JP2017153875A - 生体情報測定装置および生体情報測定方法 - Google Patents

生体情報測定装置および生体情報測定方法 Download PDF

Info

Publication number
JP2017153875A
JP2017153875A JP2016042292A JP2016042292A JP2017153875A JP 2017153875 A JP2017153875 A JP 2017153875A JP 2016042292 A JP2016042292 A JP 2016042292A JP 2016042292 A JP2016042292 A JP 2016042292A JP 2017153875 A JP2017153875 A JP 2017153875A
Authority
JP
Japan
Prior art keywords
biological information
blood vessel
waveform
laser light
information measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016042292A
Other languages
English (en)
Inventor
雄太 町田
Yuta Machida
雄太 町田
彩映 沢渡
Sae Sawatari
彩映 沢渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2016042292A priority Critical patent/JP2017153875A/ja
Priority to CN201710077298.XA priority patent/CN107149471A/zh
Priority to US15/438,160 priority patent/US20170251930A1/en
Publication of JP2017153875A publication Critical patent/JP2017153875A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/04Measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4209Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames
    • A61B8/4227Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames characterised by straps, belts, cuffs or braces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4427Device being portable or laptop-like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/02Measuring pulse or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0891Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of blood vessels

Abstract

【課題】非侵襲かつ非加圧で血管の硬化度を精度よく求めることのできる生体情報測定装置を提供する。【解決手段】生体情報測定装置1は、測定波として光または音波を生体に照射する照射部と、生体内を通過した測定波を検出する検出部と、検出部の検出結果に基づいて、血流量の時間変化と血管断面積の時間変化とを求め、血流量の時間変化および血管断面積の時間変化を用いて、血流量または血管断面積の時間変化を示す波形を進行波成分の波形と反射波成分の波形とに分離し、進行波成分の波形および反射波成分の波形から血管の硬化度を求める演算部420とを備える。【選択図】図4

Description

本発明は、生体情報を測定するための技術に関する。
例えば特許文献1には、測定部位を圧迫した状態で検出した脈波波形を、複数の擬似血流波形を組み合わせて推定した血流波形を用いて駆出波と反射波とに分離し、駆出波と反射波との関係から動脈硬化度を算出することが記載されている。また、特許文献2には、生体から検出した脈波波形をフィット関数を用いて入射波と反射波とに分離し、入射波と反射波との振幅強度の差や比から、動脈硬化度を評価することが記載されている。
特許第5573550号公報 特許第5016718号公報
特許文献1,2では、脈波波形を進行波と反射波とに分離する際に、複数の擬似血流波形を組み合わせて推定した血流波形(特許文献1)や、フィット関数(特許文献2)を用いているが、これらは被験者から直接測定して得られた物理量ではないので、動脈硬化度を精度よく求めることができない。
本発明は、上述した事情に鑑みてなされたものであり、非侵襲かつ非加圧で血管の硬化度を精度よく求めることを目的とする。
本発明の第1の態様に係る生体情報測定装置は、測定波として光または音波を生体に照射する照射部と、前記生体内を通過した前記測定波を検出する検出部と、前記検出部の検出結果に基づいて、血流量の時間変化と血管断面積の時間変化とを求め、前記血流量の時間変化および前記血管断面積の時間変化を用いて、前記血流量または前記血管断面積の時間変化を示す波形を進行波成分の波形と反射波成分の波形とに分離し、前記進行波成分の波形および前記反射波成分の波形から血管の硬化度を求める演算部と、を備えることを特徴とする。
以上の構成によれば、生体情報測定装置は、検出部の検出結果から求めた血流量の時間変化および血管断面積の時間変化を用いて、血流量または血管断面積の時間変化を示す波形を進行波成分の波形と反射波成分の波形とに分離し、分離した2つの波形から血管の硬化度を求める。ここで、血流量の時間変化および血管断面積の時間変化は、どちらも検出部の検出結果から求めたものであり、被験者から直接測定して得られた物理量であるから、特許文献1,2の場合に比べ、血管の硬化度を精度よく求めることができる。また、生体情報測定装置は、測定波として光または音波を用いているので、血管の硬化度を非侵襲に求めることができることに加え、カフ等を用いて測定部位を加圧することもない。よって、本発明によれば、非侵襲かつ非加圧で血管の硬化度を精度よく求めることができる。
また、本発明の第1の態様に係る生体情報測定装置において、前記演算部は、前記進行波成分の波形のピーク値および前記反射波成分の波形のピーク値を用いて血管の硬化度を求めてもよい(第2の態様)。例えば、脈波は、心臓から送り出されて末梢へと向かう順行性の進行波と、進行波の一部が末梢等で反射して生じる逆行性の反射波との合成波であるが、これと同様に、血流量または血管断面積の時間変化を示す波形も、進行波成分の波形と反射波成分の波形との合成波である。また、反射波成分の波形の振幅は、末梢血管の抵抗によって大きさが変化し、血管壁が硬いほど大きくなる。したがって、例えば、進行波成分の波形のピーク値と反射波成分の波形のピーク値との比や差等、分離した2つの波形のピーク値を用いて血管の硬化度を求めることができる。
また、本発明の第1の態様に係る生体情報測定装置において、前記演算部は、前記進行波成分の波形の時間積分値および前記反射波成分の波形の時間積分値を用いて血管の硬化度を求めてもよい(第3の態様)。上述したように反射波成分の波形の振幅は、血管壁が硬いほど大きくなる。したがって、例えば、進行波成分の波形の時間積分値と反射波成分の波形の時間積分値との比や差等、分離した2つの波形の時間積分値を用いて血管の硬化度を求めることができる。
また、本発明の第1の態様に係る生体情報測定装置において、前記演算部は、前記進行波成分の波形と前記反射波成分の波形との時間差を用いて血管の硬化度を求めてもよい(第4の態様)。反射波成分の波形は、血管壁が硬いほど速く伝達する。したがって、例えば、進行波成分の波形のピークと反射波成分の波形のピークとの時間差等、分離した2つの波形の時間差を用いて血管の硬化度を求めることができる。
また、本発明の第1〜第4の態様のいずれかに係る生体情報測定装置において、前記演算部は、前記血流量の時間変化および前記血管断面積の時間変化から脈波伝搬速度を求めてもよい(第5の態様)。この場合、生体情報測定装置は、血管の硬化度の他に脈波伝搬速度を求めることができる。
また、本発明の第5の態様に係る生体情報測定装置において、前記演算部は、前記脈波伝搬速度を用いて血圧を求めてもよい(第6の態様)。この場合、生体情報測定装置は、血管の硬化度と脈波伝搬速度の他に血圧を求めることができる。
また、本発明の第1〜第6の態様のいずれかに係る生体情報測定装置において、前記測定波は、レーザー光であり、前記検出部は、前記生体内を通過した前記レーザー光の受光強度および周波数の時間変化を示す光ビート信号を生成し、前記演算部は、前記検出部が生成した前記光ビート信号から、前記血流量の時間変化と前記血管断面積の時間変化とを求めてもよい(第7の態様)。この場合、生体情報測定装置は、レーザー光を用いたレーザードップラーフローメトリー法(以下、LDF法)による測定によって、血流量または血管断面積の時間変化を示す波形を分離するために用いる血流量の時間変化と血管断面積の時間変化の両方を求めることができる。
また、本発明の第7の態様に係る生体情報測定装置において、前記演算部は、前記光ビート信号の全パワーの時間変化を求めてもよい(第8の態様)。光ビート信号の全パワーの時間変化は、容積脈波に相当する。したがって、第8の態様に係る生体情報測定装置によれば、レーザー光を用いたLDF法による測定によって、血管の硬化度の他に容積脈波を求めることができる。
また、本発明の第1〜第6の態様のいずれかに係る生体情報測定装置において、前記測定波は、非レーザー光であり、前記検出部は、前記生体内を通過した前記非レーザー光の受光強度の時間変化を示す受光信号を生成し、前記演算部は、前記検出部が生成した前記受光信号から、前記血流量の時間変化と前記血管断面積の時間変化とを求めてもよい(第9の態様)。この場合、生体情報測定装置は、非レーザー光を用いた測定によって、血流量または血管断面積の時間変化を示す波形を分離するために用いる血流量の時間変化と血管断面積の時間変化の両方を求めることができる。
また、本発明の第1〜第6の態様のいずれかに係る生体情報測定装置において、前記照射部は、生体にレーザー光を照射する第1照射部と、前記生体に非レーザー光を照射する第2照射部とを備え、前記検出部は、前記生体内を通過した前記レーザー光を検出する第1検出部と、前記生体内を通過した前記非レーザー光を検出する第2検出部とを備え、前記演算部は、前記第1検出部の検出結果に基づいて血流量の時間変化を求め、前記第2検出部の検出結果に基づいて血管断面積の時間変化を求めてもよい(第10の態様)。この場合、生体情報測定装置は、レーザー光を用いた測定によって血流量の時間変化を求める一方、非レーザー光を用いた測定によって血管断面積の時間変化を求める。したがって、血流量の時間変化および血管断面積の時間変化を正確に求めることができるので、血管の硬化度の算出精度を高めることができる。
また、本発明の第1〜第6の態様のいずれかに係る生体情報測定装置において、前記照射部は、生体にレーザー光を照射する第1照射部と、前記生体に非レーザー光を照射する第2照射部とを備え、前記検出部は、前記生体内を通過した前記レーザー光および前記非レーザー光を検出し、前記演算部は、前記検出部による前記レーザー光の検出結果に基づいて血流量の時間変化を求め、前記検出部による前記非レーザー光の検出結果に基づいて血管断面積の時間変化を求めてもよい(第11の態様)。この場合、検出部は1つでよく、レーザー光用の検出部と非レーザー光用の検出部とを別々に備える必要がない。したがって、本発明の第10の態様に係る生体情報測定装置と比較した場合に、生体情報測定装置の構成を簡素化し、より小型にすることができる。
また、本発明の第10の態様または第11の態様に係る生体情報測定装置において、前記生体のうち、前記レーザー光を照射して血流量の時間変化を求める部位と、前記非レーザー光を照射して血管断面積の時間変化を求める部位とが同じであってもよい(第12の態様)。この場合、同じ部位から求めた血流量の時間変化および血管断面積の時間変化を用いて血流量または血管断面積の時間変化を示す波形を分離し、血管の硬化度を求めるので、局部(測定部位)の血管の硬化度を正確に求めることができる。また、レーザー光を照射して血流量の時間変化を求める部位と、非レーザー光を照射して血管断面積の時間変化を求める部位とを同じにすることで、同じでない場合に比べ、生体情報測定装置を小型化することができる。
また、本発明の第13の態様に係る生体情報測定方法は、生体情報測定装置が、測定波として光または音波を生体に照射し、前記生体内を通過した前記測定波を検出し、検出結果に基づいて、血流量の時間変化と血管断面積の時間変化とを求め、前記血流量の時間変化および前記血管断面積の時間変化を用いて、前記血流量または前記血管断面積の時間変化を示す波形を進行波成分の波形と反射波成分の波形とに分離し、前記進行波成分の波形および前記反射波成分の波形から血管の硬化度を求める、ことを特徴とする。この発明によれば、本発明の第1の態様に係る生体情報測定装置と同様の作用効果を奏する。
第1実施形態に係る生体情報測定装置1を被験者100の手首に装着した状態を示す図である。 生体情報測定装置1の正面図である。 生体情報測定装置1の背面図である。 生体情報測定装置1のブロック図である。 LDF法による生体情報の測定原理を説明するための模式図である。 第1実施形態に係る生体情報測定処理のフローチャートである。 血流波形Q(t)、血管断面積Aの時間変化を示す波形A(t)、血流進行波Q(t)および血流反射波Q(t)を示すグラフである。 血流進行波Q(t)および血流反射波Q(t)を示すグラフである。 第2実施形態に係る生体情報測定装置2のブロック図である。 第2実施形態に係る生体情報測定処理のフローチャートである。 容積脈波PG(t)および血流波形Q(t)を示すグラフである。 血圧P(t)を示すグラフである。 第3実施形態に係る生体情報測定装置3のブロック図である。 第3実施形態に係る生体情報測定処理のフローチャートである。 第4実施形態に係る生体情報測定装置4のブロック図である。 光学センサー50,52の配置を示す図である。 第4実施形態に係る生体情報測定処理のフローチャートである。 変形例に係り、生体情報測定モジュール9の構成を示す図である。 変形例に係り、超音波センサー54を用いた生体情報の測定原理を説明するための模式図である。
以下、図面を参照して本発明に係る実施の形態を説明する。
<第1実施形態>
図1は、本発明の第1実施形態に係る生体情報測定装置1を被験者100の手首に装着した状態を示す図である。また、図2は生体情報測定装置1の正面図であり、図3は生体情報測定装置1の背面図である。生体情報測定装置1は、被験者100(生体)の生体情報を非侵襲に測定する測定機器である。生体情報測定装置1は、例えば図1に示すように、被験者100の手首に装着される腕時計型のウェアラブル機器である。例えば、生体情報測定装置1は、光学式の血圧計であり、生体情報として、動脈硬化度(血管の硬化度)の他に脈波伝播速度や血圧を測定することができる。
図2および図3に示すように、生体情報測定装置1は、本体部11と、ベルト12とを備える。ベルト12は、被験者100の手首に巻回される。図2に示すように、本体部11の正面(被験者100の手首の表皮と接触する面とは反対側の面)には、表示部60が設けられている。表示部60には、例えば図2に示すように、生体情報測定装置1によって測定された被験者100の生体情報(血圧,脈波伝播速度,動脈硬化度等)が表示される。本体部11の側面には、2つの操作ボタン13,14が設けられている。被験者100は、操作ボタン13,14を操作することで、例えば、生体情報の測定開始を指示したり、生体情報の測定に関する各種の設定等を行うことができる。また、図3に示すように、本体部11の背面(被験者100の手首の表皮と接触する面)には、照射部の一例であるレーザー発光部510と、検出部の一例であるレーザー受光部520とが設けられている。
図4は、生体情報測定装置1の内部構成を示すブロック図である。生体情報測定装置1は、例えば、操作ボタン13,14と、計時部20と、記憶部30と、制御部40と、光学センサー50と、表示部60と、通信部70とを備える。操作ボタン13,14は、操作信号を制御部40に出力する。計時部20は、発振回路や分周回路を備え、例えば、年,月,日,時,分,秒からなる時刻を計時する。記憶部30は、例えば不揮発性の半導体メモリーを備え、制御部40が実行するプログラムや、制御部40が使用する各種のデータ等を記憶する。
制御部40は、CPU(Central Processing Unit)やFPGA(Field-Programmable Gate Array)等の演算処理装置であり、生体情報測定装置1の全体を制御する。制御部40は、記憶部30に記憶されたプログラムを実行することで、生体情報の測定等に関する各種の処理を実行する。制御部40は、照射制御部410と、演算部420とを備える。照射制御部410は、レーザー発光部510によるレーザー光の照射を制御する。演算部420は、レーザー受光部520から出力される受光信号S1を演算処理することで、被験者100の生体情報を求める。演算部420が求める生体情報には、例えば、動脈硬化度,脈波伝播速度,血圧が含まれる。
なお、制御部40の機能を複数の集積回路に分散した構成や、制御部40の一部または全部の機能を専用の電子回路で実現した構成も採用され得る。また、図4では制御部40と記憶部30とを別体の要素として図示したが、記憶部30を内包する制御部40をASIC(Application Specific Integrated Circuit)等により実現することも可能である。
光学センサー50は、レーザー発光部510と、レーザー受光部520とを備える。レーザー発光部510は、例えば半導体レーザーやレーザー駆動回路等を備え、照射制御部410の制御の下、測定波の一例であるレーザー光を被験者100の手首に照射する。レーザー発光部510が照射するレーザー光は、共振器による共振を経て射出される狭帯域でコヒーレントな直進光である。例えば、レーザー発光部510が照射するレーザー光の波長は850nmである。
レーザー受光部520は、例えば、フォトダイオード等の受光素子,増幅器,A/D変換器等を備える。受光素子は、レーザー発光部510が照射するレーザー光の波長に対応する狭帯域のバンドパス特性を有し、該当する波長域の光のみを選択的に透過させ、それ以外の波長域の光(例えば太陽光や白色光等)をブロックする。レーザー受光部520は、被験者100の生体内を通過してきたレーザー光を受光素子によって受光し、レーザー光の受光強度および周波数の時間変化を示す受光信号S1を生成して演算部420に出力する。
表示部60は、例えば液晶ディスプレイや有機EL(ElectroLuminescence)ディスプレイである。表示部60には、演算部420から出力された被験者100の生体情報等が表示される(図2)。通信部70は、例えばパーソナルコンピューターやスマートフォン等の外部機器90との通信を制御する。例えば、通信部70は、Bluetooth(登録商標),Wi-Fi,赤外線通信等の無線通信により外部機器90と通信を行う。また、通信部70は、通信ケーブルを介した有線通信により外部機器90と通信を行うことも可能である。
図5は、LDF法による生体情報の測定原理を説明するための模式図である。本体部11の背面(レーザー発光部510の発光面およびレーザー受光部520の受光面)は、被験者100の手首の表皮に密着している。レーザー発光部510が照射したレーザー光は、表皮を透過して被験者100の手首の内部(生体内)に入射する。生体内に入射したレーザー光は、散乱・反射を繰り返しながら生体組織内に広がっていき、そのうちの一部がレーザー受光部520に到達し、受光素子によって受光される。
レーザー発光部510が照射したレーザー光の周波数をfとしたとき、表皮,真皮,皮下組織等の静止組織によって散乱されたレーザー光は、周波数が変化しない。これに対し、血管110内を流れる赤血球等の血液細胞によって散乱されたレーザー光は、血液細胞の流速に応じた微少量の波長シフトΔfを受けることに加え、流れている血液細胞の量に応じて光の強さが変化する。したがって、静止組織による周波数fの散乱光(レーザー光)と、血液細胞によりドップラーシフトが生じた周波数f+Δfの散乱光(レーザー光)とが干渉する。
このためレーザー受光部520が生成する受光信号S1は、差周波Δfの光ビート(うなり)が生じ、DC信号に光ビート周波数Δfの強度変調信号が重畳されたような波形になる。このように受光信号S1は、光強度の揺らぎの速さ(周波数)と大きさ(振幅)が血液細胞の流速とその量に応じた波形になるので、受光信号S1を演算処理することで血流量や血液量等を求めることができる。また、以上の説明から明らかとなるように、受光信号S1は、被験者100の生体内を通過してきたレーザー光の受光強度および周波数の時間変化を示す光ビート信号である。
また、レーザー受光部520に到達したレーザー光の伝播経路について、分布頻度の高い部分を模式的に示すと、図5に一点鎖線で示すバナナ形状の部分(2つの弧で挟まれた部分)になる。この通過領域OPの深さ方向の幅Wは、中央付近が最も広くなる。また、測定深度D(レーザー発光部510が照射したレーザー光が到達可能な表皮からの深さ)は、レーザー発光部510とレーザー受光部520との離間距離Lが小さいほど浅く、大きいほど深い。したがって、測定対象となる血管110(例えば動脈)が通過領域OPのうち深さ方向の幅Wが最も広くなる部分に収まるように、レーザー発光部510とレーザー受光部520との離間距離Lや本体部11における両者の位置が決定される。
なお、図5に示した通過領域OPは、あくまで便宜上のイメージに過ぎない。レーザー受光部520に到達したレーザー光の実際の伝播経路は、同図に示した通過領域OP内に限らず、様々な経路をとり得る。また、同図には、便宜上、1本の血管110しか図示していないが、実際には、レーザー受光部520に到達したレーザー光の伝播経路上に存在する全ての血管が測定対象になる。したがって、受光信号S1を演算処理することで求められる血流量や血液量は、レーザー受光部520が受光したレーザー光が到達している範囲内の生体組織における組織血流量や組織血液量になる。
図6は、第1実施形態に係る生体情報測定処理のフローチャートである。同図に示す処理は、例えば5分毎等、所定の時間が経過する都度、制御部40によって実行される。なお、同図に示す処理は、例えば、被験者100が操作ボタン13,14を操作して測定の開始を指示した場合や、計時部20による計時時刻が予め設定された測定開始時刻になった場合等に実行される態様であってもよい。
図6の処理を開始すると、まず、制御部40内の照射制御部410が、レーザー発光部510を制御してレーザー光の照射を開始する(ステップS1)。これにより被験者100の手首にレーザー光が照射され、レーザー受光部520は、被験者100の生体内を通過してきたレーザー光を受光し、受光したレーザー光に応じた受光信号S1を出力する。次に、制御部40内の演算部420が、レーザー受光部520から出力される受光信号S1を取得する(ステップS2)。また、演算部420は、取得した受光信号S1(光ビート信号)に対して高速フーリエ変換(FFT:Fast Fourier Transform)による周波数解析処理を行って、パワースペクトルP(f)を算出する(ステップS3)。
次に、演算部420は、算出したパワースペクトルP(f)等を用いて[式1]から血流量Qの時間変化を求める(ステップS4)。
Figure 2017153875
ここで、Kは比例定数、f,fは遮断周波数、fはレーザー発光部510が照射したレーザー光の周波数、<I>は受光信号S1の全パワーである。
すなわち、ステップS4において、演算部420は、算出したパワースペクトルP(f)に対して周波数fの重み付けを行い(f・P(f))、遮断周波数f〜fの範囲で積分を行って1次モーメントを求めた後、この1次モーメントに比例定数Kをかけ、レーザー光の受光強度の違いに依存しないよう受光信号S1の全パワー<I>で規格化して血流量Qを算出する。また、演算部420は、例えば20ミリ秒等、所定の周期で血流量Qを算出する。例えば、20ミリ秒毎に算出した血流量Qの値を順次プロットしていくと、図7に示す血流波形Q(t)が生成される。この血流波形Q(t)は、血流量Qの時間変化を示す波形である。
また、演算部420は、ステップS4の処理と並行して、ステップS3で算出したパワースペクトルP(f)等を用いて[式2]から血液量MASSの時間変化を求める(ステップS5)。
Figure 2017153875
ここで、Kは比例定数である。
すなわち、ステップS5において、演算部420は、算出したパワースペクトルP(f)に対して遮断周波数f〜fの範囲で積分を行って1次モーメントを求めた後、この1次モーメントに比例定数Kをかけ、レーザー光の受光強度の違いに依存しないよう受光信号S1の全パワー<I>で規格化して血液量MASSを算出する。また、演算部420は、例えば20ミリ秒等、所定の周期で血液量MASSを算出する。このようにして求めた血液量MASSの時間変化は、血管断面積Aの時間変化に相当する。例えば、20ミリ秒毎に算出した血管断面積A(血液量MASS)の値を順次プロットしていくと、図7に示す波形A(t)が生成される。この波形A(t)は、血管断面積Aの時間変化を示す波形である。
なお、血流量Qや血管断面積A(血液量MASS)の算出周期は、脈波の一拍に対して十分に小さい周期であれば、任意の時間長に定めることができる。また、演算部420は、例えば1kHz毎に血流量Qや血管断面積Aを算出した後、これを例えば50Hz程度の周期で平滑化してもよい。
次に、演算部420は、ステップS4で求めた血流量Qの時間変化と、ステップS5で求めた血管断面積Aの時間変化とを用いて、[式3]から脈波伝播速度PWVを求める(ステップS6)。
Figure 2017153875
ところで、心臓の拍動により送り出された血液は、血管壁を押し広げながら末梢に向かって進行する。例えば、図1に示したように生体情報測定装置1を被験者100の手首に装着した場合、生体情報測定装置1において観測される脈波は、心臓から送り出されて指先へと向かう途中で手首に到達した進行波と、手首を通過して指先で反射して戻ってきた反射波との合成波である。
このように脈波は、心臓から送り出されて末梢へと向かう順行性の進行波と、進行波の一部が末梢等で反射して生じる逆行性の反射波との合成波であるが、これと同様に血流量Qの時間変化を示す血流波形Q(t)も、進行波に起因する順行性の血流量Qの時間変化を示す波形(血流進行波/進行波成分の波形)と、反射波に起因する逆行性の血流量Qの時間変化を示す波形(血流反射波/反射波成分の波形)との合成波であり、血流進行波をQ(t)、血流反射波をQ(t)としたとき、Q(t)=Q(t)−Q(t)となる。
また、血流進行波Q(t)は[式4]で表すことができ、血流反射波Q(t)は[式5]で表すことができる。
Figure 2017153875
Figure 2017153875
ここで、q(t)は時刻tにおける血流量Qの測定値、q(0)は血流量Qの最低値、a(t)は時刻tにおける血管断面積Aの測定値、a(0)は血管断面積Aの最低値である。
したがって、演算部420は、ステップS4で求めた血流量Qの時間変化と、ステップS5で求めた血管断面積Aの時間変化と、ステップS6で求めた脈波伝播速度PWVとを用いて、上述した[式4]および[式5]から、血流波形Q(t)を血流進行波Q(t)と血流反射波Q(t)とに分離する(ステップS7)。
なお、[式4]および[式5]において、“PWV”は[式3]より“dQ/dA”に置換可能である。したがって、演算部420は、ステップS6でわざわざ脈波伝播速度PWVを求めなくても、血流量Qの時間変化と血管断面積Aの時間変化とを用いて、血流波形Q(t)を血流進行波Q(t)と血流反射波Q(t)とに分離することができる。また、以上の[式3]〜[式5]より明らかとなるように、測定部位が1箇所の場合、演算部420は、血流量Qの時間変化と血管断面積Aの時間変化という2つの物理量を受光信号S1から求めることで、血流波形Q(t)を血流進行波Q(t)と血流反射波Q(t)とに分離することができる。
例えば20ミリ秒毎に[式4]を用いて血流進行波Qの振幅値を求め、これを順次プロットしていくと図7に示す血流進行波Q(t)が生成される。同様に、例えば20ミリ秒毎に[式5]を用いて血流反射波Qの振幅値を求め、これを順次プロットしていくと図7に示す血流反射波Q(t)が生成される。なお、図7に示す血流波形Q(t)、血管断面積Aの時間変化を示す波形A(t)、血流進行波Q(t)および血流反射波Q(t)は、おおむね脈波の一拍分に相当する。
次に、演算部420は、ステップS7で分離した血流進行波Q(t)と血流反射波Q(t)とを用いて動脈硬化度を求める(ステップS8)。例えば、分離した2つの波形Q(t),Q(t)を用いて動脈硬化度を求める方法は、以下の通りである。
(1) 分離した2つの波形Q(t),Q(t)のピーク値を用いる。
血流反射波Q(t)の振幅は、末梢血管の抵抗によって大きさが変化し、血管壁が硬いほど大きくなる。したがって、例えば図8に示すように、血流進行波Q(t)のピーク値であるQfMAXの絶対値と、血流反射波Q(t)のピーク値であるQbMAXの絶対値との比(|QbMAX|/|QfMAX|)から、動脈硬化度を求めることができる。この場合、比の値が1に近いほど、血管壁が硬く動脈硬化度が大きい。なお、比の代わりに、QfMAXの絶対値とQbMAXの絶対値との差や和から動脈硬化度を求めてもよい。
(2)分離した2つの波形Q(t),Q(t)の時間積分値を用いる。
上述したように血流反射波Q(t)の振幅は、血管壁が硬いほど大きくなる。したがって、血流進行波Q(t)の時間積分値(面積)と、血流反射波Q(t)の時間積分値(面積)との比や、両波形Q(t),Q(t)の時間積分値の差や和から、動脈硬化度を求めることができる。
(3)分離した2つの波形Q(t),Q(t)の時間差を用いる。
血流反射波Q(t)は、血管壁が硬いほど速く伝達する。したがって、例えば図8に示すように、血流進行波Q(t)のピーク値QfMAXと、血流反射波Q(t)のピーク値QbMAXとの時間差Δt1から、動脈硬化度を求めることができる。この場合、時間差Δt1が小さいほど、血管壁が硬く動脈硬化度が大きい。また、例えば図8に示すように、血流進行波Q(t)が立ち上がるタイミングと、血流反射波Q(t)が立ち下がるタイミングとの時間差Δt2から、動脈硬化度を求めてもよい。
なお、分離した2つの波形Q(t),Q(t)の時間差から動脈硬化度を求める場合、前述した[式4]および[式5]において、q(0)は、血流量Qの最低値ではなく血流量Qの平均値であってもよく、同様にa(0)は、血管断面積Aの最低値ではなく血管断面積Aの平均値であってもよい。また、上述した(1)〜(3)のいずれの場合も、動脈硬化度を求める周期は、脈波の一拍分に相当する期間より大きければよい。
また、動脈硬化度は、例えば図2に示したように“Good”,“Normal”,“Bad”といった3段階の指標で表すことができる。この場合、例えば、“Good”,“Normal”,“Bad”の各々に対し、上述した(1)〜(3)の方法によって実際に算出される動脈硬化度の数値範囲を定めたデータテーブルを記憶部30に記憶しておき、このデータテーブルを参照して動脈硬化度の指標を決定すればよい。また、演算部420は、分離した2つの波形Q(t),Q(t)の他に、被験者100の性別や年齢等を考慮して動脈硬化度を求めてもよい。
次に、演算部420は、ステップS6で求めた脈波伝播速度PWVに加え、ステップS5で求めた血管断面積Aの時間変化等を用いて、[式6]から血圧を求める(ステップS9)。なお、ステップS9では、血圧として、P(t)で表される血圧の時間変化を求めてもよいし、最大血圧(収縮期血圧)と最小血圧(拡張期血圧)とを求めてもよい。
Figure 2017153875
ここで、pは平均動脈圧、ρは血液の質量密度(固定値)、aは血管断面積の時間平均である。
この後、制御部40は、ステップS8で求めた動脈硬化度と、ステップS6で求めた脈波伝播速度PWVと、ステップS9で求めた血圧(例えば最大血圧および最小血圧)とを、表示を指示する指令と共に表示部60に出力し(ステップS10)、生体情報測定処理を終える。これにより、例えば図2に示したように、動脈硬化度の他に脈波伝播速度PWVや血圧が表示部60に表示される。
以上説明したように本実施形態によれば、生体情報測定装置1は、受光信号S1から求めた血流量Qの時間変化および血管断面積Aの時間変化を用いて、血流波形Q(t)を血流進行波Q(t)と血流反射波Q(t)とに分離し、分離した2つの波形Q(t),Q(t)から動脈硬化度を求める。ここで、血流量Qの時間変化および血管断面積Aの時間変化は、どちらもレーザー受光部520から出力される受光信号S1から求めたものであり、被験者100から直接測定して得られた物理量である。したがって、特許文献1,2の場合に比べ、動脈硬化度を精度よく求めることができる。また、生体情報測定装置1は、測定波としてレーザー光を用いているので、動脈硬化度を非侵襲に求めることができることに加え、カフ等を用いて測定部位(手首)を加圧することもない。よって、本実施形態に係る生体情報測定装置1によれば、非侵襲かつ非加圧で動脈硬化度を精度よく求めることができる。
また、本実施形態によれば、生体情報測定装置1は、レーザー光を用いたLDF法による測定によって、血流波形Q(t)を分離するために用いる血流量Qの時間変化と血管断面積Aの時間変化の両方を求めることができる。また、生体情報測定装置1は、被験者100の生体情報として、動脈硬化度の他に脈波伝搬速度や血圧を求めることができ、これらの生体情報を長時間にわたって連続して測定することが可能である。
<第2実施形態>
図9は、本発明の第2実施形態に係る生体情報測定装置2の内部構成を示すブロック図である。本実施形態において、第1実施形態と共通する要素には、第1実施形態で使用した符号を付して説明を適宜省略する。第2実施形態に係る生体情報測定装置2は、“血管断面積Aの時間変化”の求め方が第1実施形態で説明した手法とは異なる。また、第2実施形態に係る生体情報測定装置2は、被験者100の生体情報として容積脈波を測定することができる。以上の2点を除く他の部分については第1実施形態に係る生体情報測定装置1と同じであり、図9に示す生体情報測定装置2において、図4に示した生体情報測定装置1と異なるのは、演算部422のみである。
したがって、本実施形態に係る生体情報測定装置2においても、レーザー発光部510は、被験者100の手首にレーザー光を照射する。また、レーザー受光部520は、被験者100の生体内を通過してきたレーザー光を受光し、光ビート信号である受光信号S1を生成して演算部422に出力する。
図10は、第2実施形態に係る生体情報測定処理のフローチャートである。同図に示す処理が制御部40によって実行される契機は、第1実施形態で説明した図6の処理と同じである。図10の処理を開始すると、まず、制御部40内の照射制御部410が、レーザー発光部510を制御してレーザー光の照射を開始する(ステップS21)。また、制御部40内の演算部422が、レーザー受光部520から出力される受光信号S1を取得する(ステップS22)。
次に、演算部422は、取得した受光信号S1(光ビート信号)に対して高速フーリエ変換による周波数解析処理を行ってパワースペクトルP(f)を算出する(ステップS23)。また、演算部422は、算出したパワースペクトルP(f)等を用いて第1実施形態で説明した[式1]から血流量Qの時間変化を求める(ステップS24)。以上のステップS21〜S24に示す処理は、第1実施形態で説明したステップS1〜S4の処理と同じである。
また、演算部422は、ステップS23,S24の処理と並行して、容積脈波を検出する処理(ステップS25)と、血管断面積Aの時間変化を求める処理(ステップS26)とを行う。まず、容積脈波を検出する処理について説明すると、第1実施形態でも述べたように、血管110内を流れる赤血球等の血液細胞によって散乱されたレーザー光は、血液細胞の流速に応じたドップラーシフトを受けるだけでなく、流れている血液細胞の量に応じて光の強さが変化する。
つまり、生体内に照射されたレーザー光は、その一部が血管110内を流れる血液細胞(主にヘモグロビン)によって吸収される。また、血管110は、心拍と同等の周期で膨張および収縮を繰り返す。したがって、膨張時と収縮時とで血管110内の血液細胞の量が異なるので、レーザー受光部520が受光するレーザー光の強度は、血管110の脈動に応じて周期的に変動し、この変動成分が受光信号S1にも含まれる。
また、ステップS23でパワースペクトルP(f)を算出する場合、演算部422は、例えば20ミリ秒等、所定の時間長を有する複数の区間に受光信号S1を分割し、分割した区間毎に高速フーリエ変換を行う。演算部422は、例えば、高速フーリエ変換を行うために分割した区間毎に、この区間内における受光信号S1の全パワー<I>を[式7]から算出する。これにより、例えば20ミリ秒毎に受光信号S1の全パワー<I>が算出されるので、受光信号S1の全パワー<I>の時間変化が求められる(ステップS25)。
Figure 2017153875
ここで、Iは受光素子が受光したレーザー光の強度(受光強度)である。
このステップS25で求めた受光信号S1の全パワー<I>の時間変化は、被験者100の手首の容積脈波に相当する。例えば、各区間毎に算出した受光信号S1の全パワー<I>の値を順次プロットしていくと、図11に示す容積脈波PG(t)の波形が生成される。なお、同図に示す血流波形Q(t)は、ステップS24で求めた血流量Qの時間変化をグラフ化したものである。この図11に示す容積脈波PG(t)と血流波形Q(t)は、おおむね脈波の一拍分に相当する。
次に、血管断面積Aの時間変化を求める処理について説明すると、演算部422は、例えば、高速フーリエ変換を行うために分割した区間毎に、ランベルト・ベールの法則を利用して[式8]から血管径dを算出し、これを[式9]に代入することで血管断面積Aを算出する。これにより、例えば20ミリ秒毎に血管断面積Aが算出されるので、血管断面積Aの時間変化が求められる(ステップS26)。
Figure 2017153875
ここで、kは血液の吸光係数、Iはレーザー発光部510が照射したレーザー光の強度(照射強度)である。
Figure 2017153875
なお、本実施形態においても、血流量Qや血管断面積Aの算出周期は、20ミリ秒に限らず、脈波の一拍に対して十分に小さい周期であれば、任意の時間長に定めることができる。
以降、ステップS27〜S31に示す処理は、第1実施形態で説明したステップS6〜S10の処理と同様である。すなわち、演算部422は、ステップS24で求めた血流量Qの時間変化と、ステップS26で求めた血管断面積Aの時間変化とを用いて、第1実施形態で説明した[式3]から脈波伝播速度PWVを求める(ステップS27)。
また、演算部422は、ステップS24で求めた血流量Qの時間変化と、ステップS26で求めた血管断面積Aの時間変化と、ステップS27で求めた脈波伝播速度PWVとを用いて、第1実施形態で説明した[式4]および[式5]から、血流波形Q(t)を血流進行波Q(t)と血流反射波Q(t)とに分離する(ステップS28)。また、演算部422は、分離した2つの波形Q(t),Q(t)を用いて動脈硬化度を求める(ステップS29)。
また、演算部422は、第1実施形態で説明した[式6]を用いて血圧を求める(ステップS30)。血圧P(t)の波形の一例を図12に示す。同図に示す血圧P(t)の波形も、おおむね脈波の一拍分に相当する。この後、制御部40は、演算部422が求めた動脈硬化度,脈波伝播速度PWV,血圧を、表示を指示する指令と共に表示部60に出力し(ステップS31)、生体情報測定処理を終える。なお、容積脈波PG(t),血流波形Q(t),血圧P(t)等の波形を表示部60に表示してもよい。
以上説明したように本実施形態によれば、第1実施形態と同様の効果を奏することに加え、被験者100の生体情報として容積脈波を測定することができる。すなわち、第2実施形態に係る生体情報測定装置2は、レーザー光を用いたLDF法による測定によって、動脈硬化度,脈波伝播速度,血圧の他に容積脈波を測定することができる。また、これらの生体情報を1種類の光学センサー50(レーザー発光部510およびレーザー受光部520)で同時に測定することが可能である。
<第3実施形態>
図13は、本発明の第3実施形態に係る生体情報測定装置3の内部構成を示すブロック図である。本実施形態においても第1実施形態と共通する要素には、第1実施形態で使用した符号を付して説明を適宜省略する。第3実施形態に係る生体情報測定装置3は、レーザー光の代わりにLED(Light Emitting Diode)光を用いて被験者100の生体情報を測定する。図13に示す生体情報測定装置3において、図4に示した生体情報測定装置1と異なるのは、照射制御部412と、光学センサー52(LED発光部512およびLED受光部522)と、受光信号S2と、演算部424である。
照射制御部412は、LED発光部512によるLED光の照射を制御する。LED発光部512は、例えばLEDを備え、照射制御部412の制御の下、測定波の一例であるLED光を被験者100の手首に照射する。LED発光部512が照射するLED光は、第1実施形態で説明したレーザー光と比較して広帯域でインコヒーレントな光であり、非レーザー光の一例である。例えば、LED発光部512が照射するLED光の波長は535nmである。
LED受光部522は、例えば、フォトダイオード等の受光素子,増幅器,A/D変換器等を備える。受光素子は、LED発光部512が照射するLED光の波長に対応するバンドパス特性を有し、該当する波長域の光のみを選択的に透過させ、それ以外の波長域の光をブロックする。LED受光部522は、被験者100の生体内を通過してきたLED光を受光素子によって受光し、LED光の受光強度の時間変化を示す受光信号S2を生成して演算部424に出力する。演算部424は、LED受光部522から出力される受光信号S2を演算処理することで、被験者100の生体情報を求める。
なお、LED発光部512が照射したLED光についても、表皮を透過して被験者100の生体内に入射した後、生体組織内において散乱・反射を繰り返しながら広がっていき、そのうちの一部がLED受光部522に到達し、受光素子によって受光される。また、生体内に入射したLED光は、その一部が血管110内を流れる血液細胞(主にヘモグロビン)によって吸収される。血管110内の血液細胞の量は、血管110の膨張時と収縮時とで異なるので、LED受光部522が生成する受光信号S2は、血管110の脈動に応じて振幅が周期的に変動する。
図14は、第3実施形態に係る生体情報測定処理のフローチャートである。同図に示す処理が制御部40によって実行される契機は、第1実施形態で説明した図6の処理と同じである。図14の処理を開始すると、まず、制御部40内の照射制御部412が、LED発光部512を制御してLED光の照射を開始する(ステップS41)。これにより被験者100の手首にLED光が照射され、LED受光部522は、被験者100の生体内を通過してきたLED光を受光し、受光したLED光に応じた受光信号S2を出力する。また、制御部40内の演算部424が、LED受光部522から出力される受光信号S2を取得する(ステップS42)。
次に、演算部424は、取得した受光信号S2を、例えば20ミリ秒等、所定の時間長を有する複数の区間に分割する。また、演算部424は、分割した区間毎に、この区間内における受光信号S2の全パワー<I>を第2実施形態で説明した[式7]を用いて算出する。これにより、例えば20ミリ秒毎に受光信号S2の全パワー<I>が算出されるので、受光信号S2の全パワー<I>の時間変化が求められる(ステップS43)。この受光信号S2の全パワー<I>の時間変化は、容積脈波に相当する。例えば、各区間毎に算出した受光信号S2の全パワー<I>の値を順次プロットしていくと、図11に示した容積脈波PG(t)の波形が生成される。
また、ステップS43で求めた受光信号S2の全パワー<I>の時間変化は、血液の体積Vの時間変化にも相当する。したがって、演算部424は、ステップS43で求めた受光信号S2の全パワー<I>の時間変化(=血液の体積Vの時間変化(V(t))を用いて、[式10]から血流量Qの時間変化を求める(ステップS44)。すなわち、演算部424は、例えば20ミリ秒毎に、血液の体積V[m]を時間微分し、体積速度である血流量Q[m/s]を算出する。
Figure 2017153875
また、演算部424は、ステップS44の処理と並行して、第2実施形態で説明した[式8]および[式9]を用いて血管断面積Aの時間変化を求める(ステップS45)。すなわち、演算部424は、例えば20ミリ秒毎に、ランベルト・ベールの法則を利用して[式8]から血管径dを算出し、これを[式9]に代入することで血管断面積Aを算出する。なお、本実施形態においても、血流量Qや血管断面積Aの算出周期は、20ミリ秒に限らず、脈波の一拍に対して十分に小さい周期であれば、任意の時間長に定めることができる。
以降、ステップS46〜S50に示す処理は、第1実施形態で説明したステップS6〜S10の処理と同様である。すなわち、演算部424は、ステップS44で求めた血流量Qの時間変化と、ステップS45で求めた血管断面積Aの時間変化とを用いて、第1実施形態で説明した[式3]から脈波伝播速度PWVを求める(ステップS46)。
また、演算部424は、ステップS44で求めた血流量Qの時間変化と、ステップS45で求めた血管断面積Aの時間変化と、ステップS46で求めた脈波伝播速度PWVとを用いて、第1実施形態で説明した[式4]および[式5]から、血流波形Q(t)を血流進行波Q(t)と血流反射波Q(t)とに分離する(ステップS47)。また、演算部424は、分離した2つの波形Q(t),Q(t)を用いて動脈硬化度を求める(ステップS48)。
また、演算部424は、第1実施形態で説明した[式6]を用いて血圧を求める(ステップS49)。この後、制御部40は、演算部424が求めた動脈硬化度,脈波伝播速度PWV,血圧を、表示を指示する指令と共に表示部60に出力し(ステップS50)、生体情報測定処理を終える。なお、第2実施形態の場合と同様に、容積脈波PG(t),血流波形Q(t),血圧P(t)等の波形を表示部60に表示してもよい。
以上説明したように本実施形態に係る生体情報測定装置3においても、血流波形Q(t)を分離するために用いる血流量Qの時間変化および血管断面積Aの時間変化は、どちらもLED受光部522から出力される受光信号S2から求めたものであり、被験者100から直接測定して得られた物理量である。したがって、特許文献1,2の場合に比べ、動脈硬化度を精度よく求めることができる。また、生体情報測定装置3は、測定波としてLED光を用いているので、動脈硬化度を非侵襲に求めることができることに加え、カフ等を用いて測定部位(手首)を加圧することもない。よって、非侵襲かつ非加圧で動脈硬化度を精度よく求めることができる。
また、本実施形態によれば、生体情報測定装置3は、LED光を用いた測定によって、血流波形Q(t)を分離するために用いる血流量Qの時間変化と血管断面積Aの時間変化の両方を求めることができる。また、生体情報測定装置3は、被験者100の生体情報として、動脈硬化度の他に脈波伝搬速度,血圧,容積脈波を求めることができ、これらの生体情報を1種類の光学センサー52(LED発光部512およびLED受光部522)で同時に測定することができる。また、これらの生体情報を長時間にわたって連続して測定することが可能である。
<第4実施形態>
図15は、本発明の第4実施形態に係る生体情報測定装置4の内部構成を示すブロック図である。本実施形態において、第1実施形態や第3実施形態と共通する要素には、これらの実施形態で使用した符号を付して説明を適宜省略する。第4実施形態に係る生体情報測定装置4は、レーザー光とLED光の両方を用いて被験者100の生体情報を測定する。図15に示す生体情報測定装置4において、図4に示した生体情報測定装置1と異なるのは、照射制御部414と、光学センサー50,52(レーザー発光部510、LED発光部512、レーザー受光部520およびLED受光部522)と、受光信号S1,S2と、演算部426である。
なお、図15において、レーザー発光部510およびレーザー受光部520が光学センサー50を構成し、LED発光部512およびLED受光部522が光学センサー52を構成する。また、本実施形態において、光学センサー50(レーザー発光部510およびレーザー受光部520)は、第1実施形態で説明した光学センサー50(レーザー発光部510およびレーザー受光部520)と同じであり、光学センサー52(LED発光部512およびLED受光部522)は、第3実施形態で説明した光学センサー52(LED発光部512およびLED受光部522)と同じである。
レーザー発光部510は、第1照射部の一例であり、第1実施形態で説明したレーザー発光部510である。このレーザー発光部510は、照射制御部414の制御の下、レーザー光を被験者100の手首に照射する。レーザー受光部520は、第1検出部の一例であり、第1実施形態で説明したレーザー受光部520である。このレーザー受光部520は、被験者100の生体内を通過してきたレーザー光を受光し、レーザー光の受光強度および周波数の時間変化を示す受光信号S1(光ビート信号)を生成して演算部426に出力する。
LED発光部512は、第2照射部の一例であり、第3実施形態で説明したLED発光部512である。このLED発光部512は、照射制御部414の制御の下、LED光を被験者100の手首に照射する。LED受光部522は、第2検出部の一例であり、第3実施形態で説明したLED受光部522である。このLED受光部522は、被験者100の生体内を通過してきたLED光を受光し、LED光の受光強度の時間変化を示す受光信号S2を生成して演算部426に出力する。
照射制御部414は、レーザー発光部510によるレーザー光の照射と、LED発光部512によるLED光の照射とを制御する。また、演算部426は、レーザー受光部520から出力される受光信号S1と、LED受光部522から出力される受光信号S2とを演算処理することで、被験者100の生体情報を求める。
図16は、光学センサー50,52の配置を示す図である。レーザー受光部520に到達したレーザー光の伝播経路について、分布頻度の高い部分を模式的に示すと、同図に一点鎖線で示すバナナ形状の部分(OP1)になる。同様に、LED受光部522に到達したLED光の伝播経路について、分布頻度の高い部分を模式的に示すと、同図に点線で示すバナナ形状の部分(OP2)になる。レーザー光の通過領域OP1のうち深さ方向の幅が最も広くなる中央付近の部分と、LED光の通過領域OP2のうち深さ方向の幅が最も広くなる中央付近の部分とが重なり、かつ両者の重なる部分に測定対象となる血管110が収まるように、レーザー発光部510、レーザー受光部520、LED発光部512およびLED受光部522の位置が決定される。
なお、図16に示した通過領域OP1,OP2についても、あくまで便宜上のイメージに過ぎない。レーザー受光部520に到達したレーザー光の実際の伝播経路は、同図に示した通過領域OP1内に限らず、様々な経路をとり得る。同様に、LED受光部522に到達したLED光の実際の伝播経路についても、同図に示した通過領域OP2内に限らず、様々な経路をとり得る。また、同図には、便宜上、1本の血管110しか図示していないが、実際には、レーザー受光部520に到達したレーザー光の伝播経路上や、LED受光部522に到達したLED光の伝播経路上に存在する全ての血管が測定対象になる。
図17は、第4実施形態に係る生体情報測定処理のフローチャートである。同図に示す処理が制御部40によって実行される契機は、第1実施形態で説明した図6の処理と同じである。図17の処理を開始すると、まず、制御部40内の照射制御部414が、レーザー発光部510を制御してレーザー光の照射を開始すると共に、LED発光部512を制御してLED光の照射を開始する(ステップS61)。これにより被験者100の手首にレーザー光とLED光が照射される。レーザー受光部520は、被験者100の生体内を通過してきたレーザー光を受光し、受光したレーザー光に応じた受光信号S1を出力する。また、LED受光部522は、被験者100の生体内を通過してきたLED光を受光し、受光したLED光に応じた受光信号S2を出力する。また、制御部40内の演算部426が、レーザー受光部520から出力される受光信号S1と、LED受光部522から出力される受光信号S2とを取得する(ステップS62)。
次に、演算部426は、取得した受光信号S1(光ビート信号)に対して高速フーリエ変換による周波数解析処理を行ってパワースペクトルP(f)を算出する(ステップS63)。また、演算部426は、算出したパワースペクトルP(f)等を用いて第1実施形態で説明した[式1]から血流量Qの時間変化を求める(ステップS64)。このステップS63,S64に示す処理は、第1実施形態で説明したステップS3,S4の処理と同じである。
また、演算部426は、ステップS63,S64の処理と並行して、例えば20ミリ秒等、所定の周期毎に、第2実施形態で説明した[式7]を用いて受光信号S2の全パワー<I>を算出し、受光信号S2の全パワー<I>の時間変化を求める(ステップS65)。また、演算部426は、例えば20ミリ秒等、所定の周期毎に、第2実施形態で説明した[式8]および[式9]を用いて血管断面積Aを算出し、血管断面積Aの時間変化を求める(ステップS66)。このステップS65,S66に示す処理は、第3実施形態で説明したステップS43,S45の処理と同じである。
このように本実施形態では、レーザー光を用いたLDF法による測定によって血流量Qの時間変化を求める一方、LED光を用いた容積脈波の測定から血管断面積Aの時間変化を求める。なお、本実施形態においても、血流量Qや血管断面積Aの算出周期は、20ミリ秒に限らず、脈波の一拍に対して十分に小さい周期であれば、任意の時間長に定めることができる。
以降、ステップS67〜S71に示す処理は、第1実施形態で説明したステップS6〜S10の処理と同様である。すなわち、演算部426は、ステップS64で求めた血流量Qの時間変化と、ステップS66で求めた血管断面積Aの時間変化とを用いて、第1実施形態で説明した[式3]から脈波伝播速度PWVを求める(ステップS67)。
また、演算部426は、ステップS64で求めた血流量Qの時間変化と、ステップS66で求めた血管断面積Aの時間変化と、ステップS67で求めた脈波伝播速度PWVとを用いて、第1実施形態で説明した[式4]および[式5]から、血流波形Q(t)を血流進行波Q(t)と血流反射波Q(t)とに分離する(ステップS68)。また、演算部426は、分離した2つの波形Q(t),Q(t)を用いて動脈硬化度を求める(ステップS69)。
また、演算部426は、第1実施形態で説明した[式6]を用いて血圧を求める(ステップS70)。この後、制御部40は、演算部426が求めた動脈硬化度,脈波伝播速度PWV,血圧を、表示を指示する指令と共に表示部60に出力し(ステップS71)、生体情報測定処理を終える。なお、第2実施形態の場合と同様に、容積脈波PG(t),血流波形Q(t),血圧P(t)等の波形を表示部60に表示してもよい。
以上説明したように本実施形態によれば、生体情報測定装置4は、レーザー光を用いたLDF法による測定によって血流量Qの時間変化を求める一方、LED光を用いた容積脈波の測定から血管断面積Aの時間変化を求める。ここで、血流量Qの時間変化は、レーザー光を用いたLDF法による測定によって求めた方が、LED光を用いた容積脈波の測定から求める場合よりも正確に求めることができる。一方、血管断面積Aの時間変化は、レーザー光を用いたLDF法による測定によって求める場合よりも、LED光を用いた容積脈波の測定から求めた方が正確に求めることができる。
したがって、本実施形態によれば、2種類の光学センサー50,52を備える必要があるものの、第1〜第3実施形態に係る生体情報測定装置1〜3と比較した場合に、血流波形Q(t)を分離するために用いる血流量Qの時間変化および血管断面積Aの時間変化をより正確に求めることができるので、動脈硬化度の算出精度を高めることができる。
また、本実施形態によれば、同じ部位(手首)から求めた血流量Qの時間変化および血管断面積Aの時間変化を用いて血流波形Q(t)を分離し、動脈硬化度を求めるので、局部の動脈硬化度を正確に求めることができる。また、レーザー光を照射して血流量Qの時間変化を測定する部位と、LED光を照射して血管断面積Aの時間変化を測定する部位とを同じにすることで、同じでない場合に比べ、生体情報測定装置4を小型化することができる。
<変形例>
以上に例示した各実施形態は多様に変形され得る。具体的な変形の態様を以下に例示する。なお、以下の例示から任意に選択された2以上の態様は、相互に矛盾しない範囲で適宜組み合わせることができる。
(1)上述した各実施形態では、血流波形Q(t)を血流進行波Q(t)と血流反射波Q(t)とに分離して動脈硬化度を求めたが、血流波形Q(t)の代わりに血管断面積Aの時間変化を示す波形A(t)を分離して動脈硬化度を求めてもよい。血管断面積Aの時間変化(変動)は、進行波による変動と反射波による変動とを重ね合わせたものである。したがって、血管断面積Aの時間変化を示す波形A(t)も、進行波による変動を示す波形(進行波成分の波形A(t))と、反射波による変動を示す波形(反射波成分の波形A(t))との合成波であり、A(t)=A(t)+A(t)となる。
また、進行波成分の波形A(t)は[式11]で表すことができ、反射波成分の波形A(t)は[式12]で表すことができる。
Figure 2017153875
Figure 2017153875
この場合も、[式11]および[式12]において、“PWV”は[式3]より“dQ/dA”に置換可能であるから、血流量Qの時間変化および血管断面積Aの時間変化を用いて、上述した[式11]および[式12]から、血管断面積Aの時間変化を示す波形A(t)を進行波成分の波形A(t)と反射波成分の波形A(t)とに分離することができる。例えば、第1実施形態の場合を例に説明すると、演算部420は、ステップS7で、[式4]および[式5]の代わりに[式11]および[式12]を用いてA(t)をA(t)とA(t)とに分離する。また、演算部420は、ステップS8で、分離した2つの波形A(t),A(t)のピーク値,時間積分値,時間差等を用いて動脈硬化度を求める。
(2)第1実施形態の場合を例に説明すると、生体情報測定装置1は、図1に示したように本体部11が手のひら側に位置するように手首に装着されてもよいし、本体部11が手の甲側に位置するように手首に装着されてもよい。また、レーザー発光部510とレーザー受光部520の一方以上を本体部11ではなくベルト12の内周面に設けてもよい。さらに、生体情報測定装置1は、既存の腕時計のベルトに装着可能なウェアラブル機器であってもよい。これらの変形は、第2〜第4実施形態で説明した生体情報測定装置2〜4についても同様である。
(3)生体情報測定装置1〜4は、メモリーカード等の小型の記録メディア用のリーダーライターを備え、記録メディアを介して外部機器90とデータを交換可能な構成であってもよい。
(4)第1実施形態の場合を例に説明すると、生体情報測定装置1(図4)において、操作ボタン13,14や計時部20や通信部70は必須の構成要素ではない。また、生体情報測定装置1は、動脈硬化度,脈波伝播速度,血圧等の測定結果を通信部70を介して外部機器90に出力する構成であってもよく、この場合、必ずしも表示部60を生体情報測定装置1に設ける必要はない。また、生体情報測定装置は、例えば図18に示すように、光学センサー50(レーザー発光部510およびレーザー受光部520)と、制御部40と、記憶部30とを基板80(例えば配線基板)上に実装した構成を有する生体情報測定モジュール9であってもよく、このような測定モジュール9を腕時計等の既存のウェアラブル機器に組み込んでもよい。この場合、生体情報測定モジュール9(生体情報測定装置)の構成要素として、本体部11の筐体や、ベルト12も不要になる。これらの変形は、第2〜第4実施形態で説明した生体情報測定装置2〜4についても同様である。
(5)第4実施形態において、レーザー光を照射して血流量Qの時間変化を測定する部位と、LED光を照射して血管断面積Aの時間変化を測定する部位は、基本的に同じ部位であることが望ましい。しかしながら、両者は、必ずしも同じ部位に限定されず、例えば、手首のうち手のひら側と手の甲側等、異なる部位であってもよい。
(6)第4実施形態に係る生体情報測定装置4において、レーザー受光部520とLED受光部522とを別々に備えるのではなく、レーザー発光部510が照射するレーザー光とLED発光部512が照射するLED光との双方を受光する単体の受光素子を備えた1つの受光部を備える構成であってもよい。この場合、受光部に備わる受光素子は、レーザー発光部510が照射するレーザー光の波長と、LED発光部512が照射するLED光の波長との双方に対応するバンドパス特性を有する。また、受光部は、被験者100の生体内を通過してきたレーザー光の受光強度および周波数の時間変化を示す受光信号S1(光ビート信号)と、被験者100の生体内を通過してきたLED光の受光強度の時間変化を示す受光信号S2とを生成する。以上の構成によれば、受光部は1つでよく、レーザー光用の受光部とLED光用の受光部とを別々に備える必要がないので、第4実施形態に係る生体情報測定装置4と比較した場合に、生体情報測定装置の構成を簡素化し、より小型にすることができる。
(7)測定対象となる部位は、手首に限らず、指、腕、足、首等であってもよい。したがって、生体情報測定装置1〜4は、腕時計型に限らず、被験者100の身体のうち測定対象となる部位に装着可能なウェアラブル機器であればよい。例えば、生体情報測定装置1〜4は、被験者100の上腕にベルトで固定されたスマートフォン等であってもよい。また、本発明に係る生体情報測定装置は、ウェアラブル機器に限定されない。例えば医療機関等で使用される据置型の血圧計等に本発明を適用してもよい。この場合、測定対象となる部位にプローブを接触させて生体情報の測定が行われる。
(8)レーザー光やLED光の波長は、各実施形態で例示した波長に限定されず、生体内での伝播特性や、血液による吸収の度合い等を考慮して適宜定めることができる。また、LED光の代わりにSLD(SuperLuminescent Diode)光を用いてもよく、非レーザー光はLED光に限定されない。
(9)生体に照射する測定波は、レーザー光やLED光等の光に限らず、超音波等の音波であってもよい。図19は、超音波センサー54を用いた生体情報の測定原理を説明するための模式図である。本変形例に係る生体情報測定装置5は、光学センサーの代わりに超音波センサー54を備える。超音波センサー54は、測定波の一例である超音波を被験者100(生体)に照射する照射部と、生体内から反射してきた超音波を検出する検出部とを備える。
例えば、超音波センサー54内の照射部が、血管110に対して角度θで照射した超音波(照射波)の周波数をfとしたとき、血管110内を流れる赤血球等の血液細胞によって反射された超音波(反射波)は、血液細胞の流速に応じたドップラーシフトを受け、その周波数がf+Δfに変化する。したがって、生体情報測定装置5では、照射波に対する反射波の周波数変化Δfを測定することで、レーザー光を用いたLDF法による測定の場合と同様に、血流量Qの時間変化を求めることができる。
また、生体情報測定装置5では、血管110のうち表皮側の壁で反射した超音波の到達時間tと、血管110のうち表皮とは反対側の壁で反射した超音波の到達時間tとの時間差Δt(t−t)から血管径dを測定し、測定した血管径dの値を前述した[式9]に代入することで血管断面積Aを求めることができる。したがって、生体情報測定装置5では、例えば20ミリ秒等、所定の周期毎に血管断面積Aを算出することで、血管断面積Aの時間変化を求めることができる。
以上によれば、光学センサーの代わりに超音波センサー54を備えた生体情報測定装置5においても、血流量Qの時間変化および血管断面積Aの時間変化を用いて、血流波形Q(t)を血流進行波Q(t)と血流反射波Q(t)とに分離し、分離した2つの波形Q(t),Q(t)から動脈硬化度を求めることができる。また、血流波形Q(t)の代わりに血管断面積Aの時間変化を示す波形A(t)を分離して動脈硬化度を求めることも可能である。また、動脈硬化度の他に、前述した[式3]を用いて脈波伝搬速度PWVを求めたり、前述した[式6]を用いて血圧P(t)を求めることもできる。
なお、測定波として超音波等の音波を用いた場合、血管110の手前側の壁と奥側の壁で反射した2つの反射波の到達時間差Δt(t−t)から血管断面積Aの時間変化を求めることになる。したがって、測定対象となる血管110は、ある程度の太さを有する血管に限られる。また、測定対象となる血管110が太さによって限られてしまうので、超音波センサー54の設置位置の自由度も低い。
これに対し、上述した各実施形態で説明したように測定波としてレーザー光やLED光等の光を用いた場合、照射した光の一部が血液によって吸収される性質を利用して血管断面積Aの時間変化を求めている。したがって、測定対象となる血管110は、ある程度の太さを有する血管に限られない。すなわち、測定対象となる血管110は、測定波として音波を用いた場合より細い血管であってもよく、測定対象の候補となる血管の数が、測定波として音波を用いた場合より多いので、光学センサー50,52の設置位置の自由度も高い。
このように特にウェアラブル型の生体情報測定装置の場合、測定波として音波より光を用いた方が、測定対象となる血管110の太さが制限されない点や、センサーの設置位置の自由度が高い点で有利である。また、光学センサーは、センサー自体のサイズが音波センサーより小さいので、この点も小型化には有利である。
(10)生体情報測定装置は、生体情報として動脈硬化度(血管の硬化度)のみを測定する構成であってもよい。また、生体情報測定装置は、動脈硬化度の他に、脈波伝播速度と血圧と容積脈波のいずれか1以上を測定する構成であってもよい。また、これらの生体情報に加え、脈拍数や血流速度等を測定する構成であってもよい。
(11)生体情報測定装置は、照射部と検出部とを並べて配置し、測定部位から反射してきた測定波を検出する反射型に限らず、例えば指先等の測定部位を挟んで照射部と対向する位置に検出部を設け、測定部位を透過してきた測定波を検出する透過型であってもよい。
(12)測定対象となる血管は、動脈でなく細動脈であってもよい。この場合、測定対象となる血管が動脈より浅い部分にあるので、照射部と検出部との離間距離を小さくすることができ、生体情報測定装置をより小型にすることができる。また、測定対象となる生体は、人以外の動物であってもよい。
1〜5…生体情報測定装置、9…生体情報測定モジュール、11…本体部、12…ベルト、13,14…操作ボタン、20…計時部、30…記憶部、40…制御部、410,412…照射制御部、420,422,424,426…演算部、50,52…光学センサー、54…超音波センサー、510…レーザー発光部、512…LED発光部、520…レーザー受光部、522…LED受光部、60…表示部、70…通信部、80…基板、90…外部機器、100…被験者、110…血管、S1,S2…受光信号、f…照射時の周波数、Δf…ドップラーシフト成分、OP,OP1,OP2…通過領域、W…幅、D…測定深度、L…離間距離、Q(t)…血流波形、Q(t)…血流進行波、Q(t)…血流反射波、QfMAX…血流進行波のピーク値、QbMAX…血流反射波のピーク値、Δt1,Δt2…時間差、A(t)…血管断面積の時間変化を示す波形、PG(t)…容積脈波、P(t)…血圧、θ…照射角度、t,t…反射波の到達時間、d…血管径。

Claims (13)

  1. 測定波として光または音波を生体に照射する照射部と、
    前記生体内を通過した前記測定波を検出する検出部と、
    前記検出部の検出結果に基づいて、血流量の時間変化と血管断面積の時間変化とを求め、前記血流量の時間変化および前記血管断面積の時間変化を用いて、前記血流量または前記血管断面積の時間変化を示す波形を進行波成分の波形と反射波成分の波形とに分離し、前記進行波成分の波形および前記反射波成分の波形から血管の硬化度を求める演算部と、
    を備えることを特徴とする生体情報測定装置。
  2. 前記演算部は、前記進行波成分の波形のピーク値および前記反射波成分の波形のピーク値を用いて血管の硬化度を求める、
    ことを特徴とする請求項1に記載の生体情報測定装置。
  3. 前記演算部は、前記進行波成分の波形の時間積分値および前記反射波成分の波形の時間積分値を用いて血管の硬化度を求める、
    ことを特徴とする請求項1に記載の生体情報測定装置。
  4. 前記演算部は、前記進行波成分の波形と前記反射波成分の波形との時間差を用いて血管の硬化度を求める、
    ことを特徴とする請求項1に記載の生体情報測定装置。
  5. 前記演算部は、前記血流量の時間変化および前記血管断面積の時間変化から脈波伝搬速度を求める、
    ことを特徴とする請求項1乃至4のうちいずれか1項に記載の生体情報測定装置。
  6. 前記演算部は、前記脈波伝搬速度を用いて血圧を求める、
    ことを特徴とする請求項5に記載の生体情報測定装置。
  7. 前記測定波は、レーザー光であり、
    前記検出部は、前記生体内を通過した前記レーザー光の受光強度および周波数の時間変化を示す光ビート信号を生成し、
    前記演算部は、前記検出部が生成した前記光ビート信号から、前記血流量の時間変化と前記血管断面積の時間変化とを求める、
    ことを特徴とする請求項1乃至6のうちいずれか1項に記載の生体情報測定装置。
  8. 前記演算部は、前記光ビート信号の全パワーの時間変化を求める、
    ことを特徴とする請求項7に記載の生体情報測定装置。
  9. 前記測定波は、非レーザー光であり、
    前記検出部は、前記生体内を通過した前記非レーザー光の受光強度の時間変化を示す受光信号を生成し、
    前記演算部は、前記検出部が生成した前記受光信号から、前記血流量の時間変化と前記血管断面積の時間変化とを求める、
    ことを特徴とする請求項1乃至6のうちいずれか1項に記載の生体情報測定装置。
  10. 前記照射部は、生体にレーザー光を照射する第1照射部と、前記生体に非レーザー光を照射する第2照射部とを備え、
    前記検出部は、前記生体内を通過した前記レーザー光を検出する第1検出部と、前記生体内を通過した前記非レーザー光を検出する第2検出部とを備え、
    前記演算部は、前記第1検出部の検出結果に基づいて血流量の時間変化を求め、前記第2検出部の検出結果に基づいて血管断面積の時間変化を求める、
    ことを特徴とする請求項1乃至6のうちいずれか1項に記載の生体情報測定装置。
  11. 前記照射部は、生体にレーザー光を照射する第1照射部と、前記生体に非レーザー光を照射する第2照射部とを備え、
    前記検出部は、前記生体内を通過した前記レーザー光および前記非レーザー光を検出し、
    前記演算部は、前記検出部による前記レーザー光の検出結果に基づいて血流量の時間変化を求め、前記検出部による前記非レーザー光の検出結果に基づいて血管断面積の時間変化を求める、
    ことを特徴とする請求項1乃至6のうちいずれか1項に記載の生体情報測定装置。
  12. 前記生体のうち、前記レーザー光を照射して血流量の時間変化を求める部位と、前記非レーザー光を照射して血管断面積の時間変化を求める部位とが同じである、
    ことを特徴とする請求項10または11に記載の生体情報測定装置。
  13. 生体情報測定装置が、
    測定波として光または音波を生体に照射し、
    前記生体内を通過した前記測定波を検出し、
    検出結果に基づいて、血流量の時間変化と血管断面積の時間変化とを求め、
    前記血流量の時間変化および前記血管断面積の時間変化を用いて、前記血流量または前記血管断面積の時間変化を示す波形を進行波成分の波形と反射波成分の波形とに分離し、
    前記進行波成分の波形および前記反射波成分の波形から血管の硬化度を求める、
    ことを特徴とする生体情報測定方法。
JP2016042292A 2016-03-04 2016-03-04 生体情報測定装置および生体情報測定方法 Pending JP2017153875A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016042292A JP2017153875A (ja) 2016-03-04 2016-03-04 生体情報測定装置および生体情報測定方法
CN201710077298.XA CN107149471A (zh) 2016-03-04 2017-02-13 生物体信息测定装置以及生物体信息测定方法
US15/438,160 US20170251930A1 (en) 2016-03-04 2017-02-21 Biological information measurement apparatus and biological information measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016042292A JP2017153875A (ja) 2016-03-04 2016-03-04 生体情報測定装置および生体情報測定方法

Publications (1)

Publication Number Publication Date
JP2017153875A true JP2017153875A (ja) 2017-09-07

Family

ID=59723191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016042292A Pending JP2017153875A (ja) 2016-03-04 2016-03-04 生体情報測定装置および生体情報測定方法

Country Status (3)

Country Link
US (1) US20170251930A1 (ja)
JP (1) JP2017153875A (ja)
CN (1) CN107149471A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019072396A (ja) * 2017-10-19 2019-05-16 セイコーエプソン株式会社 生体解析装置、生体解析方法およびプログラム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11419520B2 (en) * 2017-05-15 2022-08-23 Agency For Science, Technology And Research Method and system for respiratory measurement
JP6815344B2 (ja) * 2018-03-12 2021-01-20 京セラ株式会社 電子機器、推定システム、推定方法及び推定プログラム
KR20200131289A (ko) * 2018-06-05 2020-11-23 카즈오 타니 혈류량 측정 시스템
JP7170459B2 (ja) * 2018-08-10 2022-11-14 株式会社東芝 血行検出装置、方法、及びプログラム
JP6927949B2 (ja) * 2018-11-19 2021-09-01 京セラ株式会社 電子機器
EP3901931A3 (fr) * 2020-04-23 2022-01-05 Samira Kerrouche Dispositif de surveillance individuelle du type bracelet connecte et procede de surveillance d'un utilisateur correspondant

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895159A (en) * 1982-09-10 1990-01-23 Weiss Jeffrey N Diabetes detection method
US4883351A (en) * 1982-09-10 1989-11-28 Weiss Jeffrey N Apparatus for the detection of diabetes and other abnormalities affecting the lens of the eye
US5025785A (en) * 1982-09-10 1991-06-25 Weiss Jeffrey N Diabetes detection method
US5050612A (en) * 1989-09-12 1991-09-24 Matsumura Kenneth N Device for computer-assisted monitoring of the body
US5394879A (en) * 1993-03-19 1995-03-07 Gorman; Peter G. Biomedical response monitor-exercise equipment and technique using error correction
EP0778001B1 (en) * 1995-05-12 2004-04-07 Seiko Epson Corporation Apparatus for diagnosing condition of living organism and control unit
US5577510A (en) * 1995-08-18 1996-11-26 Chittum; William R. Portable and programmable biofeedback system with switching circuit for voice-message recording and playback
IL120881A (en) * 1996-07-30 2002-09-12 It M R Medic L Cm 1997 Ltd Method and device for continuous and non-invasive monitoring of peripheral arterial tone
US6120460A (en) * 1996-09-04 2000-09-19 Abreu; Marcio Marc Method and apparatus for signal acquisition, processing and transmission for evaluation of bodily functions
US5830139A (en) * 1996-09-04 1998-11-03 Abreu; Marcio M. Tonometer system for measuring intraocular pressure by applanation and/or indentation
US6544193B2 (en) * 1996-09-04 2003-04-08 Marcio Marc Abreu Noninvasive measurement of chemical substances
DE69837526T9 (de) * 1997-11-19 2008-04-10 Seiko Epson Corp. Verfahren und vorrichtung zum nachweis von pulswellen sowie verfahren zur anzeige der lage von arterien
DE69932485T2 (de) * 1998-11-20 2007-01-11 Fuji Photo Film Co. Ltd., Minamiashigara Blutgefäss Bilddarstellungssystem
DE60207183T2 (de) * 2001-12-10 2006-08-10 Kabushiki Gaisha K-And-S Vorrichtung zur Beobachtung biologischer Daten
JP4206218B2 (ja) * 2002-04-03 2009-01-07 セイコーインスツル株式会社 循環動態測定装置
JP2004313468A (ja) * 2003-04-16 2004-11-11 Omron Healthcare Co Ltd 脈波測定装置および生体波解析プログラム
WO2007062456A1 (en) * 2005-12-01 2007-06-07 Atcor Medical Pty Ltd A method of estimating pulse wave velocity
US20080183232A1 (en) * 2007-01-30 2008-07-31 Voss Gregory I Method and system for determining cardiac function
JP5884256B2 (ja) * 2010-05-19 2016-03-15 セイコーエプソン株式会社 血圧測定装置及び血圧測定方法
CN105592783A (zh) * 2013-10-03 2016-05-18 柯尼卡美能达株式会社 生物体信息测定装置以及该方法
KR20150077684A (ko) * 2013-12-30 2015-07-08 삼성전자주식회사 생체 신호 기반 기능 운용 방법 및 이를 지원하는 전자 장치
KR102411658B1 (ko) * 2015-01-15 2022-06-21 삼성전자주식회사 생체 정보 검출 장치
CN104983412B (zh) * 2015-05-28 2017-08-11 中国科学院合肥物质科学研究院 一种中心动脉收缩期平均归一化血流波形模型及基于其获取主动脉脉搏波传递时间的方法
KR102407140B1 (ko) * 2015-07-09 2022-06-10 삼성전자주식회사 생체 정보 분석 장치 및 방법
US10181072B2 (en) * 2016-03-22 2019-01-15 Qualcomm Incorporated Rollable biometric measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019072396A (ja) * 2017-10-19 2019-05-16 セイコーエプソン株式会社 生体解析装置、生体解析方法およびプログラム
JP6996220B2 (ja) 2017-10-19 2022-01-17 セイコーエプソン株式会社 生体解析装置、生体解析方法およびプログラム
US11832972B2 (en) 2017-10-19 2023-12-05 Seiko Epson Corporation Biological analysis device, biological analysis method, and program

Also Published As

Publication number Publication date
US20170251930A1 (en) 2017-09-07
CN107149471A (zh) 2017-09-12

Similar Documents

Publication Publication Date Title
JP6597410B2 (ja) 生体情報測定装置および生体情報測定方法
JP2017153875A (ja) 生体情報測定装置および生体情報測定方法
KR102409382B1 (ko) 생체 정보 검출 장치 및 방법
US11020057B2 (en) Ultrasound devices for estimating blood pressure and other cardiovascular properties
KR102411658B1 (ko) 생체 정보 검출 장치
KR102299361B1 (ko) 혈압을 모니터링하는 장치 및 방법, 혈압 모니터링 기능을 갖는 웨어러블 디바이스
WO2015049963A1 (ja) 生体情報測定装置および該方法
KR20160090125A (ko) 생체 정보 검출 장치
EP3692895B1 (en) Apparatus and method for estimating bio-information
US20150057508A1 (en) Physiological information measuring apparatus
US10357165B2 (en) Method and apparatus for acquiring bioinformation and apparatus for testing bioinformation
JP2016146958A (ja) 血圧測定装置及び血圧測定方法
US20150126865A1 (en) Ultrasonic probe and ultrasonic measuring device
JP2016112277A (ja) 血圧計測装置、電子機器及び血圧計測方法
KR20160086710A (ko) 체표압력 및 혈액용적의 동시 측정장치 및 방법
US20220087556A1 (en) Apparatus and method for obtaining bio-information
JP2018021833A (ja) 温度測定装置および温度測定方法
US10058273B2 (en) Detection device and measuring apparatus
TW202237026A (zh) 基於光聲體積描記法的非侵入式血壓估計和血管監測
KR20190030152A (ko) 생체정보 측정 장치 및 방법
JP2011104208A (ja) 脈波伝播速度測定装置
JP2012179210A (ja) 脈波測定装置、脈波の測定方法
EP3669763B1 (en) Apparatus and method for estimating cardiovascular information
JP6925918B2 (ja) センサシステム及び電子機器
JP2016015978A (ja) 生体情報検出装置