JP2017153857A - Biodegradable embolic coil - Google Patents

Biodegradable embolic coil Download PDF

Info

Publication number
JP2017153857A
JP2017153857A JP2016041992A JP2016041992A JP2017153857A JP 2017153857 A JP2017153857 A JP 2017153857A JP 2016041992 A JP2016041992 A JP 2016041992A JP 2016041992 A JP2016041992 A JP 2016041992A JP 2017153857 A JP2017153857 A JP 2017153857A
Authority
JP
Japan
Prior art keywords
coil
magnesium
embolic coil
embolic
catheter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016041992A
Other languages
Japanese (ja)
Inventor
望月 明
Akira Mochizuki
明 望月
茂亮 井上
Shigeaki Inoue
茂亮 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP2016041992A priority Critical patent/JP2017153857A/en
Publication of JP2017153857A publication Critical patent/JP2017153857A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an embolic coil that naturally degrades and disappears in a living body immediately after curing a targeted lesion through retention, has biodegradability which neither evokes a late foreign-body reaction or a toxic reaction nor damages a normal biological tissue, and has excellent properties of delivery and retention for insertion and retention in a hollow organ by using a catheter.SOLUTION: A biodegradable embolic coil to be provided in the invention is an embolic coil that is inserted and retained in a hollow organ by using a catheter, and is formed of a wire rod 75 to 150 μm in diameter which is made of a magnesium-based metal. As this magnesium-based metal, an alloy which is, for example, made of magnesium, aluminum, and zinc is preferable. And, it is preferable that an outer diameter of a first shape coil of the embolic coil is within a range of 0.2 to 2.0 mm.SELECTED DRAWING: None

Description

本発明は、血管、リンパ管等に対してカテーテル等とともに用いられる、管空臓器内治療用の塞栓コイルに関する。   The present invention relates to an embolic coil for endovascular treatment used with a catheter or the like for blood vessels, lymphatic vessels and the like.

塞栓コイルは、血管等の管空臓器内の治療を目的とし、カテーテル等の医療用具により患部まで送達された後、適用部位に留置される医療器具である。生命に危険を及ぼす出血性ショック患者の多くは大血管が損傷しており、迅速かつ安全な止血術が望まれる。また、実質臓器に発生した悪性新生物に対する栄養供給源となる動脈を閉塞することにより、いわゆる兵糧攻めにより悪性新生物を治療することができる。このような治療目的のために、近年では開腹止血術のみならず、カテーテルおよび塞栓コイルを用いた経皮的血管内塞栓術が普及し、低侵襲な止血術が可能となっている。   The embolic coil is a medical instrument that is intended for treatment in a hollow organ such as a blood vessel, and is delivered to a diseased site by a medical device such as a catheter and then placed at an application site. Many patients with hemorrhagic shock, which are life-threatening, have large blood vessels damaged, and rapid and safe hemostasis is desired. In addition, the malignant neoplasm can be treated by so-called military supply by occluding the artery serving as a nutrient source for the malignant neoplasm that has developed in the parenchyma. For such therapeutic purposes, not only open hemostasis but also percutaneous endovascular embolization using a catheter and an embolic coil have become widespread in recent years, enabling minimally invasive hemostasis.

現在使用されている塞栓コイルは基本的に、白金等の耐食性金属で作られている非分解性のものであるため、原則、長期間または一生にわたり生体組織内に物理的に存在することが問題にならない、あるいは存在することが必要である対象患部に使用されている。例えば、破裂した、もしくは未破裂の脳などの動脈瘤内に塞栓コイルを留置し、止血または(再)破裂防止の処置をするために用いる場合は、塞栓コイルはその動脈瘤内に永続的に存在しても(器質化しても)問題とはならない。   The embolization coils currently used are basically non-degradable made of a corrosion-resistant metal such as platinum, so in principle, it is a problem that they are physically present in living tissue for a long period of time or throughout life. It is being used in affected areas that do not become or need to exist. For example, if an embolic coil is placed in an aneurysm, such as a ruptured or unruptured brain, and used to provide hemostasis or (re) rupture prevention treatment, the embolic coil is permanently in the aneurysm. Even if it exists, it does not matter.

一方で、そのような永続的な塞栓コイルによる遮断が望ましくない患部に対してやむを得ず使用しなければならないこともあり、その結果、末梢組織の血流障害、梗塞、壊死、慢性的なアレルギー反応など様々な合併症が引き起こされる。例えば、骨盤骨折による出血性ショックに対して塞栓コイルにて内腸骨動脈を止血した患者では、その数日後に大臀筋の広範な血流障害と壊死を認め、壊死創の切除術を施行した事例もある。このように現行の非分解性塞栓コイルによる血流の途絶と人工物の永続的留置は様々な合併症を引き起こすため、所定の役割を果たした後に体内で溶解する新たな塞栓コイルの開発が急務である。   On the other hand, it may be unavoidable to use it for affected areas where blocking by such permanent embolic coils is undesirable, resulting in peripheral blood flow disorders, infarctions, necrosis, chronic allergic reactions, etc. Various complications are caused. For example, a patient who had hemostasis of the internal iliac artery with an embolic coil for hemorrhagic shock due to pelvic fracture showed extensive blood flow disturbance and necrosis of the greater gluteal muscle a few days later, and resection of the necrotic wound was performed There are also examples. In this way, disruption of blood flow and permanent placement of artifacts with current non-degradable embolic coils cause various complications, so it is urgent to develop a new embolic coil that dissolves in the body after playing a predetermined role It is.

塞栓コイルまたはその他の管空臓器内治療法に用いられる医療機器に関して、次のような技術が公知となっている。
特開2004−267570号公報(特許文献1)には、構成要素として銅を含有する、例えば銅または銅合金からなる金属素線、あるいは銅または銅合金によって被覆されている白金またはその合金等から構成される金属素線を巻回したコイルである、生体管腔を閉塞するための塞栓用具が開示されており、実施例では、素線径45μmの銅素線などを巻回してコイルを作製したことが記載されている。しかしながらこの文献には、マグネシウムまたはマグネシウム合金を用いて(その表面を銅などによって被覆した)コイルを作製したことは、実施例等によって具体的に実証されていない。
The following techniques are known for medical devices used for embolization coils or other endoluminal treatment methods.
Japanese Patent Application Laid-Open No. 2004-267570 (Patent Document 1) includes copper as a constituent element, for example, a metal wire made of copper or a copper alloy, platinum coated with copper or a copper alloy, or an alloy thereof. An embolization device for occluding a living body lumen, which is a coil wound with a configured metal strand, is disclosed. In the embodiment, a coil is produced by winding a copper strand having a strand diameter of 45 μm. It is described. However, in this document, it has not been concretely demonstrated by Examples or the like that a coil is manufactured using magnesium or a magnesium alloy (the surface of which is coated with copper or the like).

一方、特開2010−148682号公報(特許文献2)には、マグネシウムまたはマグネシウム合金を基材とし、その表面がアパタイト結晶を主成分とする生体吸収性の耐食性皮膜で覆われている、医療用生体吸収性部材が開示されており、医療用生体吸収性部材の一例として動脈瘤栓塞用コイルも挙げられている。しかしながらこの文献には、上記特定の基材を用いて動脈瘤栓塞用コイルを実際に製造することが可能であることは、実施例等によって具体的に実証されていない。   On the other hand, JP 2010-148682 A (Patent Document 2) describes a medical use in which magnesium or a magnesium alloy is used as a base material and the surface thereof is covered with a bioabsorbable corrosion-resistant film mainly composed of apatite crystals. A bioabsorbable member is disclosed, and an aneurysm embolization coil is also cited as an example of a medical bioabsorbable member. However, in this document, it is not concretely demonstrated by an example or the like that an aneurysm embolization coil can be actually manufactured using the specific base material.

さらに、特表2013−544954号公報(特許文献3)には、特定の組成を有する生浸食性マグネシウム合金を含む、ステントに代表される生浸食性内部人工器官が開示されている。特表2015−524512号公報(特許文献4)、特表2015−526591号公報(特許文献5)、特表2015−526592号公報(特許文献6)および特表2015−528052号公報(特許文献7)にはそれぞれ、特定の組成を有するマグネシウム合金が開示されており、それを用いて生分解性インプラント、例えばステントなどの血管内インプラントを製造することができると記載されている。特表2010−538747号公報(特許文献8)には、プラグ、合成ワイヤーおよびフットプレートを具備する、生体組織で形成された開口を封止するための閉鎖デバイスが開示されており、当該閉鎖デバイス(プラグ、合成ワイヤーおよびフットプレートの少なくとも1つの、少なくとも一部)はマグネシウムまたはマグネシウム合金を含む生体腐食性金属で形成することができると記載されている。特表2008−540006号公報(特許文献9)には、マグネシウム合金等を用いて製造される、血管系を通して(カテーテル等を用いて)心臓に隣接する体管内および/または心臓に挿入され、心臓組織および/または体管内を切断するように構成された、組織切断装置が開示されている。しかしながらこれらのいずれの文献にも、マグネシウム合金を用いて、血管内インプラントとして栓塞コイルを実際に製造することが可能であることは、実施例等によって具体的に実証されていない。   Furthermore, Japanese translations of PCT publication No. 2013-54495 (patent document 3) discloses a bioerodible endoprosthesis typified by a stent including a bioerodible magnesium alloy having a specific composition. JP-T-2015-524512 (Patent Document 4), JP-T-2015-526591 (Patent Document 5), JP-T-2015-526592 (Patent Document 6) and JP-T-2015-528052 (Patent Document 7) ) Each disclose a magnesium alloy having a specific composition, which describes that it can be used to produce biodegradable implants, for example, intravascular implants such as stents. JP-T-2010-538747 (Patent Document 8) discloses a closure device for sealing an opening formed of a living tissue, which includes a plug, a synthetic wire, and a foot plate. It is described that (at least a portion of at least one of the plug, synthetic wire and foot plate) can be formed of a bioerodible metal including magnesium or a magnesium alloy. In Japanese translations of PCT publication No. 2008-540006 (patent document 9), a heart is inserted into a body vessel adjacent to the heart and / or into the heart through a vascular system (using a catheter or the like) manufactured using a magnesium alloy or the like. Disclosed is a tissue cutting device configured to cut tissue and / or a body vessel. However, none of these documents specifically proves that it is possible to actually manufacture an embolic coil as an intravascular implant using a magnesium alloy.

特開2004−267570号公報JP 2004-267570 A 特開2010−148682号公報JP 2010-148682 A 特表2013−544954号公報Special table 2013-54454 gazette 特表2015−524512号公報Special table 2015-524512 特表2015−526591号公報Special table 2015-526591 gazette 特表2015−526592号公報JP-T-2015-526592 特表2015−528052号公報Special table 2015-528052 gazette 特表2010−538747号公報Special table 2010-538747 gazette 特表2008−540006号公報Special table 2008-540006

純マグネシウムおよびマグネシウム合金(本明細書において「マグネシウム系金属」と呼ぶ。)が生体内分解性を有することは特許文献2〜9に記載されているように公知であり、そのような生体内分解性の線材から、カテーテルを用いて管空臓器内に挿入留置されるステントや塞栓コイルを作製できる可能性があることも、それらの特許文献に文言上は記載ないし示唆されているといえるかもしれない。しかしながら、マグネシウム系金属を用いて実用性に耐える塞栓コイルを作製できたことは、特許文献2〜9には具体的に実証されておらず、実用化に成功したとの報告もない。   It is known that pure magnesium and magnesium alloys (referred to herein as “magnesium-based metals”) have biodegradability, as described in Patent Documents 2 to 9, and such biodegradation is known. It may be said that these patent documents describe or suggest that there is a possibility that a stent or an embolic coil that can be inserted and indwelled in a hollow organ using a catheter can be produced from a conductive wire. Absent. However, it has not been specifically demonstrated in Patent Documents 2 to 9 that an embolic coil that can withstand practicality using a magnesium-based metal has been produced, and there is no report that it has been successfully put into practical use.

本発明は、留置することで目標とする病変部を治癒した後、速やかに生体内で自然に分解消失し、後期異物反応や毒性反応を惹起したり、正常な生体組織に障害をもたらしたりすることない生体内分解性を有し、かつカテーテルを用いて管空臓器内に挿入留置するための優れた送達性および留置性を有する塞栓コイルを提供することを目的とする。   In the present invention, after the target lesion is healed by indwelling, it quickly decomposes and disappears naturally in the living body, causing a late foreign body reaction or toxic reaction, or causing damage to normal living tissue. An object of the present invention is to provide an embolic coil that has excellent biodegradability and has excellent delivery and placement properties for insertion and placement in a hollow organ using a catheter.

塞栓コイルには、適用部位に対して過大な負荷を与えて損傷を生じることなく留置操作を行えるような、柔軟性や配置能力(留置後にコイルが意図しないところに移動しない)を有するという基本的な特性が要求される。これまでマグネシウム系金属からなる塞栓コイルが実現されていなかった一因として、マグネシウム系金属は、一般的な工業材料として使用される鉄、ステンレススチール、アルミニウム合金、チタン合金などに比べ引張弾性率(ヤング率)が低く、塞栓コイルのように高い機械強度が求められる構造材としての使用には不向きである、と認識されていることがあるだろう。特に塞栓コイルは、ステントとも異なる形態を有しており、バネとして使用できなくてはならないが、マグネシウム系金属は易変形性材料であるためバネ性の発現が難しいという問題がある。具体的には、マグネシウム系金属の引張弾性率は30GPaから60Gpa程度と低いのに対し、構造材料として汎用されているチタンは110GPa、ステンレススチールは200GPa、また現在臨床的に使用されている白金コイルの白金は170GPaと、比較的高い引張弾性率を有している。   The embolization coil has the flexibility and placement capability (the coil does not move to an unintended place after placement) so that it can be placed without causing damage by applying an excessive load to the application site. Characteristics are required. One of the reasons why embolization coils made of magnesium-based metals have not been realized so far is that magnesium-based metals have a tensile modulus (compared to iron, stainless steel, aluminum alloys, titanium alloys, etc.) It may be recognized that it is unsuitable for use as a structural material that has a low Young's modulus and requires high mechanical strength such as an embolic coil. In particular, the embolic coil has a form different from that of the stent and must be usable as a spring. However, since magnesium-based metal is an easily deformable material, there is a problem that it is difficult to develop a spring property. Specifically, the tensile modulus of magnesium metal is as low as 30 GPa to 60 GPa, whereas titanium, which is widely used as a structural material, is 110 GPa, stainless steel is 200 GPa, and platinum coils currently used clinically. Platinum of 170 GPa has a relatively high tensile elastic modulus.

このように、マグネシウム系金属は生体内分解性という好ましい特性を持つ素材でありながら、引張弾性率の観点からバネ性を付与することが難しいと考えられていた材料であり、これまでは実用性のある塞栓コイルの作製に活用することができなかった。   In this way, magnesium-based metals are materials that have the desirable property of biodegradability, but have been considered difficult to impart spring properties from the viewpoint of tensile elastic modulus. It was not possible to use it for the production of embolic coils.

本発明者らは、前記課題に基づき鋭意検討を行った結果、引張弾性率が30GPaから60GPaの範囲にあるマグネシウム系金属でも、直径が75〜150μmという特定の範囲にある線材を用いることで、体腔内で十分に使用できるレベルの形態復元性や柔軟性を持ち合わせた生体内分解性塞栓用コイルを作製することができることを見出し、本発明に至った。   As a result of intensive studies based on the above problems, the present inventors have used a wire material having a diameter in a specific range of 75 to 150 μm even with a magnesium-based metal having a tensile modulus of elasticity in the range of 30 GPa to 60 GPa. The present inventors have found that a biodegradable coil for embolization having a level of resilience and flexibility that can be sufficiently used in a body cavity can be produced.

すなわち、本発明は、カテーテルを用いて管空臓器内に挿入留置される塞栓コイルであって、マグネシウム系金属からなる直径75〜150μmの線材で形成されていることを特徴とする、生体内分解性塞栓コイルを提供する。このマグネシウム系金属としては、例えばマグネシウム、アルミニウムおよび亜鉛からなる合金が好ましい。また、前記塞栓コイルの1次形状コイル径は0.2〜2.0mmの範囲であることが好ましい。   That is, the present invention relates to an embolization coil that is inserted and indwelled in a hollow organ using a catheter, and is formed of a wire material having a diameter of 75 to 150 μm made of a magnesium-based metal. An embolic coil is provided. As this magnesium-based metal, for example, an alloy made of magnesium, aluminum and zinc is preferable. The primary shape coil diameter of the embolic coil is preferably in the range of 0.2 to 2.0 mm.

本発明により、治療に必要な一定の期間、血管等の管空臓器を閉塞した後、生体内で分解され、正常な生体組織に障害をもたらさないという理想的な塞栓コイルを作製することが可能となる。そして、このような生体内分解性塞栓コイルを使用することにより、止血治療や、悪性新生物質または血管内病変に対する治療の効果を高めることができるようになる。   According to the present invention, it is possible to produce an ideal embolization coil in which a hollow organ such as a blood vessel is occluded for a certain period required for treatment and then decomposed in the living body and does not cause damage to normal living tissue. It becomes. By using such a biodegradable embolic coil, it is possible to enhance the effect of hemostasis treatment and treatment for malignant new substances or intravascular lesions.

図1は、使用時に用いられる各種の器具を付属した、本発明の塞栓コイルの一実施形態を表す模式図である。FIG. 1 is a schematic diagram showing an embodiment of an embolic coil according to the present invention, to which various instruments used at the time of use are attached. 図2は、本発明の塞栓コイルを出血原因動脈の上流に留置する止血治療の一実施形態を表した模式図である。FIG. 2 is a schematic view showing an embodiment of hemostasis treatment in which the embolic coil of the present invention is placed upstream of the bleeding-causing artery.

本発明の生体内分解性塞栓コイルは、マグネシウム系金属からなる直径75〜150μmの線材で形成されている。
「マグネシウム系合金属材料」には、マグネシウム合金(少なくともマグネシウムを含有する合金)および純マグネシウム(合金ではない純度の高いマグネシウム)の両方が包含される。マグネシウム合金の組成は、生体内分解性等を考慮しながら適宜調整することができる。マグネシウムに添加して合金化される金属元素としては、アルミニウム、亜鉛、ジルコニウム、マンガン、鉄、銅、ニッケル、カルシウム、ケイ素、タングステン、銀、イットリウム、希土類元素等を例示することができ、中でもアルミニウム、亜鉛、タングステンが好ましい。生体内での塞栓コイルの分解に伴い溶出する金属イオンの安全性から、合金化される金属元素の添加量は、マグネシウム合金の全体に対して、10質量%未満であることが望ましい。より好ましいマグネシウム合金としては、「AZ系合金」および「WE系合金」という名称で一般的に知られているものが例示できる。特に、線材としての機械物性や、工業的な入手のしやすさなどから、「AZ31」(重量比=マグネシウム:97、アルミニウム:3、亜鉛:1)および「AZ61」(重量比=マグネシウム:93、アルミニウム:6、亜鉛:1)が望ましい。
The biodegradable embolic coil of the present invention is formed of a wire material having a diameter of 75 to 150 μm made of a magnesium-based metal.
The “magnesium-based mixed metal material” includes both magnesium alloys (alloys containing at least magnesium) and pure magnesium (high purity magnesium that is not an alloy). The composition of the magnesium alloy can be appropriately adjusted in consideration of biodegradability and the like. Examples of metal elements added to magnesium and alloyed include aluminum, zinc, zirconium, manganese, iron, copper, nickel, calcium, silicon, tungsten, silver, yttrium, and rare earth elements. Zinc and tungsten are preferred. In view of the safety of the metal ions eluted with the decomposition of the embolic coil in the living body, the amount of the metal element to be alloyed is preferably less than 10% by mass with respect to the entire magnesium alloy. More preferable magnesium alloys include those generally known under the names “AZ-based alloy” and “WE-based alloy”. In particular, “AZ31” (weight ratio = magnesium: 97, aluminum: 3, zinc: 1) and “AZ61” (weight ratio = magnesium: 93) due to mechanical properties as a wire rod and industrial availability. Aluminum: 6, zinc: 1) are desirable.

また、線材に用いるマグネシウム系金属の材質によって、塞栓コイルが生体内で分解されるまでの期間、すなわち管空臓器内に留置された状態で所定の機能を果たす期間(例えば血管内で血流を停めておく期間)が変動する。塞栓コイルが生体内で分解されるまでの期間を所望の範囲とするために、どのようなマグネシウム系金属を用いることができるかは、当業者であれば適切に把握することができる。塞栓コイル用途に応じて、生体内で分解されるまでの期間は所望の範囲で調整することができるが、例えば1ヶ月程度あれば、一般的な治療用途において十分と言える。   In addition, depending on the material of the magnesium-based metal used for the wire, the period until the embolic coil is decomposed in the living body, that is, the period in which the embolic coil is placed in the hollow organ (for example, the blood flow in the blood vessel). The period during which it is stopped fluctuates. A person skilled in the art can appropriately grasp what kind of magnesium-based metal can be used in order to make the period until the embolic coil is decomposed in vivo within a desired range. Depending on the use of the embolic coil, the period until it is decomposed in the living body can be adjusted within a desired range. For example, if it is about one month, it can be said that it is sufficient for general therapeutic use.

本発明では、直径75〜150μmの線材を用いることにより、マグネシウム系金属からなる生体内分解性の塞栓コイルを作製することができる。線材の直径が75μmより小さいと、得られるコイルは柔軟性はあるものの、形態復元性に劣るため、カテーテル等を使って患部組織に送達、留置したときに形状が元に戻らないという観点から、治療用途には不適切なものとなる。一方、線材の直径が150μmより大きいと、得られるコイルは形態復元性はあるものの、コイル径は非常に大きくなり、しかもコイルとしての柔軟性が低くなる(剛性が高い)ため、カテーテル等を使っての患部送達が困難になったり、留置部位組織を損傷したりするという観点から、やはり治療用途に不適切なものとなる。   In the present invention, a biodegradable embolic coil made of a magnesium-based metal can be produced by using a wire having a diameter of 75 to 150 μm. If the diameter of the wire is smaller than 75 μm, the resulting coil is flexible, but is inferior in shape restoration, so that the shape does not return to its original shape when delivered to the affected tissue using a catheter, etc. It becomes inappropriate for therapeutic use. On the other hand, when the diameter of the wire is larger than 150 μm, the obtained coil has a shape restoring property, but the coil diameter becomes very large and the flexibility as the coil becomes low (high rigidity). From the viewpoint of making it difficult to deliver the affected area or damaging the indwelling site tissue, it is also inappropriate for therapeutic use.

図1に示すように、塞栓コイルは、線材を密着して巻回したもの(1次形状コイル)(1)によって形成されており、外力を受けていないとき、1次形状コイル(1)は絡み合って、略球状の不定形な2次形状コイル(2)を形成している。   As shown in FIG. 1, the embolic coil is formed by winding a wire rod closely (primary shape coil) (1), and when receiving no external force, the primary shape coil (1) Intertwined to form a substantially spherical, irregular secondary shape coil (2).

マグネシウム系金属からなる1次形状コイル(1)の外径(中空部分の内径に、線材の直径を加えた長さ)は、用いるマグネシウム系金属の機械的特性を考慮しつつ、閉塞する管空臓器の性状およびそこに送達させるためのカテーテルの太さに合わせて調整することができるが、好ましくは0.2〜2.0mmの範囲である。1次形状コイル(1)の長さ(2次形状コイル(2)を引き延ばしたときの長さ)や2次形状コイル(2)の形状は、用いるマグネシウム系金属の機械的特性、閉塞する管空臓器の性状などを考慮して適宜調整することができるが、特に限定されるものではなく、例えば従来の塞栓コイルと同程度とすることができる。   The outer diameter of the primary coil (1) made of magnesium-based metal (1) is the length obtained by adding the diameter of the wire to the inner diameter of the hollow part, taking into account the mechanical properties of the magnesium-based metal used. Although it can be adjusted according to the properties of the organ and the thickness of the catheter for delivery to the organ, it is preferably in the range of 0.2 to 2.0 mm. The length of the primary shape coil (1) (the length when the secondary shape coil (2) is stretched) and the shape of the secondary shape coil (2) are the mechanical characteristics of the magnesium-based metal used, the tube to be closed Although it can be appropriately adjusted in consideration of the properties of the empty organ, it is not particularly limited, and can be, for example, the same level as that of a conventional embolic coil.

マグネシウム系金属からなる直径75〜150μmの線材で形成された塞栓コイルは、基本的には白金等を用いた従来の塞栓コイルの製造方法に準じて、必要に応じてマグネシウム系金属の機械的特性を考慮して条件を調節した上で、製造することができる。そのような本発明の生体内分解性塞栓コイルの製造方法の概要は次の通りである。まず、マグネシウム系金属の原線(例えば直径3.0mm)を延伸し、直径75〜150μmの線材を調製する。次に、その線材をコイル状(らせん状)に加工し、密着巻回した塞栓コイルを作製する。例えば、第1の線材を芯とし、その周りに第2の線材を巻き付けた後、芯を引き抜くことにより、中空部を有するバネ状の塞栓コイルが得られる
塞栓コイルは通常、カテーテル内に挿入した後、目的とする部位に送達させるための、デリバリーシステムに合わせた各種の部材と組み合わせて使用され、本発明の生体内分解性塞栓コイルもそれと同様に使用することができる。
The embolic coil made of a magnesium-based metal with a diameter of 75 to 150 μm is basically in accordance with the conventional embolization coil manufacturing method using platinum or the like, and mechanical characteristics of the magnesium-based metal as required. Can be manufactured after adjusting the conditions. The outline of the method for producing such a biodegradable embolic coil of the present invention is as follows. First, a magnesium metal base wire (for example, a diameter of 3.0 mm) is stretched to prepare a wire having a diameter of 75 to 150 μm. Next, the wire is processed into a coil shape (spiral shape) to produce an embolic coil wound tightly. For example, a spring-like embolic coil having a hollow portion can be obtained by winding the second wire around the first wire and winding the second wire around the first wire. The embolic coil is usually inserted into the catheter. Thereafter, the biodegradable embolic coil of the present invention can be used in the same manner as described above, in combination with various members adapted to the delivery system for delivery to a target site.

例えば、図1に示すように、塞栓コイル(1,2)は一般的に、後端側に送達手段(20)を連結して使用される。例えば、電気式離脱型のデリバリーシステムにおいて使用される場合、送達手段(20)は、塞栓コイル(1,2)と連結するための接続部材(21)、X線透視下で位置を確認するための先端造影部材(22)、およびワイヤー部材(23)とを備える。接続部材(9)が電流による加熱で溶融、切断されることにより、生体内の目的とする位置で塞栓コイル(1, 2)をワイヤー部(23)から離脱し、留置することができる。接続部材(21)は、例えばポリビニルアルコール(PVA)系の樹脂材料で形成されている。ワイヤー部材(23)は、先端造影部分(22)に接続された柔軟部分(24)、柔軟部分(24)に接続され、電気的に絶縁するための被覆が表面に設けられている後端側部分(25)、および電源装置に接続するための端子部分(26)を備える。ワイヤー部材(23)は、通電性を有する金属材料、例えばステンレス鋼を用いて形成される。先端造影部材(17)は、X線不透過性の高い金属材料、例えば金、銀、タングステン、タンタル、白金、パラジウム等の金属またはそれらの合金を用いて形成される。さらに、塞栓コイル(1,2)の前端側には必要に応じて、管腔臓器内を傷つけないようにするためのチップ(11)を装着してもよい。チップ(11)は、塞栓コイルと同様のマグネシウム系金属で形成されていてもよいし、その他の金属で形成されていてもよい。なお、送達手段(20)は図1に示すような実施形態に限定されるものではなく、例えばプッシャーカテーテル、イントロデューサーシースなどを備えるデリバリーカテーテルに準じた構成に変更することもできる。   For example, as shown in FIG. 1, the embolic coil (1, 2) is generally used with a delivery means (20) connected to the rear end side. For example, when used in an electric detachable delivery system, the delivery means (20) is a connecting member (21) for coupling with the embolic coil (1, 2), for confirming the position under fluoroscopy. A distal contrast member (22) and a wire member (23). When the connecting member (9) is melted and cut by heating with an electric current, the embolic coil (1, 2) can be detached from the wire portion (23) and placed at a target position in the living body. The connecting member (21) is made of, for example, a polyvinyl alcohol (PVA) resin material. The wire member (23) has a flexible portion (24) connected to the distal contrast portion (22), a rear end side that is connected to the flexible portion (24) and is provided with a coating for electrical insulation on the surface. A portion (25) and a terminal portion (26) for connecting to the power supply device are provided. The wire member (23) is formed using a metal material having electrical conductivity, for example, stainless steel. The distal contrast member (17) is formed using a metal material having high radiopacity, for example, a metal such as gold, silver, tungsten, tantalum, platinum, palladium, or an alloy thereof. Furthermore, a tip (11) may be attached to the front end side of the embolic coil (1, 2) as needed so as not to damage the inside of the hollow organ. The tip (11) may be formed of a magnesium-based metal similar to the embolic coil, or may be formed of other metals. The delivery means (20) is not limited to the embodiment shown in FIG. 1, and can be changed to a configuration according to a delivery catheter including a pusher catheter, an introducer sheath, and the like.

本発明の生体内分解性塞栓コイルに関するその他の技術的事項、例えば塞栓コイルとしての基本的な構造や使用形態は、基本的に一般的な塞栓コイルと同様であり、また公知の様々な塞栓コイルに関する技術的事項を組み合わせることができる。   Other technical matters relating to the biodegradable embolic coil of the present invention, for example, the basic structure and usage as an embolic coil are basically the same as those of a general embolic coil, and various known embolic coils. The technical matters concerning can be combined.

本発明の生体内分解性塞栓コイルの用途、換言すれば本発明の生体内分解性塞栓コイルを用いた治療法(経皮的血管内塞栓術)の実施形態は、特に限定されるものではないが、生体内分解性であるという利点を活用した用途、すなわち生体内非分解性の塞栓コイルを用いることが不可能ないし不適切な用途が好適である。そのような用途としては、例えば、(i)外傷に伴う骨盤骨折・腹部血管損傷・実質臓器(脾臓・肝臓・腎臓)・顔面骨骨折、(ii)分娩後の弛緩性出血(子宮動脈から出血)、(iii)喀血(気管支動脈からの出血)、(iv)肝細胞癌などの治療が挙げられる。これらの対象疾患において、出血原因動脈(腫瘍の場合は栄養動脈)の上流に塞栓コイルを留置することで、低浸襲で血流の遮断と出血性ショックからの離脱が可能となる。そして所定の機能を果たした後、血管内等に留置された塞栓コイルは分解され、必要な部位への血流等を復活させることができる。   The use of the biodegradable embolic coil of the present invention, in other words, the embodiment of the treatment method (percutaneous endovascular embolization) using the biodegradable embolic coil of the present invention is not particularly limited. However, an application utilizing the advantage of being biodegradable, that is, an application where it is impossible or inappropriate to use an embolization coil that is not biodegradable in vivo is preferable. Examples of such applications include (i) pelvic fractures associated with trauma, abdominal vascular injury, parenchymal organs (spleen, liver, kidney), facial bone fractures, and (ii) postpartum flaccid bleeding (bleeding from the uterine artery) ), (Iii) hemoptysis (bleeding from the bronchial artery), and (iv) treatment of hepatocellular carcinoma. In these target diseases, embolization coils are placed upstream of bleeding-causing arteries (nutrient arteries in the case of tumors), so that blood flow can be blocked and bleeding shock can be removed with low invasion. And after fulfill | performing a predetermined function, the embolic coil indwelled in the blood vessel etc. is decomposed | disassembled and the blood flow etc. to a required site | part can be revived.

本発明の塞栓コイルの使用に係る実施形態として、止血治療における一例を図2に示す。塞栓コイルは管空臓器(200)、例えば動脈内に通されたカテーテル(100)を用いて、患部(210)、例えば出血部の上流に送達、留置される。その際に、2次形状の塞栓コイル(2)は引き延ばされてカテーテル(100)の一端の開口から挿入され、ほぼ直線状態の1次形状の塞栓コイル(1)がカテーテル(100)内を移動し、もう一端の開口から押し出された後、塞栓コイルの2次形状(2)が管空臓器(200)内の所望の位置で復元される。塞栓コイル(2)は出血部(210)が治癒するまで所定の期間血流を遮断し、その後溶解して血流が再開する。   As an embodiment relating to the use of the embolic coil of the present invention, an example in hemostasis treatment is shown in FIG. The embolic coil is delivered and placed upstream of the affected area (210), eg, the bleeding site, using a hollow organ (200), eg, a catheter (100) passed through the artery. At that time, the secondary-shaped embolic coil (2) is stretched and inserted through the opening at one end of the catheter (100), and the primary-shaped embolic coil (1) is inserted into the catheter (100). And the secondary shape (2) of the embolic coil is restored to the desired position in the evacuated organ (200). The embolic coil (2) blocks the blood flow for a predetermined period until the bleeding part (210) is healed, and then dissolves to resume the blood flow.

[実施例1]
マグネシウム合金としてAZ31合金の線材(線材外径100μm)を用い、一般的な手法によりコイル(1次形状コイルの直径約0.5mm、長さ約50mm)を作製した。得られたコイルを伸張し、白金コイル挿入用カテーテルに充填し、押し込み、その先端から回収したコイルを調べたところ、挿入前の形状およびサイズに復元することを確認した。カテーテル内の移送は白金コイル等と違和感を認めなかった。これより、本実施例のコイルは柔軟性と適切なバネ特性(変形性、形状復元性)を有していると判断できた。
[Example 1]
An AZ31 alloy wire (wire outer diameter: 100 μm) was used as the magnesium alloy, and a coil (a primary shape coil having a diameter of about 0.5 mm and a length of about 50 mm) was produced by a general method. The obtained coil was stretched, filled into a platinum coil insertion catheter, pushed in, and examined for the coil collected from its tip, and it was confirmed that it was restored to the shape and size before insertion. There was no sense of incongruity with the platinum coil or the like in the catheter. From this, it can be determined that the coil of the present example has flexibility and appropriate spring characteristics (deformability, shape recovery).

上記コイルを10mm長に切断し、1.5mLの牛血清に無菌的に浸漬した後、37℃下に静置することにより、in vitroでの分解性を肉眼的に調べた。血清は3日に1回交換した。コイルを血清に浸漬すると、しばらくしてきわめて細かな泡が発生し、分解が始まったことが観察された。浸漬2週間ほどでコイルの折損が発生し、断片化が始まった。4週間たった時点では一辺が1mm程度の小片に分解し、生体内で分解することが十分予想される結果となった。   The coil was cut into a length of 10 mm, immersed aseptically in 1.5 mL of bovine serum, and then allowed to stand at 37 ° C. to visually examine in vitro degradability. Serum was changed once every 3 days. When the coil was immersed in serum, it was observed that after a while, very fine bubbles were generated and decomposition started. In about 2 weeks of immersion, breakage of the coil occurred and fragmentation started. At 4 weeks, one side was decomposed into small pieces of about 1 mm, and the result was sufficiently expected to be decomposed in vivo.

[比較例1]
外径50μmのマグネシウム合金AZ31の線材を用いた以外は実施例1と同様にしてコイル状物(1次形状コイルの直径約0.5mm、長さ約50mm)を作製した。このコイル状物を伸張しカテーテルに充填し、先端より回収したところ、延伸したまま元の形状に復元せず、バネ特性を有していなかった。
[Comparative Example 1]
A coiled product (primary shape coil diameter of about 0.5 mm, length of about 50 mm) was produced in the same manner as in Example 1 except that a wire of magnesium alloy AZ31 having an outer diameter of 50 μm was used. When this coiled material was stretched and filled into a catheter and recovered from the tip, it was not restored to its original shape while being stretched, and did not have spring characteristics.

[比較例2]
外径200μmのマグネシウム合金AZ31の線材を用いた以外は実施例1と同様にしてコイル状物(1次形状コイルの直径約0.5mm、長さ約50mm)を作製した。得られたコイル状物はバネ特性は有しているものの、剛性が高く、組織内に留置したとき周囲組織を損傷することが予想された。また、このコイルを伸張しカテーテルに充填し、先端より回収を試みたが本コイルではカテーテル内での移動がスムースにできず、充填の操作性に劣ることが明らかであった。
[Comparative Example 2]
A coiled product (primary shape coil diameter of about 0.5 mm, length of about 50 mm) was prepared in the same manner as in Example 1 except that a wire of magnesium alloy AZ31 having an outer diameter of 200 μm was used. Although the obtained coil-like material has a spring characteristic, it has high rigidity and was expected to damage the surrounding tissue when placed in the tissue. Further, this coil was stretched and filled into the catheter, and recovery was attempted from the tip. However, it was apparent that this coil could not move smoothly within the catheter, and the filling operability was poor.

1 1次形状コイル(塞栓コイルの1次形状)
2 2次形状コイル(塞栓コイルの2次形状)
11 チップ
20 送達手段
21 接続部材
22 先端造影部材
23 ワイヤー部材
24 柔軟部分
25 後端側部分
26 端子部分
100 カテーテル
200 管腔臓器(血管)
210 患部(出血部)
1 Primary shape coil (Embolic shape of embolic coil)
2 Secondary shape coil (secondary shape of embolic coil)
DESCRIPTION OF SYMBOLS 11 Chip | tip 20 Delivery means 21 Connection member 22 Front-end contrast member 23 Wire member 24 Flexible part 25 Rear end side part 26 Terminal part 100 Catheter 200 Lumen organ (blood vessel)
210 Affected part (bleeding part)

Claims (3)

カテーテルを用いて管空臓器内に挿入留置される塞栓コイルであって、マグネシウム系金属からなる直径75〜150μmの線材で形成されていることを特徴とする、生体内分解性塞栓コイル。   An biodegradable embolization coil, which is an embolization coil that is inserted and indwelled in an empty organ using a catheter, and is formed of a wire material having a diameter of 75 to 150 μm made of a magnesium-based metal. 前記マグネシウム系金属が、マグネシウム、アルミニウムおよび亜鉛からなる合金である、請求項1に記載の生体内分解性塞栓コイル。   The biodegradable embolic coil according to claim 1, wherein the magnesium-based metal is an alloy composed of magnesium, aluminum, and zinc. 前記塞栓コイルの1次形状コイルの外径が0.2〜2.0mmの範囲である、請求項1または2に記載の生体内分解性塞栓コイル。   The biodegradable embolic coil according to claim 1 or 2, wherein an outer diameter of a primary shape coil of the embolic coil is in a range of 0.2 to 2.0 mm.
JP2016041992A 2016-03-04 2016-03-04 Biodegradable embolic coil Pending JP2017153857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016041992A JP2017153857A (en) 2016-03-04 2016-03-04 Biodegradable embolic coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016041992A JP2017153857A (en) 2016-03-04 2016-03-04 Biodegradable embolic coil

Publications (1)

Publication Number Publication Date
JP2017153857A true JP2017153857A (en) 2017-09-07

Family

ID=59807478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016041992A Pending JP2017153857A (en) 2016-03-04 2016-03-04 Biodegradable embolic coil

Country Status (1)

Country Link
JP (1) JP2017153857A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000517222A (en) * 1996-09-03 2000-12-26 ウイリアム、クック、ユーロプ、アクティーゼルスカブ Embolization device for placement in blood vessels
JP2001511049A (en) * 1997-07-18 2001-08-07 メイヤー,ヨルク In vivo biodegradable metal implant
JP2003038498A (en) * 2001-07-27 2003-02-12 Medicos Hirata:Kk Biologically absorptive coil for blood vessel blockage
JP2004267570A (en) * 2003-03-10 2004-09-30 Kanegafuchi Chem Ind Co Ltd Lumen occlusion device
JP2013106829A (en) * 2011-11-22 2013-06-06 Kyoto Univ Embolus forming coil
US20140180395A1 (en) * 2011-07-07 2014-06-26 The Regents Of The University Of California Bioactive spiral coil coating

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000517222A (en) * 1996-09-03 2000-12-26 ウイリアム、クック、ユーロプ、アクティーゼルスカブ Embolization device for placement in blood vessels
JP2001511049A (en) * 1997-07-18 2001-08-07 メイヤー,ヨルク In vivo biodegradable metal implant
JP2003038498A (en) * 2001-07-27 2003-02-12 Medicos Hirata:Kk Biologically absorptive coil for blood vessel blockage
JP2004267570A (en) * 2003-03-10 2004-09-30 Kanegafuchi Chem Ind Co Ltd Lumen occlusion device
US20140180395A1 (en) * 2011-07-07 2014-06-26 The Regents Of The University Of California Bioactive spiral coil coating
JP2013106829A (en) * 2011-11-22 2013-06-06 Kyoto Univ Embolus forming coil

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ジャパンファインスチール株式会社, JPN6017034444, 19 May 2015 (2015-05-19), ISSN: 0003638990 *
国立天文台編, 理科年表 平成11年(机上版), JPN6017002557, 30 November 1998 (1998-11-30), pages 453 - 456, ISSN: 0003488804 *

Similar Documents

Publication Publication Date Title
JP5608093B2 (en) Multistrand coils for interventional therapy
JP4109415B2 (en) Electrically isolated implant for quick desorption
EP1207791B1 (en) Controlled injection of liquid embolic composition
EP2543345B1 (en) Surgical apparatus for aneurysms
US7309345B2 (en) Method and system for delivering an implant utilizing a lumen reducing member
US11369385B2 (en) Shape memory polymer vessel occlusion device
US20040034378A1 (en) Device for implanting occlusion spirals
JP2017516605A (en) Occlusion device
JP2006026418A (en) Fixing tool for implantable electrode and catheter
JP2005508701A (en) Medical implant
JP2004223268A (en) Method for producing intravascular inflammatory response by bioabsorbable polymer based coil
AU2006210590B2 (en) Vaso-occlusive devices including non-biodegradable biomaterials
Horowitz et al. Does electrothrombosis occur immediately after embolization of an aneurysm with Guglielmi detachable coils?
EP1355586A2 (en) Endovascular prosthesis delivery system
JP2017153857A (en) Biodegradable embolic coil
CN106859723B (en) In-vivo degradable spring ring for intravascular interventional medicine
JP2004267570A (en) Lumen occlusion device
ApSimon et al. The Guglielmi coil for transarterial occlusion of intracranial aneurysm: preliminary Western Australian experience
CA2493016A1 (en) Device for the implantation of occlusion coils
US20200060760A1 (en) Catheter system with a high radio frequency electromagnetic field
Kirsch Posterior Communicating Artery Aneurysm: Giant Aneurysm of the Internal Carotid Artery, Acute SAH, Ruptured Wide Neck Aneurysm, Incorporation of the Fetal Origin of the Posterior Cerebral Artery, Coil Occlusion, Secondary Treatment of the Neck Remnant with a Single Derivo Flow Diverter, Intra-procedural Thrombosis, Intra-arterial Eptifibatide Infusion, Good Clinical Outcome
AU2021227736A1 (en) Endovascular prosthesis delivery system
CN116421790A (en) Degradable hydrogel coating spring ring based on zinc-iron-copper alloy and preparation method thereof
Kallmes et al. E-026 pre-clinical testing of a novel thin film nitinol flow diversion stent in a rabbit elastase aneurysm model
Fiorella et al. Embolic agents and materials, stents, delivery systems and retrieval devices

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180306