実行する運転制御手段と、
    前記第一運転において、前記水素燃料と前記吸入空気との混合気の空燃比が理論空燃比より高い所定のリーン空燃比に制御される通常水素運転を行う通常水素運転手段と、
    前記第一運転において、前記水素燃料と前記吸入空気との混合気の空燃比が前記所定のリーン空燃比よりもリッチ空燃比に制御される触媒昇温水素運転を行う触媒昇温水素運転手段と、を備え、
    前記運転制御手段によって前記第一運転が実行される場合であり、且つ前記排気浄化触媒の温度が該排気浄化触媒の活性化温度よりも低い場合において、前記内燃機関の機関始動時から現在までに前記運転制御手段によって前記第二運転が行われた場合には、前記触媒昇温水素運転手段によって前記触媒昇温水素運転が行われ、前記内燃機関の機関始動時から現在までに前記運転制御手段によって前記第二運転が行われていない場合には、前記通常水素運転手段によって前記通常水素運転が行われる内燃機関の制御装置。
JP2016040208A 2016-03-02 2016-03-02 内燃機関の制御装置 Pending JP2017155662A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016040208A JP2017155662A (ja) 2016-03-02 2016-03-02 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016040208A JP2017155662A (ja) 2016-03-02 2016-03-02 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2017155662A true JP2017155662A (ja) 2017-09-07

Family

ID=59809353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016040208A Pending JP2017155662A (ja) 2016-03-02 2016-03-02 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2017155662A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108678864A (zh) * 2018-05-09 2018-10-19 北京工业大学 一种用于氢发动机起动减排放及氢气消耗率的控制方法
CN114961942A (zh) * 2022-06-14 2022-08-30 潍柴动力股份有限公司 一种减少甲烷排放的方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108678864A (zh) * 2018-05-09 2018-10-19 北京工业大学 一种用于氢发动机起动减排放及氢气消耗率的控制方法
CN108678864B (zh) * 2018-05-09 2020-06-16 北京工业大学 一种用于氢发动机起动减排放及氢气消耗率的控制方法
CN114961942A (zh) * 2022-06-14 2022-08-30 潍柴动力股份有限公司 一种减少甲烷排放的方法及装置
CN114961942B (zh) * 2022-06-14 2024-04-16 潍柴动力股份有限公司 一种减少甲烷排放的方法及装置

Similar Documents

Publication Publication Date Title
JP4306642B2 (ja) 内燃機関の制御システム
JP5729467B2 (ja) 内燃機関の制御装置及び方法
US9932916B2 (en) Combustion control apparatus for internal combustion engine
JP5772025B2 (ja) 内燃機関の制御装置
JP4474435B2 (ja) 内燃機関の制御装置
JP2009019538A (ja) 筒内噴射式内燃機関の制御装置
JPWO2014167649A1 (ja) 内燃機関の制御装置
JP2009185628A (ja) 内燃機関の燃料噴射制御システム
JP4175385B2 (ja) 内燃機関の排気浄化触媒暖機システム
JP2008019729A (ja) 筒内噴射式エンジンの制御装置
JP2014047654A (ja) 内燃機関の制御装置
JP2009191649A (ja) 内燃機関の制御装置
JP2017155662A (ja) 内燃機関の制御装置
JP5556956B2 (ja) 内燃機関の制御装置及び方法
JP2009156045A (ja) エンジンの燃料噴射制御装置
JP4840240B2 (ja) 内燃機関の制御システム
JP2006002683A (ja) 内燃機関の制御装置
JP2008267294A (ja) 内燃機関の制御システム
JP2015121182A (ja) エンジンの制御装置
JP2011236802A (ja) 内燃機関の制御装置
JP2010168931A (ja) 火花点火式内燃機関の点火時期制御装置
JP2016125448A (ja) 内燃機関の制御装置
JP2015004343A (ja) 筒内噴射エンジンの制御装置
JP2014134144A (ja) 内燃機関の燃料噴射システム
JP2008232095A (ja) 内燃機関の制御装置