JP2017147366A - Instrument transformer - Google Patents

Instrument transformer Download PDF

Info

Publication number
JP2017147366A
JP2017147366A JP2016028824A JP2016028824A JP2017147366A JP 2017147366 A JP2017147366 A JP 2017147366A JP 2016028824 A JP2016028824 A JP 2016028824A JP 2016028824 A JP2016028824 A JP 2016028824A JP 2017147366 A JP2017147366 A JP 2017147366A
Authority
JP
Japan
Prior art keywords
insulating layer
layer
primary coil
conductor layer
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016028824A
Other languages
Japanese (ja)
Other versions
JP6519497B2 (en
Inventor
敬 松原
Takashi Matsubara
敬 松原
貴弘 梅本
Takahiro Umemoto
貴弘 梅本
崇夫 釣本
Takao Tsurimoto
崇夫 釣本
長谷川 武敏
Taketoshi Hasegawa
武敏 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016028824A priority Critical patent/JP6519497B2/en
Publication of JP2017147366A publication Critical patent/JP2017147366A/en
Application granted granted Critical
Publication of JP6519497B2 publication Critical patent/JP6519497B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulating Of Coils (AREA)
  • Regulation Of General Use Transformers (AREA)
  • Transformers For Measuring Instruments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an instrument transformer of a mold type with high insulation reliability.SOLUTION: An instrument transformer comprises: an iron core 2; a secondary coil 3 that arranged so as to surround the iron core 2; a primary coil 4 that is arranged on an outer side on an axis concentric Xc of the secondary coil 3; a main insulation layer 5 in which the wound insulation material is a main configuration member, and which is arranged so as to be intervened between the outer peripheral surface of the secondary coil 3 and the an inner peripheral surface of the primary coil 4; and a housing that is formed by an insulation resin so as to include the secondary coil 3, the primary coil 4, and the main insulation layer 5. The primary coil 4 is formed by arranging two sub coils 4a and 4b in a direction of the axis concentric Xc. In an intermediate part of a thickness direction of the main insulation layer 5, a conductive layer 52 provided at a floating potential is arranged.SELECTED DRAWING: Figure 1

Description

本発明は、高電圧を測定可能なレベルの電圧に変成する計器用変圧器で、とくに樹脂モールド形の計器用変圧器に関する。   The present invention relates to an instrument transformer that transforms a high voltage into a measurable voltage, and more particularly to a resin-molded instrument transformer.

例えば電力設備のような高電圧回路を扱う設備には、回路電圧を測定可能なレベルの低電圧に変成するための計器用変圧器が備えられている。計器用変圧器の基本構成は、低圧側の二次コイルが高圧側の一次コイルの内側になるよう、両コイルが鉄心に対して同軸に配置される。一方、変圧器は一次コイルと二次コイル間を絶縁する絶縁媒体によって分類され、SFなどの絶縁ガスによって絶縁を行うガス絶縁変圧器や、エポキシなどの絶縁性樹脂を用いて絶縁を行う樹脂モールド形変圧器がある。計器用変圧器は、電力設備等の高電圧が印加される機器であるため、絶縁性能に不良が存在する場合、部分放電が発生して機器の信頼性を損なう可能性がある。 For example, facilities that handle high-voltage circuits such as power facilities are equipped with instrument transformers for transforming the circuit voltage to a low voltage that can be measured. The basic configuration of the instrument transformer is such that both coils are arranged coaxially with respect to the iron core so that the secondary coil on the low voltage side is inside the primary coil on the high voltage side. On the other hand, transformers are classified by an insulating medium that insulates between the primary coil and the secondary coil, and a gas insulating transformer that insulates with an insulating gas such as SF 6 or an insulating resin that uses an insulating resin such as epoxy. There is a molded transformer. An instrument transformer is a device to which a high voltage is applied, such as a power facility. Therefore, if there is a defect in insulation performance, partial discharge may occur and the reliability of the device may be impaired.

例えば、樹脂モールド形変圧器においては、樹脂とコイルとの熱膨張係数の差が大きく、剥離が発生して部分放電を生じさせるおそれがあることから、弾性部材を用いて剥離を防止する手法等が開示されている(例えば、特許文献1参照。)。一方、コイル端部の渦電流損失の軽減や高周波サージに対する絶縁性能の向上を目的として、一次コイルと二次コイルの間の絶縁領域に、接地した導電材を配置した変圧器が開示されている(例えば、特許文献2、3参照。)。あるいは、絶縁領域に、一方のコイルの電位に近い電位の導電体層と、他方のコイルの電位に近い電位の導電体層を設けた変圧器が開示されている(例えば、特許文献4参照)。   For example, in resin-molded transformers, there is a large difference in the thermal expansion coefficient between the resin and the coil, and there is a risk of peeling and causing partial discharge. Is disclosed (for example, see Patent Document 1). On the other hand, a transformer is disclosed in which a grounded conductive material is arranged in an insulating region between a primary coil and a secondary coil for the purpose of reducing eddy current loss at the coil end and improving insulation performance against high-frequency surges. (For example, refer to Patent Documents 2 and 3.) Alternatively, a transformer is disclosed in which a conductor layer having a potential close to the potential of one coil and a conductor layer having a potential close to the potential of the other coil are provided in the insulating region (see, for example, Patent Document 4). .

実開昭59−159918号公報(第2頁、第4頁〜第5頁、第1図、第2図)Japanese Utility Model Publication No. 59-159918 (page 2, pages 4 to 5, FIGS. 1 and 2) 特開昭62−239510号公報(第2頁左上欄〜左下欄、第1図、第2図)JP-A-62-239510 (page 2, upper left column to lower left column, FIGS. 1 and 2) 特開2002−373821号公報(段落0025〜0027、図1〜図3)Japanese Patent Laid-Open No. 2002-373721 (paragraphs 0025 to 0027, FIGS. 1 to 3) 特表2010−518612号公報(段落0043〜0044、図1、段落0049、図2)JP-T 2010-518612 (paragraphs 0043-0044, FIG. 1, paragraph 0049, FIG. 2)

しかしながら、上述した導電体層の効果を本発明者が検証した結果、とくに剥離等の空隙が形成されやすいモールド形の計器用変圧器においては、十分な絶縁性能を得ることができない場合があることが分かった。   However, as a result of the inventor's verification of the effect of the above-described conductor layer, there is a case where sufficient insulation performance may not be obtained particularly in a molded-type instrument transformer in which voids such as peeling are easily formed. I understood.

本発明は、上記のような課題を解決するためになされたもので、モールド形の計器用変圧器において、絶縁層に空隙が形成されても、空隙に生じる電位差を低減し、十分な絶縁性能を有し、絶縁信頼性の高いモールド形の計器用変圧器を得ることを目的とする。   The present invention has been made to solve the above-described problems, and in a molded-type instrument transformer, even if a gap is formed in an insulating layer, a potential difference generated in the gap is reduced and sufficient insulation performance is achieved. The object of the present invention is to obtain a molded instrument transformer having high insulation reliability.

本発明の計器用変圧器は、鉄心と、前記鉄心を囲むように配置された二次コイルと、前記二次コイルの同心軸上の外側に配置された一次コイルと、巻回した絶縁材を主構成部材とし、前記二次コイルの外周面と前記一次コイルの内周面との間に介在するように配置された主絶縁層と、前記鉄心を挿入するための貫通孔を有するとともに、前記二次コイルと前記一次コイルと前記主絶縁層を内包するように絶縁樹脂により形成された筐体と、を備え、前記一次コイルは、2つのサブコイルを前記同心軸の方向に並べ、それぞれの巻き始め部分同士をつないで形成したものであり、前記主絶縁層の厚み方向の中間部分には、浮遊電位に設定された導電体層が配置されていることを特徴とする。   An instrument transformer according to the present invention includes an iron core, a secondary coil arranged so as to surround the iron core, a primary coil arranged on the outer side of a concentric axis of the secondary coil, and a wound insulating material. The main component member has a main insulating layer disposed so as to be interposed between the outer peripheral surface of the secondary coil and the inner peripheral surface of the primary coil, and a through hole for inserting the iron core, A secondary coil, a primary coil, and a casing formed of an insulating resin so as to enclose the main insulating layer, and the primary coil has two subcoils arranged in the direction of the concentric axis, It is formed by connecting the beginning portions, and a conductor layer set at a floating potential is disposed in an intermediate portion in the thickness direction of the main insulating layer.

本発明の計器用変圧器によれば、一次コイルを分割し、かつ一次コイルと二次コイル間に浮遊電位の導電体層を設けるようにしたので、絶縁領域に印加される電位自体が低減されるとともに、空隙に生じる電位差を導電体層が効果的に低減できるので、部分放電特性が向上し、十分な絶縁性能を得ることができる。   According to the instrument transformer of the present invention, since the primary coil is divided and the conductor layer of the floating potential is provided between the primary coil and the secondary coil, the potential itself applied to the insulating region is reduced. In addition, since the potential difference generated in the gap can be effectively reduced by the conductor layer, the partial discharge characteristics are improved and sufficient insulation performance can be obtained.

本発明の実施の形態1にかかる計器用変圧器の特徴的な構成であるコイル部分の斜視図と部分断面図、および一般的な一次コイルの構成を示す部分断面図である。It is the perspective view and partial sectional view of the coil part which are the characteristic structures of the instrument transformer concerning Embodiment 1 of this invention, and the fragmentary sectional view which shows the structure of a general primary coil. 本発明の実施の形態1にかかる計器用変圧器の構成を説明するための部分透過正面図と部分透過側面図ある。It is the partial transmission front view and partial transmission side view for demonstrating the structure of the instrument transformer concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる計器用変圧器のコイル間に形成された主絶縁層の断面図である。It is sectional drawing of the main insulating layer formed between the coils of the instrument transformer concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる計器用変圧器を動作させたときの主絶縁層内の等電位線を示す図である。It is a figure which shows the equipotential line in the main insulating layer when operating the transformer for instruments concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる計器用変圧器の主絶縁層の模式図と主絶縁層に空隙がない場合の等価回路を合わせた図である。It is the figure which put together the schematic diagram of the main insulation layer of the transformer for instruments concerning Embodiment 1 of this invention, and the equivalent circuit when there is no space | gap in a main insulation layer. 本発明の実施の形態1にかかる計器用変圧器の主絶縁層に空隙が生じた場合の等価回路図である。It is an equivalent circuit diagram when a space | gap arises in the main insulation layer of the transformer for instruments concerning Embodiment 1 of this invention. 主絶縁層の構成を変化させた場合の、構成ごとの空隙にかかる分担電圧を示す図である。It is a figure which shows the shared voltage concerning the space | gap for every structure when the structure of a main insulating layer is changed. 主絶縁層の構成を変化させた場合の、構成ごとの空隙厚みと放電開始電圧の関係を示すグラフである。It is a graph which shows the relationship between the space | gap thickness for every structure, and the discharge start voltage at the time of changing the structure of a main insulating layer. 本発明の実施の形態2にかかる計器用変圧器のコイル間に形成された主絶縁層の断面図である。It is sectional drawing of the main insulating layer formed between the coils of the instrument transformer concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる計器用変圧器のコイル間に形成された主絶縁層の断面図である。It is sectional drawing of the main insulating layer formed between the coils of the instrument transformer concerning Embodiment 3 of this invention.

実施の形態1.
図1〜図6は、本発明の実施の形態1にかかる計器用変圧器の構成および動作を説明するためのものである。図1は、計器用変圧器の特徴部分であるコイル部分の構成を示すもので、図1(a)はコイル部分のうち鉄心を透過させた模式的な斜視図、図1(b)はコイル部分の軸に平行な面、つまり図1(a)のA−A切断面のうち、軸の一方側の部分断面図、図1(c)は一般的な一次コイルの構成を示すための図1(b)に対応する断面の模式図である。また、図2(a)と(b)は、それぞれ計器用変圧器をコイルの軸方向から見たときの筐体内部を透過させた正面図と、コイルの軸方向に垂直な方向から見たときの筐体内部を透過させた側面図である。そして、図3は主絶縁層の軸に垂直な面、つまり図1(a)のB−B切断面による断面図、図4は計器用変圧器を動作させたときの主絶縁層内の等電位線を示す図3の断面図に対応する模式図、図5は主絶縁層に空隙がない場合の図3の断面図に対応する模式図と等価回路を合わせた図、図6は主絶縁層に空隙が生じた場合の主絶縁層部分の等価回路図である。
Embodiment 1 FIG.
FIGS. 1-6 is for demonstrating the structure and operation | movement of the transformer for instruments concerning Embodiment 1 of this invention. FIG. 1 shows a configuration of a coil part which is a characteristic part of an instrument transformer. FIG. 1 (a) is a schematic perspective view through which an iron core is transmitted, and FIG. 1 (b) is a coil. Of the plane parallel to the axis of the part, that is, the AA cut plane in FIG. 1A, a partial cross-sectional view on one side of the axis, FIG. 1C is a diagram for showing a configuration of a general primary coil It is a schematic diagram of the cross section corresponding to 1 (b). 2 (a) and 2 (b) are a front view of the instrument transformer when viewed from the axial direction of the coil and a perspective view perpendicular to the axial direction of the coil. It is the side view which permeate | transmitted the inside of the case at the time. 3 is a cross-sectional view taken along a plane perpendicular to the axis of the main insulating layer, that is, a BB cut surface of FIG. 1A, and FIG. 4 is a diagram of the inside of the main insulating layer when the instrument transformer is operated. FIG. 5 is a schematic diagram corresponding to the cross-sectional view of FIG. 3 showing potential lines, FIG. 5 is a schematic diagram corresponding to the cross-sectional view of FIG. 3 when there is no gap in the main insulating layer, and FIG. FIG. 6 is an equivalent circuit diagram of a main insulating layer portion when a void is generated in the layer.

また、図7と図8は、本発明の実施の形態1にかかる計器用変圧器による部分放電特性の向上効果を説明するためのもので、図7は主絶縁層の構成として導電体層の配置を変化させた場合の、構成ごとの空隙にかかる分担電圧の相対値を示す図、図8は図7と同様に主絶縁層の構成を変化させた場合の、構成ごとの空隙厚みと放電開始電圧の関係(パッシェンカーブ)を示す両対数グラフである。   FIGS. 7 and 8 are for explaining the effect of improving the partial discharge characteristics by the instrument transformer according to the first embodiment of the present invention. FIG. 7 shows the structure of the main insulating layer of the conductor layer. FIG. 8 is a diagram showing the relative value of the shared voltage applied to the gap for each configuration when the arrangement is changed, and FIG. 8 is a diagram illustrating the gap thickness and discharge for each configuration when the configuration of the main insulating layer is changed as in FIG. It is a log-log graph which shows the relationship (Paschen curve) of start voltage.

本実施の形態1にかかる計器用変圧器1の基本構成は、図2に示すように、図示しない二次巻形を介して巻回された二次コイル3と、二次コイル3の軸Xcと同軸で、二次コイルの外側に図示しない一次巻形を介して巻回された一次コイル4と、一次コイル4と二次コイル3との間に挿入され、一次コイル4と二次コイル3とを電気的に絶縁するための主絶縁層5、および、二次コイル3の内側に軸Xcに沿った貫通孔8hを有しつつ、コイル部(一次コイル4、主絶縁層5、二次コイル3)全体を覆うようにモールド樹脂によりコイル部と一体形成された筐体8を備えている。   As shown in FIG. 2, the basic configuration of the instrument transformer 1 according to the first embodiment includes a secondary coil 3 wound through a secondary winding (not shown) and an axis Xc of the secondary coil 3. Is inserted between the primary coil 4 and the secondary coil 3, and the primary coil 4 and the secondary coil 3 are inserted between the primary coil 4 and the primary coil 4 wound outside the secondary coil via a primary winding (not shown). And a through hole 8h along the axis Xc on the inner side of the secondary coil 3, while the coil portion (the primary coil 4, the main insulating layer 5, the secondary The coil 3) is provided with a housing 8 that is integrally formed with a coil portion by a mold resin so as to cover the whole.

さらに、貫通孔8h(コイル部の中心)を挿通する挿通部分と、コイル部を囲み、内側で挿通部分の両端と連なるループ部分とで、上側から見るとB字状に形成された鉄心2とを備えている。鉄心2は、筐体8を挟むようにI字状の板材とE字状の板材を突き合わせてB字状となした層を、突き合わせ部分が互い違いになるように、順次重ねることにより形成している。なお、鉄心2の図中下側の軸Xcに垂直な方向の両端には、脚材7を固定している。また、一次コイル4と図示しない電路とを接続する2つの端子9bが筐体8の上部から、二次コイル3と図示しない計測機器とを接続する2つの端子9aが筐体8の正面下部から露出するように配置されている。   Furthermore, an iron core 2 formed in a B shape when viewed from above, with an insertion portion that passes through the through-hole 8h (center of the coil portion) and a loop portion that surrounds the coil portion and that is continuous with both ends of the insertion portion on the inside. It has. The iron core 2 is formed by sequentially stacking a B-shaped layer by matching an I-shaped plate material and an E-shaped plate material so as to sandwich the housing 8 so that the butted portions are staggered. Yes. Note that legs 7 are fixed to both ends of the iron core 2 in the direction perpendicular to the lower axis Xc in the figure. Further, two terminals 9b for connecting the primary coil 4 and an electric circuit (not shown) from the upper part of the casing 8, and two terminals 9a for connecting the secondary coil 3 and a measuring instrument (not shown) from the lower front part of the casing 8. It is arranged to be exposed.

次に、本発明の特徴部分であるコイル部の構成について詳細に説明する。
二次コイル3は、図示しない計測器の測定に適した数百V以下の低電圧に降圧する、いわゆる低圧コイルである。一方、一次コイル4は、図示しない電力設備等の電気回路(電路)に接続され、数kVもの高電圧が両端にかかることが想定される、いわゆる高圧コイルである。そのため、端子9bに対しては、両極間の沿面距離を稼ぐため、端子9bの両極を仕切る仕切り壁8wが筐体8に形成されている。
Next, the structure of the coil part which is the characterizing part of this invention is demonstrated in detail.
The secondary coil 3 is a so-called low voltage coil that steps down to a low voltage of several hundred volts or less suitable for measurement by a measuring instrument (not shown). On the other hand, the primary coil 4 is a so-called high voltage coil that is connected to an electric circuit (electric circuit) such as a power facility (not shown) and is assumed to have a high voltage of several kV applied to both ends. Therefore, for the terminal 9b, a partition wall 8w that partitions both poles of the terminal 9b is formed in the housing 8 in order to increase a creepage distance between both poles.

さらに、本実施の形態1および以降の実施の形態にかかる計器用変圧器1では、一次コイル4と主絶縁層5との界面にかかる電圧(電位差)を半減するため、軸Xc方向に分割した2つのサブコイル(第一サブコイル4a、第二サブコイル4b)で構成している。具体的には、図1(b)に示すように、第一サブコイル4aは、軸Xc方向の中間部分のWa11から巻き始めて端部のWa1eに向かい、折り返して順次層をなすように巻いていき、最上層のWaeeで巻き終わるように一続きに巻いて構成される。そして、第二サブコイル4bも、軸Xc方向の中間部分のWb11から巻き始めて端部のWb1eに向かい、折り返して順次層をなすように巻いていき、最上層のWbeeと巻き終わるように一続きに巻いて構成される。そして、第一サブコイル4aの巻き始め部分であるWa11と第二サブコイル4bの巻き始め部分であるWb11とを電気接続して中間接続部Lmを形成し、WaeeとWbeeから引き出された配線が2つの端子9bのそれぞれに分かれて接続される。つまり、主絶縁層5側の最下層を構成する巻線は、一次コイル4の電流経路内における中央部に位置することになる   Further, in the transformer 1 for an instrument according to the first embodiment and the following embodiments, the voltage (potential difference) applied to the interface between the primary coil 4 and the main insulating layer 5 is divided in the direction of the axis Xc in order to halve the voltage. It is composed of two subcoils (first subcoil 4a and second subcoil 4b). Specifically, as shown in FIG. 1 (b), the first sub-coil 4a starts to wind from the middle portion Wa11 in the direction of the axis Xc, moves toward the end portion Wa1e, and then wraps in order to form layers. It is configured to be wound in a continuous manner so as to finish winding with the uppermost layer of Waee. Then, the second subcoil 4b also starts to wind from the intermediate portion Wb11 in the direction of the axis Xc, goes to Wb1e at the end portion, wraps in order to form a layer, and continues to finish winding with the uppermost layer Wbee. Constructed by winding. Then, Wa11, which is the winding start portion of the first subcoil 4a, and Wb11, which is the winding start portion of the second subcoil 4b, are electrically connected to form an intermediate connection portion Lm, and two wires drawn from Waee and Wbee The terminals 9b are connected separately. That is, the winding constituting the lowermost layer on the main insulating layer 5 side is located at the center in the current path of the primary coil 4.

なお、一般的な一巻で構成される一次コイル4Cの場合、図1(c)に示すように、巻線は一方の端部となるW11から巻き始めて他方の端部となるW1eに向かい、折り返して順次層をなすように巻いていき、最上層のWeeで巻き終わるように一続きに巻いて構成される。そして、W11とWeeから引き出された配線が電路に接続するための端子に接続される。   In addition, in the case of the primary coil 4C composed of a general winding, as shown in FIG. 1 (c), the winding starts from W11 which is one end and goes to W1e which is the other end. It is folded and wound in order so as to form layers, and it is wound in a continuous manner so as to finish the winding with the top layer Wee. And the wiring pulled out from W11 and Wee is connected to the terminal for connecting to an electric circuit.

主絶縁層5は、基本的にはフィルム状の絶縁材料を多層に積層もしくは多数回巻回した絶縁層51を形成した上で、エポキシ樹脂などの熱硬化性絶縁樹脂を含浸させた後、熱硬化させることで作製されている。さらに、主絶縁層5の内部は、図1および図3に示すように、絶縁層51の中間部分に、金属製の薄膜材料もしくはフィルム状の導電材料を用いた導電体層52が備えられている。絶縁層51を構成するフィルム状の絶縁材料としては、例えば厚さが数十μmのポリエチレンテレフタレートを用いることができる。また、フィルム状の導電材料としては、例えば厚さが数十μmのアルミニウム箔や銅箔、あるいは低抵抗のカーボン紙などを用いることができる。本実施の形態における導電体層52は、一次コイル4や二次コイル3あるいは接地のいずれとも電気的に接続されない。つまり導電体層52の電位は、電気的に浮遊した浮遊電位に設定されている。   The main insulating layer 5 is basically formed by forming an insulating layer 51 in which film-like insulating materials are laminated in multiple layers or wound many times, impregnated with a thermosetting insulating resin such as an epoxy resin, and then heated. It is made by curing. Further, as shown in FIG. 1 and FIG. 3, the main insulating layer 5 is provided with a conductor layer 52 using a metal thin film material or a film-like conductive material at an intermediate portion of the insulating layer 51. Yes. As the film-like insulating material constituting the insulating layer 51, for example, polyethylene terephthalate having a thickness of several tens of μm can be used. Further, as the film-like conductive material, for example, aluminum foil or copper foil having a thickness of several tens of μm, or low-resistance carbon paper can be used. The conductor layer 52 in the present embodiment is not electrically connected to any of the primary coil 4, the secondary coil 3, or the ground. That is, the potential of the conductor layer 52 is set to a floating potential that is electrically floating.

次に、主絶縁層5の製造プロセスについて説明する。例えば、長尺状のフィルム状の絶縁材料を巻き回して主絶縁層5の本体を作製する。このとき、主絶縁層5の中間位置に相当する部分にフィルム状の導電材料を一層分挿入して巻く。この主絶縁層5を液体状の熱硬化性絶縁樹脂液中に浸漬して真空脱泡を行うことで、液体状の熱硬化性絶縁樹脂をフィルム状の絶縁材料の層間に含浸させる。熱硬化性絶縁樹脂を層間に含浸し、乾燥した後、熱硬化させて主絶縁層5を完成させる。   Next, the manufacturing process of the main insulating layer 5 will be described. For example, a main body of the main insulating layer 5 is manufactured by winding a long film insulating material. At this time, a film-like conductive material is inserted into a portion corresponding to the intermediate position of the main insulating layer 5 and wound. The main insulating layer 5 is immersed in a liquid thermosetting insulating resin liquid and vacuum degassing is performed, so that the liquid thermosetting insulating resin is impregnated between the layers of the film-like insulating material. A thermosetting insulating resin is impregnated between layers, dried, and then thermoset to complete the main insulating layer 5.

二次コイル3と主絶縁層5との界面、および一次コイル4と主絶縁層5との界面の軸Xcに垂直な断面形状は相似形状である。そして、主絶縁層5内のフィルム状の材料の一層(一巻)ごとの形状も上記断面形状と相似になる。そのため、一次コイル4と二次コイル3の電位差により主絶縁層5に電界が生じると、主絶縁層5内の軸Xcに垂直な断面では、図4に示すように、各層の形状に沿った等電位線Leが形成される。導電体層52は、一次コイル4あるいは二次コイル3とは電気的に導通されていないため、導電体層52の電位はいわゆる浮遊電位となり、一次コイル4と二次コイル3の間の電位差を一次コイル4と導電体層52との間の静電容量と、導電体層52と二次コイル3の間の静電容量とで分圧した電圧が誘起されることになる。さらに、導電体層52は、主絶縁層5を構成するフィルム状の絶縁材料に沿って巻回されているため、図4に示す主絶縁層5における等電位線Leに沿って形成されていることになる。すなわち、主絶縁層5の電位分布は、導電体層52の有無によらず、一定になる。   The cross-sectional shape perpendicular to the axis Xc of the interface between the secondary coil 3 and the main insulating layer 5 and the interface between the primary coil 4 and the main insulating layer 5 is similar. And the shape for every layer (one roll) of the film-form material in the main insulating layer 5 becomes similar to the cross-sectional shape. Therefore, when an electric field is generated in the main insulating layer 5 due to a potential difference between the primary coil 4 and the secondary coil 3, the cross section perpendicular to the axis Xc in the main insulating layer 5 follows the shape of each layer as shown in FIG. An equipotential line Le is formed. Since the conductor layer 52 is not electrically connected to the primary coil 4 or the secondary coil 3, the potential of the conductor layer 52 becomes a so-called floating potential, and the potential difference between the primary coil 4 and the secondary coil 3 is reduced. A voltage divided by the capacitance between the primary coil 4 and the conductor layer 52 and the capacitance between the conductor layer 52 and the secondary coil 3 is induced. Furthermore, since the conductor layer 52 is wound along the film-like insulating material constituting the main insulating layer 5, it is formed along the equipotential line Le in the main insulating layer 5 shown in FIG. It will be. That is, the potential distribution of the main insulating layer 5 is constant regardless of the presence or absence of the conductor layer 52.

本実施の形態にかかるモールド形の計器用変圧器1のように、モールド絶縁された機器においては、絶縁性樹脂の硬化収縮や絶縁性樹脂の線膨張係数とフィルム状の絶縁材料あるいは導電材料の線膨張係数との違いにより、主絶縁層5に残留応力が生じる。この残留応力によって、主絶縁層5を構成する異なる材料間に剥離が生じ、フィルム状の絶縁材料の積層方向につぶれた偏平形状の空隙Gf(図6参照)が形成されることがある。本来、上述した残留応力を分散させて緩和するために、絶縁層51には、フィルム状の薄い絶縁材料を積層させた構造が採用されている。しかし、積層したフィルム状の絶縁材料の間には、熱硬化性絶縁樹脂が含浸しにくく、樹脂の含浸不良に起因して、巻回方向、つまり等電位線Leに沿った偏平形状の空隙Gfが形成されることもある。   In a mold-insulated device such as the molded-type instrument transformer 1 according to the present embodiment, the curing shrinkage of the insulating resin, the linear expansion coefficient of the insulating resin, and the film-like insulating material or conductive material Residual stress is generated in the main insulating layer 5 due to the difference from the linear expansion coefficient. Due to this residual stress, peeling may occur between different materials constituting the main insulating layer 5, and a flat gap Gf (see FIG. 6) that is crushed in the stacking direction of the film-like insulating material may be formed. Originally, in order to disperse and relieve the above-described residual stress, the insulating layer 51 has a structure in which thin film-like insulating materials are laminated. However, between the laminated film-like insulating materials, it is difficult to impregnate the thermosetting insulating resin, and due to the poor impregnation of the resin, the flat gap Gf along the winding direction, that is, the equipotential line Le. May be formed.

このような等電位線Leに垂直な方向につぶれた偏平形状の空隙Gfは、他の形状、例えば球状の空隙と比較して内部の電界が高くなるため、絶縁上最も厳しい欠陥である。コイル部の中でも、高電圧の一次コイル4と主絶縁層5との界面の端部は、最も高い電界が印加される箇所である。そのような箇所に偏平形状の空隙Gfが存在すると、この絶縁耐力の低い偏平形状の空隙Gfが分担する電圧が増大し、空隙Gf内部の電界が増大することで部分放電が発生して絶縁性能が低下する。   Such a flat gap Gf crushed in the direction perpendicular to the equipotential line Le is the most severe defect in insulation because the internal electric field is higher than other shapes, for example, a spherical gap. Among the coil portions, the end portion of the interface between the high voltage primary coil 4 and the main insulating layer 5 is a place where the highest electric field is applied. If a flat gap Gf exists in such a location, the voltage shared by the flat gap Gf having a low dielectric strength increases, and an electric field inside the gap Gf increases, resulting in a partial discharge and an insulation performance. Decreases.

空隙Gfが分担する電圧は、空隙Gfが有する静電容量と、空隙を除いたその他の主絶縁層5の静電容量との分圧比によって決定される。本実施の形態にかかる計器用変圧器1のように、主絶縁層5の内部に浮遊電位に設定された導電体層52を設けたことで、偏平形状の空隙Gfが分担する電圧、すなわち空隙Gf内部の電界を以下に示すように低減することができる。その結果、計器用変圧器1の絶縁性能を向上させることが可能となる。   The voltage shared by the gap Gf is determined by the partial pressure ratio between the capacitance of the gap Gf and the capacitance of the other main insulating layer 5 excluding the gap. Like the instrument transformer 1 according to the present embodiment, by providing the conductor layer 52 set to the floating potential inside the main insulating layer 5, the voltage shared by the flat gap Gf, that is, the gap The electric field inside Gf can be reduced as shown below. As a result, the insulation performance of the instrument transformer 1 can be improved.

以下、浮遊電位に設定された導電体層52が主絶縁層5内に設置された構造において、主絶縁層5に偏平形状の空隙Gfが生じた場合の空隙Gfの分担電圧の低減効果について定量的に説明する。主絶縁層5の内部に空隙Gfがない場合、図5に示すように、導電体層52の電位は、一次コイル4と導電体層52との間(一次側絶縁層51a)の静電容量Cと、導電体層52と二次コイル3との間(二次側絶縁層51b)の静電容量Cの分圧比によって決定される。 Hereinafter, in the structure in which the conductor layer 52 set to the floating potential is installed in the main insulating layer 5, the reduction effect of the shared voltage of the gap Gf when the flat gap Gf is generated in the main insulating layer 5 is quantified. I will explain it. When there is no gap Gf inside the main insulating layer 5, as shown in FIG. 5, the electric potential of the conductor layer 52 is the electrostatic capacitance between the primary coil 4 and the conductor layer 52 (primary insulating layer 51a). and C 1, are determined by the division ratio of the capacitance C 2 between (secondary insulating layer 51b) of the conductor layer 52 and the secondary coil 3.

ここで、一次コイル4から導電体層52までの距離(一次側絶縁層51aの厚み)をD、導電体層52から二次コイル3までの距離(二次側絶縁層51bの厚み)をDとする。また、一次コイル4と主絶縁層5との界面部分にかかる電圧、つまり、一次コイル4の一層目(Wa1e〜Wa11−Wb11〜Wb1e)部分に印加される電圧をVとし、一次コイル4と比べて低電圧である二次コイル3は接地されているとする。また、導電体層52の厚みは主絶縁層5の厚みに対して無視できるほど薄いとし、主絶縁層5の厚みはD+Dとする。このとき、導電体層52に誘起される電位Vは、次の式(1)で表すことができる。 Here, the distance (primary insulating layer 51a of thickness) to D 1 of the from the primary coil 4 to the conductor layer 52, the distance from the conductive layer 52 to the secondary coil 3 (the thickness of the secondary-side insulating layer 51b) and D 2. Further, the voltage applied to the interface portion between the primary coil 4 and the main insulating layer 5, that is, the voltage applied to the first layer (Wa1e to Wa11-Wb11 to Wb1e) of the primary coil 4 is V, and compared with the primary coil 4. The secondary coil 3 having a low voltage is grounded. Further, the thickness of the conductor layer 52 is negligibly small with respect to the thickness of the main insulating layer 5, and the thickness of the main insulating layer 5 is D 1 + D 2 . At this time, the potential V C, which is induced in the conductive layer 52 can be expressed by the following equation (1).

Figure 2017147366
Figure 2017147366

次に、主絶縁層5のなかで最も樹脂の含浸不良や剥離が存在しやすい最外周、すなわち高電圧が印加される一次コイル4側に、厚みtの偏平形状の空隙Gfが生じたと想定する。このような偏平形状の空隙Gfが分担する電圧は、図6に示すように、一次コイル4に印加される電圧Vと導電体層52に印加される電圧Vとの電位差(V−V)を、偏平形状の空隙Gfの静電容量C1gと、この空隙Gfと中間電極である導電体層52との間に形成される静電容量C1sとで分圧した値となる。フィルム状の絶縁材料に樹脂が含浸された主絶縁層5の主構造部分の比誘電率をεとすると、空隙Gfが分担する電圧Vは、次の式(2)で表すことができる。 Next, it is assumed that a flat gap Gf having a thickness t is generated on the outermost circumference where the resin impregnation failure or peeling is most likely to occur in the main insulating layer 5, that is, on the primary coil 4 side to which a high voltage is applied. . As shown in FIG. 6, the voltage shared by the flat gap Gf is a potential difference (V−V C) between the voltage V applied to the primary coil 4 and the voltage V C applied to the conductor layer 52. ) Is divided by the capacitance C 1g of the flat gap Gf and the capacitance C 1s formed between the gap Gf and the conductor layer 52 as the intermediate electrode. When the relative dielectric constant of the main structure portion of the main insulating layer 5 in which a resin is impregnated with a film-like insulating material is ε S , the voltage V g shared by the gap Gf can be expressed by the following equation (2). .

Figure 2017147366
Figure 2017147366

ここで、主絶縁層5の主構造部分の比誘電率εを、フィルム状絶縁材料としてよく用いられるポリエチレンテレフタレートの比誘電率である3.2とする。また、主絶縁層5の厚み(D+D)を5mmとする。そして、主絶縁層5の内部の導電体層52の位置をパラメータとして、導電体層52を主絶縁層5の厚み方向における中央部に設置した構成(D=2.5mm)、一次コイル4から見て1:2の位置に設置した構成(D=1.67mm)、導電体層52を設置しない構成(D=5mm(D=0mm))の空隙Gfが分担する電圧Vを計算した。さらに、比較のために導電体層52を中央部に設置して接地電位に設定した構成での空隙Gfが分担する電圧Vも計算した。なお、偏平形状の空隙Gfの厚みtは300μmとした。 Here, the relative dielectric constant ε S of the main structural portion of the main insulating layer 5 is set to 3.2 which is the relative dielectric constant of polyethylene terephthalate often used as a film-like insulating material. The thickness (D 1 + D 2 ) of the main insulating layer 5 is 5 mm. Then, using the position of the conductor layer 52 inside the main insulating layer 5 as a parameter, the configuration in which the conductor layer 52 is installed at the center in the thickness direction of the main insulating layer 5 (D 1 = 2.5 mm), the primary coil 4 The voltage V g shared by the gap Gf of the configuration installed at a position of 1: 2 as viewed from (D 1 = 1.67 mm) and the configuration without the conductor layer 52 (D 1 = 5 mm (D 2 = 0 mm)). Was calculated. Further, for comparison, the voltage V g shared by the gap Gf in the configuration in which the conductor layer 52 is installed at the center and set to the ground potential was also calculated. The thickness t of the flat gap Gf was 300 μm.

そして、導電体層52を設置しない場合(D=5mm)を構成(A)、導電体層52を中央に配置した場合(D=2.5mm)を構成(B)、導電体層52を1:2の位置に配置した場合(D=1.67mm)を構成(C)、導電体層52を中央に配置し、かつ接地した場合(D=2.5mm)を構成(D)とし、各構成における空隙Gfの分担電圧Vを、構成(A)における分担電圧Vを100%として規格化した値を図7に示す。図7に示すように、主絶縁層5の中央部に浮遊電位に設定された導電体層52を設置した場合(構成(B))の空隙Gfの分担電圧Vは90%であり、10%の低減が期待できる。また、一次コイル4から見て1:2の位置に導電体層52を設けた場合(構成(C))の空隙Gfの分担電圧Vは81%であり、19%の低減が期待できる。一方、主絶縁層5の中央部に導電体層52を設置しても、導電体層52の電位が接地電位に設定された場合(構成(D))の空隙Gfの分担電圧Vは179%に上昇する。 And when the conductor layer 52 is not installed (D 1 = 5 mm), the configuration (A), when the conductor layer 52 is arranged in the center (D 1 = 2.5 mm), the configuration (B), the conductor layer 52 Is arranged at the position of 1: 2 (D 1 = 1.67 mm) (C), and the conductor layer 52 is arranged at the center and grounded (D 1 = 2.5 mm) is constructed (D ), and the divided voltage V C of the gap Gf in each component indicates a value obtained by normalizing the divided voltage V C as 100% in the configuration (a) in FIG. As shown in FIG. 7, a 90% share voltage V C of the gap Gf in the case of installing a conductor layer 52 which is set to the floating potential in a central portion of the main insulating layer 5 (Configuration (B)), 10 % Reduction can be expected. Further, 1 when viewed from the primary coil 4: shared voltage V C of the gap Gf when the conductor layer 52 provided on the second position (Configuration (C)) was 81%, 19% reduction can be expected. On the other hand, be provided a conductor layer 52 in the central portion of the main insulating layer 5, the divided voltage V C of the gap Gf cases (Configuration (D)) the potential of the conductive layer 52 is set to the ground potential 179 To%.

つまり、主絶縁層5の厚み方向の中間部分に、浮遊電位に設定された導電体層52を備えるように構成すれば、主絶縁層5に形成された空隙Gfに生じる電位差を低減して部分放電特性を向上させることができる。とくに、導電体層52を1:2の位置に配置した場合(構成(C):D=1.67)が最も電位差を低減できる。 That is, if the conductive layer 52 set at a floating potential is provided in the middle portion of the main insulating layer 5 in the thickness direction, the potential difference generated in the gap Gf formed in the main insulating layer 5 can be reduced. Discharge characteristics can be improved. In particular, the potential difference can be reduced most when the conductor layer 52 is arranged at a position of 1: 2 (configuration (C): D 1 = 1.67).

次に、浮遊電位に設定された導電体層52を主絶縁層5の内部に配置したことによる、計器用変圧器1の放電開始電圧Vが向上する効果について説明する。空隙Gf内部の気圧を便宜上1気圧と仮定すると、偏平形状の空隙gfにおける放電開始電圧Vはパッシェンの法則によって表わすことができる。パッシェンの法則の近似式としては、例えば以下の式(3)が知られている。 Then, due to disposing the conductive layer 52 which is set at a floating potential in the interior of the main insulating layer 5, a description will be given of an effect of improving the discharge start voltage V d of voltage transformer 1. Assuming that the air pressure inside the gap Gf is 1 atm for convenience, the discharge start voltage V d in the flat gap gf can be expressed by Paschen's law. As an approximate expression of Paschen's law, for example, the following expression (3) is known.

Figure 2017147366
Figure 2017147366

式(3)で求めることができる放電開始電圧Vまで、空隙Gfの分担電圧Vを上げることができると仮定し、式(2)において、VをVとしてVについて解くと、式(4)が得られる。 Until the discharge starting voltage V d which can be determined by formula (3), assuming that it is possible to increase the divided voltage V g of the gap Gf, in the formula (2) and solving for V a V g as V d, wherein (4) is obtained.

Figure 2017147366
Figure 2017147366

式(3)および式(4)を用いることで、導電体層52を備えた主絶縁層5を用いた計器用変圧器1の放電開始電圧Vを定量的に評価することができる。ここでも、主絶縁層5の主構造部分の比誘電率ε、主絶縁層5の厚みD+D、導電体層52の配置構成例としては、図6に示す構成例と同様の4種について計算した。そして、偏平形状の空隙Gfの厚みtをパラメータとして計器用変圧器1の放電開始電圧Vを計算した。 By using the equations (3) and (4), the discharge starting voltage V d of voltage transformer 1 using the main insulating layer 5 provided with a conductive layer 52 can be quantitatively evaluated. Also here, the relative dielectric constant ε S of the main structure portion of the main insulating layer 5, the thickness D 1 + D 2 of the main insulating layer 5, and the arrangement configuration example of the conductor layer 52 are the same as the configuration example shown in FIG. Species were calculated. Then, to calculate the discharge starting voltage V d of voltage transformer 1 the thickness t of the gap Gf of the flat shape as a parameter.

図8は、構成(A)〜(D)ごとの、変圧器の放電開始電圧V(kV)と空隙Gfの厚みt(mm)との関係を示した特性図、いわゆるパッシェンカーブであり、横軸は厚みt、縦軸は放電開始電圧Vを示す。図8において、各特性曲線の極小値が、構成ごとの理論的に求まる放電開始電圧Vの最小値となる。 FIG. 8 is a characteristic diagram showing the relationship between the discharge start voltage V d (kV) of the transformer and the thickness t (mm) of the gap Gf for each of the configurations (A) to (D), a so-called Paschen curve. the horizontal axis thickness t, and the vertical axis shows the discharge start voltage V d. 8, the minimum value of the characteristic curve, the minimum value of the discharge start voltage V d which is obtained theoretically for each configuration.

図8において、主絶縁層5の内部に導電体層52を設置しない場合(構成(A):破線)の放電開始電圧Vは7.5kVである。一方、主絶縁層5の中央部に導電体層52を設置した場合(構成(B):一点鎖線)の放電開始電圧Vの最小値は8.8kVであり、放電開始電圧は17%上昇する。また、一次コイル4から見て1:2の位置に導電体層52を設けた場合(構成(C):実線)の放電開始電圧の最小値は9.8kVであり、放電開始電圧は30%の上昇が期待できる。一方、導電体層52を接地した構成(D)における放電開始電圧Vの最小値はどの構成よりも1桁以上低下している。 In FIG. 8, the discharge start voltage V d when the conductor layer 52 is not installed inside the main insulating layer 5 (configuration (A): broken line) is 7.5 kV. On the other hand, when installing the conductive layer 52 in the central portion of the main insulating layer 5 (Configuration (B): the dashed line) the minimum value of the discharge start voltage V d of a 8.8KV, discharge starting voltage is increased by 17% To do. Further, when the conductor layer 52 is provided at a position 1: 2 as viewed from the primary coil 4 (configuration (C): solid line), the minimum value of the discharge start voltage is 9.8 kV, and the discharge start voltage is 30%. Can be expected to rise. On the other hand, it is reduced by one digit or more than any configuration the minimum value of the discharge start voltage V d in the configuration grounded conductive layer 52 (D).

さらに、導電体層52の位置をパラメータとして、放電開始電圧Vの最小値を計算していった。その結果、導電体層52を一次コイル4から見て1:2(D=1.67mm)の位置に配置すれば、放電開始電圧Vの最小値を最も向上させることができることがわかった。また、導電体層52を一次コイル4から見て1:4の位置に配置してもよく、1:1(D=2.5mm)〜1:4(D=1mm)の範囲に調整すれば、効果的に放電開始電圧Vの最小値を向上できることが分かった。また、導電体層52を主絶縁層5の中間部分のうち、中央から一次コイル4までの間に配置すれば、外周側で空隙Gfの発生頻度が高い計器用変圧器1においては、効果的に絶縁性能を向上させることができる。もっとも、導電体層52が浮遊電位であれば、どの位置に配置しても、接地した導電体層を有する場合、あるいは導電体層を有しない場合よりも放電開始電圧Vの最小値を向上できることが分かった。 Furthermore, the position of the conductive layer 52 as a parameter, the minimum value of the discharge start voltage V d began to calculate. As a result, the conductive layer 52 when viewed from the primary coil 4 1: If placed at the position of 2 (D 1 = 1.67mm), it was found that the minimum value of the discharge start voltage V d can be most improved . Further, the conductor layer 52 may be arranged at a position of 1: 4 when viewed from the primary coil 4, and is adjusted in a range of 1: 1 (D 1 = 2.5 mm) to 1: 4 (D 1 = 1 mm). if, it could be improved the minimum effective discharge start voltage V d. In addition, if the conductor layer 52 is arranged between the center and the primary coil 4 in the middle portion of the main insulating layer 5, it is effective in the instrument transformer 1 in which the generation frequency of the gap Gf is high on the outer peripheral side. Insulation performance can be improved. Improvement However, if conductive layer 52 is a floating potential, be arranged in any position, the minimum value of the discharge starting voltage V d than having no or conductive layer case, having a conductive layer to a grounded I understood that I could do it.

なお、空隙Gfが一次コイル4側に生じやすいのは、一次コイル4が高圧だからというのではなく、物理的に主絶縁層5の外周側に位置するからであり、その結果、導電体層52の配置の好適な位置が一次コイル4に近い位置となったのである。したがって、同軸上の2つのコイル間の絶縁層に対して導電体層の配置の好適な位置は、上述した「一次コイルから見て」を「外側のコイルから見て」と置き換えて適用すればよい。なお、この考え方は、本実施の形態1に限らず、以降の実施の形態にも適用される。   The gap Gf is likely to be generated on the primary coil 4 side not because the primary coil 4 is at a high voltage but physically located on the outer peripheral side of the main insulating layer 5, and as a result, the conductor layer 52. Thus, the preferred position of the arrangement is close to the primary coil 4. Therefore, a suitable position of the conductor layer relative to the insulating layer between the two coils on the same axis can be applied by replacing the “viewed from the primary coil” with the “viewed from the outer coil”. Good. This concept is applied not only to the first embodiment but also to the following embodiments.

ここで、端子間に印加される電圧Vtと、一次コイル4と主絶縁層5との界面部分にかかる電圧Vの関係について、一次コイルの形態と巻線の積層数Cwをもとに検討する。図1(c)で説明した一般的な一次コイル4Cでは、主絶縁層5Cとの界面部分、つまり、一次コイル4Cの一層目(W11〜W1e)部分にかかる電圧Vは、交流のため、Vt/Cw〜Vt/(1−1/Cw)の間で変化する。通常、数十層の積層数で巻かれるので、一般的な一次コイル4Cと主絶縁層5Cとの界面部分にかかる電圧VはVtとほぼ同じと考えることができる。   Here, the relationship between the voltage Vt applied between the terminals and the voltage V applied to the interface portion between the primary coil 4 and the main insulating layer 5 is examined based on the form of the primary coil and the number Cw of windings. . In the general primary coil 4C described in FIG. 1C, the voltage V applied to the interface portion with the main insulating layer 5C, that is, the first layer (W11 to W1e) portion of the primary coil 4C is Vt. It changes between / Cw and Vt / (1-1 / Cw). Since it is usually wound with several tens of layers, the voltage V applied to the interface portion between the general primary coil 4C and the main insulating layer 5C can be considered to be substantially the same as Vt.

一方、本実施の形態1および以降の実施の形態においては、一次コイル4は、巻き始め部分Wa11とWb11を接続した2つのサブコイル4a、4bを、軸Xc方向に並べて形成したものである。そのため、一次コイル4と主絶縁層5との界面部分、つまり、一次コイル4の一層目(Wa1e〜Wa11−Wb11〜Wb1e)部分にかかる電圧Vは、巻線内の中央部分に位置するので、Vt/2となる。そのため、界面部分にかかる電圧Vは端子9bに印加された電圧Vtの半分になるので、空隙Gfにかかる電圧Vも、一般的な一次コイル4Cを用いたときと比べて半減させることができる。 On the other hand, in the first embodiment and the following embodiments, the primary coil 4 is formed by arranging two subcoils 4a and 4b connecting the winding start portions Wa11 and Wb11 in the direction of the axis Xc. Therefore, the voltage V applied to the interface portion between the primary coil 4 and the main insulating layer 5, that is, the first-layer portion (Wa1e to Wa11-Wb11 to Wb1e) of the primary coil 4, is located at the center portion in the winding. Vt / 2. Therefore, the voltage V applied to the interface portion becomes a half of the voltage Vt applied to the terminal 9b, the voltage V g applied to the gap Gf can also be halved as compared with the case of using a general primary coil 4C .

つまり、分割タイプで構成した一次コイル4と、内部に浮遊電位に設定された導電体層52を有する主絶縁層5を備えるようにすれば、空隙Gfの分担電圧Vを低減し、かつ、放電開始電圧Vの最小値を向上させて絶縁信頼性を確保することができる。 In other words, the primary coil 4 which is constituted by a split type, if to include a main insulating layer 5 having a conductive layer 52 which is set at a floating potential inside, to reduce the divided voltage V g of the gap Gf, and, the minimum value of the discharge start voltage V d is improved can to secure insulation reliability.

また、導電体層52を、一次コイル4または二次コイル3の電圧に応じた特定の電圧を印加する構成ではなく、他の部分と電気的な導通が行われない浮遊電位とする構成としたので、外部の電源などに接続するための通電用の端子が不要となる。そのため、導電体層52は主絶縁層5の基本構成であるフィルム状の絶縁材料と絶縁性樹脂とにほぼ完全に覆われている。その結果、電界分布の乱れや、局所的な電界集中を引き起こす原因となりうる端子等の配線部材がないため、絶縁性能にとって弱点となる部位を増加させることがなく、機器の信頼性が向上する。   Further, the conductor layer 52 is not configured to apply a specific voltage according to the voltage of the primary coil 4 or the secondary coil 3, but is configured to have a floating potential that is not electrically connected to other portions. Therefore, a terminal for energization for connecting to an external power source or the like is not necessary. Therefore, the conductor layer 52 is almost completely covered with the film-like insulating material and the insulating resin, which are the basic configuration of the main insulating layer 5. As a result, since there is no wiring member such as a terminal that can cause disturbance in the electric field distribution or local electric field concentration, the number of sites that are weak points for insulation performance is not increased, and the reliability of the device is improved.

なお、本実施の形態1において、主絶縁層5をフィルム状の絶縁材料およびフィルム状の導電材料を積層または巻き回して構成したが、これに限るものではない。例えば、板状の導電材料を板状の絶縁性樹脂で挟み込んで一体化した構成などであってもよい。   In the first embodiment, the main insulating layer 5 is configured by laminating or winding a film-like insulating material and a film-like conductive material. However, the present invention is not limited to this. For example, a configuration in which a plate-shaped conductive material is sandwiched and integrated with a plate-shaped insulating resin may be used.

また、導電体層52を構成する導電材料は、必ずしも金属のような導電性の高い材料である必要はなく、低抵抗の半導電材料であってもよい。導電体層52を構成する導電材料に求められる導電率σ(S/m)は、その材料の時定数を考慮した以下の(5)式で算出することができる。 Further, the conductive material forming the conductor layer 52 is not necessarily a highly conductive material such as a metal, and may be a low-resistance semiconductive material. The electrical conductivity σ t (S / m) required for the conductive material constituting the conductor layer 52 can be calculated by the following equation (5) considering the time constant of the material.

Figure 2017147366
Figure 2017147366

ここで、τは印加電圧の周波数によって決定される導電材料の時定数である。また、εは導電材料の比誘電率であり、εは真空の誘電率である。50Hzの正弦波の電圧が印加される場合には、電圧周期は20msとなり、印加電圧が0からピークになる時間は5msである。導電体層52を構成する導電材料の時定数として、電圧周期(20ms)の1/4である5msをτとする。また、εは半導電性材料の代表的な値として10を用いる。εは真空の誘電率である8.8×10−12F/mである。これらの値を(5)式に代入すると、σ=1.76×10−8(S/m)となる。これら材料の時定数τと誘電率εから算出される導電率σよりも大きい導電率σを持つ材料であれば、導電材料とみなすことができる。 Here, τ is a time constant of the conductive material determined by the frequency of the applied voltage. Further, ε C is a relative dielectric constant of the conductive material, and ε 0 is a vacuum dielectric constant. When a 50 Hz sine wave voltage is applied, the voltage period is 20 ms, and the time for the applied voltage to peak from 0 is 5 ms. As a time constant of the conductive material constituting the conductor layer 52, τ is ¼ of ¼ of the voltage period (20 ms). As ε C , 10 is used as a representative value of the semiconductive material. ε 0 is 8.8 × 10 −12 F / m, which is the dielectric constant of vacuum. Substituting these values into equation (5) yields σ t = 1.76 × 10 −8 (S / m). Any material having a conductivity σ greater than the conductivity σ t calculated from the time constant τ and the dielectric constant ε C of these materials can be regarded as a conductive material.

以上の条件を満たす値として、通常の商用周波数の入力に対して、導電体層52を構成する導電材料の導電率σは、1.0×10−8S/m以上であることが好ましい。 As a value satisfying the above conditions, the conductivity σ of the conductive material constituting the conductor layer 52 is preferably 1.0 × 10 −8 S / m or more with respect to an input of a normal commercial frequency.

以上のように、本発明の実施の形態1にかかる計器用変圧器1によれば、鉄心2と、鉄心2を囲むように配置された二次コイル3と、二次コイル3の同心軸Xc上の外側に配置された一次コイル4と、巻回した絶縁材を主構成部材とし、二次コイル3の外周面と一次コイル4の内周面との間に介在するように配置された主絶縁層5と、鉄心2を挿入するための貫通孔8hを有するとともに、二次コイル3と一次コイル4と主絶縁層5を内包するように絶縁樹脂により形成された筐体8と、を備え、一次コイル4は、2つのサブコイル4a、4bを同心軸Xcの方向に並べ、それぞれの巻き始め部分Wa11、Wb11同士をつないで形成したものであり、主絶縁層5の厚み方向の中間部分には、浮遊電位に設定された導電体層52が配置されているので、空隙Gfの分担電圧Vを低減し、かつ、放電開始電圧Vの最小値を向上させて絶縁性能を向上させ、絶縁信頼性の高い計器用変圧器1を得ることができる。 As described above, according to the instrument transformer 1 according to the first embodiment of the present invention, the iron core 2, the secondary coil 3 disposed so as to surround the iron core 2, and the concentric axis Xc of the secondary coil 3. The primary coil 4 arranged on the outer side of the upper side and the wound insulating material as main constituent members are arranged so as to be interposed between the outer peripheral surface of the secondary coil 3 and the inner peripheral surface of the primary coil 4. Insulating layer 5 and a housing 8 formed of insulating resin so as to include secondary coil 3, primary coil 4, and main insulating layer 5 while having through-hole 8 h for inserting iron core 2. The primary coil 4 is formed by arranging two subcoils 4a and 4b in the direction of the concentric axis Xc and connecting the winding start portions Wa11 and Wb11 to each other in the middle portion of the main insulating layer 5 in the thickness direction. The conductor layer 52 set at a floating potential is disposed. Because there, reducing the divided voltage V g of the gap Gf, and the minimum value of the discharge start voltage V d is improved by improving the insulation performance, it is possible to obtain a high voltage transformer 1 with insulation reliability.

とくに、導電体層52を、主絶縁層5の厚み方向において、中央(1:1)、または二次コイル3よりも一次コイル4に近い位置に配置すれば、物理的に生じやすくなる一次コイルに近い側の空隙Gf等の欠陥に対し、効果的に分担電圧Vの低減と放電開始電圧Vの最小値を向上させて絶縁性能を向上させることができる。 In particular, if the conductor layer 52 is arranged in the center (1: 1) or at a position closer to the primary coil 4 than the secondary coil 3 in the thickness direction of the main insulating layer 5, the primary coil is likely to be physically generated. defects such as side air gap Gf near to effectively improve the reduced minimum value of the discharge start voltage V d of the shared voltage V g and it is possible to improve the insulation performance.

さらに、導電体層52を、主絶縁層5の厚み方向において、二次コイル3までの距離Dと一次コイル4までの距離Dの比が1:1〜4:1の範囲に配置すれば、より効果的に分担電圧Vの低減と放電開始電圧Vの最小値を向上させて絶縁性能を向上させることができる。 Further, a conductor layer 52 in the thickness direction of the main insulating layer 5, the ratio of the distance D 1 of the a distance D 2 between the primary coil 4 up to the secondary coil 3 is 1: 1 to 4: By arranging the first range if, it is possible to improve the insulation performance more effectively improved to reduce the minimum value of the discharge start voltage V d of the shared voltage V g.

究極的には、導電体層52を、主絶縁層5の厚み方向において、二次コイル3までの距離Dと一次コイル4までの距離Dの比が2:1の位置に配置すれば、最大限に分担電圧Vの低減と放電開始電圧Vの最小値を向上させて絶縁性能を向上させることができる。 Ultimately, the conductive layer 52 in the thickness direction of the main insulating layer 5, the ratio of the distance D 1 of the a distance D 2 between the primary coil 4 up to the secondary coil 3 is 2: If arranged in a position , it is possible to improve the insulation performance by improving the minimum reduction and the discharge starting voltage V d of the divided voltage V g to the maximum.

実施の形態2.
実施の形態1では、分割した一次コイルと、内部に浮遊電位に設定された導電体層を有し、空隙内部の電界を低減することができる計器用変圧器について説明した。本実施の形態2では、実施の形態1で説明した構成に、空隙の発生自体を抑制する構成を追加したものである。
Embodiment 2. FIG.
In the first embodiment, the instrument transformer has been described that has the divided primary coil and the conductor layer set to the floating potential inside and can reduce the electric field inside the air gap. In this Embodiment 2, the structure which suppresses generation | occurrence | production itself of a space | gap itself is added to the structure demonstrated in Embodiment 1. FIG.

実施の形態1における計器用変圧器では、偏平形状の空隙が存在した場合でも、その空隙内部の電界を低減することができることを説明した。しかしながら、導電体層となるフィルム状の導電材料に対する絶縁性樹脂の濡れ性に起因する樹脂含浸時の含浸不良や、絶縁性樹脂の線膨張係数とフィルム状の導電材料の線膨張係数との違いにより、導電体層に隣接して偏平形状の空隙が発生しやすくなる。導電体層に隣接して偏平形状の空隙が形成された場合、導電体層の表面は部分放電の発生に必要となる電子の放出が容易なため、絶縁材料だけで覆われた空隙と比較して部分放電が発生するための条件が整いやすい。すなわち、導電体層を設けたことで、その導電体層に隣接して形成された偏平形状の空隙が新たな絶縁弱点(部分放電発生部)となることが懸念される。そこで、本実施の形態2においては、主絶縁層において、導電体層に隣接した偏平形状の空隙の発生を抑制するようにした。   In the instrument transformer in the first embodiment, it has been described that even when a flat gap exists, the electric field inside the gap can be reduced. However, impregnation failure during resin impregnation due to the wettability of the insulating resin to the film-like conductive material that becomes the conductor layer, and the difference between the linear expansion coefficient of the insulating resin and the linear expansion coefficient of the film-like conductive material As a result, a flat gap is easily generated adjacent to the conductor layer. When a flat air gap is formed adjacent to the conductor layer, the surface of the conductor layer is easy to emit electrons necessary for generating a partial discharge. Therefore, the conditions for generating partial discharge are easily established. That is, there is a concern that by providing the conductor layer, the flat gap formed adjacent to the conductor layer becomes a new insulation weak point (partial discharge generating portion). Therefore, in the second embodiment, generation of a flat gap adjacent to the conductor layer is suppressed in the main insulating layer.

図9は、本実施の形態2にかかる計器用変圧器の構成を説明するためのもので、主絶縁層の軸に垂直な面、つまり、図1(a)のB−B切断面による断面図である。なお、実施の形態1において、絶縁層内の詳細な構造以外の部分の説明に用いた、例えば、図1(a)、図2等は本実施の形態2においても援用する。   FIG. 9 is a diagram for explaining the configuration of the instrument transformer according to the second embodiment, and is a cross section taken along a plane perpendicular to the axis of the main insulating layer, that is, a BB cut plane in FIG. FIG. In the first embodiment, for example, FIG. 1A, FIG. 2 and the like used for the description of the portions other than the detailed structure in the insulating layer are also used in the second embodiment.

本実施の形態2にかかる計器用変圧器1は、図9に示すように、主絶縁層5の内部に設けた浮遊電位に設定された導電体層52に対し、二次コイル3側に隣接するように、多孔性の絶縁材料による層(絶縁多孔層53)を設けるようにしたものである。多孔性の絶縁材料としては、例えばスリットを設けたフィルム状のポリエチレンテレフタレートを用いることができる。そして、この絶縁多孔層53は、主絶縁層5内部に設置されたのち、孔内および導電体層52と絶縁層51(本例では二次側絶縁層51b)との界面部分が絶縁性樹脂で充填される。   As shown in FIG. 9, the instrument transformer 1 according to the second exemplary embodiment is adjacent to the secondary coil 3 side with respect to the conductor layer 52 set at the floating potential provided inside the main insulating layer 5. As described above, a layer made of a porous insulating material (insulating porous layer 53) is provided. As the porous insulating material, for example, a film-like polyethylene terephthalate provided with a slit can be used. And after this insulating porous layer 53 is installed in the main insulating layer 5, the interface part in a hole and the conductor layer 52 and the insulating layer 51 (in this example secondary side insulating layer 51b) is insulating resin. Filled with.

具体的には、絶縁層51の材料であるフィルム状の絶縁材料を多層積層もしくは多数回巻回するときに、導電体層52の材料であるフィルム状の導電材料とともに、多孔性の絶縁材料を巻回することで、フィルム状の絶縁材料の層間に挿入できる。そして、その後に絶縁樹脂を含浸させることで、本実施の形態2にかかる計器用変圧器1の主絶縁層5を作製することができる。   Specifically, when the film-like insulating material that is the material of the insulating layer 51 is multilayered or wound many times, the porous insulating material is used together with the film-like conductive material that is the material of the conductor layer 52. By winding, it can be inserted between layers of a film-like insulating material. Then, the main insulating layer 5 of the instrument transformer 1 according to the second embodiment can be produced by impregnating the insulating resin thereafter.

主絶縁層5の製造プロセスにおいては、材料を巻回して層構造を形成した後に、液体状の熱硬化性絶縁樹脂を含浸させる。このとき、緻密な材料のみで層構造が形成されている場合は、層間に隙間に発生した閉鎖的な隙間内にまで樹脂を浸潤させることは困難であり、空隙が残ることになる。しかし、本実施の形態2にかかる計器用変圧器1では、導電体層52を形成するフィルム状の導電材料に隣接して多孔性の絶縁材料が挿入されている。そのため、多孔性の絶縁材料の孔が、フィルム状の導電材料表面への液体状の熱硬化性絶縁樹脂の含浸経路として機能することになる。その結果、主絶縁層5において、導電体層52に隣接する部分での偏平形状の空隙Gfの発生を抑制することができる。   In the manufacturing process of the main insulating layer 5, the material is wound to form a layer structure, and then impregnated with a liquid thermosetting insulating resin. At this time, if the layer structure is formed only with a dense material, it is difficult to infiltrate the resin into the closed gap generated in the gap between the layers, and a void remains. However, in the instrument transformer 1 according to the second embodiment, a porous insulating material is inserted adjacent to the film-like conductive material forming the conductor layer 52. Therefore, the holes of the porous insulating material function as an impregnation path for the liquid thermosetting insulating resin on the surface of the film-like conductive material. As a result, in the main insulating layer 5, it is possible to suppress the generation of a flat gap Gf in a portion adjacent to the conductor layer 52.

なお、本実施の形態2においては、絶縁多孔層53を導電体層52の二次コイル3側に隣接するように設ける例を示したが、これに限ることはない。例えば、導電体層52の一次コイル4側に隣接した位置に設けてもよいし、その両方の位置に設けてもよい。   In the second embodiment, the example in which the insulating porous layer 53 is provided so as to be adjacent to the secondary coil 3 side of the conductor layer 52 has been described. However, the present invention is not limited to this. For example, you may provide in the position adjacent to the primary coil 4 side of the conductor layer 52, and you may provide in both of those positions.

以上のように、本実施の形態2にかかる計器用変圧器1によれば、巻回した絶縁材によって形成された層(絶縁層51)と導電体層52との間に、多孔性の絶縁層(絶縁多孔層53)が挿入されている。そのため、絶縁多孔層53の孔内が筐体8を形成する際に絶縁性樹脂で充填されるので、導電体層52に隣接した偏平形状の空隙Gfの発生を抑制することができる。つまり、より効果的に絶縁性能を向上させることができる。   As described above, according to the instrument transformer 1 according to the second embodiment, the porous insulation is provided between the layer (insulating layer 51) formed of the wound insulating material and the conductor layer 52. A layer (insulating porous layer 53) is inserted. Therefore, since the inside of the hole of the insulating porous layer 53 is filled with the insulating resin when the housing 8 is formed, the generation of the flat gap Gf adjacent to the conductor layer 52 can be suppressed. That is, the insulation performance can be improved more effectively.

実施の形態3.
実施の形態1では、主絶縁層の内部に浮遊電位に設定された導電体層を1つ設けた例を示したが、導電体層の数は単数に限ったことではない。本実施の形態2では、主絶縁層の内部に浮遊電位に設定された導電体層を2つ以上設ける構成の例として、2つ設けたものである。
Embodiment 3 FIG.
In Embodiment 1, an example in which one conductor layer set at a floating potential is provided inside the main insulating layer is shown, but the number of conductor layers is not limited to one. In the second embodiment, two are provided as an example of a configuration in which two or more conductor layers set at a floating potential are provided inside the main insulating layer.

図10は、本実施の形態3にかかる計器用変圧器の構成を説明するためのもので、主絶縁層の軸に垂直な面、つまり、図1(a)のB−B切断面による断面図である。なお、本実施の形態3においても、実施の形態2と同様に、実施の形態1において絶縁層内の詳細な構造以外の部分の説明に用いた図1(a)、図2等を援用する。   FIG. 10 is a diagram for explaining the configuration of the instrument transformer according to the third embodiment, and is a cross section taken along a plane perpendicular to the axis of the main insulating layer, that is, a BB cut plane in FIG. FIG. In the third embodiment, as in the second embodiment, FIG. 1A, FIG. 2 and the like used in the description of the portions other than the detailed structure in the insulating layer in the first embodiment are used. .

本実施の形態3にかかる計器用変圧器1は、図10に示すように、主絶縁層5の内部に電気的に浮遊した2つの導電体層52(第一導電体層52a、第二導電体層52b)を設けたものである。これらの導電体層52の電位は、一次コイル4や二次コイル3あるいは接地のいずれとも電気的に接続されておらず、電気的に浮遊した浮遊電位に設定されている。また、2つの導電体層52(第一導電体層52a、第二導電体層52b)同士も電気的には接続されていない。   As shown in FIG. 10, an instrument transformer 1 according to the third embodiment includes two conductor layers 52 (first conductor layer 52a, second conductor) that are electrically floating inside the main insulating layer 5. A body layer 52b) is provided. The potentials of these conductor layers 52 are not electrically connected to any of the primary coil 4, the secondary coil 3, and the ground, and are set to a floating potential that is electrically floating. Further, the two conductor layers 52 (first conductor layer 52a and second conductor layer 52b) are not electrically connected to each other.

本実施の形態3においても、導電体層52が単数の実施の形態1と同様に、主絶縁層5に形成された空隙Gfに生じる電位差を低減して部分放電特性を向上させることができる。その際、複数ある導電体層のうちの少なくともひとつを実施の形態1で説明したように、一次コイル4から見て1:2の位置に配置すれば、放電開始電圧Vの最小値を最も向上させることができる。また、1:1〜1:4の範囲に調整すれば、発生頻度の高い外周側の空隙Gfに対して、効果的に放電開始電圧Vの最小値を向上できる。 Also in the third embodiment, the potential difference generated in the gap Gf formed in the main insulating layer 5 can be reduced and the partial discharge characteristics can be improved as in the first embodiment in which the conductor layer 52 is single. At this time, if at least one of the plurality of conductor layers is arranged at a position of 1: 2 when viewed from the primary coil 4 as described in the first embodiment, the minimum value of the discharge start voltage Vd is maximized. Can be improved. Further, 1: 1 to 1: it is adjusted in the range of 4, with respect to the gap Gf of frequently occurring outer peripheral side, thereby improving the minimum value of the effective discharge start voltage V d.

上述した導電体層52を一次コイル4側に近い位置に配置したとき、二次コイル3側で発生した空隙Gfに対しては、一次コイル4側で発生した空隙Gfに対する効果よりも空隙Gfの分担電圧Vgの低減効果は減少する。しかし、本実施の形態3のように、導電体層52を複数層設けることで、主絶縁層5の厚みに対して、内周部や外周部を問わず、どの部位で剥離が生じ、偏平形状の空隙Gfが形成された場合であっても効果的に空隙Gfの分担電圧Vを低減させることができる。つまり、複数の導電体層52の配置を主絶縁層5内の厚み方向で分散させるようにすれば、空隙Gfが、どの位置に発生しても、効果的に絶縁性能を維持することができる。 When the conductor layer 52 described above is disposed at a position close to the primary coil 4 side, the gap Gf generated on the secondary coil 3 side is more effective than the effect on the gap Gf generated on the primary coil 4 side. The effect of reducing the shared voltage Vg is reduced. However, as in the third embodiment, by providing a plurality of conductor layers 52, peeling occurs in any part regardless of the inner peripheral part or the outer peripheral part with respect to the thickness of the main insulating layer 5. even when the shape of the gap Gf is formed can be reduced shared voltage V d of the effective air gap Gf. That is, if the arrangement of the plurality of conductor layers 52 is dispersed in the thickness direction in the main insulating layer 5, the insulating performance can be effectively maintained regardless of the position where the gap Gf is generated. .

なお、本実施の形態3においても、実施の形態2と同様に、各導電体層52a、52bのそれぞれに、隣接する絶縁多孔層53を設けるようにしてもよく、空隙Gfの発生を抑制する効果を発揮することができる。   In the third embodiment, as in the second embodiment, the adjacent insulating porous layer 53 may be provided in each of the conductor layers 52a and 52b, and the generation of the gap Gf is suppressed. The effect can be demonstrated.

以上のように、本実施の形態3にかかる計器用変圧器1によれば、主絶縁層5には、導電体層(第一導電体層52a)と絶縁され、かつ浮遊電位に設定された第二導電体層52bが配置されているので、様々な位置空隙が生じても、効果的に絶縁性能を維持することができる。   As described above, according to the instrument transformer 1 according to the third embodiment, the main insulating layer 5 is insulated from the conductor layer (first conductor layer 52a) and set to a floating potential. Since the second conductor layer 52b is disposed, the insulation performance can be effectively maintained even when various positional gaps are generated.

とくに、第二導電体層52bを、主絶縁層5の厚み方向において、一次コイル4よりも二次コイル3に近い位置に配置されているので、一次コイル4側だけでなく、二次コイル3側に生じた空隙に対しても、効果的に絶縁性能を維持することができる。   In particular, since the second conductor layer 52b is disposed closer to the secondary coil 3 than the primary coil 4 in the thickness direction of the main insulating layer 5, not only the primary coil 4 side but also the secondary coil 3 is disposed. The insulation performance can be effectively maintained even with respect to the gap generated on the side.

1:計器用変圧器、 2:鉄心、 3:一次コイル、 4:二次コイル、 4a:第一サブコイル、 4b:第二サブコイル、 5:主絶縁層、 8:筐体、 8h:貫通孔、 8w:仕切り壁、 9a,9b:端子、
51:絶縁層、 52:導電体層、 52a:第一導電体層、 52b:第二導電体層、 53:絶縁多孔層、
Xc:軸。
1: transformer for instrument, 2: iron core, 3: primary coil, 4: secondary coil, 4a: first subcoil, 4b: second subcoil, 5: main insulation layer, 8: housing, 8h: through hole, 8w: partition wall, 9a, 9b: terminal,
51: insulating layer, 52: conductor layer, 52a: first conductor layer, 52b: second conductor layer, 53: insulating porous layer,
Xc: axis.

Claims (7)

鉄心と、
前記鉄心を囲むように配置された二次コイルと、
前記二次コイルと同心の外側に配置された一次コイルと、
巻回した絶縁材を主構成部材とし、前記二次コイルの外周面と前記一次コイルの内周面との間に介在するように配置された主絶縁層と、
前記鉄心を挿入するための貫通孔を有するとともに、前記二次コイルと前記一次コイルと前記主絶縁層を内包するように絶縁樹脂により形成された筐体と、を備え、
前記一次コイルは、2つのサブコイルを前記同心の軸方向に並べ、それぞれの巻き始め部分同士をつないで形成したものであり、
前記主絶縁層の厚み方向の中間部分には、浮遊電位に設定された導電体層が配置されていることを特徴とする計器用変圧器。
Iron core,
A secondary coil arranged to surround the iron core;
A primary coil disposed concentrically outside the secondary coil;
A main insulating layer disposed so as to be interposed between the outer peripheral surface of the secondary coil and the inner peripheral surface of the primary coil, with the wound insulating material as a main constituent member,
A housing having a through hole for inserting the iron core, and a housing formed of an insulating resin so as to enclose the secondary coil, the primary coil, and the main insulating layer;
The primary coil is formed by arranging two subcoils in the concentric axial direction and connecting the respective winding start portions.
An instrument transformer, wherein a conductor layer set at a floating potential is disposed at an intermediate portion in the thickness direction of the main insulating layer.
前記導電体層は、前記主絶縁層の厚み方向において、中央、または前記二次コイルよりも前記一次コイルに近い位置に配置されていることを特徴とする請求項1に記載の計器用変圧器。   2. The instrument transformer according to claim 1, wherein the conductor layer is arranged at a center or a position closer to the primary coil than the secondary coil in the thickness direction of the main insulating layer. . 前記導電体層は、前記主絶縁層の厚み方向において、前記二次コイルまでの距離と前記一次コイルまでの距離の比が1:1〜4:1の範囲に配置されていることを特徴とする請求項2に記載の計器用変圧器。   In the thickness direction of the main insulating layer, the conductor layer is arranged such that a ratio of a distance to the secondary coil and a distance to the primary coil is in a range of 1: 1 to 4: 1. The instrument transformer according to claim 2. 前記導電体層は、前記主絶縁層の厚み方向において、前記二次コイルまでの距離と前記一次コイルまでの距離の比が2:1の位置に配置されていることを特徴とする請求項3に記載の計器用変圧器。   4. The conductor layer is arranged at a position where the ratio of the distance to the secondary coil and the distance to the primary coil is 2: 1 in the thickness direction of the main insulating layer. Instrument transformer as described in 1. 前記巻回した絶縁材によって形成された層と前記導電体層との間に、多孔性の絶縁層が挿入されていることを特徴とする請求項1から4のいずれか1項に記載の計器用変圧器。   The instrument according to any one of claims 1 to 4, wherein a porous insulating layer is inserted between the layer formed by the wound insulating material and the conductor layer. Transformer. 前記主絶縁層には、前記導電体層と絶縁され、かつ浮遊電位に設定された第二導電体層が配置されていることを特徴とする請求項1から5のいずれか1項に記載の計器用変圧器。   6. The main insulating layer is provided with a second conductor layer that is insulated from the conductor layer and is set to a floating potential. Instrument transformer. 前記第二導電体層は、前記主絶縁層の厚み方向において、前記一次コイルよりも前記二次コイルに近い位置に配置されていることを特徴とする請求項6に記載の計器用変圧器。   The instrument transformer according to claim 6, wherein the second conductor layer is disposed at a position closer to the secondary coil than the primary coil in the thickness direction of the main insulating layer.
JP2016028824A 2016-02-18 2016-02-18 Instrument transformer Active JP6519497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016028824A JP6519497B2 (en) 2016-02-18 2016-02-18 Instrument transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016028824A JP6519497B2 (en) 2016-02-18 2016-02-18 Instrument transformer

Publications (2)

Publication Number Publication Date
JP2017147366A true JP2017147366A (en) 2017-08-24
JP6519497B2 JP6519497B2 (en) 2019-05-29

Family

ID=59683238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016028824A Active JP6519497B2 (en) 2016-02-18 2016-02-18 Instrument transformer

Country Status (1)

Country Link
JP (1) JP6519497B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH208776A (en) * 1938-10-31 1940-02-29 Bbc Brown Boveri & Cie Dry voltage converter with porcelain insulation.
JPS4510107Y1 (en) * 1966-04-15 1970-05-11
JPS5034710U (en) * 1973-07-16 1975-04-14
JPS511284B1 (en) * 1970-12-17 1976-01-16
JPS55107219A (en) * 1979-02-09 1980-08-16 Mitsubishi Electric Corp Resin mold type transformer
JPS58125810A (en) * 1982-01-21 1983-07-27 Mitsubishi Electric Corp Resin molded transformer
JPS6085821U (en) * 1983-11-17 1985-06-13 三菱電機株式会社 molded transformer
JP2010518612A (en) * 2007-02-07 2010-05-27 フォルケル ヴェー. ハンゼル, Transformer
JP2017055042A (en) * 2015-09-11 2017-03-16 三菱電機株式会社 Transformer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH208776A (en) * 1938-10-31 1940-02-29 Bbc Brown Boveri & Cie Dry voltage converter with porcelain insulation.
JPS4510107Y1 (en) * 1966-04-15 1970-05-11
JPS511284B1 (en) * 1970-12-17 1976-01-16
JPS5034710U (en) * 1973-07-16 1975-04-14
JPS55107219A (en) * 1979-02-09 1980-08-16 Mitsubishi Electric Corp Resin mold type transformer
JPS58125810A (en) * 1982-01-21 1983-07-27 Mitsubishi Electric Corp Resin molded transformer
JPS6085821U (en) * 1983-11-17 1985-06-13 三菱電機株式会社 molded transformer
JP2010518612A (en) * 2007-02-07 2010-05-27 フォルケル ヴェー. ハンゼル, Transformer
JP2017055042A (en) * 2015-09-11 2017-03-16 三菱電機株式会社 Transformer

Also Published As

Publication number Publication date
JP6519497B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
RU2374713C2 (en) Planar high-voltage transformer
US7737814B1 (en) Electrostatic shield and voltage transformer
EP2992538B1 (en) Hv instrument transformer
US8907223B2 (en) Bushings foil design
US10381154B2 (en) High-voltage and high-frequency insulation transformer
JP2000173836A (en) Electrostatic induction equipment
JP2011258876A (en) High breakdown voltage flat transformer
US11557428B2 (en) Medium-frequency transformer with dry core
JP6519497B2 (en) Instrument transformer
KR100688608B1 (en) High voltage transformer
JP2017055042A (en) Transformer
JP2017016852A (en) Capacitor bushing and manufacturing method thereof
JP6415848B2 (en) Transformer for converter
EP3629349B1 (en) Medium frequency transfomer
JP5573447B2 (en) Gas insulated instrument transformer
CN221057257U (en) Dry-type transformer
JP2019102739A (en) Stationary induction appliance
EP2400512A1 (en) Transformer with shielded yoke
US11942254B2 (en) Transformer insulation modification
JP2001196237A (en) Disc winding for stationary induction electric appliance
EP4345854A1 (en) Transformer coil
US11282635B2 (en) Stationary induction electric apparatus
JP6789862B2 (en) Rest inducer
RU110862U1 (en) HIGH VOLTAGE INLAND WITH RESIN IMPAIRED PAPER INSULATION
JPH1092660A (en) Transformer for conversion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R151 Written notification of patent or utility model registration

Ref document number: 6519497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250