JP2017150028A - Copper terminal material with plating and terminal - Google Patents

Copper terminal material with plating and terminal Download PDF

Info

Publication number
JP2017150028A
JP2017150028A JP2016032847A JP2016032847A JP2017150028A JP 2017150028 A JP2017150028 A JP 2017150028A JP 2016032847 A JP2016032847 A JP 2016032847A JP 2016032847 A JP2016032847 A JP 2016032847A JP 2017150028 A JP2017150028 A JP 2017150028A
Authority
JP
Japan
Prior art keywords
copper
nickel
alloy
less
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016032847A
Other languages
Japanese (ja)
Inventor
賢治 久保田
Kenji Kubota
賢治 久保田
優樹 伊藤
Yuki Ito
優樹 伊藤
牧 一誠
Kazumasa Maki
一誠 牧
中矢 清隆
Kiyotaka Nakaya
清隆 中矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2016032847A priority Critical patent/JP2017150028A/en
Publication of JP2017150028A publication Critical patent/JP2017150028A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • ing And Chemical Polishing (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a terminal and a terminal material high in credibility at a low cost without heat treatment.SOLUTION: A nickel layer containing nickel or nickel alloy is laminated on a substrate consisting of copper or copper alloy, the nickel layer has a crystal particle diameter of 0.3 μm to 5 μm and a thickness of 0.1 μm to 5.0 μm, a priority alignment surface matches that of the substrate and a noble metal layer consisting of one of gold, a gold alloy, silver and a silver alloy is laminated on the nickel layer at a thickness of 0.05 μm to 5.0 μm.SELECTED DRAWING: Figure 1

Description

本発明は自動車や民生機器等の電気配線の接続に使用されるコネクタ用端子として有用なめっき付銅端子材及びそのめっき付銅端子材を用いて製造した端子に関する。   TECHNICAL FIELD The present invention relates to a plated copper terminal material useful as a connector terminal used for connection of electrical wiring of automobiles and consumer devices, and a terminal manufactured using the plated copper terminal material.

自動車や民生機器等の電気配線の接続に使用されるコネクタ用端子は、一般に、銅又は銅合金基材の表面に錫、金、銀などのめっきを施しためっき付銅端子材が用いられる。このうち、金、銀などの貴金属をめっきした端子材は、耐熱性に優れるため、高温環境下での使用に適している。
従来、このような貴金属をめっきした端子材として、以下の特許文献に開示のものがある。
In general, a connector terminal used for connecting an electrical wiring of an automobile or a consumer device is a plated copper terminal material in which a surface of a copper or copper alloy substrate is plated with tin, gold, silver or the like. Of these, terminal materials plated with noble metals such as gold and silver are excellent in heat resistance and are therefore suitable for use in high-temperature environments.
Conventionally, terminal materials plated with such noble metals include those disclosed in the following patent documents.

特許文献1には、銅又は銅合金からなる母材の表面に、母材側となる下層側の第一の銀めっき層と、第一の銀めっき層の上に形成され、銀めっき端子の表面に露出する上層側の第二の銀めっき層とからなる二層構造の銀めっき層を形成した端子材が開示されており、銅の表面への拡散を抑制して、端子の挿抜が良好で耐摩耗性に優れると記載されている。   In Patent Document 1, formed on the surface of a base material made of copper or a copper alloy on a first silver plating layer on the lower layer side that is the base material side, and on the first silver plating layer, Disclosed is a terminal material with a two-layered silver plating layer composed of an upper second silver plating layer exposed on the surface, which suppresses diffusion of copper to the surface and facilitates terminal insertion / extraction It is described that it has excellent wear resistance.

特許文献2には、80〜110g/Lの銀と70〜160g/Lのシアン化カリウムと55〜70mg/Lのセレンを含む銀めっき液中において、液温12〜24℃、電流密度3〜8A/dmで且つ銀めっき液中のシアン化カリウムの濃度と電流密度の積が840g・A/L・dm以下の範囲で電気めっきを行って、素材上に銀からなる表層を形成することにより、表層の優先配向面が{111}面であり、50℃で168時間加熱する前の{111}面のX線回折ピークの半価幅に対する加熱した後の{111}面のX線回折ピークの半価幅の比が0.5以上である銀めっき材を製造することが開示されており、高い硬度を維持したまま、接触抵抗の増加を防止することができると記載されている。 In Patent Document 2, in a silver plating solution containing 80 to 110 g / L silver, 70 to 160 g / L potassium cyanide, and 55 to 70 mg / L selenium, the liquid temperature is 12 to 24 ° C., and the current density is 3 to 8 A / performing electroplating range product is below 840g · a / L · dm 2 concentration and the current density of potassium cyanide and silver plating solution in dm 2, by forming a surface layer made of silver on the material, surface Is the {111} plane, and the half of the X-ray diffraction peak of the {111} plane after heating with respect to the half width of the X-ray diffraction peak of the {111} plane before heating at 50 ° C. for 168 hours It is disclosed that a silver plating material having a valence width ratio of 0.5 or more is manufactured, and it is described that an increase in contact resistance can be prevented while maintaining high hardness.

特許文献3には、銅または銅合金からなる素材上にニッケルからなる下地層が形成され、この下地層の表面に銀からなる厚さ10μm以下の表層が形成された銀めっき材において、下地層の厚さを2μm以下、好ましくは1.5μm以下にし、表層の{200}方位の面積分率を15%以上、好ましくは25%以上にすることが開示されており、曲げ加工性が良好であると記載されている。   Patent Document 3 discloses a silver plating material in which a base layer made of nickel is formed on a material made of copper or a copper alloy, and a surface layer made of silver and having a thickness of 10 μm or less is formed on the surface of the base layer. Is 2 μm or less, preferably 1.5 μm or less, and the surface fraction of the {200} orientation of the surface layer is 15% or more, preferably 25% or more, and bending workability is good. It is described that there is.

特許文献4には、導電性金属基体と貴金属層との間に、平均結晶粒径が0.3μm以上である、ニッケル、コバルト、亜鉛、銅などのうちの1層以上の下地層が形成された電気接点用貴金属被覆材が開示されており、高温環境下での基体成分の拡散を抑制して、長期信頼性が高いと記載されている。   In Patent Document 4, one or more underlayers of nickel, cobalt, zinc, copper and the like having an average crystal grain size of 0.3 μm or more are formed between the conductive metal substrate and the noble metal layer. In addition, a noble metal coating material for electrical contacts is disclosed, and it is described that long-term reliability is high by suppressing diffusion of a base component in a high temperature environment.

特開2008−169408号公報JP 2008-169408 A 特開2015−110833号公報JP 2015-110833 A 特開2014−181354号公報JP 2014-181354 A 特開2015−137421号公報JP2015-137421A

しかしながら、特許文献1〜3記載の発明では銀めっき層の構造を最適化することにより接触抵抗など端子特性を向上させているが、二回めっきが必要であったり、銀めっき浴の組成が著しく限定されるなどのため、製造が煩雑になる。特許文献4記載の発明では下地めっきの結晶粒径を肥大化することにより貴金属接点の信頼性を向上させているが、下地めっき層肥大化のために熱処理を必要とすることから、銅合金の組織も肥大化し所望の材料特性が得られないという問題がある。   However, in the inventions described in Patent Documents 1 to 3, terminal characteristics such as contact resistance are improved by optimizing the structure of the silver plating layer, but it is necessary to perform plating twice or the composition of the silver plating bath is remarkably high. Due to the limitation, the manufacturing becomes complicated. In the invention described in Patent Document 4, the reliability of the noble metal contact is improved by enlarging the crystal grain size of the base plating. However, since heat treatment is required for the enlargement of the base plating layer, There is a problem that the tissue is enlarged and desired material properties cannot be obtained.

本発明は、このような事情に鑑みてなされたもので、熱処理によることなく、信頼性の高い端子および端子材を安価に製造することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to manufacture a highly reliable terminal and terminal material at low cost without using heat treatment.

本発明のめっき付銅端子材は、銅又は銅合金からなる基材の上にニッケルまたはニッケル合金からなるニッケル層が積層されており、前記ニッケル層は、結晶粒径が0.3μm以上5μm以下で厚みが0.1μm以上5.0μm以下であり、優先配向面が前記基材の優先配向面と一致している。   In the plated copper terminal material of the present invention, a nickel layer made of nickel or a nickel alloy is laminated on a base material made of copper or a copper alloy, and the nickel layer has a crystal grain size of 0.3 μm or more and 5 μm or less. The thickness is 0.1 μm or more and 5.0 μm or less, and the preferential orientation surface is coincident with the preferential orientation surface of the substrate.

このめっき付銅端子材は、ニッケル層の上に金や銀の貴金属めっきが施されて端子に加工されるが、ニッケル層の結晶粒径が比較的大きく、かつ優先配向面が基材の優先配向面と一致していることから、銅母材とニッケル層の整合性が高く結晶粒界や欠陥が少ない緻密なニッケル層が得られていると考えられる。このため、このニッケル層が良好なバリア層となって、高温環境下での銅の拡散を防止し、表面の貴金属層の優れた特性を安定的に維持することができる。
この場合、ニッケル層の結晶粒径が0.3μm未満では拡散防止効果が低く、5.0μmを超えると曲げ加工性が悪化する。
ニッケル層の厚みが0.1μm未満では拡散防止効果が低く、5.0μmを超えると曲げ加工性が悪化する。
This plated copper terminal material is processed into a terminal by applying gold or silver noble metal plating on the nickel layer, but the crystal grain size of the nickel layer is relatively large, and the preferred orientation plane is preferred for the base material. Since it coincides with the orientation plane, it is considered that a dense nickel layer with high consistency between the copper base material and the nickel layer and few crystal grain boundaries and defects is obtained. For this reason, this nickel layer becomes a favorable barrier layer, can prevent the diffusion of copper under a high temperature environment, and can stably maintain the excellent characteristics of the noble metal layer on the surface.
In this case, if the crystal grain size of the nickel layer is less than 0.3 μm, the effect of preventing diffusion is low, and if it exceeds 5.0 μm, the bending workability deteriorates.
When the thickness of the nickel layer is less than 0.1 μm, the anti-diffusion effect is low, and when it exceeds 5.0 μm, the bending workability deteriorates.

本発明のめっき付銅端子材において、前記ニッケル層が前記基材の表面上の銅結晶組織に整合して成長しているエピタキシャル組織であるとよい。
ニッケル層の結晶が基材の表面上にエピタキシャル成長により肥大化していることにより、銅母材とニッケル層の結合が強固になりニッケル層の密着性がより高まり、曲げ加工時にニッケル層の剥離によるクラックが起こりにくくなる。さらに優先配向面が一致しているだけの場合よりもさらに結晶が緻密に成長し欠陥が少なくなることにより、銅の拡散防止効果が高くなる。
In the plated copper terminal material of the present invention, it is preferable that the nickel layer has an epitaxial structure that grows in conformity with the copper crystal structure on the surface of the substrate.
The crystal of the nickel layer is enlarged by epitaxial growth on the surface of the base material, so that the bond between the copper base material and the nickel layer becomes stronger, the adhesion of the nickel layer is further increased, and cracks due to peeling of the nickel layer during bending Is less likely to occur. Furthermore, the effect of preventing the diffusion of copper is enhanced by the fact that the crystals grow more densely and the number of defects is smaller than when the preferentially aligned planes only coincide.

本発明のめっき付銅端子材において、前記基材は、Mgを、3.3原子%以上6.9原子%以下の範囲で含み、残部がCu及び不可避不純物のみからなるCuとMgの2元系合金、又は、Znを3.4%(mass%、以下同じ)越え32.5%以下、Snを0.1%以上0.9%以下、Niを0.05%以上1.0%未満、Feを0.001%以上0.10%未満、Pを0.005%以上0.10%以下、含有している銅合金のいずれかであるとよい。   In the plated copper terminal material of the present invention, the base material contains Mg in a range of 3.3 atomic% to 6.9 atomic%, and the balance is Cu and Mg consisting of only Cu and inevitable impurities. Alloy or Zn over 3.4% (mass%, the same shall apply hereinafter) 32.5% or less, Sn 0.1% or more and 0.9% or less, Ni 0.05% or more and less than 1.0% , Fe may be any one of copper alloys containing 0.001% or more and less than 0.10% and P containing 0.005% or more and 0.10% or less.

本発明のめっき付銅端子材において、前記ニッケル層の上に、金、金合金、銀、銀合金のいずれかからなる厚みが0.05μm以上5.0μm以下の貴金属層が積層されている。
高温環境下での銅の拡散が防止されるので、貴金属層の特性を長期的に維持することができる。
この場合、貴金属層の厚みが0.05μm未満では耐熱性向上、接触抵抗の低減などの貴金属としての特性を得られない。貴金属層の厚みが5.0μmを超えると曲げ加工時に割れ等が生じ易い。
In the plated copper terminal material of the present invention, a noble metal layer made of gold, gold alloy, silver or silver alloy and having a thickness of 0.05 μm or more and 5.0 μm or less is laminated on the nickel layer.
Since the diffusion of copper in a high temperature environment is prevented, the characteristics of the noble metal layer can be maintained for a long time.
In this case, when the thickness of the noble metal layer is less than 0.05 μm, characteristics as a noble metal such as improved heat resistance and reduced contact resistance cannot be obtained. If the thickness of the noble metal layer exceeds 5.0 μm, cracks and the like are likely to occur during bending.

そして、本発明の端子は、前記ニッケル層の上に前記貴金属層が積層されためっき付銅端子材によって形成されている。   The terminal of the present invention is formed of a plated copper terminal material in which the noble metal layer is laminated on the nickel layer.

本発明によれば、基材とニッケル層との優先配向面を揃えたので、基材の銅の拡散を確実に防止することができ、熱処理によることなく、信頼性の高いめっき付端子材及び端子を安価に製造することができる。   According to the present invention, since the preferential orientation surfaces of the base material and the nickel layer are aligned, it is possible to reliably prevent the copper from diffusing in the base material. Terminals can be manufactured at low cost.

実施例7の断面のSIM像である。10 is a SIM image of a cross section of Example 7. FIG.

以下、本発明の実施形態について説明する。
本発明のめっき付銅端子材は、銅又は銅合金板からなる基材と、この基材の表面に形成されたニッケル又はニッケル合金からなるニッケル層と、このニッケル層の上に形成された金、金合金、銀、銀合金のいずれかからなる貴金属層とを有している。
基材の銅又は銅合金は、その材質が必ずしも限定されるものではないが、銅合金としては以下のいずれかであるとよい。
Hereinafter, embodiments of the present invention will be described.
The plated copper terminal material of the present invention includes a base material made of copper or a copper alloy plate, a nickel layer made of nickel or a nickel alloy formed on the surface of the base material, and a gold formed on the nickel layer. And a noble metal layer made of any one of a gold alloy, silver, and a silver alloy.
The material of the base copper or copper alloy is not necessarily limited, but the copper alloy may be any of the following.

その一つの銅合金は、Mgを、3.3原子%以上6.9原子%以下の範囲で含み、残部がCu及び不可避不純物のみからなるCuとMgの2元系合金とされ、好ましくは導電率σ(%IACS)が、Mgの含有量をA原子%としたときに、σ≦1.7241/(−0.0347×A+0.6569×A+1.7)×100の範囲内とされた銅合金であり、更に好ましくは導電率σ(%IACS)が、Mgの含有量をA原子%としたときに、σ≦1.7241/(−0.0347×A+0.6569×A+1.7)×100の範囲内とされ、かつ走査型電子顕微鏡観察において、粒径0.1μm以上の金属間化合物の平均個数が、1個/μm以下とされた銅合金である。この銅合金は、低ヤング率、高耐力、高導電性、優れた曲げ加工性を有し、端子材として好適である。また、Copper Development Associationが公開しているC18670でも良い。 The one copper alloy is a binary alloy of Cu and Mg containing Mg in a range of 3.3 atomic% or more and 6.9 atomic% or less, with the balance being only Cu and inevitable impurities. The rate σ (% IACS) is in the range of σ ≦ 1.7241 / (− 0.0347 × A 2 + 0.6569 × A + 1.7) × 100, where Mg content is A atomic%. More preferably, the electrical conductivity σ (% IACS) is σ ≦ 1.7241 / (− 0.0347 × A 2 + 0.6569 × A + 1) when the Mg content is A atomic%. .7) A copper alloy having an average number of intermetallic compounds having a particle size of 0.1 μm or more and 1 / μm 2 or less in a scanning electron microscope observation. This copper alloy has a low Young's modulus, high yield strength, high conductivity, and excellent bending workability, and is suitable as a terminal material. Alternatively, C18670 published by Copper Development Association may be used.

他の一つの銅合金は、Znを3.4%(mass%、以下同じ)越え32.5%以下、Snを0.1%以上0.9%以下、Niを0.05%以上1.0%未満、Feを0.001%以上0.10%未満、Pを0.005%以上0.10%以下、含有し、好ましくはさらにFeの含有量とNiの含有量との比Fe/Niが、原子比で、0.002≦Fe/Ni<1.5を満たし、かつNiおよびFeの合計含有量(Ni+Fe)とPの含有量との比(Ni+Fe)/Pが、原子比で、3<(Ni+Fe)/P<15を満たし、さらにSnの含有量とNiおよびFeの合計量(Ni+Fe)との比Sn/(Ni+Fe)が、原子比で、0.3<Sn/(Ni+Fe)<5を満たすように定められ、残部がCuおよび不可避的不純物よりなり、しかもCu、ZnおよびSnを含有するα相の結晶粒の平均粒径が0.1μm以上50μm以下の範囲内にあり、さらにFeとNiとPとを含有する析出物が含まれている銅合金である。この銅合金は、耐応力緩和特性が確実かつ十分に優れていて、従来よりも部品素材の薄肉化を図ることができ、しかも強度も高く、さらに曲げ加工性や導電率などの諸特性も優れている。また、Copper Development Associationが公開しているC41125でも良い。
なお、基材は、表面の加工変質層が除去されたものが用いられる。
Another copper alloy has Zn exceeding 3.4% (mass%, the same shall apply hereinafter) to 32.5% or less, Sn from 0.1% to 0.9%, and Ni from 0.05% to 1. Less than 0%, Fe is 0.001% or more and less than 0.10%, P is 0.005% or more and 0.10% or less, preferably the ratio of Fe content to Ni content is Fe / Ni satisfies an atomic ratio of 0.002 ≦ Fe / Ni <1.5, and the ratio of the total content of Ni and Fe (Ni + Fe) to the content of P (Ni + Fe) / P is an atomic ratio. 3 <(Ni + Fe) / P <15, and the ratio Sn / (Ni + Fe) between the Sn content and the total amount of Ni and Fe (Ni + Fe) is 0.3 <Sn / (Ni + Fe). ) <5, with the balance consisting of Cu and inevitable impurities, A copper alloy in which the average grain size of α-phase crystal grains containing Cu, Zn and Sn is in the range of 0.1 μm to 50 μm, and further contains precipitates containing Fe, Ni and P is there. This copper alloy is reliable and sufficiently superior in stress relaxation resistance, can reduce the thickness of component materials than ever, has high strength, and has excellent properties such as bending workability and conductivity. ing. Alternatively, C41125 published by Copper Development Association may be used.
In addition, the base material from which the process-affected layer on the surface is removed is used.

ニッケル層は、基材の表面の結晶の上に結晶がエピタキシャル成長したエピタキシャル組織であり、その結晶の優先配向面が基材の表面の優先配向面と一致している。この場合、このニッケル層の結晶粒径は0.3μm以上5μm以下で厚みが0.1μm以上5.0μm以下である。
結晶粒径は、集束イオンビーム(FIB)により断面加工し、測定した走査イオン顕微鏡(SIM)像を用いて表面と平行に10μm分の長さになる線を引き、その線が結晶粒界と交わった数を用いて線分法により求められ、その測定値の最小値と最大値の範囲である。ニッケル層のエピタキシャル成長も、この断面のSIM像から確認することができる。
結晶粒径が0.3μm未満では拡散防止効果が低く、5.0μmを超えると曲げ加工性が悪化する。
ニッケル層の厚みは0.1μm未満では拡散防止効果が低く、5.0μmを超えると曲げ加工性が悪化する。
優先配向面は、X線回折装置(XRD)を用いたθ/2θ法によりニッケル層及び下地の基材の配向性を測定して、ウイルソンの結晶配向度指数を算出し、配向度指数が最も高い面を優先配向面とする。
ウイルソンの結晶配向度指数は、X線回折の標準データのピーク強度比に対して被検試料の各ピーク強度比がどの程度になっているかを定量的に評価できる方法であり、各X線回折ピークの配向度指数(K)は、次の式(1)により求めることができる。
The nickel layer is an epitaxial structure in which crystals are epitaxially grown on crystals on the surface of the base material, and the preferential orientation plane of the crystals coincides with the preferential orientation plane of the base material surface. In this case, the crystal grain size of the nickel layer is 0.3 μm or more and 5 μm or less and the thickness is 0.1 μm or more and 5.0 μm or less.
The crystal grain size is obtained by drawing a line having a length of 10 μm parallel to the surface using a scanning ion microscope (SIM) image obtained by processing a cross section with a focused ion beam (FIB) and measuring the line with the grain boundary. It is obtained by the line segment method using the number of crossings, and is the range of the minimum and maximum values of the measured values. The epitaxial growth of the nickel layer can also be confirmed from the SIM image of this cross section.
If the crystal grain size is less than 0.3 μm, the effect of preventing diffusion is low, and if it exceeds 5.0 μm, the bending workability deteriorates.
If the thickness of the nickel layer is less than 0.1 μm, the effect of preventing diffusion is low, and if it exceeds 5.0 μm, the bending workability deteriorates.
For the preferential orientation plane, the orientation of the nickel layer and the underlying substrate is measured by the θ / 2θ method using an X-ray diffractometer (XRD), and Wilson's crystal orientation index is calculated. The higher surface is the preferred orientation surface.
Wilson's crystal orientation index is a method that can quantitatively evaluate how much each peak intensity ratio of the test sample is relative to the peak intensity ratio of the standard data of X-ray diffraction. The orientation degree index (K) of the peak can be obtained by the following formula (1).

式(1)中、KS1は被検試料の1番目のピークの配向度指数、IS1、IS2、IS3、…は被検試料の各ピークの強度、ID1、ID2、ID3、…は標準データの各ピークの強度を示す。
求められたKの値が全て1の時が全く配向の無いことを表し、逆にある面のKの値が著しく高い場合は、その面に配向していることを意味する。
そして、本実施形態の端子材は、基材の銅又は銅合金の結晶配向度指数が最も高い配向面(優先配向面)とニッケル層の結晶配向度指数が最も高い配向面とが一致している。
In the formula (1), K S1 is the orientation index of the first peak of the test sample, I S1 , I S2 , I S3 ,... Are the intensity of each peak of the test sample, I D1 , I D2 , I D3 , ... indicate the intensity of each peak of the standard data.
When the obtained K values are all 1, it indicates that there is no orientation at all. Conversely, when the K value of a certain surface is extremely high, it means that the surface is oriented.
In the terminal material of this embodiment, the orientation plane having the highest crystal orientation degree index of the copper or copper alloy of the base material (priority orientation plane) matches the orientation plane having the highest crystal orientation degree index of the nickel layer. Yes.

貴金属層は厚みが0.05μm以上5.0μm以下に形成される。厚みが0.05μm未満では耐熱性向上、接触抵抗の低減などの貴金属としての特性を得られない。貴金属層の厚みが5.0μmを超えると曲げ加工時に割れ等が生じ易い。   The noble metal layer has a thickness of 0.05 μm or more and 5.0 μm or less. If the thickness is less than 0.05 μm, characteristics as a noble metal such as improved heat resistance and reduced contact resistance cannot be obtained. If the thickness of the noble metal layer exceeds 5.0 μm, cracks and the like are likely to occur during bending.

次に、この端子材の製造方法について説明する。
基材として、前述した銅又は銅合金を用いる。
ニッケル層の結晶粒を粗大化して下地の基材の組織との配向性を一致させるためには、基材表面の加工変質層を化学研磨や電解研磨にて十分に取り除き、なおかつ、基材の優先配向面と同じ結晶面を表面に露出させる必要があるため、前処理を最適化する必要がある。
その好適な処理として、本実施形態では、基材の表面を研磨して加工変質層を除去した後、エッチング処理する。
(200)面が優先配向面となる銅合金、例えばC10200では、30g/L過酸化水素、100g/L硫酸、10mg/L塩酸水溶液にてエッチングを実施する。
一方、(220)面が優先配向面となる銅合金、例えばC41125では、過硫酸ナトリウム250g/L、硫酸 30g/L水溶液にてエッチングする。
いずれもエッチング液の液温は10℃〜80℃とし、基材を0.1分〜10分浸漬することにより、基材の表面をエッチングする。
これらのエッチング処理によって基材の表面の結晶方位を調整して、優先配向面と同じ結晶面を表面に露出させる。
Next, the manufacturing method of this terminal material is demonstrated.
The above-described copper or copper alloy is used as the substrate.
In order to make the crystal grains of the nickel layer coarse and to match the orientation with the structure of the underlying substrate, the work-affected layer on the substrate surface is sufficiently removed by chemical polishing or electrolytic polishing, and the substrate Since it is necessary to expose the same crystal plane as the preferential orientation plane, it is necessary to optimize the pretreatment.
As a suitable treatment, in this embodiment, the surface of the substrate is polished to remove the work-affected layer, and then the etching treatment is performed.
For a copper alloy whose (200) plane is the preferentially oriented plane, for example C10200, etching is performed with 30 g / L hydrogen peroxide, 100 g / L sulfuric acid, and 10 mg / L hydrochloric acid aqueous solution.
On the other hand, a copper alloy having a (220) plane as a preferentially oriented plane, for example, C41125, is etched with an aqueous solution of sodium persulfate 250 g / L and sulfuric acid 30 g / L.
In any case, the liquid temperature of the etching solution is 10 ° C. to 80 ° C., and the surface of the base material is etched by immersing the base material for 0.1 minutes to 10 minutes.
The crystal orientation of the surface of the substrate is adjusted by these etching processes, and the same crystal plane as the preferential orientation plane is exposed on the surface.

このようにしてエッチング処理された基材の表面にニッケルめっきを施して、厚みが0.1μm以上5.0μm以下のニッケル層を形成する。
ニッケルめっき浴は緻密なニッケル主体の膜が得られるものであれば特に限定されず、公知のワット浴やスルファミン酸浴、クエン酸浴などを用いて電気めっきにより形成することができる。ニッケル合金めっきとしては、ニッケルタングステン(Ni−W)合金、ニッケルリン(Ni−P)合金、ニッケルコバルト(Ni−Co)合金、ニッケルクロム(Ni−Cr)合金、ニッケル鉄(Ni−Fe)合金、ニッケル亜鉛(Ni−Zn)合金、ニッケルボロン(Ni−B)合金などを利用することができる。ただし、ブチンジオールやアリルスルホン酸塩などの結晶粒径を微細化し、ニッケルめっき表面を光沢にするような光沢剤成分はエピタキシャル成長を妨げるため含まない。
このニッケルめっきにより、基材の表面における結晶に対してニッケルの結晶がエピタキシャル成長して肥大な結晶粒となるとともに、基材表面の結晶の優先配向面と一致した優先配向面を有するニッケル層が形成される。
Nickel plating is applied to the surface of the substrate thus etched to form a nickel layer having a thickness of 0.1 μm or more and 5.0 μm or less.
The nickel plating bath is not particularly limited as long as a dense nickel-based film can be obtained, and can be formed by electroplating using a known Watt bath, sulfamic acid bath, citric acid bath, or the like. Nickel alloy plating includes nickel tungsten (Ni-W) alloy, nickel phosphorus (Ni-P) alloy, nickel cobalt (Ni-Co) alloy, nickel chromium (Ni-Cr) alloy, nickel iron (Ni-Fe) alloy. Nickel zinc (Ni—Zn) alloy, nickel boron (Ni—B) alloy, and the like can be used. However, brightener components such as butynediol and allyl sulfonate that refine the crystal grain size and make the nickel plating surface bright are not included because they prevent epitaxial growth.
This nickel plating causes nickel crystals to grow epitaxially with respect to crystals on the surface of the base material, resulting in enlarged crystal grains, and a nickel layer having a preferential orientation surface that matches the preferential orientation surface of the crystal on the base material surface is formed. Is done.

最後に、ニッケル層の上に貴金属めっきを施して、厚みが0.05μm以上5.0μm以下の貴金属層を形成する。
この貴金属めっきも、金、金合金、銀、銀合金は緻密な貴金属主体の膜が得られるものであれば特に限定されず、公知のシアン化金浴、シアン化銀浴、アンチモン添加シアン化銀浴、金-コバルト浴、金-ニッケル浴などを用いて形成することができる。
Finally, noble metal plating is performed on the nickel layer to form a noble metal layer having a thickness of 0.05 μm or more and 5.0 μm or less.
The noble metal plating is not particularly limited as long as a gold, gold alloy, silver, and silver alloy can be used to obtain a dense noble metal-based film. Known gold cyanide bath, silver cyanide bath, antimony-added silver cyanide It can be formed using a bath, a gold-cobalt bath, a gold-nickel bath, or the like.

このようにして製造された端子材は、端子の形状に加工されて使用に供される。自動車内配線等のコネクタにおいては高温環境にさらされるが、ニッケルめっき層が基材の組織に整合したエピタキシャル成長層であり、これらの優先配向面が一致して結晶粒界や欠陥が少ない緻密なニッケル層が形成されているため、基材の銅のバリア層として有効に機能し、表面の貴金属との拡散を確実に防止することができ、貴金属層が有する高い耐熱性、低い接触抵抗などの優れた特性を安定的に維持することができる。しかも、基材の表面をエッチング処理によって調整してニッケルめっきするという簡単な方法によって製造することができ、安価に製造することができる。   The terminal material manufactured in this way is processed into the shape of a terminal and is used. A connector such as an automobile wiring is exposed to a high temperature environment, but the nickel plating layer is an epitaxial growth layer that matches the structure of the base material. Since the layer is formed, it effectively functions as a copper barrier layer of the base material, can reliably prevent the diffusion with the noble metal on the surface, and has excellent heat resistance, low contact resistance, etc. possessed by the noble metal layer The stable characteristics can be maintained stably. And it can manufacture by the simple method of adjusting the surface of a base material by an etching process, and nickel-plating, and can manufacture it cheaply.

基材に、純銅板としてCopper Development Associationが公開しているC10200、銅合金板としてC26000、C52100、C18665、C18670、C41125の厚み0.25mmのものを用い、前処理として、市販のアルカリ性電解脱脂液(奥野工業株式会社製クリーナーE)にて5A/dmで30秒間電解脱脂を行った後、エッチング処理を施した。エッチング液は、優先配向面が(200)面の銅合金については、30g/L過酸化水素、100g/L硫酸、10mg/L塩酸水溶液を用い、(220)面が優先配向面の銅合金には、過硫酸ナトリウム250g/L、硫酸 30g/L水溶液を用いた。
比較例として、エッチング処理を施さないものも作製した。
これら基材の表面組織の優先配向面を測定し、その上に、ニッケル又はニッケル合金からなるニッケルめっきを施してニッケル層を形成した後、表面に銀又は銀合金、金又は金合金からなる貴金属めっきを施して貴金属層を形成した。これらの層の厚みを測定するとともに、ニッケル層の結晶粒径、エピタキシャル成長の有無、優先配向面を測定した。
結晶粒径は、集束イオンビーム(FIB)により断面加工し、測定した走査イオン顕微鏡(SIM)像を用いて表面と平行に10μm分の長さになる線を引き、その線が結晶粒界と交わった数を用いて線分法により求めた。
エピタキシャル成長の有無は、そのSIM像から確認し、ニッケル層の結晶が母材の結晶粒に整合して成長しているものをエピタキシャル成長していると判断して「○」とし、そうでないものを「×」とした。
優先配向面は、X線回折装置(XRD)を用いたθ/2θ法によりニッケル層及び基材の配向性を測定して、ウイルソンの結晶配向度指数を算出し、配向度指数が最も高い面を優先配向面とした。
これらの測定結果を表1に示す。
C10200 published by Copper Development Association as a pure copper plate, C26000, C52100, C18665, C18670, C41125 with a thickness of 0.25 mm as a copper alloy plate are used as a base material, and a commercially available alkaline electrolytic degreasing solution is used as a pretreatment. After performing electrolytic degreasing for 30 seconds at 5 A / dm 2 with (Ekuno Kogyo Cleaner E), an etching treatment was performed. For the copper alloy whose preferential orientation plane is (200) plane, use 30g / L hydrogen peroxide, 100g / L sulfuric acid, 10mg / L hydrochloric acid aqueous solution as the etchant, Used sodium persulfate 250 g / L, sulfuric acid 30 g / L aqueous solution.
As a comparative example, an unetched material was also produced.
After measuring the preferential orientation plane of the surface texture of these base materials and forming a nickel layer thereon by nickel plating consisting of nickel or nickel alloy, noble metal consisting of silver or silver alloy, gold or gold alloy on the surface Plating was performed to form a noble metal layer. While measuring the thickness of these layers, the crystal grain size of the nickel layer, the presence or absence of epitaxial growth, and the preferential orientation plane were measured.
The crystal grain size is obtained by drawing a line having a length of 10 μm parallel to the surface using a scanning ion microscope (SIM) image obtained by processing a cross section with a focused ion beam (FIB) and measuring the line with the grain boundary. It calculated | required by the line segment method using the number which crossed.
The presence or absence of epitaxial growth is confirmed from the SIM image, and it is determined that the nickel layer crystal is growing in alignment with the crystal grains of the base material and is evaluated as “O”, and the other crystal is “ × ”.
The preferred orientation plane is the plane with the highest orientation degree index by measuring the orientation of the nickel layer and the substrate by the θ / 2θ method using an X-ray diffractometer (XRD) to calculate Wilson's crystal orientation degree index. Was defined as a preferred orientation plane.
These measurement results are shown in Table 1.

これらの試料に対して、加熱後の接触抵抗、曲げ加工性を評価した。
接触抵抗は、JCBA−T323に準拠し、4端子接触抵抗試験機(山崎精機研究所製:CRS−113−AU)を用い、摺動式(1mm)で荷重0.98N時の接触抵抗を測定した。平板試料の表面に対して測定を実施し、その評価は、初期の接触抵抗を測定し、大気中で175℃1000時間保持した後に再度接触抵抗を測定し、初期の測定からの接触抵抗変化率が10%未満のものを「◎」とし、初期からの接触抵抗変化率が10%以上、25%未満のものを「○」とし、25%以上のものを「×」とした。
曲げ加工性については、圧延方向に対して曲げの軸が直交方向になるように、特性評価用条材から幅10mm×長さ30mmの試験片を複数採取し、JCBA(日本伸銅協会技術標準)T307の4試験方法に準拠して、曲げ角度が90度、曲げ半径が0.5mmのW型の治具を用い、9.8×10Nの荷重でW曲げ試験を行った。その後、実体顕微鏡にて観察を行った。曲げ加工性の評価は、試験後の曲げ加工部に明確なクラックが認められないレベルを「◎」と評価し、めっき面に部分的に微細なクラックが発生しているが銅合金母材の露出は認められないレベルを「○」と評価し、銅合金母材の露出はないが「○」と評価したレベルより大きいクラックが発生しているレベルを「△」と評価し、発生したクラックにより銅合金母材が露出しているレベルを「×」と評価した。
これらの結果を表2に示す。
These samples were evaluated for contact resistance and bending workability after heating.
Contact resistance is based on JCBA-T323, and measured using a 4-terminal contact resistance tester (manufactured by Yamazaki Seiki Laboratories: CRS-113-AU) with a sliding type (1 mm) at a load of 0.98N. did. The measurement was performed on the surface of the flat sample, and the evaluation was made by measuring the initial contact resistance, measuring the contact resistance again after holding in the atmosphere at 175 ° C. for 1000 hours, and changing the contact resistance from the initial measurement. Is less than 10%, the contact resistance change rate from the initial stage is 10% or more, less than 25% is “◯”, and 25% or more is “×”.
For bending workability, a plurality of test pieces having a width of 10 mm and a length of 30 mm were collected from the strips for characteristic evaluation so that the bending axis was perpendicular to the rolling direction. ) According to the four test methods of T307, a W-bending test was performed with a load of 9.8 × 10 3 N using a W-shaped jig having a bending angle of 90 degrees and a bending radius of 0.5 mm. Then, it observed with the stereomicroscope. For the evaluation of bending workability, the level at which clear cracks are not observed in the bent part after the test was evaluated as `` ◎ '', and although fine cracks were partially generated on the plated surface, the copper alloy base material The level at which no exposure is recognized is evaluated as “◯”, and the level at which cracks larger than the level at which the copper alloy base material is not exposed but “○” is evaluated is evaluated as “△”. The level at which the copper alloy base material was exposed was evaluated as “x”.
These results are shown in Table 2.

この結果から明らかなように、実施例の端子材は、加熱後の接触抵抗が小さく、銅の拡散が抑制されていると考えられる。また、曲げ加工性にも良好であることがわかる。図1は、実施例7のニッケル層のSIM像を示しており、ニッケル層の結晶が基材の結晶に対してエピタキシャル状に成長しているのがわかる。
これに対して、比較例は、ニッケル層の優先配向面が基材の優先配向面と異なるため、加熱後の接触抵抗が大きくなっている。そのうち、比較例1は、ニッケル層が厚過ぎたため、曲げ加工において母材が露出する程度のクラックが認められた。
As is apparent from the results, the terminal materials of the examples are considered to have low contact resistance after heating and suppress copper diffusion. Moreover, it turns out that bending workability is also favorable. FIG. 1 shows a SIM image of the nickel layer of Example 7, and it can be seen that the crystal of the nickel layer grows epitaxially with respect to the crystal of the base material.
On the other hand, in the comparative example, since the preferential orientation surface of the nickel layer is different from the preferential orientation surface of the base material, the contact resistance after heating is large. Among them, in Comparative Example 1, since the nickel layer was too thick, cracks to the extent that the base material was exposed during bending were observed.

Claims (5)

銅又は銅合金からなる基材の上にニッケルまたはニッケル合金からなるニッケル層が積層されており、前記ニッケル層は、結晶粒径が0.3μm以上5μm以下で厚みが0.1μm以上5.0μm以下であり、優先配向面が前記基材の優先配向面と一致していることを特徴とするめっき付銅端子材。   A nickel layer made of nickel or a nickel alloy is laminated on a base material made of copper or a copper alloy, and the nickel layer has a crystal grain size of 0.3 μm to 5 μm and a thickness of 0.1 μm to 5.0 μm. It is the following, The preferential orientation surface corresponds with the preferential orientation surface of the said base material, The plated copper terminal material characterized by the above-mentioned. 前記ニッケル層が前記基材の表面上の銅結晶組織に整合して成長しているエピタキシャル組織であることを特徴とする請求項1記載のめっき付銅端子材。   2. The plated copper terminal material according to claim 1, wherein the nickel layer has an epitaxial structure growing in conformity with a copper crystal structure on the surface of the base material. 前記基材は、Mgを、3.3原子%以上6.9原子%以下の範囲で含み、残部がCu及び不可避不純物のみからなるCuとMgの2元系合金、又は、Znを3.4%(mass%、以下同じ)越え32.5%以下、Snを0.1%以上0.9%以下、Niを0.05%以上1.0%未満、Feを0.001%以上0.10%未満、Pを0.005%以上0.10%以下、含有している銅合金のいずれかであることを特徴とする請求項1又は2記載のめっき付銅端子材。   The base material includes Mg in a range of 3.3 atomic% to 6.9 atomic%, and the balance is a binary alloy of Cu and Mg consisting of only Cu and inevitable impurities, or Zn is 3.4. % (Mass%, the same shall apply hereinafter) exceeds 32.5%, Sn is 0.1% or more and 0.9% or less, Ni is 0.05% or more and less than 1.0%, and Fe is 0.001% or more and 0.00. 3. The plated copper terminal material according to claim 1, wherein the copper terminal material is a copper alloy containing less than 10% and containing 0.005% or more and 0.10% or less of P. 4. 前記ニッケル層の上に、金、金合金、銀、銀合金のいずれかからなる厚みが0.05μm以上5.0μm以下の貴金属層が積層されていることを特徴とする請求項1又は2記載のめっき付銅端子材。   3. A noble metal layer having a thickness of 0.05 μm or more and 5.0 μm or less formed of any one of gold, a gold alloy, silver, and a silver alloy is laminated on the nickel layer. Copper terminal material with plating. 請求項4記載のめっき付銅端子材により形成されているめっき付銅端子。   A plated copper terminal formed of the plated copper terminal material according to claim 4.
JP2016032847A 2016-02-24 2016-02-24 Copper terminal material with plating and terminal Pending JP2017150028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016032847A JP2017150028A (en) 2016-02-24 2016-02-24 Copper terminal material with plating and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016032847A JP2017150028A (en) 2016-02-24 2016-02-24 Copper terminal material with plating and terminal

Publications (1)

Publication Number Publication Date
JP2017150028A true JP2017150028A (en) 2017-08-31

Family

ID=59739493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016032847A Pending JP2017150028A (en) 2016-02-24 2016-02-24 Copper terminal material with plating and terminal

Country Status (1)

Country Link
JP (1) JP2017150028A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114175408A (en) * 2019-08-09 2022-03-11 三菱综合材料株式会社 Terminal material for connector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111810A (en) * 2012-12-05 2014-06-19 Mitsubishi Materials Corp Copper alloy, copper alloy plastic processing material, component and terminal, for electronic and electrical equipment
JP2014122403A (en) * 2012-12-21 2014-07-03 Mitsubishi Materials Corp Tin-plated electroconductive material and production method thereof
JP2014129569A (en) * 2012-12-28 2014-07-10 Mitsubishi Materials Corp Copper alloy for electronic or electrical equipment, copper alloy thin sheet for electronic or electrical equipment, conductive part or terminal for electronic or electrical equipment
JP2015137421A (en) * 2014-01-24 2015-07-30 古河電気工業株式会社 Metal coating material for electric contact and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111810A (en) * 2012-12-05 2014-06-19 Mitsubishi Materials Corp Copper alloy, copper alloy plastic processing material, component and terminal, for electronic and electrical equipment
JP2014122403A (en) * 2012-12-21 2014-07-03 Mitsubishi Materials Corp Tin-plated electroconductive material and production method thereof
JP2014129569A (en) * 2012-12-28 2014-07-10 Mitsubishi Materials Corp Copper alloy for electronic or electrical equipment, copper alloy thin sheet for electronic or electrical equipment, conductive part or terminal for electronic or electrical equipment
JP2015137421A (en) * 2014-01-24 2015-07-30 古河電気工業株式会社 Metal coating material for electric contact and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114175408A (en) * 2019-08-09 2022-03-11 三菱综合材料株式会社 Terminal material for connector

Similar Documents

Publication Publication Date Title
JP7121881B2 (en) Terminal material with silver film and terminal with silver film
JP6380174B2 (en) Silver plated copper terminal material and terminal
JP6423025B2 (en) Tin-plated copper terminal material excellent in insertion / removability and manufacturing method thereof
JP4629154B1 (en) Copper alloy for electronic materials and manufacturing method thereof
JP2017203214A (en) Copper terminal material with tin plating, terminal and wire terminal part structure
TW201413068A (en) Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics and method of manufacturing the same
WO2013088752A1 (en) Composition for production of contact, contact using same and process for production of contact
JP2017150055A (en) Copper terminal material with plating, manufacturing method therefor and terminal
JP2014122403A (en) Tin-plated electroconductive material and production method thereof
WO2011019042A1 (en) Copper alloy material for electrical/electronic components
JP6501039B2 (en) Connector terminal material and terminal and wire end structure
JP6620897B2 (en) Tin-plated copper terminal material and terminal and wire terminal structure
JP6825360B2 (en) Plated copper terminal material and terminals
JP2017150028A (en) Copper terminal material with plating and terminal
JP7121232B2 (en) Copper terminal material, copper terminal, and method for producing copper terminal material
CN110603349B (en) Tin-plated copper terminal material, terminal, and electric wire terminal structure
CN107849721B (en) Plating material having excellent heat resistance and method for producing same
WO2022123818A1 (en) Ag-coated material, ag-coated material manufacturing method, and terminal component
JP5761400B1 (en) Wire for connector pin, method for manufacturing the same, and connector
JP2021161463A (en) Silver plated material and production method thereof, and terminal component
JP6753306B2 (en) Copper plate with coating layer
WO2019031549A1 (en) Terminal material with silver coating film, and terminal with silver coating film
JP7083662B2 (en) Plating material
KR102521145B1 (en) Conductive material and its manufacturing method
JP6794863B2 (en) Copper terminal material and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200107